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ABSTRACT

Empirical evidence has emerged of the possibility of fractional cointegration such that
the gap, � , between the integration order �  of the observables and the integration
order �  of the cointegrating errors is less than 0.5. This includes circumstances both
when the observables are stationary or asymptotically stationary with long memory (so
� <1/2) and when they are nonstationary (so � �1/2). We call this weak
cointegration, and it contrasts strongly with the traditional econometric prescription of
unit root observables and short memory cointegrating errors, where � =1. Asymptotic
inferential theory also differs from this case, and from other members of the class
� >1/2, in particular n -consistent and asymptotically normal estimation of the
cointegrating vector �  is possible when � <1/2, as we explore in a simple bivariate
model. The estimate depends on �  and �  or, more realistically, on estimates of

unknown �  and � . These latter estimates need to be n -consistent, and the
asymptotic distribution of the estimate of �  is sensitive to their precise form. We
propose estimates of �  and �  that are computationally relatively convenient, relying
on only univariate nonlinear optimization. Finite sample performance of the methods is
examined by means of Monte Carlo simulations, and several applications to empirical
data included.
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1. Introduction

Cointegration analysis has usually proceeded under the assumption of unit root
(I(1)) observable series and short-memory stationary (I(0)) cointegrating errors.
Here, the least squares estimate (LSE) of the cointegrating vector is not only con-
sistent, but super-consistent (with convergence rate equal to sample size, n) (Stock,
1987) despite contemporaneous correlation between regressors and cointegrating er-
rors; optimal estimates, which account for this correlation, enjoy no better rate of
convergence (Phillips, 1991).
It is also possible to consider cointegration in a fractional context. To be specific,

we consider the model

∆γ(yt − νxt) = u#
1t, t ≥ 1, yt = 0, t ≤ 0,

∆δxt = u
#
2t, t ≥ 1, xt = 0, t ≤ 0,

¾
(1)

for the bivariate observable sequence {yt, xt}. Here ∆ = 1 − L, where L is the lag
operator;

(1− L)−α =
∞X
j=0

aj(α)L
j , aj(α) =

Γ(j + α)

Γ(α)Γ(j + 1)
, (2)

taking Γ(α) = ∞ for α = 0,−1,−2, ..., and Γ (0) /Γ (0) = 1; the # superscript
attached to a scalar or vector sequence vt has the meaning

v#
t = vt1(t > 0), (3)

where 1(·) is the indicator function; {(u1t, u2t), t = 0,±1, ...} is an unobservable covari-
ance stationary bivariate sequence having spectral density matrix that is nonsingular
and bounded at all frequencies; and the real numbers γ and δ satisfy

0 ≤ γ < δ. (4)

On this basis, we refer to ut = (u1t, u2t)0 as I(0), xt as I(δ) and yt − νxt as I(γ),
while for

ν 6= 0, (5)

(4) implies that yt is also I(δ); under (1), (4) and (5), yt and xt are said to be
cointegrated CI(δ, γ), for which a necessary condition is that yt and xt share the
same order of integration, the latter terminology referring to the argument of I(·).
The truncations on the right hand side in (1) ensure that the model is well-defined
in the mean square sense, for example ∆−δu2t does not have finite variance when
δ ≥ 1/2.
A feature referred to in the paragraph above is that we anticipate

Cov(u1t, u2t) 6= 0, (6)

so that, viewing the first equation of (1) as a regression model, the regressor xt is

contemporaneously correlated with the cointegrating error u#
1t. The cointegrating

vector mentioned above is the scalar ν in the bivariate setting (1), while we referred
there to the case γ = 0, δ = 1. The most dramatic contrast with this familiar CI(1, 0)
situation arises when

δ < 1/2, (7)
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because the “simultaneous equation bias” inherent in (6) leads to inconsistency of the
LSE due to the fact that xt is asymptotically stationary and so its sum of squares
does not asymptotically dominate that of u1t. To overcome this problem, Robinson
(1994) showed that a narrow-band frequency-domain least squares estimate (NBLSE)
is consistent, due to the dominance near zero frequency of an I(γ) spectral density by
an I(δ) one. (He considered the purely stationary situation, where there is no trun-
cation in (1), but our modification does not affect such basic asymptotic properties.)
The same method was subsequently studied by Robinson and Marinucci (1997, 1999)
in case

δ > 1/2, (8)

where there is trending nonstationarity. Here, the LSE is consistent, with convergence
rate depending on the location of γ and δ in the non-negative quadrant, but the
NBLSE still sometimes converges faster, and never converges slower, despite dropping
high frequency information. Referring to a sequence m such that m−1+m/n→ 0 as
n → ∞, the respective rates are: for γ + δ < 1, n2δ−1 (LSE) and n2δ−1(n/m)1−γ−δ

(NBLSE); for γ+δ = 1 but δ < 1, n2δ−1/ logn (LSE) and n2δ−1/ logm (NBLSE); for
γ = 0, δ = 1, both estimates have rate n but the NBLSE enjoys less “second-order
bias”; and for γ + δ > 1, both have rate nδ−γ .
The question which then arises is whether these rates are optimal, by which we

mean whether they match the rates achieved by the Gaussian maximum likelihood
estimate (MLE) under suitable regularity conditions. They are optimal for the combi-
nation γ+δ > 1, δ−γ > 1/2, but otherwise not. In particular, the nδ−γ rate is optimal
for δ − γ > 1/2 without the restriction γ + δ > 1, and Robinson and Hualde (2000)
have established it for estimates asymptotically equivalent to the MLE, allowing for
consistent estimation of unknown γ and δ and a vector ψ of unknown parameters
describing the autocovariance structure of ut; these estimates of ν have mixed normal
asymptotics, and a Wald test statistic with an asymptotic null χ2 distribution, as
established earlier in the CI(1, 0) case by Phillips (1991), Johansen (1991). Indeed,
Robinson and Hualde (2000) found the limit distribution unaffected by the question of
whether ψ, γ and δ are known or unknown. For related results on fractionally cointe-
grated models, with somewhat different estimates, settings and conditions, see Dolado
and Marmol (1997), Jeganathan (1999, 2001), Kim and Phillips (2000). Testing for
fractional cointegration is considered by Marinucci and Robinson (2001), Robinson
and Yajima (2000).
The present paper focuses on the case

β
def
= δ − γ < 1/2, (9)

where a substantially different asymptotic inferential theory prevails, impacting also
on the question of how δ and γ should be estimated. Under (9), since ∆γyt and ∆

γxt
are I(β), they are asymptotically stationary, and so, intuitively, one anticipates the
existence of n1/2-consistent and asymptotically normal estimates of ν; the LSE and
NBLSE converge slower than this owing to the dominance of bias due to (6). Note that
(9) excludes the traditional CI(1, 0) case and so might be thought of as less plausible
than β ≥ 1/2. However, the vast bulk of the cointegration literature has focused only
on the CI(1, 0) possibility and there has been little study of fractional possibilities, or
even the testing of the unit root hypothesis on yt, xt against fractional alternatives, as
distinct from stationary autoregressive (AR) ones. In fact, the fractional cointegration
analysis by Robinson and Marinucci (1997) of two of the bivariate series originally
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analysed by Engle and Granger (1987) (namely M1/nominal GNP and M3/nominal
GNP) and one analysed by Campbell and Shiller (1987) (stock prices/dividends) in
the CI(1, 0) context was suggestive of (9). Moreover, we cover not only δ ≥ 1/2,
but also the asymptotically stationary case δ < 1/2, which may be relevant for many
financial time series. Note that here, the NBLSE of Robinson (1994) is only m1/2-
consistent form increasing slower than n (indeed the optimal minimum-mean-squared
error rate is n2/5), so that we again achieve an improvement. We refer to (9) as “weak
fractional cointegration”, since the memory reduction achievable is small relative to
the CI(1, 0) case, or other cases in which β ≥ 1/2.
We are principally concerned with estimation of ν. If γ and δ are known, while ut

is known to be white noise with unknown variance-covariance matrix Ω, then the MLE
of ν is given in closed form, and may be computed by means of an added-variable
least squares regression, as pursued in the following section, which also extends to
vector autoregressive (VAR) ut, of known degree, but with unknown AR coefficients,
when our estimate of ν is no longer as efficient as the MLE but has the same,

√
n,

rate of convergence, under (9). When γ and/or δ are unknown, and ut has parametric
autocorrelation (such as following a VAR), then it seems that the Gaussian MLE of
all the unknowns is again

√
n-consistent and asymptotically normal, but with limit

covariance matrix that is not block-diagonal, so that in particular the asymptotic
variance of the estimate of ν differs from that when γ and δ are known. If δ < 1/2, a
priori, conveying the implication that δ and γ are both estimated by optimizing over
subsets of the intersection of (4) and (7), then the consistency and asymptotic distri-
bution theory would largely follow the lines of authors such as Fox and Taqqu (1986)
and Hosoya (1997), who were the first to develop such theory for standard scalar
and vector long memory time series models respectively, the most notable difference
perhaps being the fact that in our setting xt and yt would be only asymptotically
stationary. If the possibility that δ ≥ 1/2 is admitted, and possibly γ ≥ 1/2 also,
then the situation is more delicate, as discussed in Section 4.
The preceding discussion makes it apparent that when γ and δ are unknown the

issue of how they are estimated is of greater significance when β < 1/2 than when β >
1/2. It is indeed essential here (due to the correlation between xt and u1t) that they be
estimated

√
n-consistently in order for ν to then be estimated

√
n -consistently, so that

simple closed-form semiparametric methods such as log periodogram regression will
not suffice. Closed-form

√
n-consistent estimates of integration orders are available

(see Kashyap and Eom, 1988, Moulines and Soulier, 1999), but these do not cover
our bivariate situation and VAR ut, and also entail logging the periodogram, which
raises technical difficulties not present in estimates based on quadratic forms, such
as the MLE. In our setting some degree of numerical optimization seems inevitable.
Since this is likely to entail an initial search of the parameter space to locate the
vicinity of a global optimum, it is desirable if the computations can be arranged
so that only univariate optimizations are involved. Even after concentrating out
parameters, when both γ and δ are unknown the Gaussian MLE requires a bivariate
optimization under white noise ut, and at least a trivariate optimization when ut is
VAR. We propose

√
n-consistent and asymptotically normal estimates that require

only univariate optimizations.
The basic structure of the estimates of ν is described in the following section.

Section 3 provides asymptotic theory in case γ and δ are known. Section 4 considers
estimation of γ and δ and the effect on estimating ν. Section 5 contains Monte Carlo
evidence of finite sample behaviour, and Section 6 several empirical applications.

4



2. Estimation of ν

We can write (1) as

zt(γ, δ) = ζxt(γ)ν + u
#
t , (10)

where we introduce the notation

vt(c) = ∆
cv#
t , (11)

for a generic sequence vt, and define

zt(c, d) = (yt(c), xt(d))
0, ζ = (1, 0)0. (12)

We take ut to be generated by the VAR

ut =

pX
j=1

Bjut−j + εt, (13)

where all zeros of det{I2 −
Pp
j=1Bjz

j} lie outside the unit circle, the Bj being 2× 2
matrices, and Ir the r×r identity matrix, while εt is a bivariate sequence, uncorrelated
and homoscedastic over t, with mean zero and covariance matrix Ω. We take (13) to
mean white noise ut when p = 0.
From (10) and (13) we have

zt(γ, δ)−
pP
j=1

Bjzt−j(γ, δ) = ν

(
ζxt(γ)−

pP
j=1

Bjζxt−j(γ)

)
+ ε+

t , t ≥ 1, (14)

where

ε+
1 = u1,

ε+
t = ut −

t−1P
j=1

Bjut−j , t = 2, ..., p, (15)

ε+
t = εt, t > p.

