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Abstract

As a natural resource, an e�cient use of wood should be also a requirement for

structural timber design, but the usual structural solid sections do not achieve the

required optimal behaviour. The performance of the structural elements (serviceabil-

ity and strength) depends not only on the material properties, but mainly on the

moment of inertia of the cross section. The Timber Construction Institute of Tech-

nische Universität Dresden has developed a process for the manufacture of structural

wood pro�les. The resulting pro�les combine economy, an e�cient use of the material

and optimal structural performance. They are externally reinforced with composite

�bres, which improve the mechanical characteristics of the wood and protect it from

weathering. The available experimental tests to axial loading show the outstanding

properties of this new technology. Herein, the preliminary model developed to ob-

tain the axial strength of longitudinally compressed tubes is presented. Two di�erent

analytical algorithms are discussed and applied. The model adequately predicts the
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axial strength of �bre reinforced wood pro�les. The analytical results are within an

error less than 10% to the available experimental results, with a mean error ratio

less than 3%.

Key words: E�ciency, Wood, Glass �bre, Analytical models, Axial strength,

Tsai-Wu failure criteria

Nomenclature

Greek letters

η Stress partitioning parameter

γunr Reduction factor for the unreinforced tubes

λ Slenderness ratio

ν Poison's ratio
ε

,
ε
 Strain vector

κ

,
κ
 Curvature vector

σ

,
σ

 Stress vector
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Upper cases
A

 Tensile in-plane sti�ness matrix
B

 Coupling in-plane sti�ness matrix

CLT Classical Laminate Theory
D

 Flexural in-plane sti�ness matrix

D Ductility index

E Young's modulus (MOE)

Fij, Fi Strength parameters in stress space

FPF First Ply Failure

G Shear modulus

Gij, Gi Strengths parameters in strain space

R Strength/stress ratio for Tsai-Wu failure criteria
S

 In-plane sti�ness matrix

S Longitudinal shear strength

V Volume ratio

V ∗i Stress partitioning parameter for the i direction

X Longitudinal tension strength

X ′ Longitudinal compression strength

Y Transversal tension strength

Y ′ Transversal compression strength

Lower cases

h Total thickness of laminate
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m Number of plies

r Outer radius of the tube

rm Mean radius of the axis of the tube

t Wall thickness

z Axis transverse to the plane of a laminate, thickness co-

ordinate of the ply

Indexes

∗ Normalized matrix

1 xx normal stress/strain, in contracted notation

2 yy normal stress/strain, in contracted notation

6 xy shear stress/strain, in contracted notation

comp Compression

CR Related to the composite reinforcement

f Related to the �bre of the composite

fail Failure

ini Initial unloaded state

L, 0 Longitudinal direction of the wood

m Bending

m Related to the matrix of the composite

norm Normalized

R, 90 Radial direction of the wood

REF Unreinforced tube, used as reference

s Shear
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(a) (b) (c)

Fig. 1. Wood tubes: (a) and (b), manufacturing process; (c) unreinforced wood tube.

T , 90 Tangential direction of the wood

tens Tension

unr Unreinforced

W Related to the wood

x Direction x of the material (usually, longitudinal, direc-

tion of the grain)

y Direction y of the material (usually, transversal, perpen-

dicular to the grain)

1 Introduction

Our design objectives are increasingly determined by the need of a sustain-

able economical development. Thus, an e�cient use of the available materials

becomes increasingly important. Apart from the material properties, the struc-

tural and economical performance of the cross section is the most important

design issue.

Structural elements must safely transfer forces and moments and simulta-
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neously meet the serviceability requirements. The moment of inertia of the

section is a major parameter for both required tasks. However, in the case of

timber, by means of the traditional transformation technologies (sawing. . . ),

round or square solid cross sections are produced. These traditional cross sec-

tions are less competitive and e�cient when compared to more engineered

sections, such as steel pro�les.

From those thoughts, a procedure of manufacturing formed wooden pro�les

has been developed and patented [1]. Wood is compressed in its transverse

direction up to 50% of its original size by folding its microstructure. This den-

si�cation process is reversible, and it becomes the principle of this innovative

manufacturing process, where glued laminated thick solid panels of densi�ed

wood are transformed to open or closed prismatic cross sections by revers-

ing the compression applied by means of heat and moisture and moulding [1]

(Fig. 1). This manufacturing principle may be applied to a wide variety of

sections: all open and closed prismatic cross-sections may be produced in a

continuous manufacturing process with the appropriate pattern. The resulting

pro�le encompasses e�cient use of the material and optimal structural per-

formance. The here proposed and analysed circular hollow sections (Fig. 1c)

behave well when subjected to axial forces, so they are well suited for columns.

Depending on the wall thickness of the timber pro�le, an additional �bre

reinforced plastic (FRP) glued to the outer surface of the pro�le might be

required to strengthen the wood [1]. Thin walled pro�les are prone as well to

develop longitudinal cracks due to shear and tensile stresses perpendicular to

the grain. Load adapted FRP reinforcement can avoid brittle type failures of

the pro�les. Consequently, wood pro�ts from the outstanding mechanical and

physical characteristics of FRP. Wood pro�les are well suited for the use in
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Fig. 2. Used coordinate systems: x−y axes refer to material coordinates of the wood

(whose grain direction, x, corresponds to the longitudinal of the tube), 1 − 2 axes

refer to local coordinates of each FRP ply.

light-weight structures � the classical �eld of FRP composites. Their use as a

permanent winding core can help to reduce manufacturing costs. The wooden

core will eliminate local buckling e�ects and strengthen the FRP pro�le in

axial direction.

