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Ante todo debemos preservar la absoluta imprevisibilidad y la total improbabilidad de

nuestras mentes interconectadas. De ese modo podremos mantener abiertas todas las

posibilidades, como hemos hecho en el pasado.

Seŕıa bueno contar con mejores métodos de monitorizar los cambios para poder reconocerlos

mientras están ocurriendo... Tal vez las computadoras puedan hacerlo posible, aunque lo

dudo bastante. Se pueden crear modelos simulados de ciudades, pero lo que se deduce de

ellos es que parecen estar más allá del alcance del análisis inteligente... Esto es interesante,

dado que una ciudad es la mayor concentración posible de seres humanos y todos ejercen

tanta influencia como la que son capaces de soportar. La ciudad parece tener vida propia.

Si no podemos entender cómo funciona, no llegaremos muy lejos en la comprensión general

de la sociedad humana.

Y sin embargo, debeŕıa ser posible. Reunida, la gran masa de mentes humanas de todo

el mundo parece comportarse como un sistema vivo coherente. El problema es que el

flujo de información es casi siempre unidireccional. A todos nos obsesiona la necesidad

de proporcionar información tan rápido como podamos, pero carecemos de mecanismos

eficaces para extraer algo a cambio. Confieso no saber más de lo que ocurre en la mente

humana que lo que sé de la mente de una hormiga. Ahora que lo pienso, ése podŕıa ser un

buen punto de partida.

Lewis Thomas, 1973
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Preface

Semantic memory organization and retrieval is a cutting edge topic that is being studied from

different fields such as Linguistics, Psychology, Computer Science and Neuroscience. The aim of

this thesis is to improve the understanding of conceptual organization and retrieval by means of

network theory and the use of semantic verbal fluency tests (animals) in an unsupervised fashion.

Conceptual organization will be studied here as a complex network attached to a dual-mechanism

of information retrieval, i.e. switching and clustering.

The chapters are organized as follows: 1. An introduction to the concepts of human brain,

memory and network theory. 2. A study of the frequency patterns obtained from the verbal flu-

ency tests. 3. Development of a statistical method for the unsupervised generation of a conceptual

network and the in-silico evaluation of switching and clustering. Such evaluation together with

the definition of accessibility and diffusivity measurements allowed the decoupling of switching

and clustering functioning. 4. Study of switcher random walks (by means of finite Markov chains)

as an exploration-propagation paradigm in a number of in-silico network models. 5. Modeliza-

tion of the switching-clustering retrieval on the conceptual network obtained in chapter 3. 6. A

model of concept acquisition and semantic growth based on frequency of concepts. 7. Study of

the lexical access impairment in three different neurodegenerative conditions: Multiple Sclerosis,

Mild Cognitive Impairment and Alzheimer’s disease. 8. General conclusions and outlook of this

work
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Chapter 1

Introduction

An introduction to human brain, memory and network theory.



2 Introduction

1.1. The human brain

The human brain is the most complex organ of the body, and is part of the central nervous

system (CNS). Its functioning is considered to regulate all human activity. Even involuntary

processes such as heart rate, digestion or ventilation are governed by the brain, specifically through

the autonomic nervous system [1]. It contains roughly 100 billion neurons, each of them having

between 10,000 and 30,000 connections each.

Figure 1.1: A human brain. Figure extracted from Wikipedia [1]

The anatomy of the brain consists of three parts: the forebrain, midbrain, and hindbrain (see

Fig. 1.2. While the forebrain includes the different lobes of the cerebral cortex that control higher

functions, the mid- and hindbrain are more involved with unconscious and autonomic functions.

Figure 1.2: Division of the brain into the forebrain, the midbrain and the hindbrain. Figure

extracted from HOPES website [2] with permission.

During encephalization, human brain mass increases beyond that of other species relative
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to body mass. This process is very pronounced in the neocortex, which is a part involved in

language and consciousness. The neocortex accounts for about 76% of the the human brain

mass. This percentage is much larger than in other animals and allows humans to enjoy unique

mental capacities despite having a neuroarchitecture similar to more primitive species. Indeed,

human consciousness is founded upon the extended capacity of the modern neocortex, as well

as the greatly developed structures of the brain stem. On the other hand, basic systems that

alert humans to stimuli, sense events in the environment, and maintain homeostasis are similar

to those of basic vertebrates.

The aspects of human brain regarding its partition in different lobes, its neurophysiology and

its implication in language are described below (see [1, 3] for detailed reviews).

Lobes of the brain

Although the lobes of the brain were originally a purely anatomical classification, they have

become also related to different brain functions. The telencephalon, the largest portion of the

human brain, is divided into 4 lobes (see [3] for a detailed review) Frontal lobe, that includes

conscious thought and can result in mood changes when is damaged, is crucial for future action

planning and control of movements. Parietal lobe is involved in integrating sensory information

from a number of senses, and with the manipulation of objects. Additionally, portions of the

parietal lobe are also related to visuospatial processing. Occipital lobe includes the sense of sight

and its damage can produce hallucinations. Temporal lobe includes senses of smell and sound, an

the processing of complex stimuli such as faces and scenes. The location of each lobe within the

brain can be seen in figure 1.3

Figure 1.3: Location of the 4 lobes of the brain: frontal (in blue), parietal (in yellow), occipital

(in pink) and temporal (in green). Cerebellum area is colored in white.

Neurophysiology

The human brain is the source of the conscious, cognitive mind [1]. The mind can be defined

as the set of cognitive processes involved in perception, imagination, interpretation, memories,

and language of which individuals may or may not be aware. Apart from cognitive functions,
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the brain also regulates autonomic processes related to vital body functions such as ventilation,

blood pressure and heart beating.

As commented at the beginning of this section, the extended neocortical capacity allows hu-

mans certain control over emotional behavior. Emotional pathways are able to modulate spon-

taneous emotive expression disregarding attempts at cerebral self-control. An emotive stability

of the mind has been associated with planning, experience, and an a stable and stimulating

environment.

The finding in the 19th century of the primary motor cortex mapped to correspond with

regions of the body led to popular belief that the brain was organized around a homunculus

(metaphorically, little man in charge of the functioning of a system; see Fig. 1.4).

Figure 1.4: Metaphor of the homunculus. Figure extracted from Wikipedia [4].

A distorted figure drawn to represent the body’s motor map in the prefrontal cortex is known

as the brain’s homunculus. Nevertheless human brain functioning is much more complex than this

simple figure suggests. Indeed, a similar, sensory homunculus can be drawn in the parietal lobe

that parallels that in the frontal lobe. Both representations of sensory and motor homunculus

can be seen at Fig. 1.5.

However, the human brain appears to have no localized center of conscious control. It is more

likely to derive consciousness from interactions among a large number of systems within the brain.

Executive functions rely on cerebral activities, especially those of the frontal lobes, but redundant

and complementary processes within the brain result in a diffuse assignment of executive control

that is certainly difficult to attribute to any single localization. For instance, visual perception is

generally processed in the occipital lobe, whereas the primary auditory cortex is located in the

temporal lobe.

Although a complete description of the biological basis for consciousness so far eludes the

scientific knowledge, reasonable assumptions have been provided. They have been possible due

to observable behaviors and on related internal responses that have provided the basis for general

classification of elements of consciousness and the neural regions associated with those elements.

For example, nowadays we know that people lose consciousness and regain it, partial losses of

consciousness associated with particular neuropathologies have been identified and the presence

of specific neural structures have happened to be necessary for certain conscious activities [1].
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Figure 1.5: Sensory (left) and motor (right) homunculus, i.e., distorted human figure drawn to

reflect the relative space our body parts occupy on the somatosensory cortex and the motor cortex

respectively. Figure including both maps was drawn by Dr. Penfield in 1951 and has been extracted

from Wikimedia [5].

Neurolinguistics

The specialized language areas are usually considered to be in the left hemisphere. Neverthe-

less, while this holds true for 97% of right-handed people, about 19% of left-handed people have

their language areas in the right hemisphere and a 68% of them have some language abilities in

both left and right hemispheres. Indeed, the two hemispheres are thought to contribute to the

processing and understanding of language: the left hemisphere processes the linguistic meaning

of prosody, while the right hemisphere processes the emotions conveyed by prosody. Studies on

children have provided some interesting findings: a child with damage to the left hemisphere, may

develop language in the right hemisphere instead. In particular, the younger the child, the better

the recovery. Hence, although the tendency is for language to develop on the left, the human

brain is able to adapt to difficult circumstances when the damage occurs early enough [1].

The first language area found within the left hemisphere is called Broca’s area (see Fig. 1.6),

due to Paul Broca’s research. The Broca’s area not only handle getting language out in a motor

sense, but it seems to be more generally involved in the ability to deal with grammar itself, at

least in its more complex aspects. For example, it handles distinguishing a sentence in passive

form from a simpler subject-verb-object sentence.

The second language area to be discovered is called Wernicke’s area (see Fig. 1.6), after Carl

Wernicke’s finding. Although the problem of not understanding the speech of others is known

as Wernicke’s Aphasia, Wernicke’s area is not reduced to speech comprehension. People with

Wernicke’s Aphasia also have impaired the ability of naming things, often producing words that

sound similar, or the names of related things, as if they are having a serious difficulties with their

mental lexicon.
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Figure 1.6: Location of Broca and Wernicke areas, both of them related to language abilities.
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1.2. Memory and its different classifications

In psychology, memory is an organism’s ability to store, retain, and subsequently retrieve

information. It can also be understood as a collection of mental abilities that depend on several

systems within the brain [6]. Traditional studies of memory began in the realms of philosophy,

including techniques of artificially enhancing the memory. While in the late nineteenth and early

twentieth century memory was put within the paradigms of cognitive psychology, it has more

recently become one of the key basis of cognitive neuroscience; an emergent field whose role is

being an interdisciplinary link between cognitive psychology and neuroscience [7].

Figure 1.7: The Persistence of Memory. Salvador Daĺı. 1931

Memory subtypes can be classified through several ways attending to duration, nature and

retrieval of information. From an information processing point of view, three main stages char-

acterize the formation and retrieval of memory [7]: encoding or registration (processing and

combining of received information), storage (creation of a permanent record of the encoded infor-

mation) and retrieval or recall (calling back the stored information in response to some cue for

use in a process or activity). See Fig. 1.8 for a schematic representation of these stages.

Memory types based on duration

A widely accepted classification of memory based on the duration of memory retention dis-

tinguish three distinct types of memory: sensory memory, short term memory and long term

memory described below (see [7] for a detailed review).

Sensory memory corresponds approximately to the first 200 - 500 milliseconds once an item

is perceived. An example would be the ability to look at an item for no more than a second and

remember what it looked like. Although sensory registers show a large capacity for unprocessed

information, its duration is very limited and once the stimulus has ended is momentarily hold

accurately and quickly degraded.

Short-term memory, also known as working memory, is believed to rely mostly on an acoustic

code for storing information, and to a lesser extent a visual code. Part of the information in

sensory memory is transferred to short-term memory. It permits to recall something for no more
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than a minute without rehearsal and its capacity is very limited. An experiment leaded by

George A. Miller showed that the store of short term memory was 7 ± 2 items (hence the title

of his paper, The magical number 7 ± 2 [8]). However, modern estimates of short-term capacity

are lower, indicating an order of 4 or 5 items [9]. Additionally, it is known that such capacity

can be increased through a process called chunking. For instance, if presented with the string

’FKIPHDTVAIBM’, people are able to remember only a few items of it. However, when the

same information is shown as ’FKI PHD TVA IBM’ people are able to remember many more

letters, by means of chunking the information into meaningful groups of letters. Beyond finding

meaning in the abbreviations above, Herbert A. Simon showed that the ideal size for chunking

letters and numbers, meaningful or not, was exactly three [10]. Indeed, this may be reflected in

some countries in the tendency to remember phone numbers as several chunks of three numbers

with the final four-number groups generally broken down into two groups of two [7].

As commented above, the storage in both sensory memory and short-term memory generally

have a strictly limited capacity and duration. On the contrary, long-term memory can store

much larger quantities of information for potentially unlimited amount of time. For example, a

random set of seven digits will only be remembered for a few seconds before forgetting. This

suggests that its storage happens in the short-term memory. However, we are able to remember

phone numbers or passwords for many years through repetition. The explanation is that such

information is stored in long-term memory.

Regarding their localization in the brain, short-term memory is supported by transient patterns

of neuronal communication dependent on regions of the frontal lobe and the parietal lobe. Long-

term memories are sustained by more stable and permanent changes in neural connections widely

spread throughout the brain. Although it has not been related to information storage itself, the

hippocampus plays a key role in the consolidation of information from short-term to long-term

memory. In particular, it is considered to be involved in changing neural connections for a period

of three months or more after the initial learning.

Figure 1.8: Memory scheme including encoding, storage and retrieval and the memory subtypes

involved. Figure extracted from S. Lakhan [11] with permission.
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Memory types based on information type

Long-term memory is divided into declarative (explicit) and procedural (implicit) memories

[12]. See Fig. 1.8 for a scheme of its structure.

Declarative memory requires conscious recall, in the sense that some conscious process must

call back the information. It is also known as explicit memory, since it consists of information

that is explicitly stored and retrieved. It can be divided into semantic memory, which concerns

facts taken independent of context; and episodic memory, which concerns information specific

to a particular context, such as a time and place. Semantic memory allows the encoding of

abstract knowledge about the world, such as ’Rome is the capital of Italy’. Episodic memory

is used, on the contrary, for more personal memories, such as the sensations, emotions, and

personal associations involving a particular place or time. Their processing include the details

surrounding the memory (i.e., where, when, and with whom the experience took place) and have

to be maintained; otherwise the memory would be semantic (Bullock 1998). For instance, one

may own an episodic memory of humans setting foot on the Moon for the first time, including

watching Neil Armstrong and even the face of a specific journalist announcing it on TV. However,

if the contextual details of this event were lost, the remaining would be only a semantic memory

that humanity went to the Moon. This ability to recall episodic information concerning a memory

is known as source monitoring [13], and is subject to distortion or impairment that can lead to

source amnesia [11] (see section 1.2).

Nevertheless, procedural memory (also known as implicit memory) is based on implicit learning,

instead of on the conscious recall of information. This memory is primarily employed in learning

motor abilities and should be considered a subset of implicit memory. It is revealed when one

does better in a given task due only to repetition, i.e. no new explicit memories have been formed,

but one is unconsciously accessing aspects of previous experiences. In motor learning tasks, it

depends on the cerebellum and basal ganglia.

A table summarizing the differences between declarative memories (semantic memory and

episodic memory) and procedural memory is shown below (see table 1.1).

Memory types based on temporal direction

Another way to characterize memory functions consists of defining whether the content to be

remembered is in the past, retrospective memory, or in the future, prospective memory. Hence

retrospective memory as a category includes semantic and episodic memories. On the contrary,

prospective memory is memory for future intentions, or remembering to remember [14]. Prospec-

tive memory can be divided into event- and time-based prospective remembering. Time-based

prospective memories are triggered by a time-cue, such as visiting a friend (action) at 6pm (cue).

Event-based prospective memories are intentions triggered by cues, such as remembering to make

a phone call (action) after seeing a mobile phone (cue). Cues do not necessarily need to be

related to the action, as the mobile phone example is. Indeed, people usually produce cues

such as sticky-notes, string around the finger or knotted handkerchiefs, as a strategy to enhance

prospective memory [7].

Semantic memory

Semantic memory is a distinct part of the declarative memory system [15] comprising knowl-

edge of facts, vocabulary, and concepts acquired through everyday life [16]. Contrary to episodic

memory, which stores life experiences, semantic memory is not linked to any particular time or
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Table 1.1: Summarization of the three memory systems based on information type: semantic

memory, episodic memory and procedural memory. Table extracted from A.E. Budson and B.H.

Price [6].

.

Memory system Anatomical structures Length of storage Type of awareness Examples

Episodic memory Medial temporal lobes, Minutes to years Explicit, declarative Remembering a short story,

anterior thalamic nucleus what you had for dinner last

mamillary body, fornix, night, what you did on your

prefrontal cortex last birthday

Semantic memory Inferolateral temporal lobes Minutes to years Explicit, declarative Knowing who was the first

president of the U.S., the

color of a lion, and how a

fork differs from a comb

Procedural memory Basal ganglia, cerebellum, Minutes to years Explicit or implicit, Driving a car with a stand-

supplementary motor area ard transmission (explicit),

learning the sequence of

numbers on a phone without

trying (implicit)

place. In a more restricted definition, it is responsible for the storage of semantic categories and

naming of natural and artificial concepts [6]. Regarding its localization, neuroimaging and le-

sion studies suggest the existence of a large distributed organization of semantic representations,

which includes infero-lateral temporal lobe, perception and motion modality regions [6, 17]. For

instance, when thinking about a cow, its visual features are represented in visual areas of the

brain while the sound it makes is stored in auditory areas. However, diseases such as Alzheimer’s

and semantic dementia are known to cause non-dissociated impairments of semantic memory [18],

difficult to explain from a modality-segmented perspective. Therefore it has been argued that

a modality-independent shared core is also needed for establishing high order relations between

concepts [19]. Both diseases but especially semantic dementia damage the temporal lobe [20, 21].

These findings have led to the proposal of semantic storage models where an amodal hub situated

in the temporal lobe is in permanent communication with modality-specific regions [19].

Memory disorders

Memory functioning is vulnerable to a wide variety of different pathologic processes, including

neurodegenerative diseases, strokes, tumors, head trauma, hypoxia, cardiac surgery, malnutrition,

attention-deficit disorder, depression, anxiety, the side effects of medication and normal aging

[22, 23]. Hence memory impairment is commonly observed by physicians of multiple disciplines

such as medicine, psychiatry, surgery and neurology. In many of the disorders, the most often

disabling feature is memory loss (also known as amnesia), which can severely impair the normal

daily activities of the patients [6] (see Fig. 1.8).

Much of the current knowledge of memory has come from studying memory disorders. Loss of

memory is known as amnesia. There are many kinds of amnesia, and by studying their different
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Figure 1.9: The Disintegration of the Persistence of Memory. Salvador Daĺı. 1954.

forms, it has been possible to observe apparent defects in individual sub-systems of memory, and

thus hypothesize their function in the normally working brain. Other neurological disorders such

as Alzheimer’s disease (AD), Parkinson’s disease, Multiple Sclerosis or schizophrenia can also

affect memory and cognition. Hyperthymesia, or hyperthymesic syndrome, is a disorder which

affects an individual’s autobiographical memory, essentially meaning that they cannot forget small

details that otherwise would not be stored. While not a disorder, a common temporary failure of

word retrieval from memory is the tip-of-the-tongue (TOT) phenomenon. Sufferers of Nominal

Aphasia (also known as Anomia), however, experience the TOT phenomenon on an ongoing basis

due to damage both to the frontal and parietal lobes.
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1.3. Verbal fluency tasks

Verbal fluency tasks based on semantic and phonetic cues are widely used in neuropsychological

assessment [24, 25]. In semantic fluency tasks participants have to produce words from a category

such as animals in a given time (usually 60 or 90 seconds). Although the most common clinical

measure is the number of different words named by each participant [26], it has also been observed

that words tend to appear in semantically grouped clusters [27–30]. This led Troyer et al. [31] to

propose a two component model of the semantic fluency task. The first component, clustering,

implies the production of related words until a particular category is exhausted. The second

component is switching to a different semantic cluster. It has been argued that switching implies

the flexibility to initiate a new category search and is related to frontal executive functioning while

clustering depends on the temporal lobe and is characterized by local explorations of semantic

memory [31–34].

Figure 1.10: Localization of the frontal lobe and the temporal lobe. In semantic verbal fluency

tasks, activity from the former has been associated to switching flexibility (ability to initiate a new

category) while the later has been associated to clustering (production of related words).
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1.4. Network theory and exploration phenomena

Network theory is a research area of applied mathematics, physics and graph theory that

has application in a wide spectrum of disciplines. It concerns itself with the study of graphs as a

representation of either symmetric or asymmetric relations (represented by links or edges) between

a set of objects (nodes). In the last decade, it has been used for the modeling and characterization

of a number of complex systems including biological interacting networks [35–39], sociophysics

[40, 41], epidemics [42, 43], the Internet [44, 45] and language [46, 47]. In all cases, systems were

represented as a set of nodes representing individual entities that have certain links that might

represent interactions of different nature (e.g. the case of protein-protein interaction networks)

or communication pathways (e.g. the case of Internet). It has been demonstrated that many of

these real-world networks show properties such as small-world and high clustering properties, and

scale-free (SF) degree distributions [48]. These properties necessarily imply a large heterogeneity

in the connectivity of the nodes and a short average distance between nodes. Theoretical models

have been developed to understand the structure and functions of the underlying real systems.

For example, scale-free networks have been shown to be resilient to random damage [49–51] but

at the same time fragile to intentional attacks on the small set of highly connected nodes (hubs)

[52].