Denote by Bij the ith row of Bj . Writing εit for the ith element of εt, for t > p, the
second equation of (14) can be written as

xt(δ)−
pP
j=1

B2jzt−j(γ, δ) = −ν
pP
j=1

B2jζxt−j(γ) + ε2t, (16)

whence the first equation can be written as

yt(γ) = νxt(γ)+ρxt(δ)+
pP
j=1

(B1j − ρB2j) zt−j(γ, δ)−ν
pP
j=1

(B1j − ρB2j) ζxt−j(γ)+ε1.2,t,

(17)
where ε1.2,t = ε1t − ρε2t, ρ = E(ε1tε2t)/E(ε

2
2t); (17) is a form of error-correction

representation.
We wish to cater for the possibility of prior zero restrictions on the Bj which serve

to eliminate some yt−j(γ), xt−j(γ), xt−j(δ), as this will improve efficiency. Thus we
introduce a q × (3p + 2) matrix, which is I3p+2 when there are no such restrictions,
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but for q < 3p + 2, Q is formed by dropping rows corresponding to the restrictions.
Thus we can write (17) as

yt(γ) = θ
0QZt(γ, δ) + ε1.2,t, (18)

where
Zt(c, d) =

¡
xt(c), xt(d), w

0
t−1(c, d), ..., w

0
t−p(c, d)

¢0
, (19)

wt(c, d) = (xt(c), xt(d), yt(c))
0
. (20)

Since E(ε1.2,tZt(γ, δ)) = 0, we consider the (possibly constrained) least squares
estimate bθ(c, d) = G(c, d)−1g(c, d), (21)

taking (c, d) = (γ, δ), (γ,eδ), (eγ, δ) or (eγ,eδ), depending on whether γ and/or δ are
known or estimated by eγ,eδ, and

G(c, d) = Q
1

n

nP
t=p+1

Zt(c, d)Z
0
t(c, d)Q

0, g(c, d) = Q
1

n

nP
t=p+1

Zt(c, d)yt(c). (22)

For example, in case p = 1, if u1t is white noise while u2t is AR(1), then q = 3 and
(17) becomes

yt(γ) = νxt(γ) + ρxt(δ)− ρB221xt−1(δ) + ε1.2,t, (23)

where B22j is the second element of B2j . Notice that ν, ρ and B221 are all identified
in (23), but it is apparent from comparison of (17) with (18) that in general, while
ν and ρ are expected to be identified, only some elements of the Bj are. However,
we are treating the Bj as nuisance parameters, indeed it is principally ν that is of
interest, so we stress bν(c, d) = 10G(c, d)−1g(c, d), (24)

where 1 = (1, 0, ..., 0)0.
The representation (17) is of error-correction type and in case p = 0, bν(γ, δ) actu-

ally provides the Gaussian MLE of ν, given knowledge of γ, δ but lack of knowledge
of Ω. For p ≥ 1, it is less efficient than the MLE for this case, but still n1/2-consistent
and computationally considerably simpler. Notice that over-specification of p results
in a further efficiency loss, but under-specification of p produces inconsistency. In
moderate sample sizes, a modest choice of p, even p = 1, might thus be a wise precau-
tion. On the other hand, one could also regard (13) as approximating a more general
infinite AR process with nonparametric I(0) autocorrelation.

3. Asymptotic Theory with Known γ, δ

The present section establishes the n1/2-consistency and asymptotic normality ofbθ(γ, δ), and hence of bν(γ, δ). We assume in addition to the description of (13) that
the εt are stationary and ergodic with finite fourth moment, satisfying also

E (εt| Ft−1) = 0, E (εtε
0
t| Ft−1) = Ω (25)

almost surely, where Ft is the σ-field of events generated by εs, s ≤ t, and also assume
that conditional (on Ft−1) third and fourth moments and cross-moments of elements
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of εt equal the corresponding unconditional moments. Thus, the εt essentially behave
like an iid sequence up to 4th moments. Now, noting from (1) that

xt(γ) =
t−1P
j=0

aj(β)u2,t−j , t > 0; = 0, t ≤ 0, (26)

define

xt(γ) =
∞P

j=max(t,0)

aj(β)u2,t−j , ext(γ) = xt(γ) + xt(γ), (27)

so that because of (9), ext(γ), t = 0,±1, ..., is a covariance stationary sequence. Like-
wise, so is eyt(γ) = νext(γ) + u1t, (28)

as is u2t. Now define

ewt = (ext(γ), u2t, eyt(γ))0 , eZt = ¡ext(γ), u2t, ew0t−1, ..., ew0t−p¢0 , (29)

Φ = E( eZt eZ0t), Ψ = E
³
ε2

1.2,t
eZt eZ0t´ . (30)

The proof of the following theorem is left to Appendix A.

Theorem 3.1 As n→∞
n1/2

nbθ(γ, δ)− θo→d N
¡
0, (QΦQ0)−1QΨQ0(QΦQ0)

¢−1
, (31)

and the covariance matrix on the right hand side is consistently estimated by

G(γ, δ)−1K(γ, δ)G(γ, δ)−1, (32)

where

K(c, d) = Q
1

n

nP
t=p+1

bε2
1.2,t(c, d)Zt(c, d)Z

0
t(c, d)Q

0, (33)

in which bε1.2,t(c, d) = yt(c)− bθ(c, d)0QZt(c, d). (34)

Remark 3.1 For p ≥ 1, bν(γ, δ) is inefficient relative to the Gaussian MLE. Over-
parameterization in the Bj results in further loss of efficiency in estimation of ν.
Consider the case where, in the estimation, the Bj are taken to be diagonal, with also
u1t white noise and u2t AR(p), to extend (23). Then, if in fact u2t is also white noise
the limiting variance of n1/2{bν(γ, δ)− ν} is

ω2
1.2/

∞P
j=p+1

a2
j(β), (35)

where ω2
1.2 = E(ε

2
1.2,t); (35) is increasing in p. As a simpler alternative to (33), (34),

we can consistently estimate (35) by

bω2
1.2(γ, δ) (1

0G(γ, δ)1)−1
, (36)

where bω2
1.2(γ, δ) =

1

n

nP
t=p+1

bε2
1.2,t(γ, δ). (37)
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Note that (35) and (36) also apply in case p = 0 is correctly taken in the estimation,
when bν(γ, δ) is equivalent to the Gaussian MLE, and (35) becomes

ω2
1.2/

½
2−4β

π
B (1/2− β, 1/2− β)− 1

¾
. (38)

Note also that (35) and (38) do not depend on fourth cumulants of εt. However,
if in fact ut is not white noise, the limiting variance of n

1/2{bν(γ, δ) − ν}, namely
10(QΦQ0)−1QΨQ0(QΦQ0)−11 (see (31)), in general depends on the fourth cumulant
of ε1.2,t, ε1.2,t, ε2t and ε2t, though of course this is zero under Gaussianity.

Remark 3.2 On the other hand, under-parameterization of the Bj produces incon-
sistency of bν(γ, δ), as when ut is actually AR(p + 1). In this connection, note that
Robinson and Hualde (2000) considered the Gaussian MLE for β > 1/2 in case of
a far more general parametric class than (13). We can view (13) more informally,
as approximating an actual, unknown, time series model in the hope that bias is de-
creasing in p, a statement which can likely be justified in a rigorous way by allowing
p to increase slowly with n. Our AR approach is computationally convenient, and is
in a long tradition of macroeconometric estimation of linear simultaneous equations
systems, as well as relating to Johansen’s (1991) approach to CI(1, 0) cointegration.
In case of ARMA models, over-parameterization of both AR and MA orders can have
more serious consequences than those discussed in Remark 3.1.

Remark 3.3 So long as p ≥ 1 and some Bj are non-diagonal, the endogeneity
property (6) holds even when Ω is diagonal, i.e. ρ = 0.

4. The Case of Unknown γ, δ

The main practical interest in fractional cointegration centres on the realistic situ-
ation in which γ and/or δ are unknown. We shall focus on the case where both γ and
δ are unknown, as being the most difficult both computationally and theoretically.
First, suppose that ut is correctly taken to be white noise, with unknown covari-

ance matrix Ω satisfying (6). Considering the Gaussian log-likelihood, both Ω and ν
can be concentrated out to leave an objective function of γ and δ. The resulting esti-
mates of γ and δ can then be plugged into (24). As mentioned in Section 1, asymptotic
theory under δ < 1/2 is a relatively standard extension of that for Gaussian estimates
in such models as stationary fractional ARIMAs. For fractional ARIMAs whose in-
tegration order is allowed to take nonstationary values, there has been difficulty with
the consistency proof (an essential preliminary to limit distribution theory, because
estimates are only implicitly defined). This is especially due to lack of uniformity of
convergence of the objective function around admissible values 0.5 less than the true
value of the integration order, as discussed by Velasco and Robinson (2000), who by
means of tapering, and a different definition of fractional nonstationarity from ours,
established

√
n-consistent and asymptotically normal frequency-domain estimation

of integration orders and other parameters in quite general univariate models, while
allowing the admissible set to be arbitrarily large. Tapering, however, inflates the
variance, while time domain estimates conveniently exploit the simple white noise or
VAR structure of ut, and seem natural for our definition of nonstationarity, and are
certainly justifiable if δ and γ are known to lie in intervals of length no greater than
1/2, for example (0, 1/2) or (1/2, 1].
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We propose estimates of γ, δ and ν that are
√
n-consistent and asymptotically

normal and require two univariate nonlinear optimizations, in place of one bivariate
one. Our procedure extends nicely to the VAR ut case, where after cancelling out Ω
and the Bj , the Gaussian MLE is a trivariate function; note that ν and the Bj are
involved bilinearly as well as linearly in (14).
Pursuing the case of white noise ut, i.e. p = 0 in (13), we can write the second

equation of (1) as
xt(δ) = ε2t, t ≥ 1. (39)

It is proposed to estimate δ by

eδ0 =argmin
d∈D

S0(d), (40)

for a compact set D and
S0(d) =

nP
t=1

x2
t (d). (41)

Then, we estimate γ by eγ0 =argmin
c∈C

T0(c), (42)

for a compact set C (presumably a subset of [0,eδ]) and
T0(c) =

nP
t=1

n
yt(c)− bν(c,eδ0)xt(c)− bρ(c,eδ0)xt(eδ0)

o2

, (43)

where bν(c, d) is given by (24), taking p = 0, and bρ(c, d) is the second element of bθ(c, d)
in this case. Notice that the presence of c as argument in yt(c), and indeed of d in
xt(d) of (41), presents no barrier to consistent estimation because, for example, yt(c)
involves c only in the coefficients of lagged values yt−1, yt−2, ..., not yt.
In case of VAR ut, we develop further the triangular structure of (1) by assuming

Bj is upper-triangular, j = 1, ..., p. (44)

This corresponds to a kind of causal structure, with yt formed from yt−1, yt−2, ... and
xt, xt−1, ..., but xt being determined by

xt(δ)− φ0RXt(δ) = ε2t, (45)

with
Xt(d) = (xt−1(d), ..., xt−p(d))0, (46)

and R an r × p matrix with R = Ip in case r = p but for r < p R is formed by
dropping specified rows from Ip, in case B22j = 0 for some j. The prescription (45)
includes the case of diagonal Bj , does not seem an excessive requirement given the
allowance for non-diagonal Ω, and introduces an element of parsimony.
Define bφ(d) = H(d)−1h(d), (47)

where

H(d) = R
1

n

nP
t=p+1

Xt(d)X
0
t(d)R

0, h(d) = R
1

n

nP
t=p+1

Xt(d)xt(d). (48)
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First, estimate δ by eδp =argmin
d∈D

Sp(d), (49)

where

Sp(d) =
nP

t=p+1

n
xt(d)− bφ(d)0RXt(d)o2

. (50)

Then, estimate γ by eγp =argmin
c∈C

Tp(c), (51)

where

Tp(c) =
nP

t=p+1

n
yt(c)− bθ(c,eδp)0QZt(c,eδp)o2

. (52)

As abbreviating notation, we denote throughout, for any p ≥ 0, eδ = eδp, eγ = eγp.
In the following theorem, we assume γ ∈ C, δ ∈ D and take the supports of C and D
to be of width less than 0.5 to avoid a difficulty described earlier in this section. The
proof is omitted as it is extremely complicated and lengthy, while not entailing any
novel difficulty.