The presented research work deals with the development of an analytical model

to obtain the axial strength for the design of the wooden tubes reinforced with

glass-�bre�epoxy composite subjected to simple axial compression loading.

The model results are compared to the available experimental results [2,3].

2 Theoretical background

2.1 Classical Laminate Theory

The Classical Laminate Theory (CLT) (described, among others, in [4�7]) is

employed herein to determine the properties of the composite material, made

from the wood and the FRP reinforcement.
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The theory is based on the laminate plate theory for thin, �at laminates un-

dergoing small deformations. The following assumptions apply: strains vary

linearly across the laminate; out-of-plane shear deformations are negligible;

and the out-of-plane normal stress σz and the shear stresses τxz, τyz are small

when compared with the in-plane σx, σy and τxy stresses. By these assump-

tions, plane stress conditions are applied. Kircho� hypothesis is assumed as

well, and consequently normals to the reference surface are considered to re-

main normal and straight.

The absolute sti�ness matrix for a laminate,


S

, is de�ned as




Ni



Mi




=




Aij

 
Bij



Bij

 
Dij








ε0j



κj




=


S





ε0j



κj




, (1)

where


A

,

B

 and


D

 are the in-plane tensile, coupling and �exural sti�-

ness matrices of the resulting laminate. They are obtained from summation of

the m plies and the elements of the bidimensional plane-stress sti�ness matrix

of each ply,


Q

, as follows


A

 =
m∑
i=1


Qi

 (zi − zi−1) (2a)


B

 =
1

2

m∑
i=1


Qi

 (z2
i − z2

i−1

)
(2b)


D

 =
1

3

m∑
i=1


Qi

 (z3
i − z3

i−1

)
, (2c)
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where


Q

 is the plane stress sti�ness matrix of the ply material,


Q

 =



Ex

1−νxνy

νyEx

1−νxνy
0

νxEx

1−νxνy

Ey

1−νxνy
0

0 0 G


(3)

2.1.1 Normalized matrix for a laminate

Tsai [4] proposed, instead of the previously de�ned (and usually employed)

absolute matrix (1), the use of a normalized sti�ness matrix:


Snorm

 =




A∗ij

 
B∗ij


3


B∗ij

 
D∗ij



 , (4)

where the normalized matrices are de�ned as
A∗

 =
1

h


A

 (5a)


B∗

 =
2

h2


B

 (5b)


D∗

 =
12

h3


D

 . (5c)

The normalization of the in-plane,


A

, and the �exural,


D

, matrices fol-

lows the usual convention: the in-plane matrix is normalized by the laminate

thickness, h, and the �exural by the moment of inertia of a rectangular sec-

tion. The applied normalization factor in the case of the coupling matrix,
B

, corresponds to that of a normalized moment of inertia for a rectangular
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section.

The resulting normalized matrix


Snorm

 (4), is not symmetric, but, as an

advantage, its units are uniform. All normalized stress and sti�ness have the

same units, i.e. in Pa, while the strains are dimensionless. Consequently, this

matrix allows for direct comparison of the sti�ness components. In the abso-

lute representation of the matrix,


S

 (1), the di�erent partial matrices have

di�erent units; e.g.


A

 in N/mm,


B

 in N, and


D

 in Nmm.

The previously de�ned matrices,


A

,

B

 and


D

 (2), represent the sti�-

ness of a laminate, and describe its response to moments and in-plane forces.

They also depict the di�erent types of couplings which may arise in a lam-

inate[6]. Some of them are characteristic of composite materials, and they

do not occur in homogeneous isotropic materials, like the extension-shear

(A16, A26 �the reader should be aware that contracted numeral notation [4],

where subscript 1 refers to xx, 2 to yy, and 6 to xy, is used in this paper�), the

bending-twist (D16, D26), the extension-twist and bending-shear (B16, B26),

and the in-plane�out-of-plane couplings (Bij). Since twist deformations cannot

exist in a closed cylindrical surface [8], the corresponding coupling parameters,

B16 and B26 in


B

, are not relevant for the wood pro�les in this study.

The two remaining couplings occur in both composite and isotropic materi-

als, and they are the extension-extension (A12, which corresponds to Poison's

e�ect), and the bending-bending coupling (D12).
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2.2 Tsai-Wu Failure criteria

The Tsai-Wu failure criteria [4,11] is extensively employed for the design of

composite structures. It is a quadratic failure criteria, based on the tensor

theory, whose general formula for an orthotropic or transversely isotropic ply

under plane stress is

Fijσiσj + Fiσi = 1. (6)

This general equation, when expanded for an orthotropic material (in which

Fxs = Fys = Fs = 0) submitted to plane stress, leads to:

Fxxσ
2
x + 2Fxyσxσy + Fyyσ

2
y + Fssσ

2
s + Fxσx + Fyσy = 1. (6')

In (6'), and in this paper as well, contracted notation as de�ned by Tsai [4] is

employed (i.e. σxx ≡ σx, σxy ≡ σs).

The di�erent parameters, Fij, required in (6') are de�ned based on the di�erent

strength properties of the material.

Fxx =
1

XX ′
(7a)

Fx =
1

X
− 1

X ′
(7b)

Fyy =
1

Y Y ′
(7c)

Fy =
1

Y
− 1

Y ′
(7d)

Fss =
1

S2
. (7e)

The term Fxy, known as the interaction term, is de�ned as

Fxy = F ∗xy

√
FxxFyy (8)
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To achieve a closed failure envelope, the condition

−1 ≤ F ∗xy ≤ 1 (9)

must be ful�lled. This is required to assure that the failure criterion is valid

for any possible stress state.