Figure 1.11: Example of a protein-protein interaction network extracted from Goñi et al. [38].

Purple nodes are proteins whose genes have been related to Multiple Sclerosis. Red nodes are

proteins that interact with purple nodes and belong to the giant component of the network (biggest

subset of connected nodes). Green nodes also interact with purple nodes but are located in isolated

subsets of the network. Examples of hubs (nodes highly connected) are HLA-DRA, SPTAN1,

ITGA6, UN and ZAP70.

Its wide application has given rise to many different topological measures (see [53, 54] for a

review) in an effort to better understand the architecture of the systems modeled by such networks.

Additionally, dynamical rather than strictly topological measures have acquired a high relevance

in order to understand not only the architecture of a complex system but also its behavior in
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terms of exploration and propagation. While many studies have concentrated on the properties

of, for example, power-law networks and how they are generated, another interesting problem is

to find efficient algorithms for searching or exploring within graphs. Recent papers talk about the

discipline of search research [55]. Here, it is crucial to determine the constraints of the system

under study. Two examples are, in one hand a two dimensional space where a walker (generic

name for an entity that explores a system) aims to find a target, and on the other hand a network

of connected nodes that determines the valid locations (nodes) and valid walks (links between

nodes). Moreover, it is crucial to define whether the walker is aware of the full network and has

memory (conscious of nodes already visited) or not. Hub is a term used to refer to those nodes

which are highly connected in a network. It is easy to imagine using those hubs as preferential

nodes to visit due to their wide variety of targets in order to rapidly reach a specific node.

For example, imagine the case of a traveler using available city to city transports to finally

get to a small and badly connected town. Such traveler is taking advantage of being aware of

the transport structure and the location of different populations to reach a specific target. Let

us assume that this traveler does not know anything about the transport structure (example of

a network) and has no memory (he does not remember the places he has already visited). The

most feasible strategy for him is the so called random-walk, which was previously studied in one

and two dimensional spaces (see Fig. 1.12). It consists of randomly choosing the orientation of

each step done by the walker.

Figure 1.12: Example of a random walk in a two dimensional space. In the limit, for many and

very small steps, what is obtained is the so called Brownian motion, i.e. the random movement

of particles suspended in a liquid or a gas. Figure extracted from Wikipedia [56].

When steps are set to be small and simulation is run for a long time, the trajectories described

are those expected for the movement of particles suspended in a liquid or a gas. In the case

of random-walks in networks, the only difference is that movements are not constraint by near

spatial coordinates but on links of current node indicating the allowed targets for the next step
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(see Fig. 1.13). Interestingly, here hubs play a very different role acting like magnets. The reason

is that random walking produces a positive gradient towards being at highly connected nodes as

the time increases, as indicated by J.D. Noh and H. Rieger. [57]. The authors showed that at

infinite time, the probability of the random walker to be at certain node j of the network is the

division between its degree kj and the total sum of degrees in the network:

P∞
j =

kj
∑n

i=1 ki
, 1 ≤ j ≤ n. (1.1)

Figure 1.13: Example of a random-walk in a network. Solid orange traces indicate trajectories of

the random-walker. Depending of the particular architecture of the network, the number of visits

per node can be very heterogeneous. Figure extracted from Rosvall et al. [58] with permission.

The principle is that hubs are more likely to be reached due to their high degree and keep

the chance to immediately come back. In particular every time the walker leaves a hub and visit

another node l, it has a probability of 1/kl to go back to it (being kl the number of links of node

l). Hence, unless the walker wanted to find a well connected city, it would take him a long time to

reach the target. This toy example shows the combined relevance of the structure, the constraints

and the aims of a system to understand its overall functioning and behavior. The generalization

of this example is that the structural heterogeneity of the network will severely affect the diffusive

and relaxation dynamics of the random-walk [59, 60].
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Chapter 2

Frequency patterns and

heterogeneity of concepts in verbal

fluency

A study of how some concepts are named by more participants and earlier than others and its

implications.
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2.1. The experimental dataset of verbal fluency

Two hundred subjects, healthy Spanish speakers, were recruited (83 males, 117 females).

Participants ranged from 18 to 61 years (mean=31.8, SD= 11.75) and their education ranged

from 5 to 30 years (mean=15.2, SD= 3.85). Participants were asked to name all the animals they

could in 90 seconds and responses were transcribed to a text file. Every word was converted to

its singular and three pure synonyms were unified. Finally, one word that was not an animal was

removed.

The subjects produced series of animals containing between 16 and 52 words (mean 31.57, SD

6.99). Histogram is shown in Fig. 2.1. Overall, 399 distinct animals were listed from which 115

animals appeared only once.
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Figure 2.1: Histogram of the number of words per test by using 20 bins. Test length is the number

of words named by participants. Mean and standard deviation are 31.57 and 6.99, respectively.

It is interesting to note that these figures are close to the ones obtained by Henley et al. [61].

Their experiment consisted of 21 participants writing animals during 10 minutes and gave rise

to 423 distinct animals and 175 named only once. This might be indicating the magnitude of an

approximated human lexicon size in the category of animals.
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2.2. Frequency distribution of words

Power-law and exponential distributions

A finite sequence of real numbers y = {y1, y2, ..., yn} ordered in such a way that y1 ≥ y2 ≥

... ≥ yn, is said to follow a power-law or scaling relationship when it satisfies:

k = cy−γ
k , (2.1)

where k is the rank of yk, c is a constant and γ is the scaling index. In these kind of distribu-

tions, the relation between the rank k and y is linear (with slope equals to −γ) when plotted on

log-log scale. The reason is that expression of equation (2.1) can be rewritten as

log(k) = log(c) − γlog(yk), (2.2)

after taking logarithms on both sides.

Assuming a probability model P for a non negative random variable X, its cumulative distri-

bution function (CDF) is defined as

F (x) = P [X ≤ x], x ≥ 0, (2.3)

and hence, the complementary CDF, F̄ (x) is defined as

F̄ (x) = 1 − F (x) = P [X > x], x ≥ 0. (2.4)

A random variable X or its corresponding distribution F is said to follow a power-law with index

γ when

P [X > x] ≈ cx−γ , γ > 0. (2.5)

If the derivative of the cumulative distribution function F (x) exists, then f(x) = d
dx

F (x) is

called the probability density function of X. This implies that the stochastic cumulative form

of scaling or size-rank relationship described in equation (2.5) has a non cumulative equivalency

defined as

f(x) ≈ cx−(1+γ), (2.6)

which also appears as a line (slope equals −(1 + γ)) on a log-log scale. Nevertheless, the use of

this non cumulative approach has been a source of mistakes in the analysis and interpretation of

real data and in general is recommended to be avoided [62].

Evidence of power-law relationships has been observed in many biological, social and techno-

logical systems, including populations in cities, metabolic networks, protein-protein interactions,

and the topology of the Internet (see Fig. 2.2 for twelve real examples). The observation of this

pattern in the biomedical literature probably reflects an underlying natural principle. Research

on scale-free networks showed that a power-law relationship in the connectivity (degree) of nodes

can be explained as a consequence of new nodes being preferentially attached to high connected

nodes.

The equation for exponential distributions analogous to (2.1) is

k = e−βyk (2.7)

and fits to straight lines on semi-logarithmic plots. The reason is that this expression can be

rewritten as

log(k) = −βyk, (2.8)
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Figure 2.2: The cumulative distribution functions P (x) = P [X > x] (blue circles) and their

maximum likelihood power-law fits (dashed black lines), for 12 empirical data sets of different

nature. Figure extracted from Clauset et al. [63] with permission.
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after taking logarithms on both sides. Hence for a random variable X, the equation analogous to

(2.5) is

P [X > x] ∼ e−βx β > 0. (2.9)

There has been also evidence of exponential relationships in different fields such as psychology

[64] (see Fig. 2.3) and physiology [65].

Figure 2.3: Examples of exponential decays in psychology. Figure extracted from Shepard et al.

[64].

Fitting our data

We modeled the distribution P [X > x] for the variable frequencies of words (named in the

animals semantic verbal fluency tests) as a power-law and exponential distributions by means of

the lest square method. The goodness of fit for each approach was measured by R2. It measures

the fraction of the total squared error that is explained by the model. In our case, it is the fraction

between the actual data and those points in the linear model for the log-log plot (for the power-

law evaluation) and the linear-log plot (for the exponential evaluation). In the case of evaluating
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linear models, R2 numerically matches with the square of Pearson correlation coefficient. For the

general case, its definition is:

R2 = 1 −
SSerr

SStot
= 1 −

∑

i(yi − y′i)
2

∑

i(yi− < y >)2
(2.10)

where values yi are the observed ones, < y > their averaged value and y′i the predicted ones

according to the model.

The results plotted in Fig. 2.4 show that the frequency distribution of words is much closer

to an exponential distribution than to a power-law distribution. The plot of the data shows that

most of the words are rarely said while a very small amount appears in many tests. In particular,

only 9 words corresponding to 9 prototypical animals were said by more than 50 percent of the

participants. They were, in decreasing order of frequency: dog, cat, lion, elephant, giraffe, whale,

tiger, horse and cow.
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Figure 2.4: R2 measurements for power-law and exponential models show that frequency of words

is much closer to the latter. Figure axes are log-log and thus data would have been much more

linearin the case of a power-law.

In natural language it is well known that frequency distribution follows a decay with γ = 2,

this is known as the Zipf’s law [66, 67]. However, it is noticeable that this situation is quite

different to word retrieval. A priori, two characteristics of fluency tasks might have explained

such difference in the distribution of word frequencies between natural language and verbal fluency.

One would have been the presence of only nouns in verbal fluency tests, but it has been reported

that frequency of nouns in natural language follows an exponent close to 2 as well [67]. The

second and more plausible explanation is the almost complete absence of word repetitions in
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verbal fluency. When there is no limit on repetitions, the difference in use between frequent

and rare words is probably magnified, leading to an even more abrupt differences and decay. A

detailed table including the frequency and averaged position within verbal fluency tests of every

word can be seen at Appendix A.
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2.3. Word position and word heterogeneity rate

It has been reported that in semantic verbal fluency, frequent words and therefore prototypical

concepts are named not only more frequently but also earlier in the tests [68, 69]. Such result has

been noticed in many tests dealing with different categories, for instance the tools category [70].

We correlated word frequencies and their averaged position within the tests and again found a

large negative correlation (Pearson correlation coefficient, r = −0.80, p < 10−16) that is shown in

Fig. 2.5. Therefore, frequency of a word is an accurate indicator of its expected averaged position

within the tests.
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Figure 2.5: Word frequencies compared to their averaged position within the tests. A large negative

correlation is found indicating that the frequency of a word is an accurate indicator of its expected

position within the tests.

Nevertheless, a non answered question is how such frequency decay is and whether the fre-

quency drop remains thereafter. To assess this phenomenon we made the experiment the other

way around, i.e., we correlated the word positions within the test with the averaged frequency

of those words in the whole dataset. Let us note that, as shown in section 2.1, participants said

different numbers of words. Hence the averaged frequency evaluated at every position was done

by taking into account only those participants that reached that test length. Results are shown

in Fig. 2.6. A cubic interpolation fitted the data accurately. Results illustrate the presence of

three different stages: a decay on saying the most frequent words at the beginning (1st to 22nd

position) followed by a plateau region of medium frequency words (23rd to 35th position) during

the middle stage and a final decay (36th to 52nd position) where the least frequent words are

named.

In order to evaluate concept heterogeneity for a given test section, we defined the measurement

of word heterogeneity word rate (WHR). It consists of the quotient between the number of different

word instances and the total number of word instances for a particular section or stage.
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Let us denote by W = {w1, w2, ..., wn} the list of all the animals (with no repetitions) said by

the N = 200 participants. Hence the number of distinct instances said in a particular section of

the test (positions from a to b) can be expressed by
∑n

i=1 k(wi, a, b) where

k(wi, a, b) =

{

1 if at least one participant said wi within a and b positions of his test

0 otherwise.
(2.11)

Furthermore, the total number of animals (repeated or not) said by participants in a specific

section of the test (positions from a to b) can be expressed by
∑n

i=1 f(wi, a, b) where

f(wi, a, b) = number of participants that said wi within a and b positions. (2.12)

Notice that f(wi, a, b) is not equal to (b − a)N since participants do not necessarily get to say

b words. Finally, we define word heterogeneity rate (WHR) as the division between distinct

instances and total instances within a section [a,b] of the tests as:

WHR(a, b) =
number of distinct instances

total number of instances
=

∑n
i=1 k(wi, a, b)

∑n
i=1 f(wi, a, b)

. (2.13)

The range of values goes from 1
M

to 1, being M the total number of participants. The former

occurs when participants say the same set of words in any order in a given section (minimum

WHR). The latter occurs when participants say all words different to each other in a given section

(maximum WHR).

Results show (see Fig. 2.6) that such heterogeneity increases along the test (WHRstage1 =

0.07, WHRstage2 = 0.18 and WHRstage3 = 0.53) indicating that participants share a strong

preference for naming a small set of concepts at the beginning that is gradually lost as the test

advances, giving rise to many more but less frequent animals in stage3.

Summarizing, two patterns have been shown here. First, the animals named frequently tend to

appear at the beginning and second, the heterogeneity among participants when naming animals

increases along the test. Since every word retrieved is due to either switching or clustering, there

must be at least one of these mechanisms producing this phenomenon. This question will be

assessed in the next chapter.
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Figure 2.6: Mean word frequency plotted as a function of word position in the tests. Continuous

line is the cubic interpolation that explains the phenomenon by identifying three different stages:

a decay after saying the most frequent words, a plateau region where words with medium frequency

are said and a final decay with the least prototypical words. WHR stands for heterogeneity word

rate and represents the proportion of different words named at each stage.
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Chapter 3

Conceptual network topology and

switching-clustering differential

retrieval

An unsupervised approach towards the understanding of the organization and retrieval of

concepts based on network theory and verbal fluency tasks.
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3.1. Towards an unsupervised model of conceptual organization

Network theory has become an influential field of research [53] that has broadened the under-

standing of a wide variety of systems, including social [58, 71] and biological networks [35, 72].

Language [46, 47] and in particular semantics [73–75] have not been exceptions. A variety of cog-

nitive models have proposed that semantic knowledge can be represented as a complex network,

where nodes represent words or concepts and links connecting them correspond to conceptual

relationships. In earlier studies to explain semantic memory a tree-like hierarchical structure was

proposed [76, 77], in which specific concepts are embedded in more general ones and at the same

time nest specific items, storing each level of the hierarchy the shared features of its concepts.

Such organization implies that most information is stored only once, diminishing redundancies

and therefore the space needed for storage. However, such a strict classification seems to be

unrealistic since cognitive categories are not clearly bounded [69] and occasionally elements do

not inherit the characteristics of their supraordinates [78]. These theoretical limitations brought

about unstructured network models where hierarchy is lost and nodes are linked as many times

as relations found between their underlying concepts. Hence any single concept can be defined

in terms of its links to other concepts. These models are known as spreading activation models

since information is processed through activation, beginning at a given point of the network and

spreading to adjacent nodes following a decreasing energy gradient [12, 79–82].

The models described above aim to represent the deep conceptual structure of semantic mem-

ory through a system of abstract propositions that characterize each concept by relating it to

other nodes. The high level of abstraction of these models forced authors to either code their rep-

resentations manually [76, 79] or leave them at a theoretical level [81, 82]. Semantic association

models, focused on natural language use, emerged as an alternative to these theoretically-driven

representations. They consist of measuring distances between concepts and identifying clusters

in a multidimensional space and yield less specific relationships than preceding approaches; for a

review see Griffiths et al. [83]. This permits the creation of models based on data from semantic

decision tasks [61, 84], verbal fluency tests [61, 85], association norms [61], or large linguistic

corpora [86], in a non-supervised manner. In particular, semantic distance algorithms, which

assume that nearer words within the tests are conceptually closer, have been applied to fluency

tasks of both healthy controls [61] and neurological patients [87–90] in order to study the semantic

structure of memory.

In the study of verbal fluency functioning, retrieval strategies and storage properties cannot be

aproppriately studied on their own since they are mutually dependent. Thus the necessity of an

integrated model of semantic storage structure and retrieval, takes a special relevance to decouple

the role of switching and clustering in lexical conceptual access. Angela Troyer’s definition of

human strategy during verbal fluency tasks (production of related words until current category

is exhausted and then switching to a new category) is descriptive and brings, among others, the

following open questions: What is a category? How many categories can be stored? How does

switching work and what is its contribution to retrieval processes? Is it possible to move from one

category to another in the absence of switching? This section attempts to address these questions

by analyzing the results from tests of verbal fluency using current cognitive knowledge, network

theory and computational modeling.

The model introduced in this chapter shares with spreading activation models the represen-

tation of semantic memory as a network and with semantic association models its unsupervised

inference. We inferred an unsupervised network of concepts from semantic verbal fluency tests

with a novel methodology based on the significant co-occurrences of words within a particular
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class, in our case, animals. This network allowed us to study lexical organization and specifically

the existence of semantic modularity and was later used as an in-silico evaluator of switching and

clustering events. Such evaluation together to the definition of two measurements (accessibility

and diffusivity) allowed us to decouple switching and clustering retrieval mechanisms based on

empirical findings.

For the purpose of this study we chose to test verbal fluency using the category of animals.

In particular we used the empirical dataset described in Section 2.1. Although other semantic

categories have been used in these kind of tests, animals have the advantage of universality: it

is a clear enough test across languages and cultures with only minor differences across different

countries, educational systems and age or generation [25]
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3.2. Unsupervised generation of a conceptual network

Verbal fluency tests

The dataset containing 200 semantic verbal fluency tests (animals) studied here is the same

one described in Section 2.1.

Inference of concept co-occurrences

The first aim was to extract relations between concepts based on test evidences in order to

obtain a conceptual network (CN). For this we assumed that a relationship between 2 words

existed when their rate of co-occurrence was significantly higher than expected by chance. The

known high rate of switching in fluency tests, averaged as 0.48 by A. Troyer [31], indicates that

two consecutive words are not necessarily related. Therefore the use of a statistical methodology

rather than an approach based on number of co-occurrences seems to be critical to discern which

concepts are associated. Methodologies based on co-occurrences have been used to study language

networks [91] where the syntactic constraints severely reduce the order of the items.

Let us extend the definition of co-occurrence to the event of two words being distanced or

separated by no more than l−1 words within a test. Hence parameter l defines the window length

for considering co-occurrences, being l = 1 for consecutive words. The reason for increasing the

window length is that we expect to obtain useful information on the relationships of a word not

only from their adjacent words but also from other nearby neighbors. See Fig. 3.1 for an example

of l = 2.

Figure 3.1: Example of window length when l = 2, as done in the present work. The word sequence

represents part of an individual test. When analyzing shark relationships, neighbors distanced no

more than 2 words on both sides are taken into account. Hence in this toy example tiger and whale

on the left and dolphin and tuna on the right co-occurred with shark and thus are shark-related

candidates.

Given the complete set of distinct words {w1, w2, ..., wn} named in the verbal fluency tests, the

expression for the probability of two words (wi,wj) happening together at random is denoted by

(P together
wi,wj ). It is given by the probability of being in the same test (P test

wi,wj
) and window (P lwindow

wi,wj
)

by chance.

When assuming that words happen whithin tests at random, the probability of a word wi to

occur in a test is independent of the rest of the test and corresponds to a Bernoulli variable with

parameter P̂wi
, denoted by

P̂wi
=

fwi

M
, (3.1)

where fwi
is the frequency of wi within the tests and M is the number of tests (200 in our case).

Therefore the probability of two words being in the same test by chance, P test
wi,wj

, is also de-

termined by the product of two Bernoulli variables that occur independently. Their rates of
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success are obtained independently from the number of occurrences divided by the number of

tests evaluated . Hence, P test
wi,wj

is defined by

P test
wi,wj

= P̂wi
P̂wj

=
fwi

M

fwj

M
, (3.2)

where fwi
and fwj

are the frequencies of wi and wj respectively.

Given two words occurring in the same test, the probability of being at a distance l (ldist),

i.e., separated by exactly l − 1 words, P ldist
wi,wj

, is

P ldist
wi,wj

= 2
N − l
(

N
2

) = 2
N − l

N(N − 1)
, 1 ≤ l < N. (3.3)

where N is the mean length of tests and
(

N
2

)

is the number of possible permutations of N

elements, selecting a sequence of two. This equation can be generalized to the probability of

words happening within a window of size l, P lwindow
wi,wj

.

P lwindow
wi,wj

= 2
l

∑

i=1

N − i
(

N
2

) =
2

N(N − 1)
(lN −

l(l + 1)

2
), 1 ≤ l < N. (3.4)

The expression in equation (3.4) accumulates the probabilities of words being distanced from 1

(consecutive) to l (i.e. l − 1 intermediate words).

