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The objective of this paper is to analyze the nonlinear behavior of hedge funds returns and

assess the forecasting performance of different regime-switching models when applied to hedge

funds data. Many authors have argued that nonlinear processes model better the behavior of

different financial variables than the linear ones. In particular, Markov regime-switching models

have been shown to properly capture the dynamics of several financial assets data series which

occasionally exhibit periodical breaks in their behavior associated with events such as financial

crises or abrupt changes in government policy. For example, many financial assets present an

apparent tendency to behave quite differently during economic downturns due to the sudden

changes in fundamentals (e.g. Ang and Bekaert, 2002, Garcia et al., 2003 and Dai et al., 2003).

On the other hand, Markov regime-switching models possess other appealing features since they

can better capture fat tails, asymmetries, autocorrelation, volatility clustering or mean reversion

in financial asset series. Building on the seminal work of Hamilton (1989) regime-switching

methods have been widely used in a variety of contexts: to model stock market returns (e.g.

Hamilton and Susmel, 1994, Gray, 1996, Kim et al., 1998, Ang and Bekaert, 2002, Ang and

Chen, 2002 and Chauvet and Potter, 2000), commodities prices (e.g. Deng, 2000, de Jong, 2005

and Chen and Forsyth, 2008), exchange rates dynamics (e.g. Engel and Hamilton, 1990, Engel,

1994, Bollen et al., 2000, Dewachter, 2001, Marsh, 2000 and Dacco and Satchell, 1999), etc.

On the other hand, motivated by the recent spectacular growth of the hedge funds industry,

a large body of literature has focused on modeling hedge funds returns. In the last 20 years

this industry has grown from a small number of funds to over 10000 hedge funds and funds of

hedge funds managing assets of almost 1.8 trillion (see Figure 1). On many occasions Hedge

Funds have made headlines being the protagonist of huge losses (e.g. LTCM, Bearn Stearn,

Amaranth), have been accused of posing systemic risk, manipulating prices, being threat for

global stability. It is not clear, for example, to what extent hedge funds, through their excessive

use of leverage, large and concentrated positions in derivatives or short selling of the stocks of

financial firms in troubles, have contributed to deepen the current financial crisis. Moreover, the

hedge fund industry itself has experienced unprecedented losses and withdraws of capital during

the whole year 2008. Hedge Fund Research (HFR), for example, estimates that a typical hedge

fund has fallen by almost a fifth in assets under management in 2008 (see Figure 2), although,

some industry executives report that hedge funds portfolios could have fallen by 30-40 percent

in the recent financial crisis (The economist, 2008).

[Approximate location of Figures 1 and 2.]

The very first approaches to modeling hedge funds returns consisted in using linear factor

models or non-parametric models. More recently, the former one was extended to linear factor

models with option-like factors as many authors have shown that various hedge fund strategies

exhibit nonlinear risk-return characteristics and non-normal option-like payoffs (e.g. Fung and
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Hsieh, 1997 and 2001, Mitchell and Pulvino, 2001, Agarwal and Naik, 2004, Kuenzi and Shi,

2006). A possible explanation of this feature of the hedge funds data may be their frequent use

of options or other nonlinear derivatives and dynamic regime-dependent trading strategies. For

example, long-short strategy hedge funds are more likely to be long equity during up-markets

and short equity during down-markets (Alexander and Dimitriu, 2005). In the light of these

new findings, original linear factor models need to be revisited. Amenc et al. (2007a), for

example, argue that on general basis, linear factor models fail the test of robustness, giving poor

out-of-sample results (see also Amenc et al., 2007b and Hasanhodzic and Lo, 2007). Recently,

Kosowski et al. (2007) use a factor model to evaluate hedge fund performance and predict it

using Bayesian and Bootstrap analysis. Another advance in this area is the use of state-space

modeling approach to modeling and estimating hedge funds returns. Bilio et al. (2006 and 2007)

analyze the exposure of hedge fund indexes with a factor model based on regime switching, where

non-linearity in the exposure is captured by factor loadings that are state dependent. They use

univariate Markov switching (MS) factor models where both the conditional mean and volatility

are regime-switching. However, they focus on the factor structure and do not include GARCH

component into volatility. Moreover, Giamouridis and Vrontos (2007) employ a multivariate

factor-GARCH model to construct optimal hedge fund portfolios. However, they do not include

regime-switching into the GARCH equation. (See also Géhin, 2006, Diez de los Rios and Garcia,

2008). Despite the current advances in modeling non-linearities in hedge funds returns, this area

of research still represents a methodological challenge.

In this paper, in line with the state-space approach, we use a univariate model of hedge

fund returns which does not include factors. In particular, we combine the classical GARCH

model of Bollerslev (1986) with the MS model of Hamilton (1989). This makes possible to

include MS into the conditional volatility equation. In addition, we consider an ARMA structure

of the conditional mean process and we also include MS into the expected return equation.

Consideration of the MS parameters in the returns model is motivated for example by Diebold

(1986) who notes that the GARCH specification can be improved by including regime dummy

variables for the conditional variance intercept. Moreover, Freidman and Laibson (1989) noted

that the GARCH model does not differentiate between the persistence of large and small shocks.

Therefore, in this paper we combine MS and dynamic heteroscedasticity components and the

most general model estimated is the MS-ARMA-GARCH specification.

In the past finance literature, several papers have considered MS-AR-ARCH models during

the 90s (Hamilton and Susmel, 1994 and Cai, 1994). The advantage of that specification is

that it avoids the ’path dependence’ of the conditional distribution of returns since it only

depends on the current and some recent lagged values of the regime variable. When the order

of the AR-ARCH is low then the exact likelihood can be computed using basic MS techniques.

However, when we consider more general MS-GARCH or MS-ARMA-GARCH specifications, the
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conditional distribution becomes dependent on all past regimes, i.e. it becomes path dependent.

The consequence of this feature is that in order to compute the likelihood of a model that includes

k regimes and T observations, we have to integrate over kT regime paths. The exponentially

growing number of terms makes this computation infeasible in practice.

In order to deal with this problem, there have been two streams of the MS-ARMA-GARCH

literature. Papers in the first stream, propose modifications of the general MS-ARMA-GARCH

model, which preserve the MS and GARCH properties but are not path dependent. Gray

(1996) and Klaassen (2002) use a ’recombining’ structure for the regime path tree, which is

obtained by integrating out the lagged regime variable from the GARCH term directly. Thus, the

conditional distribution of returns depends only on the current regime and the estimation of their

MS-ARMA-GARCH model can be done using the standard MS inference method. Questions

related to the covariance stationarity of these models have motivated the paper of Haas et al.

(2004), who suggest another modification of the MS-GARCH model for which they prove the

stationarity conditions. More recently, Abramson and Cohen (2007) derive the stationarity

conditions for general MS-GARCH models that include Gray (1996), Klaassen (2002) and Haas

el at. (2004).