2.2.1 Strain space

In the present work, the Tsai-Wu criterion in strain space is used. When ex-

pressed in the strain space, it is an invariant for a given ply angle. It may be

thus viewed as a material property, and it may be easily used to analyse ply

failure, since the CLT (Sect. 2.1) is applied just by superimposing the failure

criteria for each ply. Its general formula is analogous to the previously given

for the stress space, (6):

Gijεiεj +Giεi = 1, (10)

when expanded:

Gxxε
2
x + 2Gxyεxεy +Gyyε

2
y +Gssε

2
s +Gxεx +Gyεy = 1 (10')

The parameters Gij are based on the previously de�ned strength parameters
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Fij given in (7),

Gxx = FxxQ
2
xx + 2FxyQxxQxy + FyyQ

2
xy (11a)

Gyy = FxxQ
2
xy + 2FxyQxyQyy + FyyQ

2
yy (11b)

Gxy = FxxQxxQxy + FxyQxxQyy +Q2
xy + FyyQxyQyy (11c)

Gss = FssQ
2
ss (11d)

Gx = FxQxx + FyQxy (11e)

Gy = FxQxy + FyQyy. (11f)

The Qi parameters correspond to plane stress sti�ness matrix, as previously

de�ned in (3).

The failure envelope for each ply (expressed in 1− 2, ply axes, see Fig. 2) may

be transformed into the selected coordinate system [4] (x− y, also referred as

the laminate, and where axis x corresponds both to the longitudinal direction

of the tube and that of the grain of the wood, see Fig. 2).



G11

G22

G12

G66

G16

G26



=



m4 n4 2m2n2 4m2n2

n4 m4 2m2n2 4m2n2

m2n2 m2n2 m4 + n4 −4m2n2

m2n2 m2n2 −2m2n2 (m2 − n2)
2

m3n −mn3 mn3 −m3n 2 (mn3 −m3n)

mn3 −m3n m3n−mn3 2 (m3n−mn3)





Gxx

Gyy

Gxy

Gss



, (12)
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Fig. 3. In�uence of the interaction factor in the failure envelope of the wood (strain

space).

and 

G1

G2

G6


=



m2 n2

n2 m2

mn −mn




Gx

Gy


(13)

where

m = cos θ (14a)

n = sin θ (14b)

θ = rotation angle between coordinate systems, see Fig. 2 (14c)

2.2.2 Interaction term for the wood

In the present research, the wood was treated as a composite material. Conse-

quently, an adequate interaction factor F ∗xy for wood had to be applied. Tsai [4]

recommends, in absence of good data, the following value F ∗xy = −0.5, which
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corresponds to a generalised von Mises criterion. The question is whether this

value proves adequate or not for wood. In [9], a zero interaction factor is

proposed for wood.

Eberhardsteiner [10] accomplished an extensive experimental program on the

failure behaviour of clear spruce. A 2nd-order curve, of the same form as

that in (6'), was �tted on the experimental failure results. Based on these

experimental results, the interaction factor for clear spruce wood, F ∗xy (8),

may be thus inferred as

F ∗xy ≈ 0.04. (15)

This value may be regarded (due to the extensive research accomplished in

[10]) as a representative interaction term for spruce wood. It di�ers to a great

extent from the value proposed by [4]. It is close to a zero value, as proposed

in [9]. The di�erent resulting envelopes for both interaction factors are depicted

in Figure 3. They clearly di�er in the 3rd quadrant (where σy < 0 and σx <

0, compression perpendicular and longitudinal to the grain), where the new

proposal (F ∗xy ≈ 0.04) is quite more restrictive.

In the 2nd (where σy > 0, tension perpendicular to the grain) and 4th quad-

rants, due to the resulting rotation, the proposed interaction term allows for

higher strains before failure.

As explained, the failure envelopes in the strain space are invariant [4]: with

independence of the presence of other plies, their shapes remain the same. The

failure of a laminate is then simply produced by superimposing the failure

of its plies, adequately transformed taking into account their corresponding

orientation (as shown in (12) and (13)).
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The inner envelope of all the ply-failures corresponds to the First Ply Failure

(FPF). It describes the maximum capability of the intact plies. It is usually

employed in the design of composite materials as the design capacity of the

material.

But FPF does not necessarily mean the ultimate load. The remaining plies,

which have not yet failed, may continue carrying load beyond. The determina-

tion of the Last Ply Failure (LPF) would require the analysis of progressively

degraded plies, and it is not accomplished in the present paper.

2.2.3 Strength ratio

The strength/stress ratio R [4,11] is the ratio between the maximum allowable

stress and the applied stresses. It gives a direct measure of the security factor

for the applied loads. Hence, it must be assumed that the material response is

linearly elastic. Proportional loading is as well required, so that all components

of stress and strain increase by the same proportion. This latter condition

means that the loading vectors in stress and strain space are kept in the same

direction.

The Strength Ratio, R, may be obtained by substituting the maximum stress

components into the failure criterion [11], by means of the following relation

Rσi|applied = σi|max, (16)

the failure criterion takes the form when the maximum failure values are

reached

Fijσi|maxσj|max + Fiσi|max = 1 =
[
Fijσi|appliedσj|applied

]
R2 +

[
Fiσi|applied

]
R

(17)
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By solving the expression (17) for R, the Strength Ratio is obtained:

R = − b

2a
+

√√√√( b

2a

)2

+
1

a
(18)

where

a = Fijσi|appliedσj|applied (19a)

b = Fiσi|applied (19b)

As de�ned in [4], only positive values may occur. Based on the de�nition of

the Strength Ratio, (17), when R = 1 failure occurs. For higher values, R > 1,

the material has not yet failed, and its value provides a measure of the safety

factor of the structure (as long as the previously explained assumptions remain

valid).