Theorem 4.1 As n→∞

n1/2

 bν(eγ,eδ)− νeγ − γeδ − δ
→d N (0, ABA

0) , (53)

where A is a 3×(q+2) matrix and B is a (q+2)×(q+2) matrix, for which consistent

estimates bA and bB are presented in Appendix B.

Remark 4.1 Analytic formulae, in either the time or frequency domain, for A
and B are excessively complicated, and thus omitted. Note that the estimate bA bB bA0
provided by Appendix B is guaranteed non-negative definite.

Remark 4.2 As well as being useful in inference on ν, the theorem could also be
applied in inference on γ and δ, for example to set a confidence interval for β which
could be useful in judging the suitability of the weak cointegration specification (9).

Remark 4.3 On the other hand, our estimation procedure, though not our asymp-
totic theory, can also be used when β > 1/2, though alternative, possibly computa-
tionally more convenient, methods, are available here.

Remark 4.4 One approach, suggested in Robinson and Hualde (2000) when β > 1/2,
is the use of residuals from LSE or NBLSE estimates of ν in the estimation of γ.
However, these are always less-than-n1/2-consistent under (9), and so it appears that
the resulting estimates of γ will not achieve the essential n1/2-consistency needed to
provide an n1/2-consistent estimate of ν.

Remark 4.5 Even when ut is white noise, bν(eγ,eδ), eδ and eγ are inefficient relative
to the Gaussian MLE; intuitively, this is due to the estimation of δ from only the
second equation of (1) (i.e. (40)), whereas the first equation also contains relative
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information. However, the estimates can be updated to efficiency by a single Newton
step.

5. Monte Carlo Evidence

With the main aim of investigating the performance in finite samples of the es-
timates of ν proposed in the paper and associated rules of inference, and making
comparisons with the simplest estimate, the LSE, a Monte Carlo experiment was
carried out. In data generation from (1), (13), we took p = 1 throughout, with

B1 = diag {b1, b2} , (54)

where each of the bi was allowed to take each of the values 0, 0.5, 0.9. The case
b1 = b2 = 0 actually corresponds to p = 0 in (13), where ut is a white noise vector.
Likewise, b1 = 0, b2 6= 0 corresponds to (23). We have employed in (54) abbreviating
notation compared to (23), so b2 = B221. The εt in (13) were generated as Gaussian
with E(ε2

1t) = E(ε
2
2t) = 1 and E(ε1tε2t) = ρ, taking values -0.5, 0, 0.5, 0.75, via the

g05ezf routine of the Fortran NAG library. We varied ρ in order to assess possible
“simultaneous equation bias”, xt and u1t being orthogonal only when ρ = 0. We
employed four (γ, δ) combinations:

(γ, δ) = (0, 0.4) , (0.2, 0.4) , (0.4, 0.8) , (0.7, 1) , (55)

for all of which β < 1/2. Notice that variances of all estimates, both in finite samples
and asymptotically, will inevitably vary across parameter values. For example, be-
cause the E(ε2

it) are fixed throughout, E(ε
2
1.2,t) will decrease in |ρ|, while E(u2

it) will
increase in bi. Finite sample biases of our estimates will doubtless also be affected by
such variation, though in a more subtle manner. We took ν = 1.
For each combination of parameter values, 1000 series of {yt, xt} of lengths n =

64, 128, 256 were generated. Fractional series were generated as in (26), using a0 (α) =
1, aj+1 (α) = ((j + α)/(j + 1))aj (α), j ≥ 1, for α > 0. For each series, we computed
estimates of the following three types:
(i) The LSE,

ν0 =
nP
t=1
xtyt/

nP
t=1
x2
t . (56)

(ii) The Infeasible estimate νI = bν(γ, δ) based on correct specification and misspeci-
fication and/or over-specification.

(iii) The Feasible estimate νF = bν(eγ,eδ) based on correct specification and misspeci-
fication and/or over-specification.
By “correct specification” we mean that all prior zero restrictions on B1 in (54),

including the non-diagonal ones and any diagonal ones, are incorporated in the esti-
mation, but not equality restrictions. By “mis-specification” we mean that for b1 6= 0
and b2 6= 0 we took Zt (c, d) = (xt (c) , xt (d))0. By “over-specification” we mean that
for b1 = b2 = 0 we took Zt (c, d) =

¡
xt (c) , xt (d) , w

0
t−1 (c, d)

¢0
. Of course, knowledge

of ρ = 0 was never used. Table I records the convergence rates of the LSE and, under
the heading “optimal”, of νI , νF .
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TABLE I
CONVERGENCE RATES

(γ, δ) (0, 0.4) (0.2, 0.4) (0.4, 0.8) (0.7, 1)
Optimal n.5 n.5 n.5 n.5

LSE, ρ 6= 0 inconsistent inconsistent n.4 n.3

LSE, ρ = 0 n.5 n.5 n.4 n.3

We describe how eδ and eγ in νF were computed. In estimating δ, we fixed D =[bδ−
0.15,bδ + 0.15] in (49), where bδ is the version of the log periodogram estimate of
Geweke and Porter-Hudak (1983) proposed by Robinson (1995a), applied to the series
xt without pooling or trimming, based on bandwidths m = 20, 30, 60, corresponding
to n = 64, 128, 256, respectively in case u2t is assumed in the estimation to be white
noise, and on m = 10, 15, 30, corresponding to n = 64, 128, 256, in case u2t is assumed
in the estimation to be AR(1). In all cases, D contains the asymptotic 95% confidence
interval [bδ − 1.96s.e.(bδ),bδ + 1.96s.e.(bδ)], where s.e.(bδ) = π/

√
24m is the asymptotic

standard error of bδ (Robinson, 1995a). In estimating γ, we fixed C =[eδ−0.50,eδ−0.05]
in (51). The lower bound corresponds to the assumption β < 1/2. The upper bound
seems reasonable since a very small (less than 0.05) β is unlikely to be detectable,
indeed there is then near loss of identificability and very poor behaviour of estimates
of ν.
Tables 2-7 report Monte Carlo bias (defined as the estimate minus the true value)

of ν0, νI and νF , each table referring to a particular (b1, b2) combination with ei-
ther correct specification, mis-specification or over-specification. Only some of the
combinations covered in the experiment are included, in order to conserve in space.
Generally, νI performs best, followed by νF , with ν0 worst.
We discuss first the cases of correct specification (Tables 2-5). The overall ordering

is found in the full white noise case b1 = b2 = 0 (Table 2), and in the AR case (Tables
3-5) when ρ 6= 0, but not when ρ = 0 with b1 = b2 6= 0, where ν0 is best. For
b1 = b2 = 0.9, (γ, δ) = (0.7, 1) and small n, ν0 usually beats νF even when ρ 6= 0
(Table 3). For b1 = 0, b2 6= 0 (Table 4), we are close to the white noise outcome,
but when b1 6= 0, b2 = 0 the bias of ν0 decays very slowly, and is unacceptably large
when b1 = 0.9 (Table 5). Focusing now more on variation across (γ, δ), the bias of
νI decreases in β, as is the case for νF when b1 = b2 = 0. With AR structure, the
worst performance of νF is generally found for (γ, δ) = (0.2, 0.4) or (0.7, 1). As for
ν0, bias varies with collective memory γ+ δ when ρ = 0, but when ρ 6= 0, (0, 0.4) and
(0.2, 0.4) are the worst cases, unsurprisingly in view of the LSE’s inconsistency here.
Generally, νF works best under (0.4, 0.8). With respect to variation in ρ, overall,
the bias shares the sign of ρ in case of ν0, νI , but is opposite in case of νF . νI is
relatively insensitive to ρ, though for b1 = 0.9, b2 = 0 (Table 5), bias increases in |ρ|,
as is the case for ν0, but no clear pattern can be found in the results for νF , though
there is evidence of increase in bias with |ρ|. Looking at variation across (b1, b2), AR
structure tends to reduce bias in ν0 but increase it, and possibly change its sign, in
νI . For νF , the worst performances occur when b1 6= 0, but even here bias decays
rapidly as n increases, as it does also for νI .
Mis-specification (Table 6) has surprisingly little effect on νI , but seriously dam-

ages νF , especially when β is small, (0.7, 1) being clearly the worst case, though when
β = 0.4, bias decreases with n. As anticipated, over-specification (Table 7) makes
little difference to νI , νF , which do much better than ν0.
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Tables 8-11 contain Monte Carlo standard deviations for only a subset of the
combinations for which bias results were displayed. As noted before, variability is
considerably affected by parameter values, and the relative performance of ν0, νI and
νF can be illustrated by focusing on only few cases. In fact, ν0 was superior to νI
for most of the combinations, including those not displayed, with νF a poor third.
With correct specification, this was most notably the case for small n and b1 = b2 6= 0
(Table 9), in part due to the proliferation in regressors, five in νI and νF versus

one in ν0, with variability in eδ and eγ considerably inflating standard deviations of
νF relatively to those of νI . Precision also increases with increasing n, and when
one or both of the bi is zero (see Tables 8 and 10), the performance of νI and νF
improves relative to that of ν0. On the other hand, with over-specification (Table 11),
νI and νF unsurprisingly deteriorate further, and generally larger sample sizes will
be required in order for their faster convergence rate to consistently deliver smaller
standard deviations than ν0. Nevertheless, it must be borne in mind that the paper’s
motivation is not to minimise variance but rather to achieve n1/2-consistency and
asymptotic normality in a fairly general context, which the LSE ν0 does not provide.
We now go in to examine the usefulness of these limit distributional properties of

νI and νF in finite-sample statistical inference, by examining the size of Wald tests.
We computed

WI =
(νI − ν)2 n

[G(γ, δ)−1K(γ, δ)G(γ, δ)−1](1)

, WF =
(νF − ν)2 nh bA bB bA0i

(1)