The second stream of the research has been to address the estimation problems related to

the path dependent MS-ARMA-GARCH model. Dueker (1997) estimate an MS-GARCH model

in which the conditional variance depends on all past regimes, and the inference is performed

applying a collapsing procedure introduced by Kim (1994). Using this procedure the distribution

of returns depends only a limited number of recent regimes ’at the cost of introducing a degree

of approximation that does not appear to distort the calculated likelihood that much’ (Dueker,

1997). Recently, Henneke et al. (2006) and Bauwens et al. (2007) have suggested a Bayesian

MCMC method for the inference of the path dependent MS-ARMA-GARCH and MS-GARCH

models, respectively. Moreover, Bauwens et al. (2007) prove the conditions for strict stationarity

of the MS-GARCH model, which may be combined with the MS-ARMA stationarity conditions

derived by Francq and Zakoian (2001) to verify the stationarity of the MS-ARMA-GARCH

model.

In this paper, we focus on the first stream of literature, i.e. we estimate non-’path dependent’

MS volatility models because these models can be rapidly estimated which makes the repetition

of out-of-sample forecasts feasible in practice. Therefore, first we apply single regime AR and

ARMA-GARCH models and then employ the MS-AR specification, the MS-AR-ARCH model

of Hamilton and Susmel (1994) and the MS-ARMA-GARCH specification of Klaassen (2002)

for several hedge fund securities.

The paper is organized as follows. In Section 1 we present the hedge fund data set. Section 2

introduces the econometric models. Section 3 presents the statistical inference of the models and

Section 4 describes the applied forecasting technique. Finally, Section 5 shows the estimation,
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stationarity and forecasting results and Section 6 concludes.

1 HEDGE FUND DATA

We analyze monthly return data of several hedge fund indices. The monthly data cover a

196 months period between January 1990 and April 2006. We use data obtained from the

HFR Inc. The HFRI Monthly Indices are a series of benchmarks designed to reflect hedge

fund industry performance by constructing equally weighted composites of constituent funds, as

reported by the hedge fund managers listed within HFR Database. The HFRI are fund-weighted

(equal-weighted) indices. Unlike asset-weighting, the equal-weighting of indices presents a more

general picture of performance of the hedge fund industry. Any bias towards the larger funds

potentially created by alternative weightings is greatly reduced, especially for strategies that

encompass a small number of funds. For monthly data, estimation of our models is performed

for the next ten hedge fund portfolios: 1-Fund Weighted Composite, 2-Equity Market Neutral,

3-Convertible Arbitrage, 4-Event-driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity

Hedge, 8-Macro, 9-Relative Value Arbitrage and 10-Fixed Income.

Tables 1 and 2 show some descriptive statistics and serial correlation tests for these data

series. Reviewing these tables we see that mean return is positive for all strategies. Standard

deviation of returns is the highest for the Equity Hedge and Macro strategies and standard

deviation of returns is the lowest for the Equity Market Neutral and Fixed Income strategies.

We observe negative skewness, i.e. the distribution is more pronounced to the right tail, for

the Merger Arbitrage, Event driven and Convertible Arbitrage strategies. We find that kurtosis

is higher than three, i.e. the distribution is more peaked than the normal distribution, for

the Merger Arbitrage and Relative Value Arbitrage strategies. Contrarily, we evidence that

kurtosis is lower than three, i.e. the distribution is less peaked than the normal distribution,

for the Equity Market Neutral and Macro strategies. For most strategies, we find significant

autocorrelation of returns and squared returns using the Ljung-Box statistic. These preliminary

findings motivate a dynamic specification for the conditional mean and volatility of hedge fund

return time series. Finally, we also perform augmented Dickey-Fuller (ADF) and Phillips-Perron

(PP) unit root tests for all data series. Table 3 presents the values of the test statistics and the

corresponding 1 percent critical values. We observe that all data series are stationary according

to the ADF and PP tests.

2 DYNAMIC MODELS

We consider several univariate specifications of hedge fund returns, which can be applied rela-

tively easily in practice for forecasting purposes. For the simple AR(p) model of the mean, we
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consider p = 1, . . . , 12 lags of monthly data, while for the more complicated MS or GARCH

specifications we restrict our attention to include only one lag into the model formulation. Our

restriction of the lag structure can be relaxed to include more lags of the ARMA and GARCH

terms to obtain better forecasting performance. In addition, we consider only two regimes of

the unobservable MS process, which can be interpreted as two possible latent states driving the

mean and volatility dynamics of hedge fund returns, which may capture endogenously extreme

observations (outliers or ’jumps’) in the observed data set. In the followings, we present five

dynamic models of hedge fund returns:

Model 1: AR(p)

In this model, we assume that volatility is constant over time and we only include dynamic

structure into the conditional mean process:

yt = c +
∑p

k=1 φkyt−k + ψut, ut ∼ N [0, 1], (1)

where c, φk and ψ are real parameters. Rewriting this equation using the lag operator L we get
[
1−

p∑

k=1

φkL
k

]
yt = c + ψut. (2)

Then, the AR(p) process is covariance stationary when all roots of the following equation lie

outside the unit circle:

1−
K∑

k=1

φkz
k = 0. (3)

For p = 1, we obtain the AR(1) model:

yt = c + φyt−1 + ψut, ut ∼ N [0, 1], (4)

where c, φ and ψ are real parameters. The |φ| < 1 condition ensures stationarity.

Model 2: MS-AR(1)

We extend the previous AR(1) model by considering random parameters whose process is driven

by an underlying Markov chain, {st}:

yt = c(st) + φ(st)yt−1 + ψ(st)ut, ut ∼ N [0, 1], (5)

where st ∈ {0, 1} indicates the regime at time t which form a Markov chain with transition prob-

ability matrix P = {ηij}. Moreover, c, φ and ψ are real parameters. Francq and Zakoian (2001)

show that the stationarity condition of the MS-ARMA model depends on the autoregressive

part of the model as follows:

1∑
i=0

πi log(|φ(i)|) < 0 (6)
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where πi is the invariant probability measure (Meyn and Tweedie, 1993) of the regimes.1

Model 3: MS-AR(1) and MS-ARCH(1)

In this model, introduced by Hamilton and Susmel (1994), we consider Markov switching both

in the conditional mean and conditional volatility and we include heteroscedasticity in each

regime by the ARCH equation:

yt = c(st) + φ(st)yt−1 + εt

ht = ω(st) + α(st)ε
2
t−1

εt =
√

htut,

(7)

where ut ∼ N [0, 1] is an i.i.d error term, the c, φ, ω > 0 and α > 0 are real parameters. Finally,

st ∈ {0, 1} indicates the regime at time t, which form a Markov chain with transition proba-

bility matrix P = {ηij}. Bauwens, Preminger and Romboust (2007) show that the stationarity

condition of the MS-GARCH model is

1∑
i=0

πiE[log(α(i)u2
t + β(i))] < 0 (8)

where πi is the invariant probability measure of the regimes. This condition for the MS-ARCH

model reduces to

1∑
i=0

πiE[log(α(i)u2
t )] < 0 (9)

Based on this result and the result of Francq and Zakoian (2001) the two conditions (6) and (9)

are required for the stationarity of the model.