3 Experimental results

3.1 Mechanical properties of the materials

3.1.1 Wood

Partially densi�ed spruce wood was used for the tubes. Clear small specimens

for the wood were obtained and tested to simple compression and bending, ac-

cording to DIN standards [12,13]. The mean value for the compression strength

was 60.5N/mm2, with a standard deviation of 12.1N/mm2. The 5-percentile

compression strength was 43.5N/mm2.

The mean elastic modulus was determined in 16 150N/mm2 (the standard
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Table 1

Mean ratios between the strength properties of the wood, based on the ratios from

[15�17].

Xtens Ytens Xcomp Ycomp Sxy Bending

0.6951 0.0289 1.0000 0.1295 0.1283 0.8922

deviation was 930N/mm2). Based on the experimental Young's modulus, the

remaining elastic properties were obtained. The usual relations, as proposed

in [14], were employed:

EL : ER : ET ≈ 20 : 1.6 : 1 (20a)

GLR : GLT : GRT ≈ 10 : 9.4 : 1 (20b)

EL : GLR ≈ 14 : 1 (20c)

Only the compressive and bending strengths were obtained in the tests. The

remaining strength properties were derived from the compression strength,

based on relations derived from [15�17] (given in Table 1), are shown in Ta-

ble 2.

The tension strength perpendicular to the grain is one of the critical factors

for the modelling of wood. The results of a comprehensive study for solid and

laminated wood cross-sections are given in [18]. The derived value for this

property (Table 2), 1.4N/mm2, is lower than the mean value given in [18]

for solid wood (1.89N/mm2), and it is slightly lower than the maximum for

laminated wood given in [18] (1.42N/mm2). Since partially densi�ed wood is

used, the derived value for this property seems adequate.
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3.1.2 Composite reinforcement

The material properties for the composite material employed as reinforcement

in the wooden tubes are obtained by means of the two component materials:

the E-Glass �bre and the epoxy resin matrix.

The elastic properties for the E-Glass �bre are obtained from [19]. They corre-

spond to the standard values given for this material. The values for the epoxy

resin (LN-1, produced by Vosschemie) are those given by the manufacturer,

and locate between the usual properties. A �bre volume of 0.33 is employed.

The micromechanics formulae in [4] are employed to derive the elastic prop-

erties of the composite:

Ex = VfEf,x + VmEm (21)

νx = Vfνf + Vmνm (22)

Ey =
1 + V ∗y
1

Ef,y
+

V ∗
y

Em

(23)

Gs =
1 + V ∗s
1

Gf,x
+ V ∗

s

Gm

(24)

Derivation of the longitudinal properties, Ex (21) and νx (22), are based on

the usual rule of mixtures. They correspond to a parallel model, where the

longitudinal �bre and matrix strains are assumed to be equal.

The transversal properties, Ey and Gs, (23) and (24), are based on a modi�ed

rule of mixtures, as proposed in [4]. They are based on a series model, where

the same stress is assumed for all the components. A stress partitioning pa-

rameter, η, thought as the ratio of the average matrix to average �bre stresses,
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(a) (b)

Fig. 4. Dimensions of the tube (a) , and test set-up (b).

is added [4].

V ∗y = ηy
Vm
Vf

(25)

V ∗s = ηs
Vm
Vf

(26)

It is an empirical constant, which may be back-calculated from the experimen-

tal data by assuming the �bre (alone) as isotropic. Tsai [4] derived the values

ηy = 0.516 and ηs = 0.316 for a glass-epoxy composite. These are the values

used in this research. The derived material properties are given in Table 2

3.2 Previous experimental results

Previously to the model development, herein described �ve tubes, one unre-

inforced reference specimen (REF) and four composite reinforced tubes (CR)

were tested in axial compression [2]. The columns with a total length of 2.5m
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Table 2

Material properties employed

Material Properties Abbr. Unit Wood Composite

(partially densi�ed) Reinforcement

Density ρ [kg/m3] 582(110)∗ 1800

Bending Strength σm,0 [N/mm2] 105.2(18.6)∗ 240a

Compression strength σc,0 [N/mm2] 60.5(12.1)∗ 240a

σc,90 7.5 70a

Tensile Strength σt,0 [N/mm2] 55.9 240a

σt,90 1.4 50a

Shear Strength σxy [N/mm2] 8.8 25a

Modulus of Elasticity E0 [N/mm2] 16150(930)∗ 26600

E90 1340 6900

Shear Modulus Gxy [N/mm2] 840 3000

Poison Ratio νxy � 0.04 0.07

νyx 0.35 0.26

∗ mean value from 9 experiments (standard deviation)

a irrelevant parameter

x ≡ direction of the grain (wood) ≡ longitudinal (0◦)

y ≡ direction perpendicular to the grain (wood) ≡ tangential ≡ radial (90◦)
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(a) (b)

Fig. 5. Failure modes: (a) splitting of REF tube, (b) local buckling of CR85 tube

and a slenderness ratio of 27 were tested in a 6MN hydraulic press. The di-

mensions of the specimen including the orientation of the �bre reinforcement

and the test set-up of a 2.5m column are shown in Figure 4.

