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The study and characterization of the diversity of spatiotemporal patterns generated when a rectangular layer
of fluid is locally heated beneath its free surface is presented. We focus on the instability of a stationary cellular
pattern of wave number ks which undergoes a globally subcritical transition to traveling waves by parity-
breaking symmetry. The experimental results show how the emerging traveling mode �2ks /3� switches on a
resonant triad �ks ,ks /2,2ks /3� within the cellular pattern yielding a “mixed” pattern. The nature of this tran-
sition is described quantitatively in terms of the evolution of the fundamental modes by complex demodulation
techniques. The Bénard-Marangoni convection accounts for the different dynamics depending on the depth of
the fluid layer and on the vertical temperature difference. The existence of a hysteresis cycle has been evaluated
quantitatively. When the bifurcation to traveling waves is measured in the vicinity of the codimension-2
bifurcation point, we measure a decrease of the subcritical interval in which the traveling mode becomes
unstable. From the traveling wave state the system undergoes a global secondary bifurcation to an alternating
pattern which doubles the wavelength �ks /2� of the primary cellular pattern; this result compares well with
theoretical predictions �P. Coullet and G. Iooss, Phys. Rev. Lett. 64, 866 �1990��. In this cascade of bifurca-
tions towards a defect dynamics, bistability due to the subcritical behavior of our system is the reason for the
coexistence of two different modulated patterns connected by a front. These fronts are stationary for a finite
interval of the control parameters.
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I. INTRODUCTION

The experimental and theoretical study of the dynamics of
one-dimensional �1D� cellular patterns is still a subject of
great interest, especially when this research is devoted to
spatially extended systems. The simplicity of such systems,
combined with the theoretical approach by nonlinear dynam-
ics and critical phenomena, allows us to discover universal
mechanisms at the characteristic length scales without the
necessity of coping with the complex microscopic problem.
These 1D dynamics for spatially extended dissipative sys-
tems have been reported for a large variety of experiments
where the bifurcation scenario from a homogeneous pattern
can be a primary bifurcation either to a stationary cellular
pattern or to a traveling wave pattern. As the control param-
eter is increased the system may go through a secondary
bifurcation. Some of these experiments are the printer’s in-
stability �1,2�, circular liquid column arrays �3–5�, direc-
tional solidification �6�, directional viscous fingering �7�, the
Taylor-Dean system �8�, electroconvection in liquid crystals
with rectangular cell �9,10�, lateral heating in a rectangular
cell �11–15�, lateral heating in an annular cell �16�, 1D heat-
ing in a rectangular cell �17–24�, numerical simulations with
the stabilized Kuramoto-Sivashinsky equation �25,26�, and
the complex Ginzburg-Landau equation for subcritical stable
bounded solutions �27�.

The aim of this paper is the study of a dissipative ex-
tended system, a buoyant-thermo-capillary driven flow,
which undergoes a cascade of secondary bifurcations from a
stationary cellular state towards a defect dynamics. Certain
symmetries are broken in each bifurcation. Specifically, we

study experimentally the mode competition at the threshold
of a secondary instability to traveling waves. This convective
approach allows us to carry out experimental measurements
where the relevant magnitudes can be easily measured, with
the cost of relatively large time-scales required to achieve
asymptotic states.

Our system consists of a thin rectangular fluid layer of
silicone oil opened to the atmosphere with an inhomoge-
neous heating at the center and along a line placed at the
bottom. This experimental setup is intended to approach an
“ideal” quasi-1D thermoconvective system. The fluid dy-
namics is in the context of the Oberbeck-Boussinesq ap-
proximation for the applied range of temperatures. The
physically relevant control parameters are the vertical tem-
perature difference �Tv and the depth of the fluid layer d.