Model 4: ARMA(1,1) and GARCH(1,1)

This model suggests a different dynamic structure for the conditional distribution of returns as

previous models because it does not include Markovian regimes, however, it considers moving

average terms in both equations:

yt = c + φyt−1 + εt + ψεt−1

ht = ω + αε2
t−1 + βht−1

εt =
√

htut,

(10)

where ut ∼ N [0, 1] is an i.i.d error term, the c, φ, ψ, ω > 0, α > 0 and β > 0 are real parameters.

The |φ| < 1 and α + β < 1 conditions ensure stationarity.

Model 5: MS-ARMA(1,1) and MS-GARCH(1,1)

In this section, we extend the previous model by assuming that all parameters are Markov

switching. We consider Klaassen’s (2002) specification of the MS-ARMA-GARCH model, which

has been introduced to handle the path dependence problem mentioned in the introduction.
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Klaassen (2002) extended Gray (1996) by including more information into the conditioning

set of the expectations of the last two equations of the recombining MS-ARMA-GARCH model:

yt = c(st) + φ(st)yt−1 + εt(st) + ψ(st)εt−1(st)

ht(st) = ω(st) + α(st)ε
2
t−1(st) + β(st)ht−1(st)

εt(st) =
√

ht(st)ut

εt−1(st) = E[εt−1(st−1)|st, Yt−1]

ht−1(st) = E[ht−1(st−1)|st, Yt−1]

(11)

where ut ∼ N [0, 1] is an i.i.d error term, the c, φ, ψ, ω > 0, α > 0 and β > 0 are real

parameters, st ∈ {0, 1} indicates the regime at time t which form a Markov chain with transition

probability matrix P = {ηij}.2 As we noted in the introduction, for the models of Gray (1996)

and Klaassen (2002) conditions for covariance stationarity have been established by Abramson

and Cohen (2007). In particular, for our specification, define the 2 × 2 matrix V = {Vij} as

Vij = (αi + βi)
πj

πi
ηij. Then, the MS-GARCH equation is stationary when the largest eigenvalue

in modulus of V is less than one. Finally, define the 2× 2 matrix M = {Mij} as Mij = φi
πj

πi
ηij.

Then, the MS-ARMA equation is stationary when the largest eigenvalue in modulus of M is

less than one.

3 INFERENCE

All models presented in the previous section are estimated by maximum likelihood method.

The statistical inference of the MS models is done following Kim and Nelson (1999). Denote

the vector of returns observed until period t as Yt = (y1, . . . , yt). Then, all dynamic models

presented in Section 2 can be estimated by maximizing numerically the likelihood functions

derived in the following subsections.

Model 1: AR(p)

The conditional distribution of yt|Yt−1 is

yt|Yt−1 ∼ N

[
c +

p∑

k=1

φkyt−k, ψ
2

]
= N [µt, ψ

2] (12)

and the likelihood function is given by:

L =
T∏

t=1

f(yt|Yt−1) =
T∏

t=1

1√
2πψ2

exp

(
−(yt − µt)

2

2ψ2

)
(13)
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Model 2: MS-AR(1)

In the MS-AR(1) model, the transition probability matrix is given by the next four parameters:

Pr[st = 1|st−1 = 1] = η11 Pr[st = 0|st−1 = 1] = η01

Pr[st = 0|st−1 = 0] = η00 Pr[st = 1|st−1 = 0] = η10

(14)

where η11+η01 = 1 and η00+η10 = 1. Given Pr[st−1 = i|Yt−1] the weighting terms Pr[st = j|Yt−1]

are calculated as follows:

πjt = Pr[st = j|Yt−1] =
∑1

i=0 Pr[st = j|st−1 = i] Pr[st−1 = i|Yt−1] =∑1
i=0 ηjiπ

∗
it−1

(15)

In order to compute π∗it−1, we need to apply the conditional density of returns as follows:

π∗it−1 =
f(yt−1|st−1 = i, Yt−2)πit−1∑1
i=0 f(yt−1|st−1 = i, Yt−2)πit−1

(16)

Therefore, we can compute the weighting terms by iteration.3 The conditional distribution of

yt|(Yt−1, st = i) for i = 0, 1 is

yt|(Yt−1, st = i) ∼ N [ci + φiyt−1, ψ
2
i ] (17)

and the likelihood function is given by

L =
T∏

t=1

π0tf(yt|Yt−1, st = 0) + π1tf(yt|Yt−1, st = 1). (18)

Model 3: MS-AR(1) and MS-ARCH(1)

In order to compute ht in equation (7) given Yt−1, we need to compute εt−1 = yt−1 − c(st−1) −
φ(st−1)yt−2. Thus, the conditional distribution of yt depends on st−1 as well and it can be

denoted as f(yt|st, st−1, Yt−1). Therefore, the likelihood of YT is given by

L =
T∏

t=1

1∑
i=0

1∑
j=0

f(yt|st = j, st−1 = i, Yt−1) Pr[st = j, st−1 = i|Yt−1]. (19)

Then, in the likelihood we have to compute Pr[st = j, st−1 = i|Yt−1]:

Pr[st = j, st−1 = i|Yt−1] = Pr[st = j|st−1 = i] Pr[st−1 = i|Yt−1] = ηji Pr[st−1 = i|Yt−1] (20)

and to compute Pr[st = i|Yt] in equation (20) consider

Pr[st = i, st−1 = j|Yt] =
f(yt|st = i, st−1 = j, Yt−1) Pr[st = i, st−1 = j|Yt−1]∑1

i=0

∑1
j=0 f(yt|st = i, st−1 = j, Yt−1) Pr[st = i, st−1 = j|Yt−1]

(21)
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and integrate out the past regime st−1 from (21):

Pr[st = i|Yt] =
1∑

j=0

Pr[st = i, st−1 = j|Yt] (22)

and thus the probability in the likelihood function can be computed by iteration and we can use

the invariant probability measure πi as an initial value for Pr[s0 = i|Y0] in equation (20).

Model 4: ARMA(1,1) and GARCH(1,1)

The conditional distribution of yt|Yt−1 is:

yt|Yt−1 ∼ N [c + φyt−1 + ψεt−1, ht] = N [µt, ht] (23)

and the likelihood function is given by:

L =
T∏

t=1

f(yt|Yt−1) =
T∏

t=1

1√
2πht

exp

(
−(yt − µt)

2

2ht

)
(24)

Model 5: MS-ARMA(1,1) and MS-GARCH(1,1)

In specification of Model 5, the lagged regimes are integrated out, therefore, the conditional

density of yt in these models depends only on the current regime and the likelihood is given by

L =
T∏

t=1

f(yt|st = i, Yt−1) Pr[st = i|Yt−1] (25)

The probability Pr[st = i|Yt−1] can be computed by iteration in the same way as in Model 2

(see equations (15) and (16)).