Hence, the probability of two words happening in the same test and window, P together
wi,wj , is

P together
wi,wj

= P test
wi,wj

P lwindow
wi,wj

=
fwi

M

fwj

M

2

N(N − 1)
(lN −

l(l + 1)

2
), 1 ≤ l < N. (3.5)

It is important to note that the term together in this paper does not necessarily mean consecutive

but instead indicates that words occur within the specified window of the same test. For instance,

setting l = 1 would be adequate only for very large datasets where the exploration heterogeneity

when deepening in a category is easily caught in consecutive words. On the other hand, large

windows provide more candidates for establishing relationships of words but at the same time

they reduce the significance of nearby words (method explained below) and are more likely to

induce meaningless co-occurrences. The mean cluster size found by A. Troyer [31] was 1.09 ±

0.54 where a cluster size of 1 had two words and so on. This basically means that most of the

clusters made by participants contain no more than 3 words. Regarding l, the implication of this

result is that the expectations of getting useful information for l greater than 2 are very reduced.

Hence we chose setting l = 2. Given that N and l are 31.57 and 2 respectively, the calculated

value for P lwindow
wi,wj

is 0.1246.

At this point we knew the probability of two words being together by chance. Afterwards,

for each pair of words we obtained the confidence interval (α = 0.05) for a binomial distribution

given the number of attempts (number of tests) and the number of successes (co-occurrences).

Such confidence intervals were computed using the Clopper and Pearson exact method [92]. The

acceptance of an interaction between two words was based on whether P together
wi,wj was smaller than

the left confidence bound of the interval. Although Clopper and Pearson is a conservative method

[93] that is particularly appropriate for low rate success experiments. However, it is certainly

difficult to assess interaction significance for words with only one occurrence since they would be

automatically linked to any word of frequency smaller than 40 (considering that N = 31.57 and

l = 2 in our dataset). Therefore we decided not to include in the network those words named

only once (115 out of the 399). Removing 29% of distinct words might seem a severe filtering,
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Table 3.1: Four examples of the concept-concept statistical analysis to decide whether each pair

is associated and thus their nodes are linked in the network. Pair of concepts indicates the pair

studied; P̂w1
is the frequency of the first word (as defined in equation (3.1); P̂w2

is the frequency

of the second word (as defined in equation (3.2)); P together
w1,w2

is the value obtained according to

equation (3.5); hits is the number of times that both words were named within a distance not

greater than 2 (parameter l, see equation (3.3)); interval is the confidence interval (α = 0.05) for

the binomial distribution considering the number of hits and the number of attempts (number of

tests); a pair is only linked when P together
w1,w2

is on the left of the interval, i.e., we can reject that

their words co-occurred by chance.

Pair of concepts P̂w1
P̂w2

P together
w1,w2

hits interval linked

monkey-horse 0.34 0.51 0.022 2 [0.0012,0.035] no

whale-mouse 0.59 0.45 0.033 6 [0.011,0.064] no

viper-cobra 0.045 0.045 2.52e − 04 4 [0.0055,0.0504] yes

lion-tiger 0.73 0.59 0.054 91 [0.38,0.52] yes

but they only represented 2% of all word occurrences within the tests as they were the least

frequent items. Such small reduction of evidences is indeed one step ahead of previous works

where semantic distance approaches have been applied to those words either said by a minimum

of around 30% of participants or to most named words (threshold set around 12) [61, 87–90].

Summarizing, we defined interacting words as those said by more than one participant that

were found together much more frequently than expected by chance. Those words with no

significant interactions were not included in the network (47 words) since they represented isolated

words that prevent a network analysis and a clustering approach. Additionally, the isolated pair

eel-elver was also removed for the same reason leaving a total of 236 nodes in the network.

The numerical representation of the inferred conceptual network (CN) is a binary symmetric

matrix, the so called adjacency matrix, Acn = [aij ]. Such matrix is square (236x236 in our case)

and contains all possible interactions among words. For every significant relationship between

two words (wi, wj), the positions acn
ij and acn

ji were set to 1, and 0 otherwise.

The conceptual network

We used this statistical approach described in Section 3.2 to infer concept-concept associations

from verbal fluency tests, taking into account the number of participants, mean test length, win-

dow length and word frequencies. Overall 611 significant concept-concept associations were found.

The output of this method is an adjacency matrix of the CN denoted by Acn = [acn
ij ]. Fig 3.2

shows the plot of such matrix and Fig.3.3 the visual representation of the network including those

links. This matrix is symmetric (every entry acn
ij equals acn

ji ) since concept-concept associations

are allowed in both directions and thus links are not oriented. The topological characteristics of

such network and its cognitive and semantic implications are described in Table 3.3 of Section

3.4.
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Figure 3.2: Plot of Acn = [acn
ij ], the adjacency matrix of CN. Those acn

ij positions painted in blue

stand for significant concept-concept relationships found. Overall 611 associations were found

among the 236 animals studied
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Figure 3.3: The conceptual network (CN) including 236 animals and the 611 associations found

among them. Size of nodes is ranked in 6 intervals and denotes the frequency of their concepts.
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3.3. Modularity of the conceptual network

The GTOM algorithm

It is widely accepted that semantic memory in general and natural categories in particular must

be organized in subcategories. However, which and how many these subcategories are remain

poorly understood. From a network perspective, the presence of such categorical organization

should be related to the presence of modules in CN. Therefore our next aim was to study the

existence of modularity and, if present, its fundamentals and a characterization of each module.

Network partitioning in modules provides information about the organization of a system

and the basis of its structure, and is one of the major current topics of interest in the field of

network theory [94, 95]. Performing a hierarchical clustering on the adjacency matrix and setting

a threshold in the dendrogram is among the most basic and common approaches used to find

modules. Nevertheless it must be acknowledged that inferred adjacency matrices from empirical

data (as done in Section 3.2) are often noisy or incomplete, which severely affects hierarchical

clustering evaluation and misleads the selection of an accurate cutoff value for modules detection.

In this context, the generalized topological overlap measure (GTOM) [96] is a generalization or

extension of the topological overlap measure (TOM) [97] based on the selection of higher-order

neighborhoods that can give rise to a more robust and sensitive measure of interconnectedness

that eases the selection of a cutoff in dendrograms. Thus, the evaluation of different high-order

neighborhoods with GTOM is an accurate alternative for finding modules in networks based on

empirical evidences that we used on our adjacency matrix to assess the presence of modules.

Although this method was originally applied to gene expression data, it is a general purpose

method that we applied here on a psychological dataset.

The basis of GTOM is to take into account the number of m-step neighbors that every pair

of nodes share in a normalized fashion. For instance, selecting m = 1 is exactly TOM algorithm

which measures the overlap coefficient OTOM for every pair of nodes i and j,

OTOM (i, j) =
J(i, j)

min(ki, kj)
, (3.6)

where J(i, j) is the number of neighbors shared by nodes i and j, and min(ki, kj) is the min-

imum degree (i.e. number of neighbors) of both nodes. However, setting m = 2 (GTOM2)

consists of considering not only the neighbors shared by every two nodes but also the neighbors

of those neighbors. Therefore the generalization to GTOM can be carried out by growing node

neighborhoods adding links between those nodes distanced no more than m links in the original

adjacency matrix before computing the overlap measure (see equation (3.6)). For any m value,

GTOM output is an overlap matrix with values between 0 and 1 containing interconnectedness

shared information for every pair of nodes. Although there is a lack of numerical methods for

module detection, the information regarding modularity provided by this matrix is the presence

or absence of discrete blocks along the diagonal. Indeed, to get a feasible partition of the network

in modules, the selection of a hierarchical clustering cutoff (0.58 in our data) must separate those

blocks as best as possible. For this analysis we developed a freely available implementation of

GTOM [98]. Finally, the hierarchical clustering was performed on GTOM output matrix with

average criteria.
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Modularity analysis of the conceptual network

An evaluation of different GTOM orders (from 1 until 3) shown in Fig. 3.4 indicated that

modules of the network were better retrieved by means of GTOM2 (i.e. one step of expansion

before saturation). At this level of expansion several black boxes emerged along the diagonal

indicating that this is the most accurate generalization level for modules identification of CN

network. It is important to remark that in the case of networks with no implicit modularity

(e.g. random networks), saturation directly emerges in absence of intermediate steps showing

modularity as it can bee seen in figure 3.6

GTOM1 GTOM3GTOM2

Figure 3.4: Generalized topological overlap measure (GTOM) for different levels of growing neigh-

borhoods. GTOM1 corresponds to TOM and do not perform a neighborhood expansion. GTOM2

includes one neighborhood expansion and shows strong evidences of modularity in the form of black

boxes along the diagonal. GTOM3 includes two neighborhood expansions and shows a saturation

of the algorithm.

The obtained overlap measure matrix with GTOM2 is represented at Fig. 3.7. On the top

of the figure, we can see the hierarchical clustering performed on this matrix and the resulting

modules colored. Once modules were defined, its content was qualitatively analyzed to report a

brief description as inclusive as possible of each module and the number of outliers per group.

Table 3.2 contains the 18 modules found and their characteristics. Overall we found that 216 out of

the 236 animals (92%) fitted well in their module characterization based on simple categorizations.

In other words, only 8% of the animals were cataloged as semantic outliers because it seemed

hard to justify semantically their module membership. There are two different reasons that could

explain those semantic outliers: 1 - true but hard to identify or describe semantic features, 2 -

methodological biases such as either false positive interactions in the network and inappropriate

clustering cutoff for certain specific animals that could be reduced increasing the number of

participants. An example of type 1 is the presence of wild boar in Cervidae module. Although it

obviously does not belong to Cervidae, it has many features in common with the Cervidae family

such as habitat or being typical human hunting preys. Examples of type 2 are otter within the

Apes module or edible crab within Insects and Arachnids. Similarly the two smallest modules

were unclassifiable and very likely their components belong to one of the remaining 16 modules.

In summary, we obtained the presence of 16 modules in an unsupervised manner (Fig. 3.7).

The qualitative analysis of these modules confirmed that they were semantic in nature, contained

elements with common attributes and their size was heterogeneous.
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Pajek

Figure 3.5: Random network with the same number of nodes and links than CN (236 and 611

respectively). As expected, there was no evidence of modularity even though the same visualization

algorithm that aims to emphasize modularity was used.

Figure 3.6: Generalized topological overlap measure (GTOM) for different levels of growing neigh-

borhoods for a random network with the same nunber of nodes and links than CN. As expected,

there is no evidence of modularity for any neighborhood expansion.
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Figure 3.7: GTOM2 overlapping matrix of CN network in grey scale with a hierarchical clustering

on it. Modules obtained correspond to the presence of black blocks along the diagonal of the matrix.

On the left, a qualitative description of each module is also included. The two smallest modules

happened to be unclassifiable and they probably belong to other existing modules.
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Pajek

Figure 3.8: Conceptual network (CN) with nodes colored according to their respective modules as

described in Fig. 3.7.
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Table 3.2: Description of the modules obtained by the GTOM2 technique applied to the CN

network. Id stands for module position in the dendrogram; n is the number of nodes contained

in each module; Explored by is the percent of participants that named at least one concept of

the module; σmodule is the standard deviation of concept frequencies of each module while Most

frequent is the most cited concept; Outliers are the number of concepts that remained semantically

unexplained with respect to their module description. The list of concepts that belong to each

module can be seen at Appendix B.

Id Description n Outliers Explored by σmodule Most frequent

1 Farm-big 21 1 0.83 0.16 horse

2 Farm- and forest-small 16 2 0.85 0.15 hen

3 Cervidae 12 2 0.35 0.05 deer

4 Wild birds 23 0 0.86 0.10 eagle

5 Pets and singing birds 11 0 0.95 0.33 dog

6 Crustacean and mollusc 18 2 0.39 0.03 octopus, crab

7 Fish 31 1 0.84 0.14 whale

8 Unclassifiable 2 2 0.090 0.01 manta ray

9 Reptiles 21 4 0.80 0.11 snake

10 Rodents 5 1 0.55 0.18 mouse

11 Sabana and felinae 16 0 0.93 0.23 lion

12 Apes 6 1 0.41 0.12 monkey

13 Australian 5 2 0.26 0.06 kangaroo

14 Bears and Polar 9 0 0.47 0.11 bear

15 Wild Canis 3 0 0.27 0.09 wolf

16 Mammalian burrowers 4 0 0.17 0.03 platypus

17 Insects and Arachnids 32 1 0.69 0.09 fly

18 Unclassifiable 1 1 0.055 0.00 ferret
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3.4. Conceptual network enrichment and topological evaluation

The recovery of missing links in inferred and experimental networks is a topic that has been

addressed by taking advantage of the network topology, i.e., predicting real missed links based on

those already observed [99]. The basis of the enrichment process is to provide a reliable conceptual

network model derived from the modularity found. Modules found in CN happened to be mostly

ruled by semantic constraints and thus any node should be reachable from any other node of the

same module in one step if there were not missing links. In order to recover them we used the

modular information of CN. Such integration was carried out setting in the adjacency matrix Acn

a value of 1 for every pair of words found in the same module. Thus every module became a

fully connected set of nodes, also known as a clique. This neighborhood enrichment produced the

enriched conceptual network (ECN) and its visualization was carried out with the Pajek software

[100].

Hence every module became clique connected with other modules in an heterogeneous manner

through frontier animals. This process led to a new network ECN (enriched conceptual network)

with a new adjacency matrix Aecn = [aecn
ij ] shown in Fig. 3.9 and thus a new network (see

Fig. 3.10). As it happened to Acn, this matrix is symmetric (every entry aecn
ij equals aecn

ji ) since

concept-concept associations are allowed in both directions and thus links are not oriented.

1 50 100 150 200 236

1

50

100

150

200

236

Figure 3.9: Plot of Aecn = [aecn
ij ], the adjacency matrix of ECN. The aecn

ij positions were painted in

blue and indicate significant concept-concept relationships. Overall 2357 associations were found

among the 236 animals studied.

Network characterization was accomplished with the following measurements: averaged degree

(< k >) represents the mean number of links per node and thus quantifies the density of the

network; clustering coefficient (< C >) is the averaged clustering coefficient of nodes [101] and

represents the level of local structure, where clustering coefficient of a node i (Ci) is the number of

links among the nodes within i-neighborhood divided by the number of links that could possibly

exist between them; < Crand > is the expected value of < C > for random networks and consists

of its average degree < k > divided by its size N ; mean shortest path length (L) is the average

of the steps (number of links) needed to connect every pair of nodes through their shortest path;
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Figure 3.10: Enriched conceptual network (ECN). Size of nodes represents its frequency, color

indicates its module belonging and matches with the dendrogram color legend of figure 3.7. Links

stand for concept associations and thus allowed clustering transitions.
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Table 3.3: Network analysis. Topological features of the conceptual network (CN) and the enriched

conceptual network (ECN).

Term CN ECN Description

N 236 236 number of nodes (animals)

links 611 2357 number of interactions (concept relationships)

D 9 6 diameter of the network

L 4.40 3.24 mean length of pairwise shortest paths

< k > 5.18 19.97 averaged degree of the network

< C > 0.33 0.87 clustering coefficient of the network

< Crand > 0.021 0.084 < C > for a random network (size N ,< k >)

diameter (D) is the longest among all shortest paths, i.e. the minimum number of links that

separate the two farthest nodes within the network.

The topological features before and after the enrichment (CN and ECN respectively) are shown

in Table 3.3. Enriching the network reduced the diameter from 9 to 6 (i.e. every animal can be

attained from any other animal in no more than six steps along ECN) and the mean shortest path

length from 4.40 to 3.24 (i.e. the shortest path length between every two nodes is on average

shorter in ECN). Both network diameters were quite short due to a small-world phenomena

[101] produced by frontier animals that act as short-cuts i.e. links that connect different regions

(modules in this case) of the network. Example of animals linking two or more modules (frontier-

animals) are monkey and crocodile. Crocodile is part of the reptiles module but has five links

towards sabana, while monkey has three links with sabana but conforms an independent module

with other apes. Finally, the conversion of every module to a clique multiplied by almost four the

averaged degree of the network and increased the clustering coefficient from 0.33 to 0.87. The

expected clustering coefficient in a random network of the same size and average degree would

have been 0.021 and 0.08 for CN and ECN respectively. The difference in one order of magnitude

between < Crand > and < C > for both networks shows the presence of high organization. In

other words, concepts indirectly linked through a common neighbor are more likely to be directly

linked, a phenomena not observed when there is a uniform random linkage of nodes in a network.

Conceptual networks used as in-silico judges of switching and clustering

In order to evaluate ECN as an in-silico judge of clustering and switching transitions, those

animals not represented in the networks were removed from verbal fluency tests. Every transition

was labeled as clustering when both concepts were directly linked on the network and as switching

otherwise. Those 21 out of 200 tests where more than 10% of concepts had been eliminated were

not considered in order to avoid methodological biases. The 179 remaining tests were converted

to binary vectors where switching and clustering transitions were labeled according to CN and

ECN. Every transition was labeled as clustering when both concepts were directly linked on the

network and as switching otherwise. Finally, 20 of these tests were randomly selected and two

experimented judges manually evaluated switching and clustering transitions in order to provide

an inter-rater agreement between human expertise and our unsupervised approach. Inter-rate

agreements between every expert and in silico outputs were measured by kappa coefficient κ

[102]. The equation for κ is:
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Table 3.4: Sheet of the variables used to compute κ inter agreement coefficient. N is the to-

tal number of word transitions evaluated; a and c are the number of agreements for switching

and clustering respectively; b and d are the number of disagreements switching-clustering and

clustering-switching respectively.

judge1/judge2 switching clustering total

switching a b r

clustering c d s

total t u N

Table 3.5: Inter-rater agreement. Kappa values among in-silico CN and ECN models and human

expertise of two judges.

rater CN ECN judge 1 judge 2

CN 1 0.85 0.70 0.71

ECN 0.85 1 0.82 0.83

judge 1 0.70 0.82 1 0.88

judge 2 0.71 0.83 0.88 1

κ =
P (o) − P (e)

1 − P (e)
, (3.7)

where P (o) is the relative observed agreement and P (e) is the hypothetical probability of chance

agreement. If the judges are in complete agreement then κ = 1. If there is no agreement among

the judges (other than what would be expected by chance) then κ ≤ 0. Equations for P (o) and

P (e) are

P (o) =
a + d

N
, P (e) =

rt + su

N2
. (3.8)

The meaning of the variables needed are summarized in Table 3.4.

Table 3.5 shows inter-rate agreements among in-silico and human judge expertise. While CN

evaluation is in good concordance with human judgment (0.71 and 0.70), ECN shows a higher

agreement (0.82 and 0.83) very close to the kappa coefficient found between the two judges

(0.88). Hence ECN is a conceptual representation closer to human evaluation than CN and

represents an unsupervised reliable approach. Summarizing ECN is an unsupervised network

model of lexical organization based on the evidences collected from 200 verbal fluency tests after

detecting significant co-occurrences and after enriching the network with the modular semantic

knowledge found. Such model aims to represent conceptual storage structure and its links stand

for word related transitions (clustering) while its disconnected pairs for word unrelated transitions

(switching).
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Figure 3.11: CN and ECN in-silico evaluations of switching transitions (black) and clustering

transitions (white). Positions in grey indicate that the test already ended, i.e., no more animals

were said by that participant. The network enrichment process introduced some modifications

in the evaluation, i.e., some transitions considered switching by CN evaluator became clustering

under ECN evaluation. Table 3.5 shows that such change produced a better agreement with respect

to human judges.
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3.5. Accessibility and diffusivity patterns

Two measures were created in order to study the contribution of switching and clustering to

the frequency heterogeneity of concepts. First, we defined accessibility as the number of times a

concept is named immediately after a switching (and thus is the first element of a cluster). Second,

we defined diffusivity as the averaged position of a concept within each participant’s cluster

(excluding first position). Both measures were correlated to frequency by means of Pearson’s

coefficient.

The measurements of accessibility and diffusivity allowed us to decouple the retrieval func-

tioning of switching and clustering processes. The large correlation found between frequency

and accessibility (racc = 0.91, p < 10−92, Fig. 3.12) in contrast with the poor correlation found

between frequency and diffusivity (rdiff = −0.21, p < 10−4 Fig. 3.13) shows that frequency

heterogeneity (power-law with γ = 2.09 and see < f > in Table 3.2 for intra-module patterns) of

concepts is mostly due to switching functioning rather than to local traveling or clustering within

categories. Explained in another way, these findings show that switching is the process that owns

a gradient towards certain words (which very likely correspond to prototypical concepts as can

be seen in the labels of Fig. 3.12, while clustering shows almost no relation with frequency).