, (57)

where [·](i) denotes ith diagonal element. Empirical sizes, with respect to nominal
sizes α = 0.05 and 0.1, again across 1000 replications, are reported in Tables 12-17,
for each of the (b1, b2) for which biases were given.
With correct specification, even for b1 = b2 = 0 (Table 12), the sizes of the

infeasible statistic WI are somewhat too large, and autocorrelation in ut exarcebates
this, with the case b1 6= 0, b2 = 0 again worse than b1 = 0, b2 6= 0, but not necessarily
worse than b1 = b2 6= 0 (Tables 13-15). Results for α = 0.1 are clearly better than
for α = 0.05. Overall, there is improvement as n increases, and even for small n,
the performance of WI seems quite satisfactory. Predictably, mis-specification (Table
16) plays havoc, producing sizes that are unacceptably high, especially for α = 0.05.
With over-specification, performance is again good, though we would not expect high
power.
For the feasible statistic WF , with correct specification and no autocorrelation

in ut (Table 12), sizes are worse than for WI , with less evidence of settling down
as n increases and varying more across parameter values, sometimes actually being
less than the nominal values. Indeed, with autocorrelation (Tables 13-15), sizes are
emphatically too small and mostly further from the nominal values than the corre-
sponding WI are in the opposite direction, though this is by no means always the
case, and for n = 64 and α = 0.05 the results are extraordinarily good. However, we
would not wish to draw over-optimistic general conclusions here, and certainly not
from Table 16, where the mis-specification so evident in the results for WI can barely
be seen in those for WF (though the superiority of WF is even more dramatic when
b1 = b2 = 0.9, for which results are not reported). With over-specification (Table 17),
WF mostly beats WI , especially when α = 0.05. It is possible that the performance
of WF relative to WI is not accidental because WI has an asymptotic formula in the
denominator. Certainly, our overall experience with WF is quite encouraging.
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While we have stressed estimation of ν, estimates of δ and γ would also be of
interest in any empirical analysis of fractional cointegration, and so we also give some
space to the performance of eδ and eγ, and of Wald tests for δ and γ based on Theorem
4.1.
Tables 18 and 19 report Monte Carlo bias and standard deviation for eδ for the

same values of δ (0.4, 0.8, 1), b2 (0, 0.5, 0.9) and n (64, 128, 256) as before, again
based on 1000 replications. However, we fix ρ = 0.5 here, using the same estimates
of eδ computed in this case for the feasible estimates νF and Wald statistics WF

discussed previously. We report results for minimization of both S0 (d) and S1 (d)
(see (41), (50)), so that S0 (d) with b2 = 0 and S1 (d) with b2 6= 0 both correspond to
correct specification, S1 (d) with b2 = 0 to over-specification, and S0 (d) with b2 6= 0
to mis-specification.
The biases based on S0 (d) and S1 (d) with b2 = 0 increase somewhat with δ, but

look satisfactory even for n = 64, and are decreasing in n. For S1 (d) with b2 = 0.5,
there is some deterioration, but nevertheless performance is still acceptable, but for
b2 = 0.9, the results are very poor, even for n = 256, though this is not too surprising
in view of the difficulties often caused by a near-unit root. Unsurprisingly, there is
severe bias, increasing with b2, when S0 (d) is used with b2 6= 0. Standard deviations
in the correctly specified and over-specified cases are pretty stable over δ, but, as
expected, worse in the latter case.
Tables 20 and 21 report Monte Carlo sizes of Wald statistics for δ

Wδ =
(eδ − δ)2nh bA bB bA0i

(3)

, (58)

based on Theorem 4.1, with respect to the nominal sizes α = 0.05, 0.1 respectively.
As expected, under mis-specification they are far too large, and this is also the case
using S1 (d) with b2 = 0.9. Otherwise, while still too large, they are not bad, and
decrease in n, the ones for α = 0.1 being best.
Tables 22-25 give corresponding results for eγ, with b1 = b2 = b taking values 0,

0.5, 0.9, and for the four (γ, δ) combinations considered previously. Our estimation
procedure being sequential, we consider two categories, S0 (d) followed by T0 (c) (43),
and S1 (d) followed by T1 (c) (52), so that in the former case there is correct specifi-
cation for b = 0 and mis-specification for b 6= 0, and in the latter, over-specification
for b = 0 and correct specification for b 6= 0. The bias and standard deviation results
of Tables 22 and 23 exhibit somewhat some variation across (γ, δ), but otherwise the

qualitative conclusions for eδ still apply. With the Wald statistic
Wγ =

(eγ − γ)2nh bA bB bA0i
(2)

, (59)

more variation in sizes is also found, in Tables 24 and 25, than for Wδ, some of the
sizes being smaller than the nominal ones.

6. Empirical Examples

Using a methodology involving the LSE and NBLSE of ν, and semiparametric es-
timates of ν, Robinson and Marinucci (1997) found evidence that β < 1/2 in some of
the bivariate macroeconomic series originally examined by Engle and Granger (1987),
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Campbell and Shiller (1987), who were investigating only the possibility of CI (1, 0)
cointegration. This experience motivates application of our present approach to the
same data. The main departure from the methodology of the previous section was an
attempt at greater realism by determining p in (13) from the data, rather than assum-
ing its value a priori. For this purpose, we need proxies for the uit, which can only
be obtained by operating on the observed yt, xt, series with preliminary estimates of
ν, γ and δ. To estimate ν here we used the LSE ν0, given by (56) (and computed
by Robinson and Marinucci (1997)). To estimate γ and δ, we used semiparamet-
ric estimates (already computed by Robinson and Marinucci (1997), Marinucci and
Robinson (2001)) in order to provide robustness against a range of short-memory
specifications for ut. Specifically, the estimates of γ and δ computed by these authors
were of log periodogram (LP) and semiparametric Gaussian (SG) type (of the precise
form considered by Robinson (1995a,b), using various bandwidths and based either
on raw data/residuals or on first differenced ones followed by adding back 1. For
asymptotic theory under stationarity we appeal to Robinson (1995a,b), and under
nonstationarity, to Velasco (1999a,b). For preliminary estimates of γ, δ, ν, sample
correlograms and partial correlograms were computed (to lag length 36) in order to
identify, in the spirit of Box and Jenkins (1971), the AR orders of the uit. For each
data set, this was done for both the smallest and largest of the various univariate es-
timates based on the series xt/residuals provided by Robinson and Marinucci (1997),
Marinucci and Robinson (2001), and implications of both provided when the results
could not be reconciled, recognizing the imprecision in semiparametric estimation.
We also took this opportunity to examine another question which in one form

or another always arises with application of fractional models, and perhaps most
acutely when nonstationary data are involved. This is the matter of truncation.
When estimated innovations from a stationary fractional model are computed, the
(infinite) AR representation has to be truncated because the data begins at time “1”,
not at time “−∞”. Now in our model (1) for nonstationary data, the truncation
is actually inherent in the model, so strictly speaking there is no “error” associated
with it. However, the model reflects the time when the data begins, and if we were
to drop the first observation, say, and start the model off at the next one, the degree
of filtering applied to all subsequent observations would change, and it is possible
that this could have a marked effect, especially with nonstationary data, even though
filtering is here applied after demeaning. To check for stability with respect to this
phenomenon, we thus report computations based on the last n0 = n− j observations,
for j = 0, 1, ..., 10.
We look first at Engle and Granger’s (1987) quarterly consumption and income

data, 1947Q1-1981Q2 (n = 138). They found evidence of CI (1, 0) cointegration, but
did not investigate fractional possibilities. Marinucci and Robinson’s (2001) analysis
tends to support the notion of δ = 1, but not of γ = 0, with positive estimates of
γ that sometimes fall in the nonstationary region, thereby hinting that β < 1/2 is
possible.
Taking y=consumption, x=income, the LSE of ν, from Robinson and Marin-

ucci (1997), is 0.229. The two preliminary estimates of δ taken from Marinucci and
Robinson (2001) were 0.89 (LP applied to first differences of x and adding back 1,
with bandwidth 22) and 1.08 (SG applied to first differences of x and adding back 1,
with bandwidth 40). In each case, the corresponding correlograms and partial correl-
ograms suggested modelling u2t as white noise. The preliminary estimates of γ were
0.19 (LP applied to raw residuals with bandwidth 22) and 0.87 (SG applied to first
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differenced residuals and adding back 1, with bandwidth 40). This large gap results
in identification of an AR(1) u1t in the first case, and white noise u1t in the second.
In view of these investigations, we carried out two distinct cointegration analyses, one
with p = 0 in (13), the other with p = 1 in (13) with B1 = diag (b1, 0).
In case u1t and u2t are both white noise, Table A reports values of the following

statistics with n replaced by n0 = n − j, j = 0, ..., 10: bν = bν(eγ,eδ), eδ, eγ, and their
estimated standard errors SE(bν), SE(eδ), SE(eγ) from Theorem 4.1, bρ = bρ(eγ,eδ), which
is the estimated coefficient of xt(eδ) in (17) for p = 0 with eγ, eδ, replacing γ, δ, and the
correlation Corr (ε1t, ε2t) is estimated by

r = bρ(eγ,eδ)(bσ22/bσ11)
1
2 , (60)

where bσ11 = n
−1
X0

t

³
yt(eγ)− bν(eγ,eδ)xt(eγ)´2

, bσ22 = n
−1
X0

t
x2
t (
eδ), (61)

with
P0
t meaning summation over the last n

0 observations.
As n0 falls, bν and eδ tend to increase, and eγ to decrease, but there is high stability

for n0 ≤ 133, and generally the changes are insignificant relative to standard errors, bν
for n0 = 128 being one standard error larger than bν for n0 = 138 (and also somewhat
larger than the LSE). The estimates of δ and γ are certainly consistent with β <
1/2. More especially, exploiting the standard errors provided by our approach, the
hypothesis that δ = 1 seems rejectable against δ > 1, but (though we do not report

standard errors of eβ = eδ−eγ, which could be computed using Theorem 4.1) there is no
evidence against β < 1/2. Substantial negative contemporaneous correlation between

u1t and u2t is suggested. Note that dropping the first observation does not affect eδ,
as x1 (d) = x1 for any d.

TABLE A
Consumption and Income: ut white noise

n0 138 137 136 135 134 133 132 131 130 129 128bν .223 .222 .251 .252 .251 .248 .247 .242 .243 .245 .246
SE(bν) .027 .031 .024 .022 .023 .022 .023 .021 .022 .023 .023eδ 1.07 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18

SE(eδ) .028 .028 .059 .068 .073 .080 .083 .082 .083 .082 .084eγ .714 .745 .715 .692 .694 .696 .696 .685 .692 .694 .693
SE(eγ) .084 .092 .087 .087 .089 .090 .090 .089 .093 .093 .093bρ -.024 -.055 -.085 -.090 -.090 -.086 -.085 -.072 -.073 -.073 -.074
r -.195 -.189 -.297 -.311 -.310 -.294 -.285 -.247 -.251 -.250 -.253

The analysis with u1t AR(1) in Table B presents a very different picture. Here, we

also report bb1 and cνb1, which are the estimated coefficients of yt−1(eγ) and −xt−1(eγ)
in the regression (cf. (17)) used to compute bν and bρ, and bσ11 in r is now the sample

average of the squared residuals from the regression of yt(eγ)−bν(eγ,eδ)xt(eγ) on yt−1(eγ)−bν(eγ,eδ)xt−1(eγ). In view of the AR(1) component, we effectively lose one observation,
so n0 goes from 127 to 137, the effect of then dropping the first observation being
very striking, but the estimates subsequently exhibiting little variation across n0. As
u2t is still considered a white noise, the estimates of δ are identical to those of Table
A, but estimates of γ are all now less than zero, although not significantly, Engle
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and Granger’s (1987) CI (1, 0) conclusion now being supported. The AR component
in u1t clearly accounts for the bulk of the autocorrelation in cointegrating errors,
resulting in the small estimates of γ, which are based on AR-transformed data. The
MLE, which estimates γ simultaneously with b1 and the other parameters, would
allow AR and fractional features to compete more favourably, though, as discussed in

the Introduction, it would require much heavier computation. Notice that cνb1 looks
quite consistent with the values of bν and bb1, possibly providing some support for the
present specification. Note also that the various bν are larger than before, but that,
if indeed β > 1/2, their standard errors have to be interpreted with caution, as bν is
then no longer asymptotically normal.