4 FORECASTING

The one-step-ahead out-of-sample forecast of return yt is the conditional expectation of yt given

all past observable information, Yt−1. We perform repeated out-of-sample forecasts of returns:

First, we estimate the model for selected initial period [0, t], for example for the first half of

the full sample period, then, we forecast the next observation t + 1.4 Consecutively, we move

the time window to include that observation as well and reestimate the model for the period

[0, t + 1] in order to forecast the return of period t + 2. We repeat this procedure until time T

and this way we include all available information until time t to forecast the time t + 1 value.

The forecasting performance of the models is evaluated by comparing the true and the

forecasted returns by the normalized root mean squared error (NRMSE) computed as follows:

NRMSE =

√
MSE

ymax − ymin

(26)
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where the mean squared error (MSE) is given by

MSE =

∑T
t=1[yt − E(yt|Yt−1)]

2

T
(27)

and the conditional expectation for different models can be computed as follows:

Model 1: E(yt|Yt−1) = c +
∑p

k=1 φkyt−k

Model 2: E(yt|Yt−1) = π0t(c0 + φ0yt−1) + π1t(c1 + φ1yt−1)

Model 3: E(yt|Yt−1) = π0t(c0 + φ0yt−1) + π1t(c1 + φ1yt−1)

Model 4: E(yt|Yt−1) = c + φyt−1 + ψεt−1

Model 5: E(yt|Yt−1) = π0t(c0 + φ0yt−1 + ψ0εt−1) + π1t(c1 + φ1yt−1 + ψ1εt−1)

where πit = Pr[st = i|Yt−1] in the previous equations. The main advantage of employing a

normalized measure of forecast precision is that we are able to compare forecasting among

several hedge fund strategies.

5 RESULTS

5.1 Estimation results

In the first part of this section, we review the general results of the maximum likelihood esti-

mation for each strategies and specification for the 1990-2006 period. In order to compare the

different models presented in Section 3, Tables 4, 5 and 6 show the mean log-likelihood (LL),

Akaike information criterion (AIC) and Bayes information criterion (BIC) values, respectively,

for each specification and strategy. In addition, Tables 7-16 present the specific parameters

estimates for each strategy and model.

Reviewing the LL, AIC and BIC values we can see that the most general Model 5 performs

better than other specifications when the LL and AIC are considered. However, when the BIC

is considered, Models 2 and 1 dominate the rest of the models due to the penalization for the

higher number of parameters included. The only security for which Model 5 has the lowest BIC

value is Convertible Arbitrage (see Figure 5). For each strategy, we present the evolution of the

filtered probability of being in the first regime, st = 0 for the MS specification with the best

BIC on the lower part of Figures 3-12.

[Approximate location of the lower part of Figures 3-12.]

Reviewing the specific parameters estimates for the Fund Weighted Composite strategy, we

identify all parameters of each model. However, for the ARMA-GARCH specification the MA(1)

coefficient is not significant. In addition, the p and q parameters of the transition matrix are

higher than 0.9 only for the MS-AR(1) specification (see Figure 3). For the Equity Market

Neutral portfolio, most parameters we find significant. Nevertheless, the ARCH(1) parameters
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are non-significant for Model 5. We find significant and high p and q values for the MS-AR(1)

model (see Figure 4). Reviewing the results for the Convertible Arbitrage strategy we see that

in the ARMA-GARCH specification there are no dynamics in volatility (α = 0 and β = 0).

Moreover, in the MS-ARMA-GARCH (Model 5) specification, some of the switching volatiliy

parameters are zero. Thus, regime switching is not confirmed by our results for this strategy

(see also Figure 5). Estimation results of the Event Driven strategy show that in Model 4 and

5 there are no GARCH dynamics of volatility and there are problems with the MS specification

as well (see Figure 6). For the Merger Arbitrage strategy, we can see that there are no GARCH

dynamics in Model 3, 4 and 5. Moreover, for this strategy we do not identify clearly the two

regimes (see Figure 7). Observing the Distressed Securities estimation results we can see that

there are no volatility dynamics and there are problems with the two-state regime switching

specification as well for Models 3-5 (see Figure 8). The Equity Hedge parameter estimates show

that some of the volatility parameters of Model 5 are non-significant. However, the elements

of the transition matrix of states is higher than 0.9 in Model 2 and 5 (see Figure 9). For the

Macro strategy we evidence that some volatility parameters are not significant in Model 5 and

the p and q parameters are lower than 0.9 for Models 3 and 5 (see Figure 10). The Relative

Value Arbitrage strategy estimation results show that the GRACH dynamics of Model 5 are

not significant. However, the regime switching probabilities are higher than 0.9 for Model 5

(see Figure 11). Finally, for the Fixed Income strategy we do not find significant MS volatility

dynamics. Nevertheless, we find the ARMA-GARCH parameters significant for Model 4 and

the p and q parameters we find higher than 0.9 for Model 2 (see Figure 12).

Finally, Table 17 shows the stationarity diagnostics checks of each model estimated. We find

that Models 1, 2 and 4 are stationary for all strategies, while Model 3 and 5 are stationary for

all products besides the Distressed securities, Fixed income (both for Model 3) and Relative

value arbitrage (for Model 5).

5.2 Forecasting results

Tables 18 and 19 compare the forecasting performance of several dynamic econometric models

using the NRMSE measure. In particular, Table 18 shows the NRMSE for the AR(p) model

for lags p = 1, . . . , 12 and Table 19 presents the forecasting performance of different first-order

specifications of Models 1-5. The observed and forecasted hedge fund return series for the best

NRMSE model for the May 1998 - April 2006 period can be seen on the upper part of Figures

3-12.

[Approximate location of the upper part of Figures 3-12.]

Reviewing Tables 18 we conclude that for the most hedge fund portfolios the best forecasting

performance is achieved when we consider the first-order AR(1) specification and do not consider
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more lags of the historical return data. Thus, including higher lags into the conditional mean

usually does not improve forecast precision. This may motivate our restriction to consider only

first-order specifications of the mean and the volatility for Models 2-5.

Table 19 shows that Model 5 dominates the forecasting precision of other specifications

because for the Fund Weighted Composite, Equity Market Neutral, Distressed Security, Equity

Hedge and Fixed Income strategies the NRMSE is the lowest in case of the MS-ARMA-GARCH

formulation. However, for the rest of the hedge fund strategies, the AP(p) and MS-AR(1)

formulations yield better forecasting performance. The main reason for this finding is that

for the Convertible Arbitrage, Event-driven and Merger Arbitrage strategies we do not find

significant regime switching for the model that provides the best forecasts. This could be due

to the fact that the sample size of the observed monthly return series is too small to identify

two latent regimes. Moreover, for the Macro and Relative Value Arbitrage portfolios we do not

find significant GARCH components for the best forecasting specifications.

The advantage of the selection of the normalized NRMSE criterion is that using this measure

we can compare the forecast precision across all strategies considered. In particular, reviewing

Tables 18 and 19 we evidence that the best forecastable time series are the (1) Relative Value

Arbitrage, (2) Distressed Securities and (3) Fund Weighted Composite strategies. Nevertheless,

the least forecastable strategies are the (1) Macro, (2) Equity Market Neutral and (3) Fixed

Income time series.