We also performed a 10-fold cross-validation of the two linear regression models obtained (i.e.

expressing accessibility and diffusivity as linear functions of frequency) minimizing least square

error. In general, a k-fold cross-validation [103] is a method to obtain error estimates in classifiers

that consists of randomly partitioning a dataset in k equally sized parts and, for k times, using

k − 1 segments (training set) to train a model and the remaining one (testing set) to test its

accuracy. In our particular context, we performed for 10 times a linear regression model to

express accessibility and diffusivity based on frequency by using 9/10 of the dataset and tested

the accuracy of such model in the remaining 1/10 that had not been used for the regression. Every

testing stage was carried out by measuring the squared correlation (R2
k, 1 ≤ k ≤ 10) between the

output of the linear model for the testing input (frequency of the testing set) and the real testing

output (accessibility and diffusivity of the testing set). Finally, mean and standard deviation of

the 10 measures obtained during the cross-validation (< R2
acc >, < R2

diff >) were reported as

reliable estimators of the accuracy of the linear regression models for new datasets that avoid

overfitting biases in the interpretation of the results.

Results show that the 10-fold cross-validation indicate that a linear frequency model highly

explains the accessibility phenomenon (< R2
acc >= 0.86 ± 0.05) while diffusivity remains unex-

plained (< R2
diff >= 0.06± 0.03). This indicates that switching process produces a non-uniform

retrieval of concepts with a positive gradient to those of them that are common while clustering

produces a quite homogeneous retrieval of concepts within clusters, which is similar to the ex-

pected behavior of a random walk. These results were taken into account in order to design a

model of exploration that is analyzed in the next chapter.

The correlations (Pearson’s coefficient) of lexical availability measurements [104] with the

accessibility and diffusivity obtained in our dataset were carried out with those 97 out of 100

animal words that were studied by Izura et al. and happened to be present in the conceptual

network ECN.

The frequency heterogeneity explained here mostly by the accessibility measure is a conse-

quence of the so called lexical frequency effect [105]. A measure of lexical availability was proposed

by Lopez-Chavez et al. [106] and used in a Spanish normative study of five different categories,

including animals [104]. This measure takes into account normalized frequency and position of

words within tests. We correlated the lexical availability measurements provided by Izura et al.
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Figure 3.12: The large correlation found between frequency and accessibility is later used to model

switching as a frequency based random distribution.
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Figure 3.13: The poor correlation found between frequency and diffusivity shows that frequency

heterogeneity of concepts is mainly due to to switching and not to local explorations. In conse-

quence clustering was modeled as ordinary random walking through ELN, where neighbors have

uniform probability of being visited after each step.
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with accessibility and diffusivity of our dataset giving rise to 0.77 and −0.29 respectively. These

results indicated again, by means of an external validation, the relevant role of switching and the

low role of clustering in the frequency heterogeneity of naming concepts.
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3.6. Discussion

In Sections 3.2, 3.3 and 3.4 we respectively inferred a lexical network, extracted its modules

and used them to enrich the network. CN was obtained linking those concepts that co-occurred

significantly. Module extraction was carried out with the GTOM algorithm and showed 16 mod-

ules strongly addressed by semantic features. We integrated modularity results in the network

by converting each module into a clique to create a final network (ECN). This network connects

any two concepts found to be in the same module, and thus semantically related, keeping at the

same time the links between modules trough frontier animals. Finally, in Section 3.5 we assessed

the frequency heterogeneity of concepts in terms of switching and clustering and obtained that

switching is the major responsible of it while clustering poorly contributes to such diversity within

clusters.

A relevant issue addressed in this chapter is the design of an unsupervised novel statistical

methodology which permits to extract co-occurrences above chance from verbal fluency data

taking into account the frequency of each word, a window length, the number of participants and

the mean length of the tests. The major advantage of an unsupervised approach is that concept

relationships do not depend on expert judgment but only on empirical evidences and allowed a

reliable in-silico evaluation of switching and clustering. When compared to previous works of

semantic distance [61, 87–90], it does not need concepts to be named by a large proportion of

participants, which maximizes the number of final elements taking part in the model. Similarly

the use of GTOM led to the finding of modules that when analyzed showed semantic features.

This methodology could be used in the future to explore different domains of semantic memory or

to create syntactic networks from linguistic corpora adding a confidence interval to methodologies

already used [46]. In particular CN is a powerful tool to go in depth into the complex structure

of semantic organization while ECN could be used as a unsupervised tool for quantifying the

clustering and switching phenomena in the neuropsychological analysis of verbal fluency tests. It

could also be easily generalized to detect co-occurrence phenomena in other dichotomic data such

as lesion patterns in neuroimaging studies.

Most accepted theories on semantic representation and natural categories consider that cog-

nitive categories do not have clear-cut frontiers. Elements are better or worse examples of their

categories conforming a prototypicality decay from the central concepts [68, 107]. Although a

limitation of a modular partitioning is that a concept only pertains to one module, in our ap-

proach those animals with a fuzzy module belonging still have links towards other modules. We

defined those nodes as frontier animals and crocodile or monkey are clear examples of short-cuts

between modules, as commented in Section 3.4. A careful analysis of GTOM clustering (see Fig.

3.7) shows evidences of certain hierarchical organization of the modularity, with highly connected

submodules nested into bigger ones. This observation might lead to the reconciliation between the

traditional and intuitive view of hierarchical semantic organization and the complex small-world

and modular structure actually observed. A more detailed analysis of functional hierarchical

modularity would require a much greater sample size, and could use recently proposed tools in

the fields of module and hierarchy detection [99].

The high clustering coefficient and modularity structure are a consequence of the high level of

organization of the semantic storage. However it is well known that both topological properties

impose severe restrictions on the navigability or exploration of the network. However, the presence

of frontier animals (acting as short-cuts and bottlenecks) linking different modules produce an

important decrease of the distance between concepts, which is represented by the small diameter

found in ECN. The presence of frontier items and switching seems to keep the system as a
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highly organized structure without jeopardizing the efficient navigability of the network [108].

Furthermore, the combination of this topology and this retrieval strategy could be a very good

balance between organized storage and efficient and robust navigability in the retrieval process.

The large correlation found between accessibility and frequency seems to be due to a posi-

tive gradient for prototypical concepts that might be produced as consequence of its cognitive

over-representation. Interestingly, the poor correlation found between diffusivity and frequency

indicates that such gradient is poorly present in local concept retrieval within categories, and thus

is similar to uniform random selection of terms, at least from a frequency-prototypicality perspec-

tive. Those findings were externally validated by using a lexical availability set of measurements

reported in another dataset. Summarizing switching and clustering processes not only differ in

the regions of the brain involved (there are evidences of a fronto-temporal modulation) but also

in the performance of concept retrieval. From a network theory perspective, clustering seems

to be a random-walker with almost no preferences for concepts that is intermittently shifted to

other locations of the network by an extra-topological mechanism, i.e, switching, with a gradient

towards prototypical or overrepresented concepts that ensures a fast retrieval for those concepts

more usually needed.

Future work could uncover new properties of semantic organization and retrieval in human

cognition, by applying similar or other topological analysis tools and studying other semantic

categories on the networks inferred by this method. Furthermore this methodology might be useful

to better understand the evolution of semantic network acquisition and the relation between verbal

fluency skills in neurodegenerative diseases from an unsupervised dual perspective, i.e. storage

architecture degradation and impaired retrieval abilities.
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Chapter 4

Switcher random walks: a cognitive

inspired strategy for network

exploration

A dual mechanism based on switching and clustering functioning for random exploration of

networks.
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4.1. Introduction

As described in section 1.2, semantic memory is a distinct part of the declarative memory

system [15] comprising knowledge of facts, vocabulary, and concepts acquired through everyday

life [16]. Contrary to episodic memory, which stores life experiences, semantic memory is not

linked to any particular time or place. In a more restricted definition, it is responsible for the

storage of semantic categories and naming of natural and artificial concepts [6]. It is known that

this memory involves distinct brain regions and its impairment in neurodegenerative diseases such

as fronto-temporal dementia [109], multiple sclerosis [110] and Alzheimer’s disease [111] produce

verbal fluency deficits. For this reason, lexical access, the cognitive information-retrieval process

in charge of retrieving concepts, has been widely explored through semantic verbal fluency tasks

in the context of neuropsychological evaluation [26]. These tests require the generation of words

corresponding to a specific semantic category, typically animals, fruits or tools, for a given time.

Although the task is easy to explain, it actually results in a complex challenge where retrieving

as many concepts as possible in a limited time depends more on cognitive mechanisms than

on the knowledge itself. According to the two-component model proposed by A. Troyer [31],

optimal fluency performance involves a balance between two different processes: ‘clustering’, or

generating words within a subcategory, and, when a subcategory is exhausted, ‘switching’ to a new

subcategory. In the case of naming animals, clustering produces semantically related transitions

(e.g. lion-tiger) and switching is a mechanism that allows to jump or shift to different semantic

fields (e.g. tiger-shark). While the former is attached to the temporal lobe of the brain, the latter

has been associated to a frontal lobe activity [112]. Evidences of the interaction between these

two regions of the brain during language related tasks has led a number of studies to refer to a

fronto-temporal modulation or interaction [112, 113].

In this section, the cognitive paradigm that consists of retrieving words from a semantic

network [111, 114] was generalized to an exploration task on a network. Clustering was modeled

as a random-walk constrained to the topology of the network and switching as an extra-topological

mechanism that is able to move from any node to any node (see Fig. 4.1). The combination of

these two processes gave rise to a dual mechanism denoted here as switcher-random-walker (SRW),

i.e. a random-walker with the additional ability of switching. The combination of switching and

clustering, i.e., free jumping and random walking, was ruled by a parameter q, which is the

probability of switching at every step, and thus is the parameter that metaphorically rules the

fronto-temporal modulation. Therefore the complementary (1− q) is the probability of clustering

at every step, and can be interpreted as the strength of the local perseverance of the exploration

before moving somewhere else within the network (specially for those networks. with either high

clustering coefficient or high modularity; see Fig. 4.2). This cognitive inspired paradigm gives

rise to the following question: how does switching and its modulation affect random exploration

of different network models?

Search, propagation and transport phenomena have been studied in networks [115], where it

is crucial to define whether the full topology is known. When it is known, the ease to reach any

node from any node is measured by the shortest path length [101]. When it remains unknown,

exploration is modeled by random walks along the network [57]. This is the case of retrieving

concepts since the subject is not aware of his full semantic network when naming them. In this

kind of cases reachability of nodes is measured with the mean first passage time (MFPT), i.e. the

averaged number of steps needed to visit a node j for the first time independently of the starting

node i [116, 117]. Given its relevance in complex media, this paradigm has been recently revisited

in a number of studies [57, 117, 118].
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Figure 4.1: Model consisting of a switching mechanism (dashed circle) added to a network. Inde-

pendently of the topology, every node has certain probability to be reached in one step.

Figure 4.2: Switcher random walks: transitions between nodes in a graph can occur through

random movements following the edges (black arrows) but also through switches (red arrows).

Switching allows a more efficient exploration, since clustered graphs are not well explored by

simple random walks. In particular, isolated modules (circle) would be seldom reached and rarely

abandoned.
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While different derivations of random-walkers have been used to infer the underlying topo-

logical properties of complex networks [119, 120], our aim was to evaluate how SRW (and in

particular, the effect of different levels of switching) contributes to the exploration of network

models with well known topological properties. Different models which were not necessarily

lexico-conceptual architectures were explored by a SRW and its performance was measured by

the MFPT (detailed in section 4.2.3). Going back to the cognitive paradigm, retrieving a large

number of words in a semantic verbal fluency test not only depends on the number of concepts

that the subject knows, but also on an equilibrium between the underlying semantic topology

that organizes those concepts and the frequency of switching [31]. For example, two independent

studies [121, 122] reported that their respective groups of healthy participants produced 30.7±7.9

and 28.15 ± 7.32 animals during 90 seconds. There are two remarkable aspects in these figures.

First, participants obviously knew many more animals than those said and, second, there is a

high heterogeneity in the number of words. Hence, even though all participants only named a

low fraction of all the animals that they know, some of them had much more success than others

when retrieving concepts.
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4.2. A Markov model of SRW

As introduced in the previous section, our approach for a clustering step consists of a walker

unaware of the full network moving from one node to any of its neighbors with no preferential

gradients among neighbors. Such exploration task was modeled by the well known random-walk

(RW). Switching was implemented as a mechanism where the walker moves to any other node

following different probabilistic approaches. Summarizing SRW can be defined as a random-

walker with the capability of performing random jumps.

4.2.1. Markov Chains

A finite Markov chain is a special type of stochastic process which can be described as follows.

Let

S = {s1, ..., sr} (4.1)

be a finite set whose members are the states of the system, which we label s1, ..., sr. The process

moves through these states in a sequence of steps. If at a particular time the system is in state

i, it moves to a state j on the next step with some probability, Π : S × S → MS×S , where

MS×S is the set of S×S matrices of non-negative entries where the sum of every row is 1. These

probabilities define a square, r × r matrix, Π:

Π ≡ [pij ], (4.2)

which we call the matrix of transition probabilities. The importance of matrix theory to Markov

chains comes from the fact that the ijth entry of the nth power of Π, Πn = [p
(n)
ij ] represents

the probability that the process will be in state j after n steps considering that it was started in

state i. The study of a general Markov chain can be reduced to the study of two special types of

chains. These are absorbing chains and ergodic chains (also known as irreducible). The former

contain at least one absorbing state, i.e. a state constituted by a proper subset of the whole by

which, once entered it cannot be left, and furthermore, which is reachable from every state in a

finite number of steps. The latter are those chains where is possible to go from any state to any

other state in a finite number of steps and are called regular chains when

(∃n < ∞) : (∀i, j ≤ r)(∀N > n)(p
(N)
ij > 0).

For regular chains, the ijth entry of Πn becomes essentially independent of state i as n is larger.

In the case of regular chains, we can define a stationary probability matrix [116] Π∞ as:

lim
n→∞

Πn = Π∞. (4.3)

Note that for non regular Markov processes this limit might not exist. For instance Π =
(

0 1

1 0

)

.

The matrix Π∞ consists of a row probability vector w which is repeated on each row. This

vector w can be obtained as the only probability vector satisfying w = wΠ [123]. For the case of

regular Markov processes obtained from random walks on graphs, this indicates that in the long

run, the probability to be in a node is independent of the node where the process started.

4.2.2. Graph Characterization

This section is devoted to the characterization of the underlying object over which we apply

our algorithm of exploration, a graph. Beyond its main features, we discuss the consequences of
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Figure 4.3: Visualization of small examples (|V | = 100) of the four network models analyzed here:

(A) Small-world network. (B) Random Erdös-Rényi network. (C) Random-modular network:

here a network is partitioned into 10 modules, each one connecting to each other with a large

probability, whereas a very small intermodule probability is used. (D) Scale-free network obtained

by means of preferential attachment. See section 4.2.2 for a detailed description of each network

model.
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connectedness in order to clearly define the frameworks over which the SRW algorithm can be

defined. Finally, we briefly define the graph models studied numerically in section 4.3.

Let us suppose that our Markov chain is defined by some graph topology. A graph G is defined

by a set of nodes, V ≡ {v1, ..., vn}, and a set of links Γ ≡ {{vi, vj}, ..., {vk, vl}}, being Γ a subset

of V × V . In our approach, the graph is undirected and we avoid the possibility that a node

contains auto-loops or that two links are connecting the same nodes. The size of the graph is |V |,

i.e. the cardinal of the set of vertices. Its average connectivity is defined as:

〈k〉 ≡
2|Γ|

|V |
. (4.4)

The topology of our graph is completely described by a symmetrical, |V |×|V | matrix, A(G) = [aij ],

the so-called adjacency matrix, whose elements are defined as:

aij =

{

1 ↔ {vi, vj} ∈ Γ

0 otherwise.
(4.5)

The connectivity of the node vi, k(vi) is the number of links departing from vi and it can be

easily computed from the adjacency matrix as:

k(vi) =
∑

j≤|V |

aij . (4.6)

Following the characterization, we now define the degree distribution, which is understood as the

probability that a randomly chosen node displays a given connectivity. In this way, we define the

elements of such a probability distribution, {p} as:

pi =
|(vj ∈ V ) : (k(vj) = i)|

|V |
. (4.7)

The above defined measures are the identity card of a given graph G. One could think that

it is enough because our main goal is to describe and characterize an exploration algorithm over

G. However, especially in the models of random graphs, we cannot be directly sure that our

adjacency matrix defines a fully connected graph, i.e, that there exists, with probability 1 a path

from any node vi to any node vj . In deterministic graphs, we can solve this problem by assuming,

a priori, that our combinatorial object is fully connected. Furthermore, we could agree that, when

performing re-wirings at random, we impose the condition of connectedness. The case of pure

random graphs is a bit more complicated. Indeed, a random graph is obtained by a stochastic

process of addition or removal of links [124]. Thus, we need a criteria to ensure that our graph

is connected or, at least, to work over the most representative component of the obtained object.

Full connectedness is hard to ensure in a pure random graph. Instead, what we can find is a

giant connected component, GCC. Informally speaking, we can imagine an algorithm spreading

at random links among a set of predefined nodes, the so-called Erdös-Rényi graph process. The

growing graph displays, at the beginning, a myriad of small clusters of a few nodes and, when

we overcome some threshold in the number of links we spread at random, a component much

bigger than the others emerges, i.e. the GCC [125]. In this way, M. Molloy and B. Reed [126]

demonstrated that, given a random graph with degree distribution {p}, if
∑

k

k(k − 2)pk > 0 (4.8)

then, there exists, with high probability, a giant connected component. The first condition we need

to assume is thus, that the studied graphs satisfy inequality defined in equation (4.8). Beyond

this assumption, we impose the following criteria when studying our model networks:
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1. In a deterministic graph (for example, a chain or a lattice) where we perform random re-

wirings, we do not allow re-wirings that break the graph.

2. If a graph is the result of a stochastic process, the exploration algorithm is defined only over

the GCC (this could imply the whole set of nodes).

3. The adjacency matrix is the adjacency matrix of the GCC. We remove the nodes that, at

the beginning, participated in the process of construction of G but fell outside the GCC.

All the model graphs studied in this work satisfy the above conditions.

In order to enable useful comparative analysis, we built different networks, all of them with

|V | = 500 nodes and |Γ| = 2000 links. The results were averaged after 100 instances per network

model. Let us briefly define the models studied with our exploration algorithm.

Watts-Strogatz Small-World Network. We built an annulus with 500 nodes in such a

way that every node is connected to 8 different nodes (2000 undirected links) [101]. Once the

annulus was constructed, every link suffered a random re-wiring with connectivity p = 0.05.

Erdös Rényi Graph. Over a set fo 500 nodes we spreaded, at random, 2000 links, avoiding

duplication and self-interaction. It can be shown that the obtained graph displayed a binomial

degree distribution [125]:

pk =

(

|V | − 1

k

)

πk(1 − π)|V |−k−1, (4.9)

being π the probability of two nodes being connected. Its value corresponds to

π = |Γ|

(

|V |

2

)−1

(4.10)

Random-Modular. We built 10 different components of 50 nodes and 200 links, spread at

random (as explained for Erdös Rényi graphs) among the 50 nodes of every component. In this

case, we ensure connectedness of such components. Once the ten components are constructed,

every link suffers a random rewiring with a node either from the same component or not, with

probability p = 0.05.

Preferential Attachment. We provide a seed of 9 connected nodes. Every new node was

connected to 8 of the existing nodes with probability proportional to the connectivity of the

existing nodes, i.e., suppose that, at time t a new node vi comes in to the graph. At this time

step, the graph will display an adjacency matrix A(t).

P(aij(t) = 1) =
k(vj)(t − 1)

∑

vk∈At
k(vk)(t − 1)

, (4.11)

where

At = {(vk : ∃l) : (akl(t) > 0)} (4.12)

This operation is repeated in an iterative fashion (i.e., updating A) 8 times per node. It can be

shown that, at the limit of a large number of nodes the outcome of this algorithm generates a

graph whose degree distribution follows a power law [127]:

pk ∝ k−α, (4.13)

with α = 3. It is worth noting that such an algorithm avoids the possibility of unconnected

components.
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4.2.3. Random walk over a graph as a Markov Process

In this framework, the transition from node i to j is just the probability that a random-walker

starts from some node i and reaches the node j, after some steps. Consistently, the probability

that being in vi we reach the node vj in a single step (i.e, pij) is:

pij =
aij

k(vi)
(4.14)

This is the general form for a Markov formalization of a random-walker within a graph defined by

its adjacency matrix A. Throughout this work we assume that our graphs define regular Markov

processes (see section 4.2.1). Under the above definition of Π, regularity is assured if and only if

the graph is not bipartite (i.e., it contains, at least, one loop containing an odd number of nodes).

To see that bipartite graphs are not regular, it is enough to notice that for any pair of nodes

(vi, vj) there are only either odd or even paths joining them, but not both. Hence if p
(n)
ij 6= 0 then

p
(n+1)
ij = 0 and therefore the process cannot be regular.