TABLE B
Consumption and Income: u1t AR(1), u2t white noise

n0 137 136 135 134 133 132 131 130 129 128 127bν .163 .257 .264 .267 .263 .265 .258 .261 .262 .263 .262
SE(bν) .179 .055 .054 .057 .053 .056 .051 .056 .055 .055 .054eδ 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18 1.18

SE(eδ) .028 .059 .068 .073 .080 .083 .082 .083 .082 .084 .084eγ -.101 -.167 -.183 -.184 -.184 -.179 -.193 -.180 -.184 -.189 -.186
SE(eγ) .234 .187 .181 .183 .185 .193 .180 .193 .192 .191 .192bb1 .798 .843 .842 .839 .837 .832 .845 .842 .842 .842 .843cνb1 .116 .221 .228 .230 .226 .226 .223 .225 .226 .227 .226bρ .009 -.088 -.102 -.104 -.102 -.105 -.093 -.096 -.094 -.095 -.094
r .009 -.128 -.122 -.119 -.126 -.127 -.128 -.128 -.119 -.117 -.121

Engle and Granger (1987) found no evidence of CI (1, 0) cointegration between
logM1 (y) and logGNP (x), on the basis of 90 quarterly observations, 1959Q1-
1981Q2. Marinucci and Robinson’s (1997) fractional analysis admitted the possibility
of cointegration, with β < 1/2. In our preliminary analysis of autocorrelation in ut,
we took from their estimates of δ the values 1.22 (SG applied to first differences of
x and adding back 1, using bandwidth 30) and 1.36 (LP applied to first differences
of x and adding back 1, using bandwidth 22), and from their estimates of γ the
values 0.76, 1.2, both LP estimates but applied respectively to raw residuals using
bandwidth 22, and first differences of residuals and adding back 1, using bandwidth
16. Employing also the LSE of ν, 0.643, we found no evidence of autocorrelation in
ut, so proceeded to a cointegration analysis on the basis of p = 0 in (13). The results
are reported in Table C. We found large variation across the largest n0, but a good
degree of stability is then achieved, with substantially larger values of eδ and eγ (and
of their standard errors). Clearly, eδ significantly exceeds 1, while eγ does not, and
the resulting eβ = eδ − eγ are extremely close to the threshold value of 1/2. There is
considerable negative correlation between u1t and u2t, and for the smaller n

0, bν is
close to the LSE.
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TABLE C
LogM1 and LogGNP: ut white noise

n0 90 89 88 87 86 85 84 83 82 81 80bν .704 .740 .578 .564 .608 .640 .638 .644 .643 .649 .658
SE(bν) .077 .145 .040 .058 .058 .054 .054 .061 .061 .061 .061eδ 1.06 1.06 1.91 1.88 1.74 1.63 1.64 1.63 1.63 1.61 1.59

SE(eδ) .057 .057 .025 .121 .117 .068 .083 .082 .086 .084 .076eγ .884 .928 1.12 1.16 1.11 1.09 1.09 1.11 1.10 1.10 1.09
SE(eγ) .108 .122 .121 .121 .131 .136 .138 .140 .140 .139 .139bρ -.134 -.222 -.261 -.268 -.315 -.352 -.350 -.379 -.376 -.391 -.408
r -.839 -.543 -.402 -.413 -.455 -.475 -.473 -.507 -.504 -.515 -.522

Finally, we looked at the n = 116 annual observations, 1871-1986, on stock prices
(y) and dividends (x), analysed by Campbell and Shiller (1987). Their findings with
respect to CI (1, 0) cointegration were inconclusive, but Robinson and Marinucci’s
(1997) and Marinucci and Robinson’s (2001) analyses again offered the possibility of
cointegration with β < 1/2. The preliminary estimates of δ taken from Marinucci
and Robinson (2001) were 0.86 and 0.95, being SG based on first differences of x and
adding back 1, with bandwidths respectively 30 and 40. The preliminary estimates of
γ were 0.57, 0.77, being LP on first differences of residuals and adding back one, with
bandwidth 30, and SG on raw residuals with bandwidth 22, respectively. We also
used the LSE of ν, 31. In this case, both γ estimates suggested white noise u1t, while
the δ estimates variously suggested white noise and AR(1) u2t, but our subsequent

fractional cointegration analysis produced eγ and eδ that were too close to admit the
likelihood of any cointegration. Thus, we report, in Table D, only the results with
both u1t and u2t white noise. There is little variation with n

0, and strong support for
the unit root hypothesis on δ, and, since eγ is significantly larger than 1/2 at the 5%
level, cointegration with β < 1/2 is certainly a possibility. We find that bν is somewhat
larger than the LSE value, though not significantly so.

TABLE D
Stock Prices and Dividends: ut white noise

n0 116 115 114 113 112 111 110 109 108 107 106bν 32.7 32.7 32.2 31.9 31.7 31.8 31.7 32.0 32.1 32.1 32.1
SE(bν) 7.56 7.64 7.80 7.83 7.81 7.93 7.91 7.99 8.02 7.99 8.01eδ 1.04 1.04 1.08 1.09 1.09 1.09 1.09 1.09 1.10 1.10 1.10

SE(eδ) .077 .077 .090 .092 .092 .092 .093 .093 .095 .095 .095eγ .749 .751 .751 .752 .751 .752 .752 .751 .749 .749 .749
SE(eγ) .114 .116 .116 .117 .116 .117 .117 .116 .116 .116 .116bρ -8.97 -9.52 -9.13 -8.82 -8.56 -8.67 -8.54 -8.52 -.8.64 -8.59 -8.69
r -.299 -.283 -.272 -.263 -.256 -.259 -.255 -.252 -.255 -.253 -.256

Appendix A: Proof of Theorem 3.1

We prove first that Φ is nonsingular, which ensures existence of the inverses in
(31). Define

Φ+ = E
³eZ+

t
eZ+0
t

´
, eZ+

t =
¡ ew0t, ew0t−1, ..., ew0t−p¢0 . (A.1)
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It clearly suffices to show that Φ+ is positive definite. Defining

Φ
+
= E

³
ZtZ

0
t

´
, Zt =

¡
w0t, w

0
t−1, ..., w

0
t−p
¢0
, (A.2)

for wt = (ext(γ), u2t, u1t)
0, from (28) it suffices to show that Φ

+
is positive definite,

and similarly, defining

Φ
++

= E
³
RZtZ

0
tR

0
´
, (A.3)

where R is a full rank 3 (p+ 1) × 3 (p+ 1) matrix whose columns are orthonormal
vectors such that

RZt = [x(γ)
0, u02, u

0
1]
0
, (A.4)

where x(γ) = (ext(γ), ..., ext−p(γ))0, u2 = (u2t, ..., u2,t−p)
0, u1 = (u1t, ..., u1,t−p)

0, it
suffices to show that Φ

++
is positive definite. Define the vectors

e(λ) =
¡
1, eiλ, ..., eipλ

¢0
, d(λ) = (1− eiλ)−βe(λ), (A.5)

and the 3(p+ 1)× 2 matrix

E(λ) =

·
00 00 e(λ)0

d(λ)0 e(λ)0 00

¸0
, (A.6)

where 00 is here a 1 × (p + 1) vector of zeros. Define by f(λ) the spectral density
matrix of ut, and note from positive finiteness of Ω and finiteness of the Bj that the
smallest eigenvalue of the Hermitian matrix f(λ) is bounded from below by a positive
constant c, uniformly in λ. Then we can write

Φ
++

=

Z π

−π
E(λ)f(λ)E(−λ)0dλ, (A.7)

which for some c > 0 exceeds

c

Z π

−π
E(λ)E(−λ)0dλ = c

 A B 0
B0 Ip+1 0
0 0 Ip+1

 (A.8)

by a non-negative definite matrix, where 0, A and B are (p + 1)× (p + 1) matrices,
having (i, j)th elements 0,

P∞
`=0 a`a`+|i−j| and aj−i1(j ≥ i) respectively, with aj =

aj(β). It thus suffices to show that A−BB0 is positive definite. But for a (p+1)× 1
vector ζ = (ζi),

ζ 0(A−BB0)ζ =
∞P̀
=1

¡
a`ζp+1 + ...+ a`+pζ1

¢2
, (A.9)

which is positive unless ζ = 0 because a`/a`−1 = (` + β − 1)/` is strictly increasing
in ` ≥ 1 for β < 1.
We now have to show that

1

n

P 0Zt(γ, δ)Z0t(γ, δ) → pΦ, (A.10)

n−1/2P 0Zt(γ, δ)ε1.2,t → dN(0,Ψ), (A.11)
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writing
P 0 =

Pn
t=p+1. To prove (A.11), note first that it suffices to show

n−1/2P 0 eZtε1.2,t →d N(0,Ψ), (A.12)

because

E
°°°n−1/2P 0

n
Zt(γ, δ)− eZto ε1.2,t

°°°2

≤ K

n

P 0E
°°°Zt(γ, δ)− eZt°°°2

≤ K

n

P 0 pP
j=1

Ex2
t−j(γ)

≤ K

n

P 0 pP
j=1

Z π

−π

¯̄̄̄
¯ ∞P
s=t−j

ase
−isλ

¯̄̄̄
¯
2

kf(λ)kdλ

≤ K

n

nP
t=1

∞P
s=t
a2
s → 0, (A.13)

as n → ∞, by the Toeplitz lemma, the last inequality following because f(λ) is
bounded due to the assumption on the B`. Write eZt = Zat + Zbt, where the first
two elements of Zat, and the last 3p elements of Zbt, equal corresponding ones of eZt.
Thus Zbt is Ft−1-measurable and

E
³
ε1.2,t

eZt) |Ft−1

´
= E (ε1.2,tZat) + ZbtE (ε1.2,t |Ft−1 ) = 0, a.s. (A.14)

Further,

E
³
ε2

1.2,t
eZt eZ 0

t |Ft−1

´
= E

¡
ε2

1.2,tZatZ
0
at

¢
+E

¡
ε2

1.2,tZat
¢
Z0bt

+ZbtE
¡
ε2

1.2,tZ
0
at

¢
+E(ε2

1.2,t)ZbtZ
0
bt, a.s., (A.15)

and so
1

n

P 0
h
E
n
ε2

1.2,t
eZt eZ0t |Ft−1

o
−E

n
ε2

1.2,t
eZt eZ0toi→p 0, (A.16)

because Zbt and ZbtZ
0
bt − E(ZbtZ0bt) are stationary and ergodic with zero means.

Since (A.15) has expectation Ψ, (A.12) then follows from the Cramer-Wold device
and Theorem 1 of Brown (1971), noting that the Lindeberg condition in the latter

reference is trivially satisfied because ε1.2,t
eZt is stationary with finite variance. Thus

(A.11) is proved. The proof of (A.10) follows from (A.13) and elementary inequalities.
This concludes the proof of (31). The proof of the final statement of the theorem is
omitted as it is standard given (31) and its proof.