The supporting plate at the bottom of the column was �xed while the up-

per plate was pin-supported. The steel frame surrounding the specimen was

not connected to the tube. It was used to attach measurement devices (dis-

placement transducers) and to protect the equipment from possible damagen

(Fig. 4b).
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Fig. 6. Experimental load-deformation curves

With a radius rm of 129mm and a wall thickness tw of 19mm (Fig. 4a) the tubes

can be classi�ed as moderate thick cylinders [20]. The self-weight of the tubes

was in average 30kg, inclusive 4kg composite con�nement. The reinforcement

was laminated to the outer wood surface in a �lament winding process. The

thickness tCR of the transparent glass �bre-epoxy composite layer was about

1mm. The glass-�bre yarns were oriented in an angle of ±45◦ (CR45) and/or

±85◦ (CR85) to the column axis. The weight per area of the glass �bres was

900g/m2.

Fig. 6 shows the load-deformation curves of the columns. The reference tube

exhibited brittle failure at a load level of 685kN. This corresponds to a com-

pression failure stress of 44.7N/mm2.

The experimental results of the reinforced columns reveal that the load-carrying

capacity and ductility can be signi�cantly enhanced by means of the compos-

ite con�nement. In average the reinforced tubes reached a maximum load of

1 000kN. In comparison to the reference, the load-carrying capacity of the re-

inforced columns increased by factors of 1.46 and 1.22 for the CR85 and CR45
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tubes, respectively. In regard to the sti�ness of the column the presence of

reinforcement is negligible.

The reference tubes exhibited brittle failure by splitting of the wood section

into a number of single lamellas - see Figure 5a. This separation is a result of

tensile stresses in perpendicular to grain (hub) direction due to the Poisson-

e�ect and the corresponding increase in diameter of the axially loaded tubes.

The load-deformation behaviour until failure is linear elastic resulting in a

ductility D of 1, where D is de�ned as the relation between yield displacement

and ultimate displacement.

In contrast to the reference, no brittle failure was observed for the composite

reinforced columns. It was found that the cross sections ovalize before failing

in compression due to the crushing of wood �bres parallel to grain resulting

into a �nal local buckling failure mode (Figure 5b). Plastic capabilities were

observed for all of the reinforced tubes, where especially the CR45 tubes can

be classi�ed as ductile. The ductility D was 1.4 and 1.1 for CR45 and CR85,

respectively.

The specimen described above will be referred in this document as series A. In

another previous experimental campaign [21] thirteen unreinforced reference

and sixteen reinforced tubes were subjected to axial compressions. In contrast

to CR45 and CR85, common woven glass-�bre fabrics with a �bre orienta-

tion of 0◦/90◦ was used for to reinforce the CR090 tubes. These tubes are

called series B in this document. A detailed description of the specimen and

experimental results can be found in [3].
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4 Algorithm of the model

The experimental results (Fig. 6) show how the tube with a±85◦ reinforcement

fails, when submitted to a simple compressive load, at a higher load than that

with a ±45◦ reinforcement.

When a standard cylindrical tube is submitted to a simple longitudinal com-

pressive load, two di�erent deformations arise. The most important is in the

longitudinal direction, and it is due to the compressive load. A second defor-

mation is produced: an expansion in the transversal (radial) direction of the

tube. This latter deformation is usually disregarded. However, it may not be

dismissible in the case of thin-walled wood pro�les. It is mainly due to the

Poison e�ect: the material deforms in a direction perpendicular to that of the

load application.

The failure of the unreinforced tubes (Figure 5a) corresponds to this transver-

sal deformation, which results in tension perpendicular to the grain. The high

orthotropy of the wood must also be taken into account: its transversal elastic

modulus is about 20 times lower than the longitudinal one (20a). The transver-

sal strength is much lower as well, 20 (in tension) and 7 (in compression) times

lower (Table 1).

4.1 Assumptions

An analytical procedure to obtain the axial failure load of the tubes, based on

the theories brie�y explained in previous Sect. 2.1 and 2.2 is developed. The

response of the tubes, and the experimentally observed transversal displace-
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ments are assumed to be only because of the Poison e�ect in the material.

The proposed model applies the general laminate plate theory to obtain the

material properties and the Tsai-Wu failure criteria to predict the failure. The

employed algorithm is shown in Fig. 7.

The radius-thickness ratio is r/t ≈ 7.7. The analysed tubes may be considered

as moderately thick shells, for which it would be usually assumed that CLT is

not applicable [20]. However, taking into account the particular characteristics

of the studied laminate (made from only two layers, one moderately thick of

wood, and an outer thin of FRP), and since a preliminary analytical model

is aimed, Love's �rst approximation is assumed (the di�erence in the areas of

shell wall elements above and below the middle surface is neglected [22]).

The material is assumed to be linearly elastic; for each state of combined

stresses there is a corresponding state of combined strains; proportional load-

ing is assumed �all the components of stress and strain increase by the same

proportion (similarly to the assumption made in the Strength Ratio de�nition,

see Sect. 2.2.3)�.

4.2 Graphical procedure

Figure 8 depicts the algorithm in a graphical way. In the strain space, the

Tsai-Wu failure criteria of the layers of a composite material is plotted. Strain

space must be used, since both layers (in a thin shell theory) share the strain

when submitted to axial loading. And also, the failure envelope of the layer

is an invariant in the strain space. Given a state of strain,

εA
, it may be

easily plotted into the graph as point A when both coordinates, (εx.A, εy.A),
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Resolution of the system
{εA} =[S*]-1 {σA}

Laminate strain response
{εA}

Tsai-Wu failure criteria

Laminate stress/strain response 

Intersection point = 
failure strain

{εf}

Compute stress corresponding to
failure strain

{σf}

Properties of the laminate
Wood + fibre reinforcement

[A], [B], [D]

Calculate corresponding axial force
F = Aσf

Stress/strain relation
σA/εA

Proportional loading

Strain Ratio ≡ Failure stress
R ≡ σf

Unity stress vector
{σA}

Intersection procedureStrain Ratio 
procedure

Failure stress
{σf}

Solve Strain Ratio
R

“Strain” Ratio
R{εA}={εf}

Substitute in Failure Criteria
(Gijεf.iεf.j)R2+(Giεf.i)R=1

Fig. 7. Algorithm applied to obtain the strength of the tubes

Fig. 8. Graphical application of the analytical model
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are known. It is assumed that for this strain state, the corresponding stress

state is known, and given in a stress vector

σA
.