Summarizing, despite that connectedness ensures that the process is ergodic,

(∀vi, vj ∈ G)(∃n : p
(n)
ij 6= 0)

it does not ensure regularity and therefore the limn→∞ Πn might not exist. The existence of an

odd loop breaks such parity problem and enables Πn to stabilize to a specific matrix of stationary

probabilities when n → ∞. Thus, we must impose another assumption to our studied graphs:

Our algorithm works over non-bipartite graphs which satisfy the criteria imposed in section 4.2.2.

It is straightforward to observe that, if the assumption of regularity holds, the above Markov

process has a stationary state with associated probabilities proportional to the connectivity of

the studied node [57]:

p
(∞)
ij =

k(vj)

2|Γ|
. (4.15)

From now on, we will refer to the transition matrix above defined as Πcl, since it denotes the

probabilities of the movements related to clustering.

4.2.4. Switcher-random-walks

In the retrieval model introduced here, the matrix of transition probabilities Πsrw is a linear

combination of the switching transition probabilities Πsw and the clustering transition probabil-

ities Πcl, as defined in the above section. The Markov process is a switcher-random-walker and

the states represent the location of such walker in the network.

The matrix Πsw = [psw
ij ] is ergodic and regular since all entries are strictly greater than zero,

and has equal rows, i.e. constant columns. The reason is that the probability of reaching a node

j through switching is independent of the source node i. In this way, we could consider that we

define a scalar field λ over the nodes of the graph:

psw
ij = λj . (4.16)

Consistently,
∑

j≤|V |

λj = 1. (4.17)
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We can define this field in many different ways. As the more representative, we revise several

scalar fields that can provide us interesting information about the process:

λj =


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
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1

|V |

k(vj)
∑

i≤|V |

k(vi)

K − k(vj) + 1
∑

i≤|V |
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(4.18)

In the first and most simple case switching to any other node is a random uniform process, and

we refer to this process as uniformly distributed switching. The second case corresponds to the

situation where the probability to reach a given node through switching is proportional to its

connectivity, which we call positive degree gradient switching. The last one assumes that K is

max{k(vi)} and corresponds to the situation where the switcher jumps with more probability to

weakly connected nodes, and we refer to it as negative degree gradient switching. These three

variants of switching were studied when combined with a random-walker within the above graph

topologies (see Fig. 4.4). They were denoted by SRW=, SRW+ and SRW− respectively.

The matrix Πcl = [pcl
ij ] defined in the above section is ergodic and regular but restricted to

the transitions allowed by the adjacency matrix A of the network of study. We modeled as equi-

probable the transitions among linked nodes of the network. Hence the probability of moving

from a node vi to a a node vj through clustering for a given graph G with an adjacency matrix

AG = [aij ], is

pcl
ij =

aij

k(vi)
. (4.19)

Thus, Πsrw = [psrw
ij ] is defined as:

Πsrw = qΠsw + (1 − q)Πcl (0 ≤ q ≤ 1), (4.20)

where q is the probability of switching. Consistently, the entries of Πsrw are given by:

psrw
ij = qpsw

ij + (1 − q)pcl
ij , 0 ≤ q ≤ 1. (4.21)

We observed that Πsrw is also ergodic and regular. This follows from the fact that Πsw has

already all entries strictly greater than zero, and thus Πsrw will have all entries greater than zero

for any q > 0. For the case of q = 0, Πsrw is just Πcl which we assumed to be regular.

Among other interesting descriptive random variables that can be evaluated for regular chains,

the matrix of the mean first passage time (MFPT) is a matrix 〈T 〉 = [〈tij〉], crucial for measuring

the retrieval or exploratory performance of any stochastic strategy; the MFPT needed to go from

a node i to a node j is denoted by 〈tij〉 [57] and represents the time (in step units) required to

reach state j for the first time starting from state i. It is important to note that 〈tij〉 is not

necessarily equal to 〈tji〉, i.e. it might happen that the time required to go from state i to state

j is different to the time required to go from state j to state i.
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In order to obtain the analytical expression of MFPT, we must define first a fundamental

matrix Z [123] which is given by

Z = (I − Πsrw + Π∞
srw)−1, (4.22)

where

Π∞
srw = lim

n→∞
(Πsrw)n , (4.23)

and I is the identity matrix of size |V | × |V |.

In this case the entry zij of Z can be understood as a measure of the deviations of the ijth

entry of (Πsrw)n from their limiting probabilities w, which, as commented in section 4.2.1, is any

of the equal rows of Π∞
srw. From Z and w we can obtain the analytical derivation of 〈T 〉 = [〈tij〉]

(for more details see Grinstead et al. [123]):

〈tij〉 =
zjj − zij

wj
(4.24)

Finally, we denote as 〈MFPT 〉G the averaged value of all entries 〈tij〉 for a switcher random

walker exploring a network G. Since 〈T 〉 it is not necessarily symmetrical, we must take into

account all the entries outside the main diagonal. The main diagonal was not taken into account,

since it represents the returning time, which we do not consider as a part of the exploration of

the network. Thus,

〈MFPT 〉G =
1

2
(

|V |
2

)

∑

i

∑

j 6=i

〈tij〉. (4.25)

This measure provides a general evaluation of how reachable is, on average, any node from any

other node in a specific network using a switcher random-walker. It is interesting to notice that

such measure has an upper bound which is precisely the size of the network. Indeed, let us

suppose we have a clique of size m, i.e., a graph, G(V, Γ), where |V | equals m and every node

vi is connected to itself and to all m − 1 remaining nodes. It corresponds to the case where the

probability of switching is 1. Let X be a random variable whose outcomes are vj such that,

∀vj ∈ V :

P(X = vj) =
1

m
. (4.26)

We define a stochastic process, namely, the realizations of X through different time steps,

X(1), X(2), ..., X(t) Let us define another random variable, Y , namely the number of realiza-

tions of X needed to ensure that there has been one realization of X equal to vj :

Y = min
t
{X(t) = vj} (4.27)

Clearly, and due to the symmetry of our experiment, all the nodes behave in the same way.

Furthermore,

〈Y 〉 = m (4.28)

i.e., we need, in average m realizations of X in order to obtain, at least, one realization X = vj ,

∀vj ∈ V . We observe that the above random experiment is exactly a random switching over a

graph containing m nodes, and that 〈Y 〉 is the 〈MFPT 〉 of this process. Let us suppose we have

a 〈MFPT 〉 < m. This implies that, in average

(∀vj)P(X = vj) >
1

m
(4.29)
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which is a contradiction, since the graph has m nodes. Thus, for a given graph G(V, Γ):

〈MFPT 〉G ≥ |V |. (4.30)

This value represents an horizontal asymptote in the model of SRW as q increases, and it is clearly

defined in our model experiments (see Fig. 4.4).
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4.3. Results & discussion

Our main result was that SRW exploration, a cognitive inspired strategy that combines

random-walks with switching for random exploration of networks, decreased the 〈MFPT 〉 of

all models for all SRW variants. This means that, on average, the number of steps needed to

travel between every pair of nodes decreases and thus the overall exploration abilities of a SRW

within the networks improves respect to RW.
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Figure 4.4: Exploration performance based on the 〈MFPT 〉G (see equation 4.25) on 4 graph

models for the three Markovian variants of SRW (see equation 5.2 for implementation details of

each variant of switching). Parameter q stands for probability of switching (see equation 4.20).

(A) SRW=, SRW that contains a uniformly distributed switching. (B) SRW+, SRW that contains

a switching with positive degree gradient. (C) SRW−, SRW that contains a switching with negative

degree gradient.

Regarding SRW= (Fig. 4.4A), exploration performance of random-modular and small-world

networks severely improves, overtaking scale-free at q = 0.1. Moreover, at q = 0.3 all the networks

but scale-free superposed, leading to a remarkable scenario where modularity and high clustering

coefficients are not topological handicaps for an efficient information retrieval.

Switching in SRW+ dramatically improves 〈MFPT 〉 in modular and small-world networks

while hardly decreases it in scale-free and random. The reason is that a random-walker on both

kind of networks already shows a gradient to visit highly connected nodes [57], and a positive-

degree switching supported rather than compensated this effect due to redundancy on hubs (see

Fig. 4.4B).

In SRW−, intermediate values of q (around 0.6 for all but scale-free models) showed optimal

performance with a simillar effect to the one produced by SRW=. However, it only partially
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succeeded in compensating the already commented natural RW gradient for hubs. (Fig. 4.4C).

Interestingly, the q values close to 1 produced an inverse situation where hubs are so unlikely to

be reached that the overall exploration performance decreased for all the models but dramatically

for scale-free model, where the degree heterogeneity is specially high. On the contrary, small-

world model showed a very similar performance when explored by any of the three SRW variants.

The reason is that in this model, the degree distribution is very homogeneous, and thus different

degree gradients of switching produced very little differences.

The approximate convergence of the exploration efficiency (for most of the topologies when

using SRW= or SRW− with a moderate switching rate) allows a system to organize information

or to evolve without compromising exploration and retrieval efficiency. In this sense, semantic

memory might be organizing information in a strongly modular or locally clustered way without

compromising retrieval performance of concepts. In a more general perspective, the addition of

a switching mechanism and its interaction with random-walk dynamics opens a new framework

to understand processes related to information storage and retrieval. Indeed, switching not only

mitigates exploration deficits of certain network topologies but also might provide certain robust-

ness to the system. For instance, the rewired links (known as short-cuts) in both small-world and

random-modular models are contributing to facilitate access to different regions of the network.

Those short-cuts might compensate a switching impairment or dysfunction and vice versa, i.e.

switching would ensure an accurate exploration of the network even though a targeted attack

removed those short-cuts permanently.

The model proposed here could have implications in other systems that usually have a conflict

between organization and retrieval efficiency. It will be object of further studies in other phe-

nomena unrelated to cognitive processes such as infection epidemiology, information spreading or

energy landscapes.
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Chapter 5

Switcher Random Walks on the

conceptual network ECN

A model of semantic memory exploration and retrieval during semantic verbal fluency tasks.
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5.1. Cognitive background and motivation

During the verbal fluency experiment, we found a high heterogeneity in the word frequencies,

i.e., a few animals were named by many participants while other animals were named only by a

few participants. We also noticed that the averaged position for a given word within the verbal

fluency tests depended strongly on the above mentioned frequency. These findings were described

in detail in chapter 2. This dependency is a consecuence of the retrieval strategy.

A. Troyer proposed in [31] a strategy consisting of consecutively producing related words until

a category is exhausted and then switching to a new category. With Troyer’s idea in mind, we

built an unsupervised model of conceptual organization, obtaining a network that we called ECN

(see section 3.4 for details). This network allowed us to distinguish the two kind of transitions

between concepts (switching and clustering) that occur in the verbal fluency tests. That is,

if two consecutive concepts within a test were linked in ECN, we had an instance of clustering.

Otherwise we had an instance of switching. We also showed how this strategy combining switching

and clustering produces frequency heterogeneity and averaged position dependence on frequency.

These findings were later considered in chapter 4 to build a model of exploration and retrieval

(SRW) for a number of network models.

In the present chapter, we analyze how exploration based on SRW performs in the case of the

conceptual network obtained from our data (ECN). Such performance was measured for different

degrees of switching, using the averaged mean first passage time 〈MFPT 〉ecn as described in

section 4.2.3.

Previous models of semantic memory retrieval that take into account the dynamics found in

verbal fluency tests have been reported in the literature; for a review see Wixted, 1994 [30]. For

instance, a simple model based on random recovery of elements is able to explain the decay in the

number of concepts named along time [27, 128]. In these models such decrease is explained by

the fact that randomly searched elements can be chosen more than once, and thus increasingly

delay the utterance of unsaid concepts. However this model cannot explain the temporal interval

between words found in fluency and memory tasks. Three major findings have been reported in

these studies: Firstly, time increased as a function of output position within a cluster (e.g., the

time between the first two words was less than between the second and the third); Secondly, time

decreased as a function of cluster size at a given output position (e.g., the period between the two

initial words of a three word cluster was longer than in a five word cluster); Thirdly, time between

the last two words of a cluster was always the same independently of its size [129]. Two-stage

models have been used to explain these phenomena. In the first step a subcategory is searched

while in the second step items from this subcategory are randomly extracted [28, 129, 130].
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5.2. Two variants of switcher random walkers

The results of accessibility and diffusivity obtained in chapter 3 explained the contribution of

switching and clustering to the frequency heterogeneity of concepts. We used here this information

to develop two SRW variants.

As described in section 3.5, the large correlation found between frequency and accessibility

(r = 0.91, Fig 3.4) in contrast with the poor correlation found between frequency and diffusivity

(r = −0.21, Fig. 3.5) shows that frequency heterogeneity of words is mostly due to switching

rather than to local traveling or clustering. Explained in another way, these findings show that

switching is the process that drives the system towards frequent words (which correspond to

prototypical concepts), while clustering shows almost no preference (only 4% of the total variance

would be explained by a linear regression model). Those findings based on empirical data were

considered for creating a new variant SRW freq, where the switching random distribution became

frequency dependent. We kept SRW=, described in section 4.2.4, as a baseline naive model.

Hence, as explained in section 4.2.4, we define a scalar field λ over the nodes of the graph:

psw
ij = λj with

∑

j≤|V |

λj = 1. (5.1)

Such field was defined in two different ways:

λj =



































1

|V |

P̂wj

n
∑

i=1

P̂wi

(5.2)

where P̂wi
is the frequency of word wi divided by the number of tests (see equation (3.1) for

details). In the first and most simple case switching to any other node is a random uniform

process, and we refer to this process as uniformly distributed switching. The second case was

designed according to the results obtained in section 3.5 and corresponds to the situation where

the probability to reach a given node through switching is proportional to its frequency within

the tests, which we call frequency degree gradient switching. Both variants included a random

walker restricted to the network as clustering mechanism (see equation (4.19) for details) and

were denoted by SRW= and SRW freq respectively.

Summarizing, two SRW variants were used in this section. In the original and most naive SRW

(SRW=) clustering was implemented as a random walk within the network (i.e. transition with

equal probability to adjacent nodes) and switching as an extra-topological event not influenced by

neither network structure nor frequency that allows random uniform jumping to any node. A new

variant of the model was also introduced to fit the large frequency-accesibility correlation found.

In this variant, SRW freq, switching was accomplished according to the normalized frequencies

of concepts, instead of being uniformly random distributed. For instance, dog, being the most

named concept, was then the most probable hit of switching. Although clustering/switching ratios

around 0.48 have been reported [31] we evaluated the effect of switching for the full probability

(q) range between 0 (absence of switching) and 1 (absence of clustering).

Both switching variants produced a switching Markov process Πsw = [psw
ij ] with all entries

greater than zero and thus ergodic and regular. The clustering Markov process Πcl based on the
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adjacency matrix of ECN was also ergodic and regular. The reason is that ECN is connected and

hence ergodic and contains cliques. This implies the presence of odd loops, a property which in

turn ensures regularity (see section 4.2.3 for details). The fact that the transition matrices of both

Markov processes are ergodic and regular is precisely what allows us to calculate the exact values

of 〈tij〉 and thus of 〈MFPT 〉ecn. Hence, we evaluated the exploration performance of SRW= and

SRW freq on the conceptual network ECN as

〈MFPT 〉ecn =
1

2
(

|V |
2

)

∑

i

∑

j 6=i

〈tij〉, (5.3)

where |V | is, in this case, the number of nodes of ECN (236) and 〈tij〉 is the mean first passage

time (i.e. averaged number of steps) to move from a node i to a node j within ECN (see equation

(4.24) for its general definition).
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5.3. Performance study of SRW exploration over ECN

We evaluated the exploration efficiency of two variants of SRW on the conceptual network ECN

for the range [0, 1] of switching probability (q). Results are shown in Fig. 5.1. SRW= is the most

naive approach and assumes an homogeneous concept retrieval, while SRW freq fits the empirical

results obtained and offers a faster retrieval of prototypical concepts, which is at the same time

in concordance with results of chapter 2. Regarding SRW=, 〈MFPT 〉ecn results show that the

presence of switching significantly improves the explorability of the conceptual network (see Fig.

5.1). Switching probabilities (q) higher than 0.55 lead to an optimal exploration, justifying in

terms of optimization the presence of an extra-topological mechanism that contributes positively

to concept retrieval. According to these results, the semantic modularity found in conceptual

organization would not be required to produce the same performance for high values of switching

(see Fig. 5.1).
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Figure 5.1: Analytical study of the influence of switching probability on ECN exploration per-

formance (〈MFPT 〉ecn). Both switching variants are able to improve exploration performance

(〈MFPT 〉ecn decreased). However, while SRW= always improves for higher q values, SRW freq

shows an optimal region of use. Dashed vertical line represents the averaged switching percentage

(0.48) of use found in previous studies [31]. Our model shows that switching rate influences test

performance in different manners depending on the SRW variant.

However, results obtained in chapter 3 indicate that switching has a linear positive gradient

towards frequent words. Those findings do not fit with the assumption of a uniform distribution.

Indeed, it seems that the probability of reaching a word through switching is better modeled as

its frequency rate with respect to all words (SRW freq). Although both variants show similar

performance at the beginning, SRW= performed better for switching probabilities q > 0.01.

SRW freq has an optimal region of switching in the range [0.20, 0.40] and an important efficiency

loss for q > 0.55. This result reflects that the efficiency produced by the switching mechanism
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depends drastically on how much it is used when retrieving concepts. Under SRW freq, which

is the model that better integrates retrieval functioning evidences, switching happened to be

especially optimal only for an intermediate region. This result seems to be in agreement with the

obvious difficulty of naming unrelated animals consecutively or naming animals only of the same

semantic category and succeeding on naming plenty of them.

The basis of both variants of the model of semantic memory exploration and retrieval analyzed

here can be explained with a metaphor of a blind bowman, as seen in Fig. 5.2. Let us represent a

bowman located in the frontal lobe shooting his arrows towards the semantic core (switching) in

the temporal lobe which is represented as a modular network of connected concepts. Whenever an

arrow reaches a node in the network a local search process, i.e. clustering, is initiated from it. The

blindness stands for the lack of intentional targets since information retrieval in verbal fluency

task is not deterministic, and thus random shooting. Hence, the distribution of hits depends

only on the representation degree of concepts (size of nodes in our metaphor). Switching follows

a uniform random distribution when nodes are simplified to be equally represented, meanwhile

it follows a frequency dependent distribution when the large correlation between frequency and

accessibility is taken into account. The former assumption was included in SRW= and the latter

in SRW freq, where switching shows an unintentional gradient towards most frequent words that

can be explained by an over-representation or ease of activation of some nodes depending on

its prototypicality. Given the poor correlation found between frequency and diffusivity, both

variants considered clustering as a random walk through the network. Such preferential gradient

is represented in 5.2 by different sized targets.

Although nodes of the same module conform semantic cliques, modules are in general poorly

interconnected with links between frontier animals. The low presence of these links are bottlenecks

that obstruct the traveling of the random walker from one module to another. It is intuitive

to think that high organization of concepts eases semantic processing; however highly modular

networks seriously hindered exploration and thus retrieval of concepts. It seems that the frequent

use of switching is a cognitive dynamical solution for such semantic bottlenecks. Summarizing,

our results with the category of animals show that the human brain seems to have achieved

an optimal balance between high organization based on semantic modularity in the conceptual

structure and high retrieval performance by means of an additional switching mechanism. Finally

it can be hypothesized that frontier animal links and switching are two phenomenon (the former

intrinsic to the topology and the latter extra-topological) with similar function and thus make the

overall system robust. For instance, frontier animals will still allow exploring different semantic

categories if switching fails (frontal damage), and switching might prevent or mitigate retrieval

failures if part of the network become disconnected (temporal damage).
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Figure 5.2: A blind bowman; metaphor of the switcher random walker model. Switching, a process

that occurs in the frontal lobe by the executive domain, is modeled as a blind bowman that aims

towards the semantic network in the temporal lobe. His arrows, as he is blind, reach the nodes

of the network only depending in the over-representation of its concepts, represented in the figure

by the size of the nodes. Once such arrow activates a node it begins a random walk that leads to

the enumeration of elements conforming a semantic cluster. In this toy example the exploration

has begun in tiger, one of the most prototypical animal in the sabana module, continuing trough

lion and elephant, going back to tiger, which this time is not overtly said, and finally reaching

hyena. The frontal lobe then initiates a new local search in the reptiles module from snake, passing

through viper and reaching zebra, a sabana animal, through crocodile, which is a frontier animal

between both modules.
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Chapter 6

An ontogenic model of the

conceptual network ECN

A topological study of the evolution of the conceptual network of animals by means of concept

frequency as an inverse estimator of its ranked age of acquisition.
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6.1. Introduction

The conceptual network ECN inferred in chapter 3 is a model of semantic organization of

animals in mature Spanish speakers. However, it is obvious that such semantic organization is

not created at once but through learning or acquiring new animals. According to our paradigm

this consists of adding new nodes (animals) and their links (relationships) to the conceptual

network (originally empty). This process is done as follows: First, we start with a blank ECN

to be filled by acquisition steps. For each acquisition step (according to the criteria described

below), a node i is added to the current network. Then we also include the links of its neighbors

in the complete ECN that were already in the current network. In this way, the final step of

acquisition always produced the ECN network, described in section 3.4.

whale

horse
elephant

hen

cat

giraffe

lion

dog

tiger

cow

Pajek

Figure 6.1: Example of the acquisition process after adding the tenth animal. Colored nodes and

black links correspond to the current state of the network. Nodes and links in light grey correspond

to the part of ECN not yet acquired.