6 CONCLUSIONS

In this paper, we apply different and relatively easily applicable dynamic models of the mean

and the volatility of the next ten hedge fund indices to forecast returns over the 1990-2006

period: 1-Fund Weighted Composite, 2-Equity Market Neutral, 3-Convertible Arbitrage, 4-

Event-driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity Hedge, 8-Macro, 9-Relative

Value Arbitrage and 10-Fixed Income.

We consider models for which a repeated out-of-sample forecast procedure is a reliable al-

ternative for practitioners due to its relative simplicity and rapid applicability. We think that

forecasting these data series is especially interesting because hedge funds’ strategies have been

very significantly growing during the last two decades and they are especially impacted by the

2008 global financial crisis.

We employ five combinations of AR, MA, ARCH, GARCH and MS models to capture possible

jumps of these volatile investment funds and find that depending on the security considered,

different model provides the best forecast. In particular, we find that the best forecastable

time series are the (1) Relative Value Arbitrage by MS-AR, (2) Distressed Securities by MS-

ARMA-GARCH and (3) Fund Weighted Composite strategies by MS-ARMA-GARCH. while,
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the least forecastable strategies are the (1) Macro by MS-AR, (2) Equity Market Neutral by

MS-ARMA-GARCH and (3) Fixed Income by MS-ARMA-GARCH.
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Notes
1 In our two state Markov process, the invariant probability measure πi is defined as follows:

πi =
∫

Pr[st = i|st−1 = j]π(dj) =
∫

ηijπ(dj) = ηi0π0 + ηi1π1

where {ηij : i, j = 0, 1} are the transition probabilities of the Markov chain. Then, using the fact that π0+π1 = 1
we obtain that

π0 =
1− η11

2− η00 − η11
π1 =

1− η00

2− η00 − η11

2The expectations of the last two equations are computed using the πit−1 = Pr[st−1 = i|st, Yt−1] probabilities
in order to integrate out st−1. This modification is motivated by the fact that the εt−1(st) and ht−1(st) values
are computed in the beginning of period t before observing yt. Therefore, we can condition on st and Yt−1 and
πit−1 is computed as follows:

πit−1 = Pr[st−1 = i|st = j, Yt−1] =
Pr[st−1 = i|Yt−1] Pr[st = j|st−1 = i]∑1
i=0 Pr[st−1 = i|Yt−1] Pr[st = j|st−1 = i]

where we can compute Pr[st−1 = i|Yt−1] by

Pr[st−1 = i|Yt−1] =
f(yt−1|st−1 = i, Yt−2) Pr[st−1 = i|Yt−2]∑1
i=0 f(yt−1|st−1 = i, Yt−2) Pr[st−1 = i|Yt−2]

3In order to compute the weighting terms, we need the initial value of π∗i0, which is approximated by the
following invariant probabilities of st:

π∗00 =
1− η11

2− η00 − η11
π∗10 =

1− η00

2− η00 − η11

4In our application, the initial sample period is January 1990 - May 1998.
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Table 1 Descriptive statistics of returns

Strategy Max Min Mean St.dev Skewness Kurtosis

1-Fund Weighted Composite 7.65 -8.70 1.14 1.96 -0.62 2.84

2-Equity Market Neutral 3.59 -1.67 0.74 0.89 0.18 0.40

3-Convertible Arbitrage 3.33 -3.19 0.81 1.02 -1.10 1.92

4-Event-driven 5.13 -8.90 1.17 1.87 -1.31 4.68

5-Merger Arbitrage 3.12 -6.46 0.84 1.23 -2.51 10.83

6-Distressed Securities 7.06 -8.50 1.21 1.72 -0.66 5.65

7-Equity Hedge 10.88 -7.65 1.38 2.52 0.16 1.37

8-Macro 7.88 -6.40 1.25 2.36 0.35 0.61

9-Relative Value Arbitrage 5.72 -5.80 0.96 1.03 -0.84 10.29

10-Fixed Income 5.34 -3.27 0.84 0.97 -0.28 5.11
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Table 2 Ljung-Box test of serial correlation

Returns Squared returns

Strategy LB(10) p-value LB(10) p-value

1-Fund Weighted Composite 19.92 0.030 13.49 0.197

2-Equity Market Neutral 42.60 0.000 34.42 0.000

3-Convertible Arbitrage 85.68 0.000 10.53 0.395

4-Event-driven 17.89 0.057 6.05 0.811

5-Merger Arbitrage 19.07 0.039 17.56 0.063

6-Distressed Securities 56.43 0.000 25.34 0.005

7-Equity Hedge 13.96 0.175 39.00 0.000

8-Macro 18.36 0.049 34.24 0.000

9-Relative Value Arbitrage 28.30 0.002 11.45 0.323

10-Fixed Income 55.43 0.000 34.90 0.000
Notes: The Ljung-Box (LB) test statistic is computed for 10 lags.
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Table 3 Unit root tests of data series
Strategy ADF PP

1-Fund Weighted Composite -6.212 -10.907

2-Equity Market Neutral -4.985 -13.167

3-Convertible Arbitrage -5.414 -7.558

4-Event-driven -5.814 -10.862

5-Merger Arbitrage -5.080 -12.732

6-Distressed Securities -5.961 -8.077

7-Equity Hedge -6.397 -12.076

8-Macro -4.699 -11.742

9-Relative Value Arbitrage -5.100 -10.655

10-Fixed Income -5.676 -9.177
Notes: The table presents the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) test statistics. The

null hypothesis of unit root is rejected when the value of this statistic is lower than the critical value. The 1%
critical values of ADF and PP are -3.466 and -3.465, respectively.
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Table 4 Maximum mean log-likelihood (LL)

Strategy Model 1 Model 2 Model 3 Model 4 Model 5

1 -2.056 -1.987 -1.982 -2.041 -1.942

2 -1.301 -1.223 -1.263 -1.251 -1.177

3 -1.243 -1.148 -1.150 -1.242 -1.104

4 -1.999 -1.909 -1.908 -1.997 -1.881

5 -1.599 -1.353 -1.353 -1.578 -1.326

6 -1.821 -1.731 -1.821 -1.811 -1.811

7 -2.328 -2.273 -2.275 -2.299 -2.255

8 -2.261 -2.202 -2.226 -2.254 -2.164

9 -1.406 -1.234 -1.251 -1.296 -1.198

10 -1.294 -1.139 -1.288 -1.237 -1.134
Notes: Strategies: 1-Fund Weighted Composite, 2-Equity Market Neutral, 3-Convertible Arbitrage, 4-Event-

driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity Hedge, 8-Macro, 9-Relative Value Arbitrage, 10-
Fixed Income. Number written by bold letters denote the model with the best information criterion.
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Table 5 Akaike information criterion (AIC)