Appendix B: Definition of Â and B̂

For brevity we write G̃ = G(γ̃, δ̃), θ̃ = θ̂(γ̃, δ̃), H̃ = H(δ̃), φ̃ = φ̂(δ̃).
We have

bA =
 â01 â2 â3

00 â4 â5

00 0 â6

 , (B.1)

where

â01 = 10G̃−1, â2 = −10θ̃cs̃−1
cc , (B.2)

â3 = 10θ̃cs̃−1
cc s̃cds̃

−1
dd − 10θ̃ds̃−1

dd , â4 = −s̃−1
cc , (B.3)

â5 = s̃−1
cc s̃cds̃

−1
dd , â6 = −s̃−1

dd , (B.4)
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in which

θ̃c = G̃−1
³
g̃c − G̃cθ̃

´
, θ̃d = G̃

−1
³
g̃d − G̃dθ̃

´
, (B.5)

g̃c = Q
1

n

P 0
n
Ztc(γ̃)yt(γ̃) + Zt(γ̃, δ̃)ytc(γ̃)

o
, (B.6)

G̃c = Q
1

n

P 0
n
Ztc(γ̃)Z

0
t(γ̃, δ̃) + Zt(γ̃, δ̃)Z

0
tc(γ̃)

o
Q0, (B.7)

g̃d = Q
1

n

P 0Ztd(δ̃)yt(γ̃), (B.8)

G̃d = Q
1

n

P 0
n
Ztd(δ̃)Z

0
t(γ̃, δ̃) + Zt(γ̃, δ̃)Z

0
td(δ̃)

o
Q0, (B.9)

with

ytc(γ̃) = log(1− L)yt(γ̃), (B.10)

Ztc(γ̃) = log(1− L) {xt(γ̃), 0, xt−1(γ̃), 0, yt−1(γ̃), ..., xt−p(γ̃), 0, yt−p(γ̃)}0 ,
(B.11)

Ztd(eδ) = log(1− L)
n
0, xt(eδ), 0, xt−1(eδ), 0, ..., 0, xt−p(eδ), 0o0 , (B.12)

and where escc = 1

n

P 0ṽ2
tc, escd = 1

n

P 0ṽtcṽtd, esdd = 1

n

P 0w̃2
td, (B.13)

with

ṽtc = ytc(γ̃)− θ̃0cQZt(γ̃, δ̃)− θ̃
0
QZtc(γ̃), (B.14)

ṽtd = −θ̃0dQZt(γ̃, δ̃)− θ̃
0
QZtd(δ̃), (B.15)

w̃td = xtd(δ̃)− φ̃0dRXt(δ̃)− φ̃
0
RXtd(δ̃), (B.16)

xtd(δ̃) = log(1− L)xt(δ̃), (B.17)

Xtd(δ̃) = log(1− L)Xt(d̃), (B.18)

φ̃d = H̃−1(h̃d − H̃dφ̃), (B.19)

h̃d = R
1

n

P 0
n
Xtd(δ̃)xt(δ̃) +Xt(δ̃)xtd(δ̃)

o
, (B.20)

H̃d = R
1

n

P 0
n
Xtd(δ̃)X

0
t(δ̃) +Xt(δ̃)X

0
td(δ̃)

o
R0. (B.21)

We also have

bB = 1

n

P 0

 ε̂1.2,t(γ̃, δ̃)QZt(γ̃, δ̃)

ε̂1.2,t(γ̃, δ̃)ṽtc
ε̂2t(δ̃)w̃td

 ε̂1.2,t(γ̃, δ̃)QZt(γ̃, δ̃)

ε̂1.2,t(γ̃, δ̃)ṽtc
ε̂2t(δ̃)w̃td

0 , (B.22)

where
ε̂2t(d) = xt(d)− φ̃0RXt(d). (B.23)
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TABLE 2
MONTE CARLO BIAS, b1 = b2 = 0, correct specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 -.006 -.005 -.007 -.001 -.001 -.003 -.001 -.002 .000
.2 .4 -.014 -.036 -.011 .000 -.004 -.005 -.003 -.009 .000

0 .4 .8 -.006 -.002 -.015 -.001 -.002 -.009 -.001 -.001 -.002
.7 1 -.009 -.024 -.031 .000 -.002 -.023 -.002 -.003 -.005
0 .4 .001 -.117 .337 .005 -.032 .320 .003 -.009 .308
.2 .4 -.001 -.268 .394 .009 -.143 .384 .006 -.071 .376

.5 .4 .8 .001 -.124 .192 .005 -.029 .155 .003 -.009 .120
.7 1 .000 -.246 .214 .006 -.074 .182 .004 -.024 .143
0 .4 .000 .104 -.338 -.002 .031 -.320 -.003 .007 -.307
.2 .4 .000 .212 -.401 -.005 .137 -.387 -.010 .061 -.377

-.5 .4 .8 .000 .091 -.193 -.002 .027 -.151 -.003 .007 -.120
.7 1 .000 .181 -.220 -.003 .065 -.176 -.006 .019 -.142
0 .4 .002 -.178 .511 .003 -.042 .481 .002 -.011 .460
.2 .4 .003 -.353 .599 .007 -.209 .578 .006 -.097 .562

.75 .4 .8 .002 -.177 .287 .003 -.043 .226 .002 -.010 .176
.7 1 .003 -.308 .315 .005 -.120 .258 .004 -.031 .206

TABLE 3
MONTE CARLO BIAS, b1 = b2 = 0.9, correct specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 -.026 -.150 -.014 -.016 .110 -.005 -.008 .025 .000
.2 .4 -.057 .028 -.027 -.033 -.038 -.012 -.009 .013 -.001

0 .4 .8 -.026 .019 -.025 -.016 .052 -.014 -.008 -.011 -.003
.7 1 -.036 -.012 -.043 -.022 -.153 -.030 -.008 .001 -.006
0 .4 .016 .050 .158 .004 -.023 .137 .005 -.003 .120
.2 .4 .028 -.094 .281 .010 .135 .267 .008 .086 .247

.5 .4 .8 .016 -.109 .140 .004 -.052 .116 .005 -.020 .090
.7 1 .019 -.287 .195 .006 -.191 .170 .006 -.034 .134
0 .4 -.015 -.001 -.161 -.003 -.025 -.136 -.005 .010 -.120
.2 .4 -.041 .130 -.293 -.008 -.023 -.266 -.006 -.140 -.248

-.5 .4 .8 -.015 .065 -.147 -.003 .024 -.113 -.005 .040 -.088
.7 1 -.024 .299 -.207 -.005 .121 -.166 -.006 .136 -.131
0 .4 .027 .037 .237 .010 -.025 .202 .007 .018 .176
.2 .4 .047 -.025 .421 .020 .093 .390 .010 .134 .364

.75 .4 .8 .027 -.194 .206 .010 -.038 .165 .007 .005 .129
.7 1 .034 -.483 .283 .013 -.270 .236 .008 -.116 .192
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TABLE 4
MONTE CARLO BIAS, b1 = 0, b2 = 0.5, correct specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 -.001 -.003 -.004 .001 .004 -.001 .001 .001 .000
.2 .4 .001 -.016 -.008 .004 -.001 -.003 .003 .009 .000

0 .4 .8 -.001 -.022 -.008 .001 .005 -.005 .001 .001 -.001
.7 1 .000 -.044 -.017 .002 .012 -.012 .002 -.001 -.002
0 .4 .006 .009 .142 .004 -.003 .129 .001 .001 .119
.2 .4 .016 .028 .201 .010 -.013 .189 .004 .000 .180

.5 .4 .8 .006 .010 .082 .004 .001 .067 .001 .001 .052
.7 1 .009 .002 .102 .006 -.006 .088 .002 -.004 .069
0 .4 -.001 .001 -.142 .000 .005 -.128 .000 .004 -.119
.2 .4 -.002 -.031 -.203 .001 .011 -.189 -.001 .021 -.181

-.5 .4 .8 -.001 -.003 -.083 .000 .008 -.065 .000 .004 -.052
.7 1 -.001 -.009 -.106 .000 .015 -.085 .000 .017 -.069
0 .4 .004 .005 .216 .002 .002 .192 .000 .000 .178
.2 .4 .011 .042 .305 .006 -.004 .283 .001 -.017 .269

.75 .4 .8 .004 .002 .123 .002 .000 .097 .000 .001 .076
.7 1 .006 -.012 .151 .003 -.018 .124 .001 -.010 .100

TABLE 5
MONTE CARLO BIAS, b1 = 0.9, b2 = 0, correct specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 .006 -.056 -.039 .005 .045 -.015 .005 .013 -.002
.2 .4 -.002 -.056 -.065 .009 .020 -.030 .005 -.001 -.005

0 .4 .8 .006 -.053 -.119 .005 .053 -.082 .005 .014 -.013
.7 1 .003 -.063 -.251 .006 .039 -.210 .005 .009 -.038
0 .4 .129 .325 .714 .052 .165 .740 .018 .050 .741
.2 .4 .258 .223 .970 .126 .141 1.07 .056 .061 1.12

.5 .4 .8 .129 .333 .994 .052 .167 .981 .018 .055 .854
.7 1 .177 .240 1.42 .079 .148 1.46 .032 .053 1.27
0 .4 -.118 -.457 -.758 -.040 -.144 -.755 -.014 -.043 -.746
.2 .4 -.264 -.403 -1.05 -.110 -.153 -1.11 -.054 -.094 -1.14

-.5 .4 .8 -.118 -.475 -1.05 -.040 -.143 -.965 -.014 -.045 -.852
.7 1 -.172 -.397 -1.51 -.066 -.159 -1.41 -.029 -.068 -1.26
0 .4 .167 .419 1.09 .065 .192 1.11 .022 .036 1.11
.2 .4 .363 .379 1.48 .172 .213 1.61 .079 .064 1.68

.75 .4 .8 .167 .423 1.48 .065 .191 1.42 .022 .036 1.25
.7 1 .242 .376 2.08 .106 .166 2.05 .043 .049 1.83
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TABLE 6
MONTE CARLO BIAS, b1 = b2 = 0.5, mis-specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 -.005 .003 -.008 .000 .000 -.003 .000 -.004 .000
.2 .4 -.010 -.027 -.016 .002 -.002 -.006 -.001 -.015 -.001

0 .4 .8 -.005 .009 -.017 .000 .001 -.010 .000 -.002 -.002
.7 1 -.007 -.004 -.033 .000 .005 -.024 .000 -.015 -.005
0 .4 .004 -.240 .240 .006 -.188 .222 .003 -.096 .208
.2 .4 .008 -.361 .337 .013 -.365 .326 .007 -.343 .314

.5 .4 .8 .004 -.352 .164 .006 -.230 135 .003 -.140 .105
.7 1 .005 -.808 .204 .008 -.842 177 .004 -.866 .140
0 .4 .000 .176 -.242 -.001 .174 -.221 -.003 .101 -.208
.2 .4 .000 .287 -.346 -.003 .356 -.328 -.009 .304 -.316

-.5 .4 .8 .000 .299 -.167 -.001 .244 -.132 -.003 .146 -.105
.7 1 .000 .790 -.212 -.002 .818 -.170 -.005 .883 -.138
0 .4 .004 -.318 .365 .003 -.217 .332 .002 -.117 .310
.2 .4 .009 -.500 .513 .008 -.564 .487 .006 -.493 .469

.75 .4 .8 .004 -.457 .244 .003 -.280 .196 .002 -.154 .154
.7 1 .006 -1.20 .300 .005 -1.18 .250 .003 -1.18 .201

TABLE 7
MONTE CARLO BIAS, b1 = b2 = 0, over-specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 -.032 -.138 -.007 -.006 .013 -.003 .007 .006 .000
.2 .4 -.036 .007 -.011 .023 .021 -.005 .027 .024 .000

0 .4 .8 -.032 -.091 -.015 -.006 .000 -.009 .007 -.001 -.002
.7 1 -.034 -.036 -.031 .003 .000 -.023 .014 -.009 -.005
0 .4 .006 .040 .337 .017 .044 .320 -.005 .014 .308
.2 .4 .021 -.122 .394 .061 .020 .384 .004 -.036 .376

.5 .4 .8 .006 .019 .192 .017 .021 .155 -.005 .007 .120
.7 1 .012 -.133 .214 .032 .043 .182 -.001 .008 .143
0 .4 .020 -.047 -.338 .013 .032 -.320 .021 .018 -.307
.2 .4 .065 -.129 -.401 .042 .137 -.387 .035 .086 -.377

-.5 .4 .8 .020 -.053 -.193 .013 .045 -.151 .021 .033 -.120
.7 1 .035 -.044 -.220 .022 .028 -.176 .026 .062 -.142
0 .4 -.018 .002 .511 .002 .086 .481 -.016 .001 .460
.2 .4 -.034 -.083 .599 .016 -.127 .578 -.021 -.124 .562