If assumed as well that the initial unloaded strain state of the laminate cor-

responded to zero strains, namely, no residual stresses were present. Since

the laminate is room temperature cured, it seems reasonable in this particu-

lar application (if initial or residual stresses were present, the applied vectors

would radiate from a point di�erent to the origin). Therefore,

εini
 = 0, and

the corresponding strain response line B up to the actual strain state

εA


(depicted with point A) may be plotted.

Proportional loading is assumed, so this response line B may be extended until

its intersection with the failure criteria envelope in point C. The intersection

would correspond to the failure strain state of the laminate (First Ply Failure

is assumed),

εC
. The corresponding state of combined stresses,

σC
, for

the failure strain state,

εC
, may be obtained.

The proportional loading assumption allows to obtain an additional intersec-

tion point with the failure envelope, T. The corresponding stress vector

σT


for the failure strain

εT
 corresponds to the failure stress state of opposite

sign to C. In the case of uniaxial longitudinal loading, i.e. point C would rep-

resent the failure for a compressive loading, while T the failure for a tensile

loading.
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4.3 Analytical procedure

The previously explained graphical procedure is transferred into an analytical

formulation. A simple way for obtaining the failure stress state of the lami-

nate may be achieved by means of a series of simple assumptions. A proper

de�nition of the failure behaviour of the materials, and a known strain-stress

state are required.

The general laminate theory for unsymmetric laminates is applied (see Sect. 2.1).

The material properties allow to obtain the three sti�ness matrices required

for the complete de�nition of the laminate,


A

,

B

 and


D

.
The Tsai-Wu failure criteria is applied independently for the wood and the

�bre. As explained in Sect. 2.2, the interaction factor F ∗xy = 0.04 is used for

the wood, while the usually recommended [4], F ∗xy = −0.5, is applied for the

composite reinforcement.

The elastic properties of the wood and the composite reinforcement are those

derived in Sect. 3.1 (Table 2), obtained from the clear specimen testing and

the explained formulations and ratios.

The internal stress vector is supposed to correspond to the applied loads.

Only simple axial compressive forces are applied.The experimentally measured

horizontal deformation is supposed to correspond only to that due to Poison

coupling. No additional transversal stress or strain are assumed or, at least,

they are considered as negligible.

To obtain the transversal strain, the Poison coe�cient of the wood and FRP

laminate is required. As explained in Sect. 2.1, it corresponds to the extension-
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extension coupling represented by the A12 term on the laminate matrix. There-

fore, it is necessary to know the sti�ness matrix of the complete material, the

wood plus the �bre reinforcement.

The thin layer assumption is employed. Kircho�'s hypothesis is applied, and

second order displacements are dismissed. The previously explained normal-

ized sti�ness matrix [4], described in Sect. 2.1.1, is applied. The corresponding

stress-strains equation is




σ0
i



σfi




=




A∗ij

 
B∗ij


3


B∗ij

 
D∗ij








ε0j



εfj




(27a)


σ

 =


S∗


ε

 (27b)

Taking advantage of the special properties of the normalized sti�ness ma-

trix (4), a particular internal stress state may be applied to the composite

material. As explained, the internal stress state is simpli�ed to correspond to

the external loads. In the analysed case, since only axial compressive loading
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is applied,


σA

 =



−1

0

0

0

0

0



(28)

may be assumed as the corresponding stress vector. The normalized formu-

lation (4) in [4] is applied. Hence, the stress vector (28) represents an axial

compressive stress state with a value of 1N/mm2.

The equation system (27b) formed by the laminate sti�ness matrix and the

corresponding forces can then be solved to obtain the strains. Although only

longitudinal stress (σx = −1N/mm2 in


σA

) is assumed, strains in both

longitudinal and transversal directions are produced due to the coupling terms

present in the laminate matrix.


εA

 =


S∗

−1 
σA

 (29)

The obtained strain vector,


εA

 (point A in Fig. 8), corresponds to the

previously assumed stress state (28), in which (in the depicted case) 1N/mm2

in compression is applied. Two di�erent analytical procedures are derived, and

explained in the following sections.
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4.3.1 Intersection alternative

As explained, linear response and proportional loading are assumed. Actual

initial or residual stresses are dismissed. Consequently, the derived equation is

based in the obtained strain point


A

 and the unloaded strain point, (0, 0).

The equation of the response line in the strain space (B in Fig. 8) may be

de�ned as:

εy =
εy.A
εx.A

εx (30)

Having both the failure envelope for the laminate (10') and the behaviour of

the material de�ned in the strain space by the response line (30), the intersec-

tion point between them may be obtained. This intersection depicts the failure

strain, εf (C or T in the graphical application, Fig. 8). Two intersection points

are obtained, for the assumed axial loading (axial compression, (28)) and the

load of opposite sign (axial tension).

Proportional loading is assumed, therefore strain and stress are linearly re-

lated. The stress

σf
 corresponding to this strain

εf
 may be easily com-

puted from the ratio between known vectors

σA
 and

εA
.