Without threshold, as soon as �Tv�0, a homogeneous
convective pattern �PC� appears: the fluid over the heater line
�HL� raises by the effect of the negative vertical temperature
gradient and it returns down near the cooling walls. There-
fore, a circulating flow at both sides of HL develops the
structure of two counter-rotating rolls whose axis are parallel
to the HL. As we increase the control parameter �Tv from
PC, this pattern will invariably remain for the subsequent
instabilities. For asymptotic time responses we can distin-
guish three fundamental patterns: a stationary cellular �ST�
pattern with wave number ks, a traveling wave �TW� pattern
consisting of one propagative wave with wave number
2ks /3, and an alternating �ALT� pattern consisting of two
traveling counterpropagative waves with wave numbers ks /2
plus the stationary one �a resonant triad�. Similar patterns
have been analyzed in a previous experimental setup �17�,
but with a less developed system. In this work, accuracy has
been improved by means of optical and data acquisition
systems.*javier@fisica.unav.es
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In 1990, Coullet and Iooss �28� �CI� classified the global
character of secondary bifurcations in 1D cellular systems
using a Bloch-Floquet analysis; and predicted ten generic
secondary instabilities. In this theory, there is a coupling be-
tween the phase of the basic pattern and the amplitude of the
unstable modes associated to the secondary bifurcation. On
the other hand, the phase-amplitude coupled equations ob-
tained with less restrictive symmetry arguments by Gil
�29,30� are suitable for experiments with analogous dynam-
ics, but six real and fifteen complex coefficients are neces-
sary to be determined experimentally.

We report the instability of a “mixed” pattern due to the
close position of the new emerging mode of the TW. This
mixed pattern �ST/ALT� consists of localized ALT domains
with fluctuating boundaries over ST. These results shed new
light on the role of two close competing oscillatory modes in
the onset of a subcritical transition to TW. These are the
emerging traveling mode and the nearest oscillatory one with
wave numbers 2ks /3 and ks /2, respectively. This relationship
does not fit into the classification made by CI, and this fact
could be the consequence of disregarding subcriticality. Sub-
criticality has been contemplated theoretically by Goldstein
�31� to explain the presence of drifting domains of broken
parity, although it had been attempted within the framework
of a doubling wavelength bifurcation. Another possibility,
regarding the wave number selection from the experimental
point of view, boundary conditions might modify the 1D
dynamics of the system by involving the other two spatial
directions. This last point will be discussed later on.

In the bistable regimes for two subsequent subcritical bi-
furcations to TW and ALT, we report on the existence of
normal fronts �32� that connect two stable states of the os-
cillatory type. These fronts are stationary and accordingly to
the results reported here, they are pinned to both modulated
patterns for a finite control parameters range. A similar front
dynamics linked to subcriticality has already been modelized
for binary fluids �33�, however, in this case pinning is pro-
duced between a homogeneous and a traveling wave pattern.
In transients, when we place our system below and close to
the transition point, we report the study of the so-called
Fisher-Kolmogorov-Petrovsky-Piskunov �FKPP� fronts �34�
that connect stable states with unstable states. These fronts
provide interesting features of the dynamics such as the con-
vective vs absolute character of an instability.

From the theoretical point of view subcritical transitions
are predicted in superconductors and in liquid crystals �35�.
Despite subcriticality has been widely studied experimen-
tally in other systems, some examples �not pretending to be
an exhaustive list� are pearling of tubular membranes �36�,
the Fréedericksz transition �37�, and the transition to travel-
ing waves in binary fluids �38�, here we report quantitative
measurements for a subcritical transition in a quasi-1D con-
vective system from a cellular pattern to traveling waves and
further beyond to the alternating pattern.

We have tried to get closer to some of the existent theo-
retical models for 1D cellular systems, but they are still far to
explain the dynamics for these subcritical scenario, mainly
because of the following two facts: �i� below and close to the
threshold of the secondary bifurcation to TW, the unstable
mode with 2ks /3 �mode q=2 /3� triggers a resonant triad

within the irregular bounded domains of the mixed ST/ALT
pattern; these domains are characterized by the presence of
the neighboring “doubling period mode ks /2” �mode q
=1 /2� and �ii� close and far from the thresholds of the two
subsequent bifurcations to TW and to ALT, the system can
bear stationary fronts until the global modes become un-
stable in the whole system. These global modes are q=2 /3
and q=1 /2 for the secondary bifurcations to TW and to ALT,
respectively.