.75 .4 .8 -.018 -.016 .287 .002 .058 .226 -.016 -.013 .176
.7 1 -.023 -.118 .315 .007 -.051 .258 -.017 -.037 .206
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TABLE 8
MONTE CARLO S.D., b1 = b2 = 0, correct specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 .212 .383 .107 .128 .160 .073 .086 .092 .049
.2 .4 .489 1.03 .141 .310 .559 .105 .217 .318 .076

0 .4 .8 .212 .387 .171 .128 .159 .128 .086 .092 .093
.7 1 .305 .679 .322 .189 .323 .278 .130 .153 .214
0 .4 .184 .566 .112 .113 .218 .084 .073 .098 .063
.2 .4 .426 1.12 .136 .276 .650 .104 .187 .366 .078

.5 .4 .8 .184 .569 .160 .113 .194 .127 .073 .098 .092
.7 1 .266 .913 .283 .168 .376 .247 .112 .176 .192
0 .4 .178 .528 .109 .112 .227 .084 .076 .101 .065
.2 .4 .419 1.01 .131 .274 .614 .102 .193 .359 .077

-.5 .4 .8 .178 .485 .154 .112 .221 .122 .076 .103 .092
.7 1 .259 .758 .270 .167 .361 .237 .116 .185 .188
0 .4 .140 .711 .114 .087 .237 .091 .058 .102 .075
.2 .4 .328 1.08 .116 .213 .706 .092 .146 .426 .073

.75 .4 .8 .140 .734 .140 .087 .260 .111 .058 .101 .086
.7 1 .203 .973 .226 .129 .537 .188 .088 .197 .152

TABLE 9
MONTE CARLO S.D., b1 = b2 = 0.9, correct specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 1.06 4.16 .192 .553 2.10 .122 .306 1.43 .079
.2 .4 2.04 5.28 .354 1.10 3.06 .253 .634 1.93 .177

0 .4 .8 1.06 4.14 .282 .553 2.31 .191 .306 1.24 .120
.7 1 1.37 4.22 .483 .729 2.10 .370 .411 1.01 .249
0 .4 .901 3.38 .172 .472 2.18 .115 .266 1.23 .075
.2 .4 1.76 4.46 .319 .953 3.01 .233 .553 1.65 .161

.5 .4 .8 .901 3.51 .241 .472 2.15 .170 .266 1.19 .109
.7 1 1.17 4.10 .405 .625 2.39 .313 .358 1.02 .219
0 .4 .918 3.47 .164 .480 1.93 .112 .271 1.16 .075
.2 .4 1.78 5.12 .300 .961 2.85 .225 .557 1.67 .159

-.5 .4 .8 .918 3.73 .225 .480 1.90 .161 .271 1.09 .108
.7 1 1.19 3.82 .374 .633 2.15 .296 .363 1.26 .216
0 .4 .717 2.75 .138 .372 1.67 .093 .212 .946 .066
.2 .4 1.39 3.93 .248 .747 2.26 .179 .441 1.37 .131

.75 .4 .8 .717 3.22 .195 .372 1.52 .128 .212 .823 .088
.7 1 .930 3.38 .331 .491 1.83 .232 .286 .938 .169
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TABLE 10
MONTE CARLO S.D., b1 = 0.9, b2 = 0, correct specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 .666 2.08 .466 .399 1.22 .373 .239 .560 .280
.2 .4 1.14 2.65 .864 .711 1.66 .764 .443 .882 .615

0 .4 .8 .666 2.05 1.36 .399 1.20 1.18 .239 .567 .907
.7 1 .813 2.24 2.70 .496 1.33 2.60 .301 .655 2.09
0 .4 .615 2.06 .450 .358 1.09 .353 .205 .468 .262
.2 .4 1.09 2.55 .849 .657 1.62 .729 .408 .816 .585

.5 .4 .8 .615 2.15 1.24 .358 1.10 1.08 .205 .486 .816
.7 1 .768 2.25 2.38 .451 1.28 2.27 .268 .586 1.85
0 .4 .608 2.16 .434 .346 1.13 .338 .210 .510 .249
.2 .4 1.09 2.72 .831 .642 1.51 .714 .403 .903 .555

-.5 .4 .8 .608 2.21 1.18 .346 1.14 1.04 .210 .515 .818
.7 1 .761 2.34 2.23 .438 1.34 2.16 .270 .678 1.81
0 .4 .529 2.01 .383 .295 1.02 .297 .166 .349 .217
.2 .4 .986 2.67 .769 .590 1.55 .652 .362 .787 .508

.75 .4 .8 .529 2.05 .974 .295 .941 .835 .166 .359 .678
.7 1 .681 2.24 1.89 .391 1.13 1.72 .228 .521 1.44

TABLE 11
MONTE CARLO S.D., b1 = b2 = 0, over-specification

n 64 128 256
ρ γ δ νI νF ν0 νI νF ν0 νI νF ν0

0 .4 2.04 4.46 .107 1.19 2.23 .073 .748 .929 .049
.2 .4 4.03 6.98 .141 2.37 4.40 .105 1.52 2.70 .076

0 .4 .8 2.04 4.40 .171 1.19 2.24 .128 .748 .914 .093
.7 1 2.66 5.39 .322 1.56 3.38 .278 .988 1.59 .214
0 .4 1.74 3.22 .112 1.06 1.79 .084 .668 .907 .063
.2 .4 3.39 6.04 .136 2.12 3.90 .104 1.35 2.39 .078

.5 .4 .8 1.74 3.47 .160 1.06 1.72 .127 .668 .899 .092
.7 1 2.26 4.53 .283 1.40 2.85 .247 .881 1.44 .192
0 .4 1.78 3.55 .109 1.07 1.91 .084 .670 .925 .065
.2 .4 3.46 5.48 .131 2.14 3.92 .102 1.36 2.33 .077

-.5 .4 .8 1.78 3.42 .154 1.07 1.92 .122 .670 .971 .092
.7 1 2.30 4.52 .270 1.41 2.85 .237 .887 1.53 .188
0 .4 1.42 2.73 .114 .831 1.63 .091 .519 .651 .075
.2 .4 2.74 4.51 .116 1.67 3.24 .092 1.05 1.85 .073

.75 .4 .8 1.42 2.76 .140 .831 1.57 .111 .519 .636 .086
.7 1 1.83 3.48 .226 1.09 2.31 .188 .686 1.06 .152
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TABLE 12
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0, correct specification

α .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256

ρ γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .078 .061 .053 .056 .057 .059 .136 .122 .112 .094 .125 .114
.2 .4 .077 .045 .054 .032 .062 .034 .133 .083 .104 .072 .114 .069

0 .4 .8 .078 .059 .053 .055 .057 .059 .136 .125 .112 .087 .125 .114
.7 1 .076 .058 .058 .057 .053 .053 .134 .107 .105 .103 .120 .098
0 .4 .074 .057 .055 .061 .055 .065 .136 .089 .119 .092 .117 .111
.2 .4 .073 .105 .055 .082 .054 .079 .141 .153 .120 .128 .111 .112

.5 .4 .8 .074 .059 .055 .057 .055 .066 .136 .089 .119 .094 .117 .111
.7 1 .068 .088 .055 .076 .050 .069 .140 .125 .121 .117 .116 .109
0 .4 .076 .063 .072 .061 .068 .068 .124 .103 .124 .107 .122 .118
.2 .4 .076 .123 .059 .106 .058 .084 .134 .168 .117 .145 .130 .119

-.5 .4 .8 .076 .071 .072 .059 .068 .069 .124 .101 .124 .105 .122 .118
.7 1 .073 .102 .066 .086 .060 .078 .129 .144 .118 .142 .128 .117
0 .4 .075 .052 .059 .054 .063 .070 .136 .083 .112 .097 .116 .111
.2 .4 .073 .168 .058 .136 .069 .094 .143 .207 .113 .166 .116 .132

.75 .4 .8 .075 .049 .059 .054 .063 .073 .136 .083 .112 .097 .116 .110
.7 1 .076 .120 .060 .105 .064 .078 .143 .155 .113 .138 .110 .117

TABLE 13
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0.9, correct specification

α .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256

ρ γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .122 .038 .080 .035 .077 .025 .187 .066 .150 .064 .129 .053
.2 .4 .125 .033 .092 .023 .063 .024 .191 .069 .146 .051 .130 .050

0 .4 .8 .122 .032 .080 .033 .077 .033 .187 .068 .150 .068 .129 .064
.7 1 .125 .043 .079 .035 .075 .018 .192 .073 .146 .055 .122 .055
0 .4 .112 .027 .097 .031 .067 .030 .177 .054 .160 .064 .145 .063
.2 .4 .118 .035 .094 .042 .071 .055 .182 .069 .161 .084 .139 .096

.5 .4 .8 .112 .038 .097 .035 .067 .036 .177 .080 .160 .069 .145 .064
.7 1 .121 .048 .090 .039 .073 .055 .179 .075 .165 .070 .133 .081
0 .4 .114 .037 .092 .034 .084 .028 .184 .080 .161 .071 .132 .063
.2 .4 .109 .048 .098 .046 .074 .054 .180 .088 .158 .088 .138 .101

-.5 .4 .8 .114 .054 .092 .039 .084 .036 .184 .079 .161 .070 .132 .068
.7 1 .112 .060 .097 .044 .082 .053 .182 .089 .161 .072 .136 .093
0 .4 .115 .035 .100 .026 .079 .035 .185 .069 .161 .069 .151 .059
.2 .4 .107 .057 .096 .063 .081 .105 .188 .108 .162 .104 .146 .156

.75 .4 .8 .115 .047 .100 .033 .079 .033 .185 .073 .161 .062 .151 .061
.7 1 .112 .046 .101 .059 .079 .061 .181 .090 .159 .087 .141 .106
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TABLE 14
EMPIRICAL SIZES OF WI AND WF , b1 = 0, b2 = 0.5, correct specification

α .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256

ρ γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .069 .010 .067 .022 .059 .028 .113 .018 .122 .048 .106 .072
.2 .4 .066 .020 .064 .023 .065 .018 .114 .035 .120 .041 .112 .038

0 .4 .8 .069 .010 .067 .017 .059 .029 .113 .018 .122 .050 .106 .068
.7 1 .070 .015 .067 .027 .065 .023 .114 .034 .125 .054 .107 .062
0 .4 .062 .020 .054 .024 .049 .034 .124 .042 .115 .053 .105 .054
.2 .4 .061 .044 .053 .064 .049 .059 .127 .078 .110 .091 .103 .096

.5 .4 .8 .062 .019 .054 .022 .049 .037 .124 .039 .115 .051 .105 .057
.7 1 .066 .040 .051 .045 .047 .054 .127 .076 .118 .069 .102 .076
0 .4 .067 .017 .067 .018 .055 .033 .125 .033 .117 .045 .100 .059
.2 .4 .067 .053 .063 .063 .055 .059 .119 .082 .119 .095 .094 .088

-.5 .4 .8 .067 .013 .067 .019 .055 .031 .125 .035 .117 .046 .100 .054
.7 1 .067 .045 .066 .038 .058 .047 .122 .071 .120 .074 .103 .073
0 .4 .073 .024 .055 .025 .054 .022 .145 .037 .107 .053 .096 .043
.2 .4 .069 .108 .054 .126 .057 .113 .131 .158 .104 .164 .099 .151

.75 .4 .8 .073 .031 .055 .024 .054 .023 .145 .051 .107 .056 .096 .051
.7 1 .067 .082 .058 .055 .051 .065 .137 .117 .106 .096 .103 .106