σf
 =

σx.A
εx.A

εf
 . (31)

As the tube is submitted to simple axial loading, uniform stress distribution

is considered. The failure compressive load may be obtained multiplying the

failure stress σf by the area of the tube

Ff = Aσf . (32)
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4.3.2 Strain Ratio alternative

The previously explained procedures are based on the intersection between

what could be called the response line of the wood-�bre laminate(line BA)

and the failure envelope (Fig. 8). A di�erent analytical procedure may be

obtained, based on the Strength Ratio de�nition (see Sect. 2.2.3).

The Strength Ratio represents the safety factor of the material, that is to say,

how many times could be the applied load multiplied before failure. Conse-

quently, if a unity stress were applied, the value of the corresponding Strength

Ratio would be that of the failure stress. Since Laminate Theory assumes lin-

ear behaviour and relation among stress and strain, a similar Strain Ratio

may be assumed, in which the actual applied strain is de�ned in relation to

the failure strain as

Rεi|applied = εi|max, (33)

where εi|applied would correspond to the strain vector referred as

εA
 herein.

Therefore, as it corresponds to a unity stress state, it would result thatR

εA
 ≡εf

.

The obtained strain state for a uniaxial compression stress,

εA
, may be

substituted in the strain failure criteria, and solve for R the resulting second

order equation (similarly as described in (18)). Two di�erent possible solutions

arise. Tsai [11] stated in his Strength Ratio proposal (see Sect. 2.2.3) that

only the positive root was possible. However, and as depicted in Fig. 8, the

second negative root has, in this particular case, also a physical meaning.

While the positive root corresponds to the uniaxial failure stress of the same
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sign (compression or tension, the same as de�ned in the stress vector

σA
,

which corresponds to intersection point C in Fig. 8), the negative root, due the

special uniaxial stress condition analysed here, stands for the uniaxial failure

stress of the opposite sign. It would correspond to point T in the same Fig. 8.

Consequently, this procedure allows to obtain the failure stress for both axial

loading cases, uniaxial tension and compression.

As in the previous analytical procedure (see Sect. 4.3.1), since only axial stress

is applied, the axial failure load corresponds to the area by the resulting failure

stress, as shown in (32).

5 Application to the experimental results

The analytical model presented in the previous Sect. 4 is applied to the avail-

able experimental results described in Sect. 3.2. Applied �bre and wood prop-

erties are those shown in Table 2.

It is assumed that the reinforcement reduces the in�uence of the imperfections

of the wood. Thus, in the case of the reinforced tubes, the strength values

derived from the small clear specimens tests and the derived relations are

employed in the analytical model.

However, conversely to man-made composite materials, wood, as a natural

material, has a strong variability in its properties. It is well known how its

strength is highly dependent on the occurrence of natural defects such as

knots, compression wood and grain deviation. The reader interested in the

subject is referred to [14,23] for further information. Consequently, and since
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it is not the subject of this paper, a reduction factor γunr to take into account

these imperfections is employed in the case of the unreinforced tube. A value

of γunr = 1.5 , which is seen as a good practical value for this issue, is chosen.

The corresponding model algorithm is programmed inMatLab. Both described

analytical procedures, intersection (Sect. 4.3.1) and Strength Ratio (Sect. 4.3.2)

are run.

Table 3 shows the resulting sti�ness matrix for the CR85 and CR45 wood-

�bre laminates. The material sti�ness matrix corresponds to that of a balanced

material, where the extension-shear is the only coupling not present. It may

be seen how the in-plane�out-of-plane coupling elements are the more rele-

vant terms in the


B

 matrix. The extension-twist coupling (B16 and B26)

are almost negligible. The bending-twist coupling may be considered of little

importance in relation to the rest of the terms in matrix


D

. Both twist

couplings have been shown not to be produced in axially loaded cylinders [8].

When the required unity stress vector (28) is applied, the corresponding strain

state is obtained by solving equation (29). Resulting strains are presented in

Table 4 for each of the analysed laminates. It may be seen how the longitudinal

strain is the highest, since it is the direction of the applied load. While the lon-

gitudinal strain is similar for both laminates, about 6.1 · 10−5, the transversal

strain is about 35% higher for the CR45 laminate in comparison to the CR85.

This fact, when the high anisotropy of wood is taken into consideration, is a

negative e�ect for the wooden tubes.

The di�erent required parameters for the Tsai-Wu criteria in strain space (10')

for each of the materials are given in Table 5. Since only First Ply Failure is
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Table 3

Normalized sti�ness matrices of the CR85 and CR45 laminates

[
A∗CR85

]
=



16 469.65 549.55 0.00

549.55 2 627.04 0.00

0.00 0.00 953.97



[
A∗CR45

]
=



16 738.40 773.75 0.00

773.75 1 909.89 0.00

0.00 0.00 1 178.17



[
B∗CR85

]
=



−471.79 70.77 −0.10

70.77 1 206.25 −2.07

−0.10 −2.07 108.27



[
B∗CR45

]
=



−216.47 283.76 −6.26

283.76 524.95 −6.26

−6.26 −6.26 321.26



[
D∗CR85

]
=



15 620.43 676.93 −0.56

676.93 4 798.30 −11.83

−0.56 −11.83 1 148.86



[
D∗CR45

]
=



16 348.76 1 284.52 −35.66

1 284.52 2 854.80 −35.66

−35.66 −35.66 1 756.45


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Table 4

Resulting strain vectors for the wood+FRP laminates

CR85 CR45

εx 6.14 · 10−05 6.1 · 10−05

εy −1.7 · 10−05 −2.3 · 10−05

γ7xy 1.95 · 10−08 −1.3 · 10−07

κ1 5.38 · 10−06 4.21 · 10−06

κ2 9.67 · 10−06 −7.2 · 10−06

κ3 1.79 · 10−08 4.12 · 10−07

considered, the envelope of the wood is the only relevant in this study.