In categorization research, both typicality [131, 132] and frequency of occurrence of category

names and its instances [133, 134] have been widely studied. Nevertheless, recent studies have

revealed the influence of other variables on semantic memory and on the formation of categories.

In particular, a number of studies have argued that age of acquisition (AoA) is an important

factor that influences the speed of word recognition and production. The conclusion was that

words acquired first or early in life have faster processing times than those words acquired later

[135, 136]. Therefore we evaluated whether there was a relation between frequency on naming

animals in verbal fluency tests and their estimated AoA. The aim of such evaluation was to create

an ontogenic model of the conceptual network ECN and study its topological evolution by adding

concepts based on descending frequency order.
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6.2. Frequency in verbal fluency: an estimator of ranked age of

acquisition

In this section, we evaluated the use of frequency in verbal fluency for estimating the acquisition

order of animals. The reason is that, as described below, available AoA studies did not cover

even 50% of the elements of the conceptual network ECN, and thus were not enough to produce

its ontogenic model.

The dataset containing 200 verbal fluency tests described in section 2.1 was used here to get

the frequency of each animal, i.e., the number of participants that named each of the 399 different

concepts.

In the last decade,a number of studies regarding age of acquisition of words in Spanish popula-

tion have been published [104, 137, 138]. Cuetos et al. [137] reported an AoA study including 27

animals, Izura et al. [104] included 100 animals and Alvarez et al. [138] included 54 animals. Ad-

ditionally, we averaged the three AoA estimators in a fourth one denoted by 〈AoA〉. Correlations

of these AoA estimators and frequency in our verbal fluency dataset were done with Spearman’s

rank correlation coefficient by using each time the words in common found between every pair of

datasets compared. The reason to use Spearman’s rank correlation instead of Pearson’s correla-

tion coefficient is that the aim of this study was to check whether frequency (sorted from larger

to smaller) produced an accurate ranking of words according to AoA studies rather than testing

whether frequency is linearly correlated to those AoA studies. Results of such correlations can be

seen in Table 6.1 and demonstrate that frequency is negatively correlated with every single AoA

study and indeed is highly correlated to their averaged < AoA > (ρ = −0.63, p < 10−3). Hence,

frequency of concepts in verbal fluency (90 seconds) happened to be an accurate ranking criteria

for ordering concepts according to their AoA.

Table 6.1: Pairwise correlation between AoA estimators previously published and frequency of

animals in our verbal fluency experiment. Detailed tables including every concept, their AoA

according to the studies and their frequency in verbal fluency can be seen in Appendix C

Datasets AoACuetos AoAIzura AoAAlvarez 〈AoA〉 Frequency

AoACuetos - ρ = 0.76, p < 10−4 ρ = 0.73, p < 10−4 - ρ = −0.58, p < 10−2

AoAIzura - - ρ = 0.30, p = 0.04 - ρ = −0.44, p < 10−5

AoAAlvarez - - - - ρ = −0.52, p < 10−4

< AoA > - - - - ρ = −0.63, p < 10−3

Frequency - - - - -
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Figure 6.2: Correlation between 〈AoA〉 (years) and frequency (normalized) in our verbal fluency

dataset. Results indicate that the concepts learnt earlier are more frequently named in verbal

fluency.

6.3. Topological measurements

The giant connected component (GCC) of a network, also used in section 4.2.2 refers to the

largest connected subnetwork, i.e., the connected subnetwork that contains a majority of the

entire network nodes. This topological concept was also used in chapter 6. ECN is a connected

giant component itself since it is a connected network. However, this is not necessarily the case

while ECN is being acquired concept by concept.

The topological measurements explained below were applied to the GCC of the ECN ontogeny

model at each step, i.e., every time a concept was added to the network and their links to already

acquired concepts were included. The addition of nodes were done in 2 different ways. First, we

added nodes in a decreasing order of frequency (freqAddition) as an accurate model of conceptual

ontogeny . Second, we added nodes at random (randAddition) to observe the dynamical evolution

of the topological parameters expected by chance .

The randAddition simulations were done 500 times by setting 500 random uniform lists of

concept acquisition. In freqAddition modality, those cases of concepts with equal frequency

were also randomly reshuffled 500 times. Hence both kinds of simulations included an error bar

illustrating the standard deviation of each topological measurement at each step of acquisition.

The clustering coefficient of a system [101], denoted by < C >, is a metric that represents the

density of triangles in a network with n nodes and is measured by

< C >=
1

n

n
∑

i=1

Ci, (6.1)

where Ci is the clustering coefficient of a node i. For undirected graphs, as the semantic network



Section 6.3 77

studied here, it is measured by

Ci =
2|Ni|

(ki − 1)k
, 1 ≤ i ≤ n (6.2)

and represents the proportion of links between the set of nodes that are neighbors of node i and

the number of links that could possibly exist between them. Although a modular network will

necessarily have a high clustering coefficient, the opposite statement is not necessarily true. The

reason is that < C > is not strictly a modularity measure. However, we already knew that ECN

is modular (see sections 3.3 and 3.4 for details). Measuring < C > reported us how the clustering

level of the network behaved with the addition of nodes (acquisition of concepts).
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6.4. Results and discussion

We found that a predominant giant connected component dominance emerged during the

acquisition process. It started at step 40 when adding nodes in a decreasing frequency order. This

result indicates the presence of an early connected conceptual skeleton which was not expected

by chance until approximately 100 nodes were added (see Fig. 6.3).
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Figure 6.3: Normalized giant connected component (GCC) size of ECN when nodes are added

either randomly (randAddition) or in a frequency-descendant fashion (freqAddition). A predomi-

nant GCC emerged at around step 40, much earlier than expected by chance (around step 100).

Regarding the clustering coefficient of the network < C >, a delayed clustering strength was

found with respect to the random addition experiments. This suggested that the initial skeleton

created is slowly clustered, probably due to feeding new animals to already existing semantic

modules. Results are shown in 6.4.

Another relevant issue to understand how this system evolves is the heterogeneity of modules

learnt, i.e., how many modules have been included at least through one concept during the

semantic growth. Results plotted in Fig. 6.7 show that modules were visited slightly slower than

expected by chance during a first stage(interval of 1 − 75 nodes) and as fast as expected during

the rest.

Summarizing, we created an ontogeny model of acquisition of animals based on the conceptual

network ECN. Such model consisted of adding concepts in a frequency descendant order since

we found that frequency in verbal fluency was an appropriate estimator for ranked AoA. The

topological evolution of the model produced a delicate balance that combines the presence of

an early connected skeleton with a delayed clustering that include different modules almost as

fast as expected by chance. The early skeleton might be explained by assimilation processes of

human learning, i.e., a new concept is acquired and compared to existing concepts that might

be related due to a variety of semantic and even phonetic features. The delayed clustering

seems to be due to a semantic feeding stage where once the skeleton is set up, less typical

concepts are acquired and set at different locations (semantic modules) of it. The fact that

modules were visited as fast as when concepts were randomly added closes this delicate balance

of heterogeneous modular learning with an early skeleton organization fed up later by concepts
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Figure 6.4: Clustering coefficient evolution of ECN when nodes are added either randomly or in

a frequency-descendant fashion. Clustering coefficient is smaller than expected by chance for a

large intermediate range.
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Figure 6.5: Ratio between links connecting different modules and links within modules. These

ratio is higher than expected by chance for almost all the growing steps. This indicates that links

connecting modules happened very early (giving rise to a heterogeneous conceptual skeleton) while

links internally connecting modules were produced later.
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Figure 6.6: Top-left. ECN after 40 concepts are acquired. It corresponds to a situation of GCC-

size much larger than expected by chance. Top-right. ECN after 80 elements are acquired. It

corresponds to a situation where both the clustering coefficient and the size of GCC are much

larger than expected by chance. Bottom. Final ECN once the acquisition processed is finished,

containing all the concepts and their semantic interactions (links are in gray here for visualization

purposes).
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Figure 6.7: Percent of modules visited when nodes are added either randomly or in a frequency-

descendant fashion. Although modules were visited slower than expected by chance during a short

stage (interval of adding 40th − 65th nodes), overall they were visited as fast and thus as hetero-

geneously as expected by chance.

belonging to different modules.

Interestingly, this model can be interpreted in forward and reverse directions. While the

forward sense is an ontogenic model of semantic acquisition, the reverse model might represent

a semantic loss model for neurodegenerative diseases such as Alzheimer’s Disease, where those

concepts of higher AoA are known to be lost first [139, 140]. Indeed, computational and heuristic

methods might be developed to locate verbal fluency tests from children, healthy controls and

patients in the most likely state of the ontogenic model introduced here. This would allow to look

for differences when studying a wide variety of processes related to learning, aging and cognitive

impairment.
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Chapter 7

Lexical access impairment in

neurodegenerative conditions

A contribution towards the understanding of different issues that affect lexical access and

retrieval in neurodegenerative diseases.
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7.1. Multiple sclerosis

Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central

nervous system [141]. It has been generally considered a disease of the white matter. However,

this is only one pathological aspect of the disease as demyelination is prominent in the grey

matter of deep cerebral nuclei and the cerebral cortex and thus the disease involvement of grey

matter structures may significantly contribute to clinical disability in multiple sclerosis patients

[142]. Indeed, while lesions involving the white matter (WM) are well known, recent studies

have also indicated extensive damage of the grey matter (GM), including microglia activation,

cortical demyelization, and axonal, synaptic, and neuronal loss [142–146]. Recently, the extension

and pathological basis of GM pathology have been highlighted by means of pathological and

neuroimaging studies [147]. GM atrophy begins early and evolves over the course of the disease.

Volume of GM tissue is lower in MS patients than in control subjects [148–150]. The study of

GM damage is of critical importance since axonal and neuronal damage are the main factors

responsible for long-term disability in MS [151].

Cognitive impairment is frequent in patients with Multiple Sclerosis (MS), significantly re-

ducing their quality of life. Language is one of the domains affected in MS but its involvement

is not well understood. Despite the growing awareness of different cognitive changes in Multi-

ple Sclerosis (MS), high level language functions and communication abilities in these patients

remain poorly understood. Cognitive disturbances are frequent in MS approximately involving

45− 65% of the patients [121, 152–154]. The cognitive functions or domains most often impaired

reported are memory (in different modalities), information processing speed, attention, executive

functions and verbal fluency [154–157]. In particular, declarative verbal memory is one of the

domains that more deteriorates with disease progression. However, it has been claimed that high

level language-related abilities are not significantly impaired in MS, and few attempts have been

done to unveil these alterations.

Semantic and phonemic verbal fluency tests have been used as a language-related task in MS,

showing a consistent decrease of the total number of generated words [110, 154]. Furthermore,

this measure of verbal fluency has been proposed as one of the most sensitive markers of cognitive

impairment in MS derived from the data of a meta-analysis [110]. A possible explanation for

such verbal fluency decrease, supported by previous data [34], is that these patients more than

suffering a degradation of the existing lexical pool fail in the retrieval of lexical information.

However, few steps have been done to analyze this specific lexical access problem in MS. In this

sense, it could be hypothesized that patients suffer an alteration in lexical access involving a

specific impairment in the lexical selection process due to white matter disrupted connections

between cortical areas (mainly temporo-frontal connections) rather than an alteration in the

storage system. This preferential involvement of lexical retrieval could be due to its dependence

of long white matter tracts, which are more frequently damaged in MS.

Neuroimaging studies have identified abnormalities in the GM of patients with MS, mainly

volumetric changes. There are different approaches for detecting and quantifying the subtle

neuropathological alterations taking place in the brain tissue in MS patients , including the

magnetization transfer ratio, diffusion-weighted imaging, or magnetic-resonance spectroscopy.

Recently, we found that fractal dimension (FD) identifies changes in the WM [158] and the GM

[151] of MS patients, including the normal-appearing WM, even at the early stage of the disease.

FD is a measurement of the geometrical complexity of an object, and thus changes in the FD

indicate alterations in the tissue structure under study. Because the WM has a highly complex

anatomy such as the presence of axonal bundles, a pathological process that destroys brain tissue
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by creating an amorphous glial scar would decrease the FD of this tissue, as was the case of WM

in MS. Thus, FD might be used as a marker of the degree of brain damage.
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7.2. Mild cognitive impairment

Mild cognitive impairment (MCI) is a concept evoked to fill the diagnostic gap between benign

age-associated forgetfulness and dementia, particularly Alzheimer’s disease.

Different definitions of MCI and closely related terms have been proposed (for review, see [159–

162]. They differ in three ways: firstly on whether formal cognitive testing is required for the

diagnosis; secondly on the distributional criterion for impairment (e.g. certain standard deviation

units below the mean); thirdly on which abilities are to be impaired. MCI may thus include

amnesic MCI with isolated memory impairment, multi-domain MCI with memory and additional

cognitive impairment, and non-amnestic MCI with intact memory but impairment in some other

cognitive ability [143]. Other data-driven subdivisions of MCI might emerge depending on the

aim and direction of the test battery used, on the nature of the sample, and on the statistical

procedures used to arrive at a classification of patients into subgroups. One aim in identifying

subdivisions of MCI is to identify patterns that predict different forms of dementia on longitudinal

studies [163].

Impaired declarative memory acquisition is considered the hallmark of MCI [161]. This may be

documented by tests of delayed recall such as the Auditory-Verbal Learning Test of Rey (1964).

However, there is also evidence for impairments on MCI that go beyond delayed recall. MCI

appears to be associated with certain language-related decrements, including decreased noun

fluency [164, 165], difficulties in the nominal mass/count domain [166], picture naming [167], and

sentence comprehension [168]. Divided attention is also impaired in MCI, suggesting that some

kind of executive dysfunction emerge before the dementia stage [169]. At present, it is not clear

what language tasks are suited to detect MCI, although the language decrements listed above

suggest that tests involving both lexical-semantic and executive abilities would be applicable.
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7.3. Alzheimer’s disease

Alzheimer’s disease (AD) is a degenerative brain disorder characterized by neocortical atrophy,

neuron and synapse loss [170, 171], and the presence of senile plaques and neurofibrillary tangles

[172] primarily in the hippocampus and entorhinal cortex, and in the association cortices of the

frontal, temporal and parietal lobes [172, 173]. Although there is a known temporal progression,

its neuropathological changes are not completely understood. A number of studies suggest that

the hippocampus and entorhinal cortex are involved in the earliest stage of the disease, and that

frontal, temporal and parietal association cortices become increasingly involved as the disease

evolves [173–177]. In addition to these cortical changes, subcortical neuron loss occurs in the

nucleus basalis of Meynert and often in the nucleus locus coeruleus, resulting in a decrement in

neocortical levels of cholinergic and noradrenergic markers respectively [178–180].

AD results in a dementia syndrome typified by global intellectual decline with specific deficits in

learning and memory, language, attention, executive functions and visuospatial abilities [181, 182].

The inability to learn and retain new information (i.e. an episodic memory deficit) is usually the

earliest and most prominent feature of dementia of the Alzheimer type (DAT). Additionally, and

impaired ability to recollect or retrieve previously acquired knowledge also occurs as the disease

progresses. While the episodic memory deficit associated to DAT has been extensively studied

and is definitely attributed to the damage occurring at the hippocampus and related structures

during the early course of the disease [183], the semantic memory deficit has been less studied

and the nature of the deficit and its neurological basis remains controversial.

Although some investigators propose that DAT patients suffer from a general impairment

in retrieving or accessing knowledge from a relatively intact semantic store [184–186], others

suggest that there is a breakdown in the organization and structure of semantic knowledge,

and that knowledge concerning specific concepts and their attributes is actually lost during the

course of the disease as a result of the degradation of the neocortical association areas that are

presumed to store these representations [187, 188]. Loss of semantic knowledge results in concepts

becoming less well defined as their distinguishing attributes are eliminated, and in a weakening

of the formerly strong associations between related concepts in the semantic network. Some of

the earliest and most important evidence supporting that DAT patients suffer a breakdown in

the organization of semantic memory comes from studies on verbal fluency performance. For

example, Butters et al. [189] compared the performance of DAT patients with Hunginton’s

disease (another dementing neurological disorder that results from degeneration of subcortical

brain structures in the striatum) on both semantic (animals) and phonetic (letters F, A and S)

verbal fluency tasks. Patients with HD demonstrated severe deficits on the two fluency tasks

respect to normal control subjects, whereas the AD patients happened to be impaired only on

the semantically demanding category fluency task. Although later studies done by Monsch et al.

[190] found that AD patients were impaired on the phonetic tasks, they had a greater impairment

on the semantic tasks indicating again a breakdown in the semantic network. The DAT patients

greater impairment on category than on letter fluency tasks demonstrated in these studies is

consistent with the notion that they suffer a loss or breakdown in the organization of semantic

memory rather than from a general inability to retrieve or access semantic knowledge. While

normal control subjects are able to use the organization within a restricted semantic category to

guide their responses on the category fluency tasks, patients with DAT appear to be deficient in

their knowledge of the attributes and/or prototypes that define the relevant semantic category

and are thus unable to use this knowledge to locate specific category exemplars. When semantic

organization is less salient or useful in the fluency task, as in the letter fluency task, DAT patients
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show less impairment relative to control subjects. In contrast to DAT patients, the equally

impaired performance of HD patients on letter and category fluency tasks is consistent with an

inability to effectively retrieve information from semantic memory rather than with a specific loss

of semantic knowledge or organization [191].
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7.4. Lexical access impairment

Semantic memory is a distinct part of the declarative memory system [15] comprising knowl-

edge of facts, vocabulary, and concepts acquired through everyday life [16]. Deficits of semantic

memory are prominent in AD [192–194]. They often demonstrate a progressive decline in perfor-

mance on tasks that are dependent upon semantic memory, including word finding and picture

naming [18, 194, 195]. Two primary theories have been proposed to explain the semantic deficits

observed in patients with AD. They could be used by a degradation of the internal semantic

network or by a failure to retrieve information from a network. The former attributes an impair-

ment in the semantic representation per se [18, 193–195] while the latter involves the conscious

strategic processing needed to access those representations [184, 196]. In our model of seman-

tic memory retrieval, the internal semantic memory degradation could be modeled by removing

concepts (nodes in the conceptual network ECN) and the strategic processing impairment by

removing links of the network and thus limiting the clustering abilities and flexibility.
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7.5. Verbal fluency datasets and their comparisons

Comparison of distributions

Pairwise comparison between distributions coming from different groups (HC, MCIs, MCIp,

AD and MS) were carried out with the two-sample Kolmogorov-Smirnov (K-S) goodness-of-fit

hypothesis test. This non parametric method is a variation of the one sample K-S [197] and

tells us, given two samples, whether the two underlying probability distributions differ. In what

follows, we denote their corresponding random variables by X1 and X2. The k statistic for the

two-sided test is:

k = max(|F1(x) − F2(x)|), (7.1)

where F1(x) is the proportion of values in the first sample that are less than or equal to x and

F2(x) is the proportion of values in the second sample that are less than or equal to x. We used the

two-sided version to obtain whether the distribution of X1 is different from the distribution of X2

and the one-sided version to obtain whether the distribution of X1 is significantly larger or smaller

than the distribution of X2. They are computed by max(F1(x) − F2(x)) and max(|F2(x) −

F1(x)|) respectively. For ease of interpretation of the group comparisons, significant (p < 0.05)

and close to significant (p between 0.05 and 0.10) differences have been highlighted in bold in the

tables.

Groups of study and demographic data

HC60 group contain verbal fluency tests (animals, 60 seconds) from 28 participants. Within

the tests, instances belonging to 23 words were removed for not being in ECN network.

MCIs group contain verbal fluency tests (animals, 60 seconds) from 24 participants with stable

mild cognitive impairment, i.e., they later did not develop Alzheimer Disease. Within the tests, 2

words were removed for not being animals and instances belonging to 7 words were removed for

not being in ECN network.

MCIp group contain verbal fluency tests (animals, 60 seconds) from 24 participants with

progressive mild cognitive impairment, i.e., they later developed Alzheimer Disease. Within the

tests, 2 words were removed for not being animals and instances belonging to 10 different words

were removed for not being in ECN network.

AD group contain verbal fluency tests (animals, 60 seconds) from 36 participants with diag-

nosed Alzheimer Disease. Within the tests, 3 words were removed for not being animals and

instances belonging to 5 different words were removed for not being in ECN network.

These groups were matched in both age and years of education as it can be seen in Tables 7.1

and 7.2 respectively.

HC90 group contain verbal fluency tests (animals, 90 seconds) from 50 participants. Withing

the tests, instances belonging to 28 words were removed for not being in ECN network.