Strategy Model 1 Model 2 Model 3 Model 4 Model 5

1 4.142 4.056 4.065 4.144 4.026

2 2.633 2.527 2.628 2.564 2.486

3 2.516 2.378 2.402 2.525 2.321

4 4.028 3.900 3.919 4.035 3.875

5 3.229 2.788 2.767 3.207 2.775

6 3.672 3.544 3.672 3.663 3.663

7 4.687 4.628 4.652 4.658 4.612

8 4.553 4.486 4.543 4.568 4.451

9 2.843 2.549 2.594 2.653 2.529

10 2.618 2.359 2.618 2.534 2.390
Notes: AIC = −2LL + 2K/T , where K denotes the number of parameters, T is the sample size and LL

is the mean log-likelihood. Strategies: 1-Fund Weighted Composite, 2-Equity Market Neutral, 3-Convertible
Arbitrage, 4-Event-driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity Hedge, 8-Macro, 9-Relative
Value Arbitrage, 10-Fixed Income. Number written by bold letters denote the model with the best information
criterion.
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Table 6 Bayes information criterion (BIC)

Strategy Model 1 Model 2 Model 3 Model 4 Model 5

1 4.192 4.190 4.233 4.244 4.261

2 2.683 2.661 2.795 2.664 2.703

3 2.566 2.512 2.569 2.592 2.505

4 4.079 4.034 4.086 4.102 4.059

5 3.280 2.921 2.868 3.291 2.975

6 3.722 3.678 3.722 3.730 3.730

7 4.737 4.761 4.820 4.759 4.779

8 4.604 4.620 4.694 4.669 4.652

9 2.893 2.683 2.745 2.754 2.746

10 2.668 2.493 2.685 2.635 2.591
Notes: BIC = −2LL + K ln T/T , where K denotes the number of parameters, T is the sample size and

LL is the mean log-likelihood. Strategies: 1-Fund Weighted Composite, 2-Equity Market Neutral, 3-Convertible
Arbitrage, 4-Event-driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity Hedge, 8-Macro, 9-Relative
Value Arbitrage, 10-Fixed Income. Number written by bold letters denote the model with the best information
criterion.
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Table 7 Results: 1-Fund Weighted Composite

θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.86∗(0.156) 0.84∗(0.079) 1.70∗(0.053) 0.82∗(0.051) −0.29∗(0.062)

c1 0.74∗(0.067) −0.95∗(0.051) 0.94∗(0.050)

φ0 0.25∗(0.069) 0.34∗(0.061) 0.19∗(0.049) 0.33∗(0.052) 0.54∗(0.041)

φ1 0.17∗(0.089) 0.55∗(0.055) 0.65∗(0.026)

ψ0 1.89∗(0.095) 1.41∗(0.064) −0.04(0.050) −0.01(0.061)

ψ1 2.63∗(0.119) −1.32∗(0.037)

ω0 0.86∗(0.052) 1.48∗(0.050) 1.03∗(0.052)

ω1 0.98∗(0.051) 0.11∗(0.048)

α0 0.37∗(0.052) 0.20∗(0.049) 0.09∗(0.043)

α1 0.99∗(0.051) 0.45∗(0.049)

β0 0.40∗(0.047) 0.92∗(0.057)

β1 0.31∗(0.039)

η00 0.97∗(0.021) 0.62∗(0.051) 0.67∗(0.042)

η11 0.99∗(0.011) 0.30∗(0.056) 0.71∗(0.039)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 8 Results: 2-Equity Market Neutral

θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.69∗(0.064) 1.58∗(0.064) 0.19∗(0.057) 0.04(0.034) 0.35∗(0.075)

c1 0.26∗(0.071) 0.94∗(0.066) 1.20∗(0.065)

φ0 0.07(0.063) −0.37∗(0.063) 0.18∗(0.055) 0.94∗(0.043) −0.15∗(0.067)

φ1 0.08(0.069) 0.52∗(0.065) −0.11(0.061)

ψ0 0.89∗(0.045) 0.81∗(0.064) −0.82∗(0.074) 0.20∗(0.067)

ψ1 0.65∗(0.060) 0.02(0.067)

ω0 0.20∗(0.064) 0.17∗(0.067) 0.09∗(0.027)

ω1 0.34∗(0.064) 0.04(0.036)

α0 0.53∗(0.064) 0.19∗(0.083) -

α1 0.44∗(0.064) 0.12(0.068)

β0 0.60∗(0.120) 0.68∗(0.067)

β1 0.86∗(0.062)

η00 0.93∗(0.065) 0.44∗(0.064) 0.98∗(0.021)

η11 0.94∗(0.064) 0.26∗(0.063) 0.98∗(0.017)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 9 Results: 3-Convertible Arbitrage

θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.36∗(0.058) 0.02(0.067) −0.61∗(0.069) 0.38∗(0.081) 0.88∗(0.057)

c1 0.91∗(0.062) 0.93∗(0.062) −0.75∗(0.054)

φ0 0.56∗(0.050) 0.53∗(0.074) 0.91∗(0.069) 0.53∗(0.066) 0.34∗(0.043)

φ1 0.27∗(0.052) 0.29∗(0.050) 1.24∗(0.069)

ψ0 0.84∗(0.063) 1.08∗(0.078) 0.05(0.061) −0.15∗(0.075)

ψ1 0.49∗(0.052) −1.38∗(0.069)

ω0 0.29∗(0.067) 0.16∗(0.053) -

ω1 0.24∗(0.063) 0.43∗(0.070)

α0 0.82∗(0.067) - -

α1 0.25∗(0.078) 0.35∗(0.068)

β0 - 0.89∗(0.034)

β1 -

η00 0.88∗(0.060) 0.56∗(0.066) 0.87∗(0.050)

η11 0.82∗(0.067) 0.83∗(0.057) 0.68∗(0.065)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 10 Results: 4-Event-driven
θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.83∗(0.054) −2.20∗(0.052) −2.51∗(0.859) 0.93∗(0.052) 1.28∗(0.056)

c1 1.18∗(0.054) 1.27∗(0.150) −4.45∗(0.070)

φ0 0.29∗(0.050) 0.64∗(0.052) 0.84(0.525) 0.20∗(0.051) 0.09(0.047)

φ1 0.19∗(0.050) 0.17∗(0.075) −0.24∗(0.088)

ψ0 1.79∗(0.089) 2.96∗(0.052) 0.11∗(0.048) 0.13∗(0.054)

ψ1 1.41∗(0.055) −0.61∗(0.05)

ω0 5.11(3.376) 3.18∗(0.051) 2.02∗(0.101)

ω1 1.27∗(0.265) 0.73∗(0.054)

α0 0.76(0.550) - -

α1 0.39∗(0.100) -

β0 - -

β1 0.00∗(0.052)

η00 0.95∗(0.025) 0.19(0.194) 0.98∗(0.012)

η11 0.29∗(0.052) 0.94∗(0.040) 0.46∗(0.056)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 11 Results: 5-Merger Arbitrage

θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.66∗(0.058) −1.80∗(0.061) −1.80∗(0.061) 0.75∗(0.080) 3.96∗(1.067)

c1 1.02∗(0.071) 1.02∗(0.071) 0.04(0.058)