TABLE 15
EMPIRICAL SIZES OF WI AND WF , b1 = 0.9, b2 = 0, correct specification

α .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256

ρ γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .097 .053 .086 .042 .071 .042 .162 .087 .157 .077 .125 .072
.2 .4 .090 .038 .091 .026 .077 .021 .166 .065 .150 .045 .127 .042

0 .4 .8 .097 .044 .086 .042 .071 .045 .162 .080 .157 .075 .125 .073
.7 1 .092 .039 .089 .035 .070 .030 .155 .068 .150 .068 .124 .056
0 .4 .112 .041 .073 .031 .053 .031 .165 .063 .141 .059 .101 .066
.2 .4 .097 .023 .078 .027 .064 .019 .161 .045 .139 .049 .120 .045

.5 .4 .8 .112 .043 .073 .030 .053 .031 .165 .063 .141 .058 .101 .062
.7 1 .109 .027 .082 .031 .060 .032 .164 .054 .147 .064 .110 .064
0 .4 .101 .051 .081 .033 .068 .030 .171 .082 .140 .062 .115 .062
.2 .4 .105 .031 .087 .023 .060 .021 .178 .059 .139 .046 .123 .031

-.5 .4 .8 .101 .051 .081 .034 .068 .030 .171 .081 .140 .060 .115 .061
.7 1 .101 .036 .086 .031 .061 .031 .175 .068 .140 .052 .119 .055
0 .4 .117 .032 .082 .024 .051 .021 .185 .053 .133 .052 .104 .051
.2 .4 .107 .028 .078 .026 .065 .024 .173 .044 .133 .042 .114 .043

.75 .4 .8 .117 .033 .082 .022 .051 .021 .185 .053 .133 .053 .104 .051
.7 1 .111 .030 .081 .028 .058 .029 .184 .059 .143 .053 .106 .054
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TABLE 16
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0.5, mis-specification

α .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256

ρ γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .258 .026 .245 .027 .248 .037 .344 .063 .319 .060 .325 .079
.2 .4 .242 .013 .214 .012 .229 .013 .327 .043 .296 .024 .310 .035

0 .4 .8 .258 .022 .245 .024 .248 .035 .344 .061 .319 .052 .325 .073
.7 1 .255 .019 .229 .006 .241 .017 .339 .042 .308 .029 .322 .031
0 .4 .264 .040 .246 .030 .248 .032 .356 .070 .324 .052 .324 .069
.2 .4 .245 .072 .230 .051 .224 .052 .341 .105 .303 .079 .317 .064

.5 .4 .8 .264 .033 .246 .028 .248 .029 .356 .054 .324 .046 .324 .070
.7 1 .253 .031 .239 .028 .239 .014 .347 .047 .306 .043 .325 .025
0 .4 .274 .033 .250 .026 .255 .030 .349 .067 .333 .053 .341 .068
.2 .4 .258 .077 .228 .053 .228 .047 .331 .117 .317 .080 .317 .073

-.5 .4 .8 .274 .031 .250 .024 .255 .024 .349 .058 .333 .046 .341 .070
.7 1 .270 .036 .243 .019 .233 .011 .343 .050 .331 .033 .334 .022
0 .4 .274 .035 .244 .024 .251 .025 .360 .057 .329 .043 .333 .064
.2 .4 .249 .119 .221 .079 .218 .054 .336 .155 .310 .099 .313 .071

.75 .4 .8 .274 .028 .244 .022 .251 .025 .360 .044 .329 .034 .333 .063
.7 1 .262 .041 .240 .032 .238 .010 .350 .051 .318 .040 .318 .013

TABLE 17
EMPIRICAL SIZES OF WI AND WF , b1 = b2 = 0, over-specification

α .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256

ρ γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .4 .078 .047 .061 .047 .050 .042 .127 .085 .115 .088 .100 .082
.2 .4 .072 .040 .054 .042 .047 .027 .135 .075 .107 .070 .086 .048

0 .4 .8 .078 .049 .061 .041 .050 .042 .127 .091 .115 .083 .100 .080
.7 1 .075 .049 .052 .037 .049 .033 .132 .083 .104 .074 .094 .074
0 .4 .068 .037 .063 .052 .056 .048 .124 .071 .118 .093 .105 .082
.2 .4 .071 .052 .064 .045 .061 .026 .113 .079 .116 .071 .110 .046

.5 .4 .8 .068 .039 .063 .050 .056 .047 .124 .071 .118 .088 .105 .083
.7 1 .065 .043 .056 .047 .060 .046 .120 .076 .110 .087 .110 .074
0 .4 .091 .057 .072 .048 .066 .048 .143 .087 .109 .093 .112 .095
.2 .4 .084 .051 .065 .049 .053 .021 .139 .088 .115 .080 .099 .056

-.5 .4 .8 .091 .054 .072 .051 .066 .051 .143 .092 .109 .090 .112 .100
.7 1 .088 .062 .067 .051 .058 .040 .137 .103 .112 .094 .105 .084
0 .4 .085 .052 .072 .047 .060 .047 .144 .087 .129 .081 .113 .085
.2 .4 .074 .051 .073 .057 .057 .026 .138 .099 .126 .084 .114 .045

.75 .4 .8 .085 .049 .072 .042 .060 .047 .144 .084 .129 .076 .113 .088
.7 1 .080 .056 .080 .051 .058 .044 .143 .093 .125 .093 .112 .090
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TABLE 18
MONTE CARLO BIAS of eδ, ρ = 0.5

n 64 128 256
estimation δ\b2 0 .5 .9 0 .5 .9 0 .5 .9

.4 -.023 .377 .795 -.011 .358 .818 -.005 .363 .833
S0 (d) .8 -.025 .328 .493 -.008 .332 .524 -.004 .343 .545

1 -.036 .227 .267 -.014 .232 .292 -.006 .236 .290
.4 -.045 .127 .662 -.029 .047 .595 -.015 .025 .570

S1 (d) .8 -.040 .105 .405 -.017 .048 .379 -.011 .029 .356
1 -.051 .047 .196 -.033 .015 .166 -.016 .007 .150

TABLE 19
MONTE CARLO S.D. of eδ, ρ = 0.5

n 64 128 256
estimation δ\b2 0 .5 .9 0 .5 .9 0 .5 .9

.4 .125 .135 .139 .082 .105 .104 .052 .073 .071
S0 (d) .8 .125 .145 .206 .082 .110 .203 .051 .079 .193

1 .122 .164 .217 .079 .139 .222 .050 .113 .211
.4 .253 .240 .259 .161 .171 .222 .093 .116 .172

S1 (d) .8 .257 .245 .275 .170 .174 .254 .095 .119 .232
1 .240 .224 .278 .163 .168 .249 .092 .116 .221

TABLE 20
EMPIRICAL SIZES (α = 0.05) OF Wδ, ρ = 0.5

n 64 128 256
estimation δ\b2 0 .5 .9 0 .5 .9 0 .5 .9

.4 .134 .902 1.00 .099 .968 1.00 .073 1.00 1.00
S0 (d) .8 .126 .839 .984 .095 .952 .993 .068 .997 1.00

1 .121 .611 .786 .082 .800 .923 .064 .918 .981
.4 .129 .140 .685 .103 .084 .741 .074 .063 .877

S1 (d) .8 .123 .125 .337 .115 .090 .424 .080 .058 .473
1 .088 .083 .141 .090 .048 .146 .069 .035 .177

TABLE 21
EMPIRICAL SIZES (α = 0.10) OF Wδ, ρ = 0.5

n 64 128 256
estimation δ\b2 0 .5 .9 0 .5 .9 0 .5 .9

.4 .188 .935 1.00 .147 .975 1.00 .122 1.00 1.00
S0 (d) .8 .191 .889 .989 .151 .970 .996 .123 .997 1.00

1 .177 .705 .851 .136 .856 .939 .111 .941 .983
.4 .190 .190 .752 .175 .127 .792 .129 .091 .930

S1 (d) .8 .186 .168 .397 .187 .129 .479 .137 .099 .529
1 .150 .116 .158 .150 .088 .182 .130 .066 .210
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TABLE 22
MONTE CARLO BIAS of eγ, ρ = 0.5, b1 = b2 = b

n 64 128 256
estimation γ δ\b 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 -.008 .420 .857 -.006 .413 .866 -.004 .414 .871
.2 .4 -.046 .372 .809 -.020 .388 .844 -.006 .407 .865

S0 (d), T0 (c) .4 .8 -.008 .405 .743 -.005 .409 .775 -.004 .413 .794
.7 1 -.034 .347 .494 -.015 .371 .520 -.006 .389 .523
0 .4 -.047 .094 .642 -.027 .024 .582 -.015 .001 .561
.2 .4 -.176 -.051 .481 -.103 -.098 .412 -.040 -.089 .376

S1 (d), T1 (c) .4 .8 -.043 .079 .414 -.020 .026 .387 -.013 .003 .343
.7 1 -.116 -.042 .173 -.070 -.058 .149 -.032 -.056 .115

TABLE 23
MONTE CARLO S.D. of eγ, ρ = 0.5, b1 = b2 = b
n 64 128 256

estimation γ δ\b 0 .5 .9 0 .5 .9 0 .5 .9
0 .4 .096 .106 .107 .067 .078 .079 .048 .057 .056
.2 .4 .106 .111 .111 .075 .085 .085 .051 .058 .058

S0 (d), T0 (c) .4 .8 .095 .110 .124 .066 .081 .107 .048 .058 .090
.7 1 .103 .113 .173 .074 .087 .177 .051 .061 .172
0 .4 .233 .220 .254 .133 .159 .224 .077 .115 .192
.2 .4 .266 .224 .270 .180 .179 .253 .094 .151 .233

S1 (d), T1 (c) .4 .8 .232 .220 .288 .142 .155 .265 .077 .114 .267
.7 1 .237 .216 .277 .159 .162 .241 .089 .134 .216

TABLE 24
EMPIRICAL SIZES (α = 0.05) OF Wγ , ρ = 0.5, b1 = b2 = b

n 64 128 256
estimation γ δ\b 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 .038 .979 1.00 .041 1.00 1.00 .051 1.00 1.00
.2 .4 .087 .939 1.00 .085 .995 1.00 .059 1.00 1.00

S0 (d), T0 (c) .4 .8 .039 .969 1.00 .040 1.00 1.00 .045 1.00 1.00
.7 1 .064 .917 .993 .076 .992 .998 .059 1.00 1.00
0 .4 .072 .098 .683 .039 .058 .722 .034 .033 .826
.2 .4 .096 .053 .455 .106 .077 .464 .090 .092 .505

S1 (d), T1 (c) .4 .8 .070 .084 .383 .047 .055 .412 .034 .032 .465
.7 1 .070 .061 .163 .060 .045 .152 .074 .058 .161

TABLE 25
EMPIRICAL SIZES (α = 0.10) OF Wγ , ρ = 0.5, b1 = b2 = b

n 64 128 256
estimation γ δ\b 0 .5 .9 0 .5 .9 0 .5 .9

0 .4 .075 .993 1.00 .081 1.00 1.00 .107 1.00 1.00
.2 .4 .151 .964 1.00 .128 .997 1.00 .111 1.00 1.00

S0 (d), T0 (c) .4 .8 .082 .984 1.00 .080 1.00 1.00 .108 1.00 1.00
.7 1 .122 .946 .997 .123 .995 .998 .123 1.00 1.00
0 .4 .116 .135 .733 .080 .088 .778 .064 .068 .890
.2 .4 .157 .094 .515 .179 .113 .520 .151 .143 .569

S1 (d), T1 (c) .4 .8 .120 .127 .427 .094 .087 .461 .062 .068 .512
.7 1 .112 .083 .191 .121 .075 .189 .129 .092 .195
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