MSnoCI group contain verbal fluency tests (animals, 90 seconds) from 18 participants with

diagnosed Multiple Sclerosis and not cognitive impairment, i.e., less than two neuropsychological

tests with scores behind two standard deviations from normality. Within the tests, 0 words were

removed for not being animals and instances belonging to 41 different words were removed for

not being in ECN network.

MSCI group contain verbal fluency tests (animals, 90 seconds) from 25 participants with

diagnosed Multiple Sclerosis and cognitive impairment, i.e., two or more neuropsychological tests

with scores behind two standard deviations from normality. Within the tests, 0 words were
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Group HC60 MCIs MCIp AD

HC60 − 0.22 0.27 0.09

MCIs − − 0.72 0.94

MCIp − − − 0.28

AD − − − −

Table 7.1: Pairwise two-sided comparison of age shows no significant differences between groups.

Entry ijth reports significance to reject the null hypothesis, i.e. distribution of group i is equal to

distribution of group j.

Group HC60 MCIs MCIp AD

HC60 − 0.66 0.91 0.82

MCIs − − 0.59 0.92

MCIp − − − 1

AD − − − −

Table 7.2: Pairwise two-sided comparison of years of education shows no significant differences

between groups. Entry ijth reports significance to reject the null hypothesis, i.e. distribution of

group i is equal to distribution of group j.

removed for not being animals and instances belonging to 41 different words were removed for

not being in ECN network.

These groups were matched in both age and years of education as it can be seen in Tables 7.3

and 7.4 respectively.

Measurements on verbal fluency

Measures of accesibility and diffusivity were calculated in every group in order to correlate

them (Pearson’s correlation coefficient) to the frequency of concepts found in the dataset of 200

healthy participants described in section 2.2.

The test length distribution refers for each group to the number of concepts named by each

participant that were valid animals. Those valid animals that were not found in ECN network

were also taken into account.

The switching distribution refers, for each group, to the number of switching transitions per-

formed by each participant according to the in-silico evaluator based on ECN.

The mean cluster size distribution refers, for each group, to the averaged size of the clusters

identified by each participant. Since the aim of this measure is to study clustering rather than

Group HC90 MSnoCI MSCI

HC90 − 0.15 0.47

MSnoCI − − 0.20

MSCI − − −

Table 7.3: Pairwise two-sided comparison of age shows no significant differences between groups.

Entry ijth reports significance to reject the null hypothesis, i.e. distribution of group i is equal to

distribution of group j.
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Group HC90 MSnoCI MSCI

HC90 − 0.79 0.11

MSnoCI − − 0.26

MSCI − − −

Table 7.4: Pairwise two-sided comparison of years of education shows no significant differences

between groups. Entry ijth reports significance to reject the null hypothesis, i.e. distribution of

group i is equal to distribution of group j.

switching and clustering together, a cluster of size 1 was considered when 2 consecutive words

were related and so on. Hence consecutive switchings were considered to be empty clusters and

thus were not taken into account for this measure.
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Group corrfreq,acc corrfreq,diff

HC60 r = 0.73, p < 10−23 r = −0.05, p = 0.61

MCIs r = 0.63, p < 10−11 r = −0.09, p = 0.44

MCIp r = 0.64, p < 10−9 r = −0.16, p = 0.25

AD r = 0.70, p < 10−12 r = −0.21, p = 0.12

Table 7.5: Characterization of the switching-clustering strategy in terms of both correlation be-

tween frequency and accessibility and correlation between frequency and diffusivity.

Group HC60 MCIs MCIp AD

HC60 1 0.01 < 10−3 < 10−4

MCIs 0.95 1 0.19 < 10−2

MCIp 1 1 1 0.09

AD 1 1 1 1

Table 7.6: Pairwise comparison among test length distributions. Entry ijth reports significance

for distribution of group i being larger than distribution of group j.

7.6. Results and discussion

Mild cognitive impairment and Alzheimer’s disease

We first studied the dataset including verbal fluency tests from HC60, MCIs, MCIp and

AD. In order to characterize their switching and clustering functioning, we correlated for the

words produced at each group the frequency with the accessibility and diffusivity. Frequency was

obtained from the dataset including 200 healthy participants (described at section 2.2) and corre-

lated with accessibility and diffusivity measurements (see section 3.2 for details). The four groups

showed a high correlation between frequency and accessibility while none of them significantly cor-

related frequency and diffusivity. However, an interesting positive gradient was observed between

group level of cognitive impairment and the correlation of frequency and diffusivity that might

become more relevant in case it is validated for groups containing more participants. Results are

summarized in Table 7.5.

Regarding the number of words, HC60 participants produced significantly more animals than

the other three groups, MCIs participants significantly produced more words than AD partici-

pants and MCIp production higher than AD was closed to significance. Results are summarized

in Table 7.6.

Regarding switching activity of groups, sw{group}, a clear decline as the level of impairment

increases was observed. Either significant or close to significant results allowed to rank switching

activity of groups as sw{HC60} > sw{MCIs} > sw{MCIp} > sw{AD}.

However, the accessibility results shown in Table 7.5 indicate that, although less frequent, the

behavior of switching keeps more or less the same since for all groups the correlation between

frequency and accessibility happened to be very similar.

Finally, mean cluster size segmented the groups in two sides. In one hand HC60 and MCIs

had no differences between them and produced significant or close to significant differences with

MCIp and AD that again had no differences between them. Results are summarized in Table

7.8.
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sw HC60 MCIs MCIp AD

HC60 − 0.07 0.02 < 10−4

MCIs 0.99 − 0.10 0.01

MCIp 0.93 0.66 − 0.09

AD 1 1 1 −

Table 7.7: Pairwise comparison among switching distributions of groups HC60, MCIs, MCIp

and AD

Group HC60 MCIs MCIp AD

HC60 − 0.38 0.01 < 10−2

MCIs 0.31 − 0.10 0.03

MCIp 0.95 1 − 0.54

AD 0.97 1 0.86 −

Table 7.8: Pairwise comparison among mean cluster size distributions of groups HC60, MCIs,

MCIp and AD
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Figure 7.1: Cumulative distribution functions of mean cluster size for HC60, MCIs, MCIp and

AD. Statistics of group comparison can be observed at Table 7.8.
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Group corrfreq,acc corrfreq,diff

HC90 r = 0.78, p < 10−33 r = −0.14, p = 0.11

MSnoCI r = 0.85, p < 10−55 r = −0.17, p = 0.02

MSCI r = 0.85, p < 10−55 r = −0.23, p =< 10−2

Table 7.9: Characterization of the switching-clustering strategy in terms of correlation between

frequency and accessibility and diffusivity.

Group HC90 MSnoCI MSCI

HC90 − 0.30 < 10−4

MSnoCI 0.94 − < 10−3

MSCI 1 1 −

Table 7.10: Pairwise comparison among test length distributions. Entry ijth reports significance

for distribution of group i being larger than distribution of group j.

Multiple sclerosis

The three groups showed similar correlations between their accessibility and the frequency

of those words obtained in the HC200 dataset. Accessibility measurements, although similar,

showed a negative increasing gradient that might be indicating a reduction in the local clustering

flexibility to move between more and less frequent animals.

Regarding number of words within the tests, no differences were found between HC2 and

MSnoCI . On the other hand, MSCI patients significantly named less animals than both HC2

and MSnoCI .

Interestingly, no differences of switching were found between HC2 and MSnoCI . Moreover,

the tendency is towards a higher use of switching by MSnoCI participants respect to HC2. On

the other hand, MSCI patients significantly named less animals than both HC2 and MSnoCI .

The mean cluster size produced differences among the three groups, ranking them from higher

to smaller in HC, MSnoCI and MSCI.

A joint interpretation of the results shown in Tables 7.10,7.11 and 7.12, might be indicating

the presence of early GM damage that prevents MSnoCI patients to provide words through

clustering. However, yet they are able to compensate such impairment due to a higher use of

switching, probably due to a correct frontal functioning. The relevance of GM damage at early

stages of the disease has been recently shown and its in accordance with the phenomena observed

here. Those patients with cognitive impairment (MSCI), seem to have a loss in the switching

flexibility. Hence they are not only unable to compensate the clustering impairment but yet have

an impairment in the mechanism of switching that undoubtedly leads them to say very few words.

Group HC90 MSnoCI MSCI

HC90 − 0.99 0.03

MSnoCI 0.15 − < 10−3

MSCI 0.95 0.97 −

Table 7.11: Pairwise comparison among switching distributions.
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Group HC90 MSnoCI MSCI

HC90 − < 10−2 < 10−2

MSnoCI − 1 0.06

MSCI 1 0.99 −

Table 7.12: Pairwise comparison among mean cluster size distributions.
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Figure 7.2: Cumulative distribution functions of mean cluster size for HC90, MSnoCI and MSCI .

Statistics of group comparison can be observed at Table 7.12.
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Chapter 8

Conclusions and Outlook

8.1. Conclusions

The conclusions of this work are diverse, all of them centered on understanding conceptual

storage and retrieval in semantic memory as a complex system.

In chapter 2, we have seen that frequency distribution of words in semantic verbal fluency tests

(animals) follow an exponential distribution, instead of the power-law that had been previously

observed in natural language. Additionally, we have observed that more frequent words tend to

appear earlier within the tests, a phenomenon already observed in previous studies of verbal flu-

ency. These two observations have been complemented with the word heterogeneity measurement

for three different intervals of the tests. Results indicate that a joint tendency of participants to

name the same set of animals is gradually lost as the test advances.

In chapter 3, we have developed a methodology to infer an unsupervised network of concepts.

Based on a verbal fluency dataset, a network containing animal concepts (nodes) and its relations

(links) has been obtained. This network showed a strong modularity that partitioned the nodes

into 18 modules. We later used this information to enreach the network by converting each

module into a fully connected set of nodes, giving rise to an enreached conceptual network. We

used both in-silico networks as unsupervised evaluators of switching and clustering. The latter

network happened to be closer than the original one to human evaluation. Hence we used the

enreached conceptual network to decouple switching and clustering transitions by means of two

measurements, switching and clustering. Correlating these two measurements with frequency of

the concepts produced the following finding: the frequency heterogeneity studied in chapter 2 is

due to switching, while clustering has the flexibility to move from frequent to in frequent concepts

in a way similar to a random-walk.

In chapter 4 we evaluated the exploration performance of different modalities of switcher

random walks in a number of well known in-silico network models. Frequency of concepts as a

gradient was substituted by degree of nodes. Three variants of switching (no gradient, positive

degree gradient and negative degree gradient) were studied, showing different behaviors depending

on the topology explored and the level of switching.

In chapter 5, we used the switching-clustering functioning and the conceptual network ECN

obtained in chapter 3 together with the theoretical framework described in chapter 4. We analyzed

the performance of explorability for different levels of switching activity and found that there is

an optimal intermediate region, which is indeed the region where humans are. The results of

our simulations showed that switching is crucial for an optimized exploration of the conceptual

network in particular, and probably of modular networks in general.
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In chapter 6 we demonstrated that frequency of concepts in verbal fluency is a reliable estimator

of ranked age of acquisition of concepts. In other words, concepts with higher frequency in the

tests were learnt before than those concepts with lower frequency. Hence we used frequency

to model the dynamical evolution of the enreached conceptual network. This study allowed to

observe that a giant connected component that included around 80% of concepts emerged much

earlier than expected when adding nodes randomly. Such giant connected component represented

a conceptual skeleton that was later fed by filling every semantic field with more terms, giving

rise to a delayed modularity and clusterization respect to the expected by chance.

In chapter 7, four different neurodegenerative conditions were studied: Mild Cognitive Im-

pairment (stable and progressive), Alzheimer’s disease and Multiple Sclerosis (with and with-

out cognitive impairment). Patients with MCIs showed what could be an overall ralentiza-

tion of concept retrieval, while MCIp group was clearly identified as a middle stage towards

AD development. Although clustering seems to show a gradient towards loosing flexibility

(HC− > MCIs− > MCIp− > AD), a higher number of tests would be needed to accurately

make this claim. Regarding MS, patients with no cognitive impairment compensated certain

clustering impairment with an overuse of switching. Finally, those MS patients with cognitive

impairment not only showed a high clustering impairment but also had a switching impairment

that avoided any compensatory mechanism.

8.2. Outlook

It is widely accepted that clustering retrieves series of related animals while switching produces

a change to explore other sub-categories or semantic modules, and those changes have been said to

happen when categories get exhausted [31]. However, normal participants said around 31 animals

during the 90 seconds task. Globally, it is obvious that those numbers do not demonstrate the

animals lexicon that participants know but represents only a low portion of them. Regarding

subcategories, the fact that they are not exhaustively explored and retrieved might be due to

a combination different reasons. First, switching is a mechanism that naturally prevents from

exhaustive exploration of the semantic modules defined in section 3.3 in a row, and second, there

might be inhibitory mechanisms that prevents from re-visiting modules already explored. In

other words, is not only that switching abandons current sub-category (i.e. cervidae) to explore

somewhere else but it also might happen that such module might be somehow de-activated or

inhibited for a while to naturally avoid repetitions. This phenomenon might also explain why

sometimes participants, after briefly exploring several sub-catecories , get blocked for periods

of several seconds even though they only had named 15 or less animals. Indeed, the timing is

definitely the next variable to include in order to better understand the complexity of switching

and clustering phenomena and their bottlenecks.

In section 3.4 an unsupervised in-silico evaluator of switching and clustering has been proposed.

Although its performance was in high agreement with human expertise, it still lacks an evaluation

for those concepts not included in the network. This issue might be softened by considerably in-

creasing the number of verbal fluency tests included in the inference of the network. Additionally,

a selective semi-supervised evaluation could be addressed, where only those concepts unknown

for the network would be evaluated in terms of switching and clustering by human judges.

Switcher random walks might be accurate models of social networks to study propagation

phenomena such as virus spreading. In this metaphor, the basal topology would represent a

social network were nodes (individuals) directly linked are some how related and switching is a
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probabilistic mechanism that considers very sporadic (and thus not included in the social network)

contacts with other people (e.g. people you find at the airport). The paradigm of SRW applied

to this context seems to be more flexible to real life contacts and thus might be of interest for

understanding issues such as virus and diseases spreading, propagation of information, etc.

In chapters 4 and 5 we evaluated the exploration performance of SRW variants on in-silico

network models and on the conceptual network ECN respectively. The performances were mea-

sured by 〈MFPT 〉net, which is based on the mean first passage time for every pair of nodes 〈tij〉

with i 6= j (i.e. the 〈tii〉 entries, which represent the return times [198], were not considered).

A possible extension of the work presented here might study the influence of switching in maxi-

mizing the return times for different network models. Exploration strategies that maximize the

return times are very interesting from a cognitive perspective, since it reduces the probabilities of

re-visiting nodes and thus might be reducing the minimal working memory size needed to avoid

repetitions. It might be a reason for the so called magical numbers of 7 [8] or 4 [9] or at least it

might explain some cognitive limitations.

Finally, the use of switcher random walks introduced in sections 4 and 5 might be extrapolated

as a novel cognitive inspired Computer Science paradigm to find adequate solutions to complex

problems, such as the so called NP problems, where brute-force, i.e. analyzing all possible solu-

tions, is not computationally feasible. In particular, it would be of interest to evaluate SRW for

a set of known problems using different switching probabilities and to compare their performance

to other approximation algorithms such as simulated annealing [199, 200] and genetic algorithms

[201, 202]. In this context, clustering would represent a movement to a nearby solution while

switching would be a change to any other solution and several variants could be explored by

using different switching gradients.
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Words and their frequency in the 200

verbal fluency tests



102 Words and their frequency in the 200 verbal fluency tests

Table A.1: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

abeja 36 23.42

abejaruco 1 14.00

abejorro 3 27.33

abubilla 3 20.33

ácaro 3 18.67

agapurni 1 28.00

águila 75 18.07

águila culebrera 1 30.00

águila real 5 30.40

aguilucho 2 30.50

alacrán 2 21.50

albatros 1 19.00

alce 4 37.00

alimoche 1 2.00

almeja 11 24.91

alpaca 1 30.00

ameba 1 29.00

anaconda 2 21.00

ánade real 1 19.00

anchoa 10 26.80

anémona de mar 1 26.00

anguila 4 26.50

angula 2 28.00

ansar común 1 18.00

ant́ılope 4 23.25

araña 57 19.77

ardilla 32 15.22

arenque 3 16.67

armadillo 1 22.00

asno 9 13.89

atún 23 20.70

ave 1 10.00

ave carroñera 1 39.00

ave del paráıso 1 29.00

ave lira 1 11.00

avefŕıa 1 6.00

avestruz 47 15.26

avirrojo 1 7.00

avispa 24 24.68

avutarda 3 11.33

azor 1 20.00

babosa 2 14.00
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Table A.2: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

babuino 2 32.00

bacalao 9 20.56

bacteria 2 29.00

ballena 119 16.98

barbo 8 25.25

barracuda 1 23.00

berberecho 1 23.00

besugo 10 25.00

b́ıgaro 1 33.00

bisonte 15 22.67

boa 10 20.40

bogavante 3 27.33

bonito 5 22.60

boquerón 1 29.00

bravia 1 17.00

buey 19 21.95

buey de mar 5 22.20

búfalo 20 23.30

búho 23 22.57

buitre 42 22.14

buitre leonado 1 47.00

burro 43 17.07

caballito de mar 12 23.17

caballo 103 12.06

cabra 56 17.98

cabrito 2 13.00

cacatúa 17 18.65

cachalote 12 23.92

caimán 14 19.29

calamar 16 24.38

calandria 1 23.00

camaleón 14 17.13

camarón 2 25.00

camello 20 15.70

canario 47 13.77

cangrejo 25 24.08

canguro 31 17.63

caniche 1 6.00

caracol 11 19.45

carbonero 1 22.00

cardelina 1 3.00

caribú 2 24.50
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Table A.3: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

carnero 3 15.00

carpa 4 16.25

cascabel 2 30.00

castor 3 24.67

cebra 70 15.06

centollo 7 23.63

cerdo 77 16.30

cerńıcalo 3 25.67

chacal 3 27.00

chango 1 16.00

charlo 1 8.00

chicharro 1 20.00

chihuahua 1 10.00

chimpancé 27 19.93

chinche 2 17.00

chinchilla 1 24.00

chipa 1 43.00

chipirón 1 33.00

chirla 1 28.00

chopito 1 23.00

ciempies 14 22.21

ciervo 34 16.94

cigala 12 21.08

cigarra 2 21.00

cigüeña 34 15.65

cisne 12 19.33

cobaya 14 18.00

cobra 9 25.67

cochinilla 2 32.50

cocodrilo 79 16.64

codorniz 13 21.54

colibŕı 14 22.29

comadreja 5 23.60

cóndor 7 26.29

conejo 91 14.20

conejo de indias 1 21.00

congrio 4 29.50

cordero 10 17.80

cormorán 4 23.75

corneja 2 27.50

correcaminos 1 25.00

corzo 12 14.75
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Table A.4: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

cotorra 1 24.00

coyote 4 15.00

cucaracha 34 21.33

cuervo 19 18.63

culebra 23 12.83

delf́ın 82 15.44

dingo 1 26.00

dinosaurio 3 8.67

dodo 2 25.00

dorada 5 21.00

dragón de comodo 1 21.00

dromedario 10 16.30

elefante 123 11.05

elefante marino 3 35.67

emperador 1 18.00

equidna 4 28.00

erizo 8 19.88

erizo de mar 3 29.33

escarabajo 21 18.95

escolopendra 1 26.00

escorpión 12 21.83

esponja 1 37.00

estornino 1 11.00

estrella de mar 11 21.91

esturión 1 21.00

faisán 6 27.67

flamenco 4 10.25

foca 27 21.63

frailecillo 1 30.00

fúına 1 32.00

gacela 16 18.00

galápago 3 13.67

galgo 1 17.00

gallina 98 14.34

gallo 43 14.00

gamba 11 28.27

gamo 5 18.00

ganso 12 19.50

garceta 1 44.00

garrapata 4 23.25

garza 2 24.50

gato 180 6.28
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Table A.5: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

gato montés 1 33.00

gato pardo 1 12.00

gavilán 3 11.33

gaviota 24 14.48

gazapo 1 8.00

golondrina 17 15.72

gorila 23 20.00

gorŕın 2 26.50

gorrión 49 19.22

grajo 1 28.00

grillo 6 18.00

grulla 1 11.00

guacamayo 2 13.50

gualabi 1 29.00

guepardo 39 16.62

gusano 29 19.27

gusano de seda 3 27.67

halcón 32 19.53

hamster 29 19.52

hiena 22 15.82

hipopótamo 57 17.37

hormiga 49 17.96

humano 5 22.00

hurón 11 19.55

iguana 23 20.78

insecto 1 15.00

insecto palo 2 31.00

jabaĺı 25 18.52

jaguar 12 13.50

jilguero 24 20.25

jineta 2 17.00

jirafa 121 12.79

kili 1 12.00

kiwi 2 27.50

koala 28 19.72

lagartija 36 19.08

lagarto 35 17.77

lamprea 2 9.00

langosta 10 21.10

langostino 11 22.82

lechuza 10 19.10
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Table A.6: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