φ0 0.21∗(0.055) 1.84∗(0.063) 1.84∗(0.063) 0.13∗(0.049) −2.51∗(1.140)

φ1 0.06(0.044) 0.06(0.044) 0.93∗(0.057)

ψ0 1.20∗(0.061) 1.54∗(0.062) 0.20∗(0.056) 1.09(0.747)

ψ1 0.70∗(0.061) −0.73∗(0.078)

ω0 1.54∗(0.062) 1.26∗(0.107) 30.97(18.651)

ω1 0.70∗(0.061) 0.51∗(0.059)

α0 - 0.15(0.116) 0.24(3.883)

α1 - -

β0 - 0.16(3.492)

β1 -

η00 0.82∗(0.059) 0.82∗(0.059) 0.21(0.137)

η11 0.13∗(0.061) 0.13∗(0.061) 0.95∗(0.021)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 12 Results: 6-Distressed Securities
θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.62∗(0.053) −0.42∗(0.054) 0.62∗(0.053) 0.84∗(0.184) 0.84∗(0.184)

c1 0.71∗(0.055) - -

φ0 0.49∗(0.053) 1.26∗(0.054) 0.49∗(0.053) 0.32∗(0.123) 0.32∗(0.123)

φ1 0.42∗(0.048) - -

ψ0 1.49∗(0.076) 3.55∗(0.055) 0.25∗(0.118) 0.25∗(0.118)

ψ1 1.19∗(0.081) -

ω0 1.49∗(0.076) 0.78∗(0.101) 0.78∗(0.101)

ω1 - -

α0 - - -

α1 - -

β0 -

β1 -

η00 0.95∗(0.026) - -

η11 0.24∗(0.055) - -
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 13 Results: 7-Equity Hedge

θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 1.16∗(0.066) 1.55∗(0.049) −1.62∗(0.627) 0.85∗(0.322) 1.82∗(0.048)

c1 0.96∗(0.050) 1.77∗(0.293) 0.61∗(0.048)

φ0 0.16∗(0.052) 0.10(0.111) 0.89∗(0.309) 0.36(0.218) 0.08(0.048)

φ1 0.22∗(0.068) 0.07(0.108) 0.52∗(0.045)

ψ0 2.48∗(0.117) 3.49∗(0.047) −0.14(0.221) -

ψ1 1.90∗(0.054) −0.32∗(0.048)

ω0 1.94∗(0.948) 2.87∗(0.816) 14.54∗(0.048)

ω1 2.70∗(0.824) 0.45∗(0.046)

α0 0.58∗(0.248) 0.26∗(0.107) -

α1 0.38∗(0.102) -

β0 0.29(0.154) -

β1 0.86∗(0.020)

η00 0.99∗(0.011) 0.09(0.131) 0.93∗(0.048)

η11 0.97∗(0.026) 0.63∗(0.216) 0.99∗(0.009)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 14 Results: 8-Macro
θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 1.04∗(0.049) 0.64∗(0.048) 3.21∗(0.080) 0.78(0.431) 0.53∗(0.049)

c1 1.31∗(0.049) 0.43∗(0.097) 0.39∗(0.049)

φ0 0.17∗(0.052) 0.01(0.050) 0.10(0.134) 0.30(0.393) 0.82∗(0.040)

φ1 0.16∗(0.057) 0.01(0.074) −1.11∗(0.049)

ψ0 2.32∗(0.117) 1.22∗(0.048) −0.16(0.436) −0.71∗(0.036)

ψ1 2.68∗(0.052) 1.79∗(0.049)

ω0 3.26∗(0.055) 1.06∗(0.532) 1.17∗(0.049)

ω1 2.58∗(0.090) -

α0 0.63∗(0.136) 0.11(0.065) -

α1 - 0.21∗(0.049)

β0 0.70∗(0.096) 0.84∗(0.048)

β1 0.20∗(0.052)

η00 0.97∗(0.024) 0.52∗(0.181) 0.87∗(0.049)

η11 0.94∗(0.042) 0.80∗(0.075) 0.65∗(0.048)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 15 Results: 9-Relative Value Arbitrage

θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.70∗(0.056) 0.51∗(0.060) 0.85∗(0.064) 0.17(0.121) 1.07∗(0.058)

c1 0.93∗(0.064) 0.54∗(0.054) 0.44∗(0.063)

φ0 0.27∗(0.050) 0.45∗(0.055) 0.06(0.064) 0.85∗(0.113) 0.30∗(0.039)

φ1 0.10(0.064) 0.40∗(0.050) 0.27∗(0.064)

ψ0 0.99∗(0.060) 0.66∗(0.060) −0.61∗(0.187) −0.27∗(0.072)

ψ1 1.99∗(0.064) -

ω0 4.75∗(0.064) 0.24∗(0.079) 0.16∗(0.065)

ω1 0.31∗(0.063) 0.32∗(0.056)

α0 - 0.58∗(0.161) 1.57∗(0.065)

α1 0.67∗(0.062) 0.02(0.063)

β0 0.31∗(0.124) 0.07(0.065)

β1 0.02(0.064)

η00 0.86∗(0.0642) 0.86∗(0.064) 0.93∗(0.053)

η11 0.98∗(0.0146) 0.99∗(0.011) 0.94∗(0.048)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 16 Results: 10-Fixed Income
θ Model 1 Model 2 Model 3 Model 4 Model 5

c0 0.50∗(0.069) 0.56∗(0.068) 0.54∗(0.094) 0.31∗(0.115) −1.20∗(0.071)

c1 0.43∗(0.069) - 0.86∗(0.078)

φ0 0.40∗(0.066) 0.38∗(0.068) 0.38∗(0.090) 0.63∗(0.130) 2.38∗(0.067)

φ1 0.40∗(0.069) - 0.04(0.061)

ψ0 0.88∗(0.044) 0.48∗(0.039) -0.31(0.169) −2.23∗(0.067)

ψ1 1.33∗(0.096) 0.39∗(0.068)

ω0 −0.32∗(0.114) 0.09∗(0.032) 2.23∗(0.067)

ω1 - 0.21∗(0.056)

α0 −2.63∗(1.015) 0.20∗(0.078) -

α1 - 0.20∗(0.066)

β0 0.72∗(0.066) -

β1 0.09(0.064)

η00 0.92∗(0.052) - 0.17∗(0.069)

η11 0.96∗(0.027) - 0.86∗(0.062)
Notes: Standard errors are reported in parentheses. The * denotes coefficient significant at the 5 percent

level. The - denotes that the coefficient was set to zero value in order to estimate correctly the standard errors.
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Table 17 Stationarity