The obtained intersection point in the strain space between the failure en-

velope and the response line de�ned according to the strain vector (30) is

given in Table 6. By means of the failure strain state and the ratio between

the strain, the corresponding failure stress, may be obtained (31). Two di�er-

ent intersection points (corresponding to the axial compressive and tensional

loading, respectively) among the response line and the failure envelope exist

for each laminate (Table 6). The obtained failure stresses for each resulting

failure strain state are given in Table 7.

The Strength Ratio procedure does not require to obtain the failure strain

state. By solving the second order equation (18), as the initially applied stress

ratio corresponds to a unity stress state, its result is the value of the fail-

ure stress. Two di�erent values are obtained for each laminate. Coherently,
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Table 5

Applied parameters of the Tsai-Wu criteria for the di�erent materials, in SI units.

Wood ±85 FRP ±45 FRP

G11 133 045.18 13 057.58 6 423.81

G22 134 812.48 10 036.35 6 423.81

G12 55 205.40 −2 125.43 2 997.73

G66 11 717.50 1 872.33 6 995.48

G16 0.00 −1 036.53 −766.96

G26 0.00 770.17 −766.96

G1 333.74 39.90 25.28

G2 605.70 10.66 25.28

G6 0.00 −2.58 −14.84

Table 6

Failure strains according to the intersection procedure (10−3).

Compression Tension

εx.C εy.C εx.T εy.T

CR85 −3.78 1.07 2.35 −0.666

CR45 −3.50 1.34 2.58 −0.989
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Table 7

Resulting analytical failure stresses, in N/mm2

σc σT

CR 85 61.628 −38.221

CR 45 57.432 −42.335

Table 8

Analytical model: comparison to the experimental results

Experimental Failure load [kN] An.fail.stress

Exp. series Ratio Experimental Analytical [N/mm2]

A

CR85 0.9638 1044.50 1006.74 61.63

CR45 0.9829 954.50 938.19 57.43

REF (unr.) 0.9033 685.00 618.73 40.33

B

CR090 1.1025 761.33 839.94 62.85

REF (unr.) 0.9643 534.00 514.95 40.33

0 .9834 Mean ratio

0 .0731 Standard deviation
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the resulting failure stresses correspond to those obtained by the intersection

procedure and shown in Table 7.

The predicted failure stress by the total transversal area of the tubes (32),

considering both wood and FRP, gives the predicted axial failure load. The

available experimental results were only to axial compressive loading. There-

fore, at this stage, only the failure compressive load can be validated. Results

in comparison to the experimental results are shown in Table 8. Series A tests

are those in [3], 19mm thick and 1mm �bre reinforcement thick. Series B main

di�erence with the previous series was the wood thickness of 16mm.

The analytical results are within an error less than 10%, with a mean error

less than 3%. The standard deviation of the predictions of about 7%. A good

correlation is thus observed with the axially loaded experiments of about 2.5m

height.

6 Conclusions

A procedure of manufacturing wooden pro�les has been developed and patented.

Panels of densi�ed wood are transformed to open or closed prismatic cross

sections.The resulting pro�le encompasses e�cient use of the material and

optimal structural performance. An external layer of �bres is located at the

outer side of the tubes, as reinforcement and protection from weathering.

The experimental test results of these reinforced columns to axial centred

compression demonstrate that both load-carrying capacity and ductility are

enhanced by means of the composite reinforcement. In average, the reinforced

tubes reach a maximum load of about 1 000kN.The highest failure loads were
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achieved for the columns with ±85◦ glass-�bre orientation (CR85), while the

tubes reinforced with a ±45◦ cross-ply (CR45) feature more ductility. In com-

parison to the unreinforced reference, the load-carrying capacity of the rein-

forced columns increased by factors of 1.46 and 1.22 for the CR85 and CR45

tubes, respectively. In regard to the axial sti�ness, the presence of reinforce-

ment is negligible.

Herein, two di�erent analytical procedures to obtain the axial failure strength

of the material of the tubes have been presented: based on the intersection

between the response line of the wood-�bre laminate and the failure envelope,

or on the Strength Ratio de�nition.

The proposed algorithms apply the Classical Laminate Theory and the Tsai-

Wu criteria. For the failure criteria, an adequate value for the interaction factor

in the case of wood has been proposed. This value, F ∗xy = 0.04, is close to a

zero value, and di�ers to a great extent to the proposal by Tsai [4].

The presented analytical models were applied to the available experimental

results. The models are able to predict both compression and tension axial

failure stresses, but only compressive failures have been experimentally done.

Hence, only the failure compressive load was validated. Two di�erent experi-

mental campaigns were used for validation. The mean error was less than 3%,

with a standard deviation of the predictions of about 3%. A good correlation is

observed with the experiments and the anlytical procedures proposed herein.

The herein proposed analytical procedures have been calibrated and veri�ed

through the experimental data to assess their reliability. Predicted and exper-

imental failure loads agreed reasonably well. Therefore, the proposed proce-

dures are an adequate tool for the design and optimisation of wooden rein-
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forced tubes. However, more sophisticated analytical models have to be devel-

oped and further tests on tubes with varying r
t
and l

r
ratios are required in

the future.
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