lemur 4 32.50

lenguado 6 23.00

león 147 11.01

león marino 7 29.57

leopardo 52 15.93

libélula 9 24.89

liebre 34 16.47

limula 1 18.00

lince 20 16.55

lince ibérico 1 19.00

lirón 1 31.00

llama 6 32.00

lobo 36 17.84

lobo de mar 1 33.00

loina 1 44.00

lombriz 32 18.61

loro 54 15.63

lubina 10 20.40

luciérnaga 6 21.50

lucio 2 22.50

macaco 3 20.00

madrilla 1 39.00

mamut 7 15.86

manat́ı 3 19.00

mandril 2 28.00

mangosta 2 27.00

mantis religiosa 4 29.75

mapache 1 9.00

mariposa 40 20.15

mariquita 11 24.45

marmota 6 20.67

marrajo 1 28.00

marsupial 2 24.50

marta 2 18.50

mart́ın pescador 1 6.00

medusa 8 27.50

mejillón 13 29.62

mejillón cebra 1 43.00

merluza 30 24.07

mero 8 20.88

milano 6 16.50

mirlo 1 5.00
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Table A.7: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

mix́ın 1 18.00

mochuelo 1 29.00

mofeta 2 11.50

mono 69 15.49

morena 1 20.00

morsa 9 19.60

mosca 59 21.83

moscardón 1 27.00

mosquito 48 23.77

muflón 2 16.50

mula 9 25.33

murciélago 20 19.15

musaraña 3 22.75

navaja 1 25.00

nécora 5 22.60

ñu 18 21.11

nutria 6 23.17

oca 13 18.46

ocelote 2 7.00

ofiura 1 16.00

okapi 1 19.00

opilión 1 23.00

orangután 13 18.46

orca 19 25.50

orix 1 37.00

ornitorrinco 17 20.41

oropéndola 1 28.00

oruga 8 18.38

oso 72 18.03

oso hormiguero 7 17.75

oso panda 14 24.80

oso pardo 3 37.33

oso polar 10 25.10

ostra 9 26.67

oveja 69 16.99

oveja lacha 1 32.00

oveja merina 1 33.00

pájaro 44 8.93

pájaro carpintero 5 21.40

paloma 52 15.17

paloma torcaz 3 21.67

pantera 50 15.12
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Table A.8: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

papagayo 10 22.27

parásito 1 17.00

pato 45 15.20

pavo 13 18.77

pavo real 12 19.92

peĺıcano 8 22.00

pepino de mar 1 27.00

perca 2 20.50

percebe 5 28.20

perdiz 23 16.83

perico 1 21.00

periquito 43 15.20

perro 184 4.53

perro de praderas 2 39.00

perro salchicha 1 41.00

pescadilla 2 34.00

petirrojo 6 19.83

pez 41 13.52

pez espada 25 19.04

pez gallo 5 18.00

pez manta 10 21.80

pez martillo 5 17.40

pez merĺın 1 21.00

pez payaso 1 7.00

pez vela 1 11.00

picaraza 4 19.75

pichón 3 10.67

picnogónido 1 16.00

pingüino 25 23.44

pinzón 2 5.50

piojo 8 27.50

piraña 8 19.25

pitón 4 26.75

polilla 2 38.00

pólipo 1 25.00

pollo 47 12.55

poni 4 17.75

potro 6 15.17

protozoo 1 28.00

puercoesṕın 2 20.50

pulga 14 18.07

pulgón 3 21.67
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Table A.9: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

pulpo 25 21.44

puma 17 12.65

quebrantahuesos 8 28.75

quisquilla 1 21.00

rana 29 17.28

rape 8 19.50

rata 67 17.03

ratón 91 15.17

raya 11 24.00

rebeco 3 21.67

renacuajo 1 18.00

reno 5 22.60

reptil 1 22.00

rinoceronte 68 17.36

rodaballo 3 25.00

ruiseñor 6 20.67

salamandra 15 23.27

salamanquesa 2 19.50

salmón 25 22.20

salmonete 1 45.00

saltamontes 18 21.89

sanguijuela 1 33.00

sapo 15 18.38

sardina 27 22.11

sarrio 1 27.00

sepia 5 27.20

serpiente 82 17.46

siluro 2 22.50

simio 1 28.00

tábano 3 38.67

tarántula 2 19.50

taŕın 1 12.00

tejón 3 18.67

tenia 1 16.00

ternero 21 13.38

tiburón 90 18.52

tiburón blanco 2 26.50

tigre 118 12.04

tigre blanco 1 35.00

tigre de bengala 1 20.00

tit́ı 1 26.00

topillo 1 38.00
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Table A.10: Frequency and averaged position of words in the dataset containing verbal fluency

tests (animals) from 200 healthy participants

Spanish term frequency averaged position

topo 15 23.60

tordo 1 11.00

toro 57 17.12

tórtola 2 17.00

tortuga 38 17.53

tritón 1 18.00

trucha 33 23.94

tucán 9 17.67

urogallo 4 26.50

urraca 3 26.67

vaca 102 13.80

venado 1 31.00

verderol 2 22.50

v́ıbora 9 22.00

vicuña 1 37.00

vieira 1 23.00

yegua 16 17.13

zapatero 1 16.00

zorro 35 19.05

zorzal común 1 6.00

zorzal real 1 9.00

zurita 1 16.00
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Appendix B

Modules identified in the conceptual

network CN

Table B.1: Module 1: Farm-big. Conceptual outliers are indicated in italics.

Spanish term English term

asno donkey

bisonte bison

buey ox

búfalo buffalo

burro donkey

caballo horse

cabra goat

cabrito goat-kid

carnero male sheep

cerdo pig

cordero lamb

gorŕın small pig

mula mule

oveja sheep

pavo real peacock

poni pony

potro colt

ternero calf

toro bull

vaca cow

yegua mare
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Table B.2: Module 2: Farm- and forest-small. Conceptual outliers are indicated in italics.

Spanish term English term

ardilla squirrel

cisne swan

codorniz quail

comadreja weasel

conejo rabbit

gallina hen

gallo cock

ganso goose

liebre hare

oca domestic goose

pato duck

pavo turkey

perdiz partridge

picaraza magpie

pollo chicken

tejón badger

Table B.3: Module 3: Cervidae. Conceptual outliers are indicated in italics.

Spanish term English term

alce moose

ant́ılope antelope

caribú caribou

ciervo deer

corzo roe deer

erizo hedgehog

gacela gazelle

gamo fallow deer

jabaĺı wild boar

muflón mouflon

rebeco chamois

reno reindeer
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Table B.4: Module 4: Wild birds. Conceptual outliers are indicated in italics.

Spanish term English term

águila eagle

águila real golden eagle

aguilucho harrier

avestruz ostrich

búho owl

buitre vulture

cerńıcalo common kestrel

cigüeña stork

cóndor condor

cormorán cormorant

cuervo crow

gavilán sparrow hawk

gaviota seagull

golondrina swallow

gorrión sparrow

halcón falcon

lechuza barn owl

milano kite

pájaro bird

paloma pigeon

paloma torcaz dove

petirrojo European robin

quebrantahuesos bearded vulture

Table B.5: Module 5: Pets and singing birds. Conceptual outliers are indicated in italics.

Spanish term English term

cacatúa cockatoo

canario canary

gato cat

jilguero goldfinch

loro true parrot

papagayo parrot

periquito budgerigar

perro dog

ruiseñor nightingale

urogallo capercaillie

verderol European green finch
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Table B.6: Module 6: Crustacean and mollusc. Conceptual outliers are indicated in italics.

Spanish term English term

almeja clam

bogavante European lobster

caballito de mar sea horse

cangrejo crab

centollo spider crab

cigala Norway lobster

estrella de mar starfish

gamba prawn

langosta lobster

langostino king prawn

medusa jellyfish

mejillón mussel

nécora velvet crab

ostra oyster

percebe barnacle

pulpo octopus

raya ray fish

sepia cuttlefish
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Table B.7: Module 7: Fish. Conceptual outliers are indicated in italics.

Spanish term English term

anchoa anchovy

arenque herring

atún tuna

bacalao cod

ballena whale

barbo barb

besugo sea bream

bonito skipjack tuna

cachalote sperm whale

calamar squid

carpa carp

congrio conger

delf́ın dolphin

dorada hilt-head bream

lenguado sole

lubina sea bass

lucio northern pike

merluza hake

mero grouper

orca killer whale

pez fish

pez espada swordfish

pez gallo flat fish

pez martillo hammer fish

rape monkfish

rodaballo turbot

salmón salmon

sardina sardine

tiburón shark

tortuga turtle

trucha trout

Table B.8: Module 8: Unclassifiable. Conceptual outliers are indicated in italics.

Spanish term English term

pelicano pelican

pez manta manta ray
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Table B.9: Module 9: Reptiles. Conceptual outliers are indicated in italics.

Spanish term English term

boa boa

caimán alligator

camaleón chameleon

camello camel

cascabel rattle snake

cobra cobra

cocodrilo crocodile

culebra little snake

iguana iguana

lagartija wall lizard

lagarto lizard

manat́ı manatee

piraña piranha

pitón python

rana frog

salamandra salamander

salamanquesa gecko

sapo toad

serpiente snake

tucán toucan

vibora viper

Table B.10: Module 10: Rodents. Conceptual outliers are indicated in italics.

Spanish term English term

cobaya guinea pig

dromedario dromedary

hamster hamster

rata rat

ratón mouse
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Table B.11: Module 11: Sabana and felinae. Conceptual outliers are indicated in italics.

Spanish term English term

cebra zebra

chacal jackal

elefante elephant

guepardo cheetah

hiena hyena

hipopótamo hippopotamus

jaguar jaguar

jirafa giraffe

león lion

leopardo leopard

lince lynx

mamut mammut

pantera panther

puma puma

rinoceronte rhinoceros

tigre tiger

Table B.12: Module 12: Apes.

Spanish term English term

chimpancé chimpanzee

gorila gorilla

macaco macaque

mono monkey

nutria otter

orangután orangutan

Table B.13: Module 13: Australian. Conceptual outliers are indicated in italics.

Spanish term English term

canguro kangaroo

kiwi kiwi

koala koala

llama llama

ñu gnu
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Table B.14: Module 14: Bears and Polar. Conceptual outliers are indicated in italics.

Spanish term English term

elefante marino elephant seal

foca seal

león marino sea lion

morsa walrus

oso bear

oso panda panda

oso pardo brown bear

oso polar polar bear

pingüino penguin

Table B.15: Module 15: Wild canis. Conceptual outliers are indicated in italics.

Spanish term English term

coyote coyote

lobo wolf

zorro fox

Table B.16: Module 16: Mammalian burrowers. Conceptual outliers are indicated in italics.

Spanish term English term

equidna echidna

ornitorrinco platypus

oso hormiguero anteater

topo mole
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Table B.17: Module 17: Insects and Arachnids. Conceptual outliers are indicated in italics.

Spanish term English term

abeja bee

abejorro bumblebee

ácaro mite

alacrán scorpion

araña spider

avispa wasp

buey de mar edible crab

caracol snail

ciempies centipede

cigarra cicada

cucaracha cockroach

escarabajo beetle

escorpión scorpion

garrapata tick

grillo cricket

gusano worm

gusano de seda silkworm

hormiga ant

libélula dragonfly

lombriz earthworm

luciérnaga glowworm

mantis religiosa praying mantis

mariposa butterfly

mariquita ladybird

mosca fly

mosquito mosquito

oruga caterpillar

piojo louse

puercoespin porcupine

pulga flea

saltamontes grasshopper

tábano horsefly

Table B.18: Module 18: Unclassifiable. Conceptual outliers are indicated in italics.

Spanish term English term

hurón ferret
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Appendix C

Age of acquisition of animals and

their frequency in verbal fluency
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Table C.1: AoACuetos is the AoA (years) according to the estudy of F. Cuetos et al [137]. AoAIzura

is the AoA (years) according to the estudy of Izura et al. [104]. AoAAlvarez is the AoA (months)

according to the estudy of Alvarez et al. [138]. 〈AoA〉 is the averaged AoA (years) obtained from

the three studies. Frequency is the percent of people that named the animal in the verbal fluency

tests. Symbol - indicates that the word was not included in the study.

Spanish term English term AoACuetos AoAIzura AoAAlvarez 〈AoA〉 Frequency

abeja bee - 4.48 173 - 0.180

águila eagle - 5.24 72 - 0.375

araña spider 4.59 4.12 87 5.32 0.185

ardilla squirrel 4.80 5.24 72 5.35 0.160

avestruz ostrich - 6.72 76 - 0.235

avispa wasp - 4.48 - - 0.120

ballena whale - 5.08 - - 0.595

buey ox - 5.56 - - 0.095

búho owl - 5.40 61 - 0.115

buitre vulture - 6.24 - - 0.210

burro donkey - 3.72 61 - 0.215

caballito de mar seahorse - - 54 - 0.060

caballo horse 3.64 3.64 30 3.26 0.515

cabra goat - 3.88 136 - 0.280

calamar squid - 5.64 - - 0.080

camello camel - 5.68 49 - 0.100

canario canary - 4.96 - - 0.235

cangrejo crab - 4.96 - - 0.125

canguro kangaroo 4.92 5.96 72 5.63 0.155

caracol snail 3.88 - 36 - 0.055

cebra zebra - 6.04 61 - 0.350

cerdo pig 3.77 3.76 54 4.01 0.385

ciervo deer - 4.98 102 - 0.170

cigüeña stork - 4.82 - - 0.170

cisne swan 5.11 - 93 - 0.060

cocodrilo crocodile - 5.16 136 - 0.395

codorniz quail - 7.44 - - 0.065

colibŕı hummingbird - 9.48 - - 0.070

coloŕın goldfinch - 7.56 - - -

conejo rabbit 3.67 3.54 36 3.40 0.455

cordero lamb - 3.84 - - 0.050

cucaracha cockroach - 4.56 173 - 0.170

cuervo crow - 4.88 - - 0.095

culebra snake - 4.68 - - 0.115

delf́ın dolphin - 5.4 - - 0.410

elefante elephant 3.55 4.36 30 3.47 0.615

escorpión scorpion - - 126 - 0.060

foca seal 5.34 5.00 61 5.14 0.135
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Table C.2: AoACuetos is the AoA (years) according to the estudy of F. Cuetos et al [137]. AoAIzura

is the AoA (years) according to the estudy of Izura et al. [104]. AoAAlvarez is the AoA (months)

according to the estudy of Alvarez et al. [138]. 〈AoA〉 is the averaged AoA (years) obtained from

the three studies. Frequency is the percent of people that named the animal in the verbal fluency

tests. Symbol - indicates that the word was not included in the study.

Spanish term English term AoACuetos AoAIzura AoAAlvarez 〈AoA〉 Frequency

gallina hen 3.43 3.36 43 3.46 0.490

gallo rooster - 3.52 102 - 0.215

gamba prawn - 5.72 - - 0.055

gamo fallow deer - 8.04 - - 0.025

gato cat 3.33 3.00 36 3.11 0.900

gaviota seagull - 5.08 - - 0.120

golondrina swallow - 5.04 - - 0.085

gorila gorilla - 5.60 72 - 0.115

gorrino pig - 5.32 - - 0.010

gorrión sparrow - 5.00 - - 0.245

guepardo cheetah - 7.08 - - 0.195

gusano worm - 4.00 - - 0.145

halcón falcon - 6.68 - - 0.160

hamster hamster - 7.56 - - 0.145

hiena hyena - 7.16 - - 0.110

hipopótamo hippopotamus - 6.16 - - 0.285

hormiga aunt - 4.64 102 - 0.245

iguana iguana - 9.16 - - 0.115

jabaĺı wild boar - 8.32 - - 0.125

jirafa giraffe 4.40 6.48 49 4.99 0.605

koala koala - 9 - - 0.140

lagartija little lizard - 5.64 - - 0.180

lagarto lizard - 6.76 - - 0.175

langostino king prawn - 8.36 - - 0.055

lechuza owl - 7.96 - - 0.05

león lion 4.08 5.28 36 4.12 0.735

leopardo leopard - 7.16 93 - 0.260

liebre hare - 6.16 - - 0.170

lince lynx - 8.08 - - 0.100

lobo wolf - 5.44 - - 0.180

loro parrot - 6.32 - - 0.270

mapache raccoon - - 173 - 0.005

mariposa butterfly 4.42 4.84 36 4.09 0.200

mofeta skunk - - 93 - 0.010

mono monkey 4.40 4.92 43 4.30 0.345

mosca fly - 4.52 136 - 0.295

mosquito mosquito - 5.12 - - 0.240

orangután orangutan - 7.36 - - 0.065
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Table C.3: AoACuetos is the AoA (years) according to the estudy of F. Cuetos et al [137]. AoAIzura

is the AoA (years) according to the estudy of Izura et al. [104]. AoAAlvarez is the AoA (months)

according to the estudy of Alvarez et al. [138]. 〈AoA〉 is the averaged AoA (years) obtained from

the three studies. Frequency is the percent of people that named the animal in the verbal fluency

tests. Symbol - indicates that the word was not included in the study.

Spanish term English term AoACuetos AoAIzura AoAAlvarez 〈AoA〉 Frequency

oruga caterpillar - - 185 - 0.04

oso bear 4.10 5.32 61 4.83 0.36

oveja sheep 3.88 4.36 61 4.44 0.345

pájaro bird - 4.08 49 - 0.220

paloma pigeon - 4.96 - - 0.260

pantera panther - 7.08 - - 0.250

pato duck 3.44 4.8 36 3.75 0.225

pavo real indian peafowl - - 102 - 0.06

perdiz partridge - 6.96 - - 0.115

periquito budgerigar - 7.12 - - 0.215

perro dog 3.00 3.88 36 3.29 0.920

pez fish 3.67 4.2 36 3.62 0.205

pingüino penguin 4.65 - 54 - 0.125

pollo chicken - 4.56 - - 0.235

potro colt - 7.2 - - 0.030

puma puma - 7.96 - - 0.085

rana frog 3.91 5.24 136 6.83 0.145

rata rat - 5.8 - - 0.335

ratón mouse - 5.08 36 - 0.455

rinoceronte rhinoceros 5.27 7.92 72 6.40 0.340

salmón salmon - 8.8 - - 0.125

saltamontes grasshoper - 6.64 173 - 0.090

sapo toad - 6.4 - - 0.075

sardina sardine - 6.32 - - 0.135

serpiente snake - 5.6 43 - 0.410

tiburón shark - 6.68 - - 0.450

tigre tiger 4.85 6.04 72 5.63 0.590

toro bull - 5.28 61 - 0.285

tortuga turtle - 5.68 - - 0.190

trucha trout - 7.32 - - 0.165

vaca cow 3.68 4.52 36 3.73 0.510

yegua mare - 7.08 - - 0.080

zorro fox 4.66 5.72 136 7.24 0.175
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de Neuropsicoloǵıa 1 (2-3), (1999), pp. 3–17.
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[38] J. Goñi, F. Esteban, N. V. de Mendizábal, J. Sepulcre, S. Ardanza-Trevijano, I. Agirrez-

abal, P. Villoslada. A computational analysis of protein-protein interaction networks in

neurodegenerative diseases. BMC Systems Biology p. in press.

[39] R. Palacios, J. Goni, I. Martinez-Forero, J. Iranzo, J. Sepulcre, I. Melero, P. Villoslada. A

network analysis of the human t-cell activation gene network identifies jagged1 as a thera-

peutic target for autoimmune diseases. PLoS ONE 2 (11), (2007), p. e1222.

[40] B. K. Chakrabarti, A. Chakraborti, A. Chatterjee, eds. Econophysics and Sociophysics:

Trends and Perspectives. Raven Press (2006).

[41] G. Palla, A. Barabási, T. Vicksek. Quantifying social group evolution. Nature 446 (7136),

(2007), pp. 664–667.

[42] L. W. Ancel, M. J. Newman, M. Martin, S. Schrag. Applying network theory to epidemics:

Control measures for outbreaks of mycoplasma pneumoniae, emerging infectious diseases 9.

J. Epidemiol 9, (2001), pp. 204–210.

[43] M. Keeling, K. Eames. Networks and epidemic models. Journal of the Royal Society,

Interface / the Royal Society 2 (4), (2005), pp. 295–307.

[44] A. Capocci, G. Caldarelli, R. Marchetti, L. Pietronero. Growing dynamics of internet

providers. Physical Review E .

[45] R. Pastor-Satorras, A. Vazquez, A. Vespignani. Dynamical and correlation properties of the

internet. Phys Rev E Stat Nonlin Soft Matter Phys 87, (2001), p. 258701.
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