Model 1 Model 2 Model 3 Model 4 Model 5

Strategy Mean Var Mean Var Mean Var

1 0.25 -1.25 -0.97 -1.66 0.33 0.60 0.60 0.89

2 0.07 -1.70 -1.11 -2.04 0.94 0.79 0.15 0.96

3 0.56 -1.04 -0.41 -1.83 0.53 - 0.86 0.79

4 0.29 -1.58 -0.28 -1.62 0.11 - 0.10 0.00

5 0.21 -2.23 -2.23 -10.51 0.13 0.15 0.80 0.08

6 0.49 -0.80 0.49 1.49 0.32 - 0.32 -

7 0.16 -1.71 -0.85 -1.97 0.36 0.55 0.51 0.85

8 0.17 -2.76 -2.98 -4.34 0.30 0.81 0.69 0.76

9 0.27 -0.99 -2.69 -9.93 0.85 0.89 0.29 1.53

10 0.40 -0.95 0.38 -2.63 0.63 0.92 0.45 0.25
Notes: Strategies: 1-Fund Weighted Composite, 2-Equity Market Neutral, 3-Convertible Arbitrage, 4-Event-

driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity Hedge, 8-Macro, 9-Relative Value Arbitrage, 10-
Fixed Income. The following values are presented in the table: Model 1: |φ| < 1, Model 2:

∑1
i=0 πi log(|φ(i)|) < 0,

Model 3: (Mean)
∑1

i=0 πi log(|φ(i)|) < 0, (Var)
∑1

i=0 πiE[log(α(i)u2
t )] < 0, Model 4: (Mean) |φ| < 1, (Var)

α + β < 1, Model 5: We present the largest eigenvalue in modulus of the M (Mean) and V (Var) matrices that
should be less than one for stationarity.
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Table 18 NRMSE of one-step-ahead forecasts for Model 1, AR(p) specifications

Strategy p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

1 0.135 0.136 0.137 0.138 0.138 0.141

2 0.189 0.190 0.192 0.192 0.193 0.180

3 0.146 0.147 0.148 0.149 0.150 0.150

4 0.139 0.140 0.140 0.141 0.141 0.143

5 0.134 0.135 0.135 0.134 0.133 0.133

6 0.119 0.120 0.121 0.121 0.121 0.122

7 0.153 0.154 0.156 0.157 0.156 0.157

8 0.179 0.180 0.180 0.182 0.182 0.183

9 0.115 0.113 0.114 0.114 0.115 0.116

10 0.150 0.151 0.151 0.153 0.153 0.156

Strategy p = 7 p = 8 p = 9 p = 10 p = 11 p = 12

1 0.144 0.147 0.147 0.148 0.151 0.153

2 0.181 0.183 0.184 0.184 0.185 0.186

3 0.151 0.153 0.154 0.155 0.155 0.157

4 0.143 0.145 0.145 0.146 0.147 0.148

5 0.133 0.135 0.136 0.136 0.137 0.137

6 0.123 0.123 0.125 0.125 0.127 0.127

7 0.158 0.159 0.161 0.162 0.164 0.165

8 0.184 0.184 0.183 0.185 0.188 0.196

9 0.117 0.118 0.117 0.117 0.117 0.117

10 0.156 0.157 0.156 0.156 0.157 0.157
Notes: Strategies: 1-Fund Weighted Composite, 2-Equity Market Neutral, 3-Convertible Arbitrage, 4-Event-

driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity Hedge, 8-Macro, 9-Relative Value Arbitrage, 10-
Fixed Income. Numbers written by bold letters denote the model with the best forecasting performance.
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Table 19 NRMSE of one-step-ahead forecasts of Models 1-5

Strategy Model 1 Model 2 Model 3 Model 4 Model 5

1 0.135 0.133 0.135 0.137 0.130

2 0.189 0.180 0.178 0.191 0.175

3 0.146 0.152 0.148 0.149 0.148

4 0.139 0.142 0.148 0.139 0.140

5 0.134 0.142 0.147 0.135 0.155

6 0.119 0.121 0.118 0.119 0.118

7 0.153 0.153 0.153 0.153 0.146

8 0.179 0.176 0.178 0.180 0.177

9 0.115 0.110 0.110 0.114 0.112

10 0.150 0.152 0.150 0.154 0.147
Notes: Strategies: 1-Fund Weighted Composite, 2-Equity Market Neutral, 3-Convertible Arbitrage, 4-Event-

driven, 5-Merger Arbitrage, 6-Distressed Securities, 7-Equity Hedge, 8-Macro, 9-Relative Value Arbitrage, 10-
Fixed Income. Numbers written by bold letters denote the model with the best forecasting performance. For
Model 1, we report the AR(1) specification results presented in Table 18 in order to compare the first order
econometric models.
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Figure 1 Hedge funds assets’ value between 1990 and 2008 (Source: The Economist, 2008)
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Figure 2 Price changes (%) of several hedge fund strategies over 2008 (Source: The Economist, 2008)
Notes: Strategies: 1-Merger Arbitrage, 2-Macro, 3-Equity Market Neutral, 4-Distressed Securities, 5-Event-

driven, 6-Equity Hedge, 7-Relative Value Arbitrage, 8-Convertible Arbitrage.
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Figure 3 Fund Weighted Composite
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: MS-ARMA(1,1)-GARCH(1,1). The second figure
presents the evolution of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 -
April 2006 period for the model with the lowest BIC: MS-AR(1).
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Figure 4 Equity Market Neutral
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: MS-ARMA(1,1)-GARCH(1,1). The second figure
presents the evolution of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 -
April 2006 period for the model with the lowest BIC: MS-AR(1).
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Figure 5 Convertible Arbitrage
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: AR(1). The second figure presents the evolution
of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 - April 2006 period for
the model with the lowest BIC: MS-ARMA(1,1)-GARCH(1,1).
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Figure 6 Event-driven
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: AR(1). The second figure presents the evolution
of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 - April 2006 period for
the model with the lowest BIC: MS-AR(1).
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Figure 7 Merger Arbitrage
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: AR(5). The second figure presents the evolution
of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 - April 2006 period for
the model with the lowest BIC: MS-AR(1).
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Figure 8 Distressed Securities
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: MS-ARMA(1,1)-GARCH(1,1). The second figure
presents the evolution of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 -
April 2006 period for the model with the lowest BIC: MS-AR(1).
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Figure 9 Equity Hedge
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: MS-ARMA(1,1)-GARCH(1,1). The second figure
presents the evolution of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 -
April 2006 period for the model with the lowest BIC: MS-AR(1).
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Figure 10 Macro
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006 time

period using the estimates of the lowest NRMSE model: MS-AR(1). The second figure presents the evolution of
the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 - April 2006 period for the
model with the lowest BIC: MS-AR(1).
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Figure 11 Relative Value Arbitrage
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006 time

period using the estimates of the lowest NRMSE model: MS-AR(1). The second figure presents the evolution of
the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 - April 2006 period for the
model with the lowest BIC: MS-AR(1).
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Figure 12 Fixed Income
Notes: The first figure shows the observed and forecasted return time series for the May 1998 - April 2006

time period using the estimates of the lowest NRMSE model: MS-ARMA(1,1)-GARCH(1,1). The second figure
presents the evolution of the probability of being in regime 0, i.e. π0t = Pr[st = 0|Yt−1] for the January 1990 -
April 2006 period for the model with the lowest BIC: MS-AR(1).
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