II. EXPERIMENTAL SETUP

The fluid layer of depth d is placed in a narrow convective
channel Lx�Ly �Lx=470 mm, Ly =60 mm�. As shown in Fig.
1�a� this layer lies over a flat surface, a mirror of thickness
3 mm. The bottom of the mirror is in contact with a heater
rail of 1 mm �thickness� which provides the heating line in
the x̂ direction, HL. The heater rail belongs to an aluminum
block with an inner closed water circuit thermoregulated by a
heater bath at Th. The temperature measured at HL on the
mirror surface differs from the one given by the heater bath
probe in −3.00 °C for d=4 mm and Th= 48 °C. We limit the
heat transfer in the ŷ direction by isolating laterally the
heater rail with Plexiglas. Therefore in the transversal direc-
tion of the cell ŷ, one may approximately achieve a Gaussian
temperature profile smoothed nearby the central heater be-
cause of the thermal diffusivity of the mirror. Regarding
other experimental setups such as the resistive wire experi-
ments �20–50 �m diameter� �21–23�, where there is a cou-
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FIG. 1. Sketch of the experimental setup. �a� Rectangular cell:
cross section �up� and top view �bottom� of the rectangular vessel.
The scaling in both views is different. �b� Optical setup.
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pling between the circulation flow and the thermal stability
of the wire in our system because of the great thermal inertia
couplings between the convection in the bulk and the heater
are not expected. The lateral walls are two aluminum blocks
�coolers� whose temperatures are kept constant at Tc
=20�0.1 °C by means of a secondary water circulation.
This temperature is given by the cooler bath probe and it is
the same as the one measured at the top of the aluminum
blocks. The shorter boundary walls at the opposite extremes
on x̂ are made of Plexiglas. All these experimental parts are
contained in a Delrin block. The effective dimensions of the
cell are 450 mm�60 mm�15 mm �Lx�Ly �Lz�, although
the optical setup allows us to visualize only a centered area
from an upper surface of 310 mm�60 mm.

The geometric aspect ratios for d=4 mm are �x=Lx /d
=112.5, �y =Ly /d=15. The ratio �x /�y =7.5 allows us to
classify the system as weakly confined in x̂.

The fluid used is a silicone oil �brand name Dow Corning
200� with a nominal viscosity of 5 cSt �see properties in
Table I�. This fluid is transparent to visible light and there-
fore it is suitable for the shadowgraph technique. It has a low
volatility, the depth of the fluid layer diminishes with a rate
of 0.01 mm /24 h over an area of 270 cm2 at 20 °C, so we
can work �in the range of temperatures applied� with the
layer opened to the atmosphere. Under this condition, we
assume that the depth, measured with a precision of 0.01 mm
with a micrometric screw, remains constant along each mea-
surement. The temperature outside the cell is controlled at
Ta=20�0.1 °C for a sequence of measurements.

From the corresponding physical properties �Table I� there
are two significant adimensional numbers: the Prandtl num-
ber Pr=� /��75 ��compares viscous diffusivity vs thermal
diffusivity� and the dynamic Bond number BoD=R /M
�1.05 �d=3 mm� ��compares thermogravitatory effects vs
hermocapilarity effects�. As well at d=3 mm and �Tv
=30 K, we can determine two characteristic time scales: the
viscosity time scale ��=2 s and the thermal diffusivity time
scale ��=135 s, thus the dynamics is driven by the tempera-
ture field.

The shadowgraphic flow-visualization system is sketched
in Fig. 1�b�. In order to obtain quantitative results for a se-
quence of measurements, the light intensity from an incan-
descent light bulb �white and incoherent light� is controlled
with a power supply. An incoming parallel light is sent
through the convection pattern. The light beam crossing the
fluid layer suffers different deflections depending on the re-

fractive index gradients �i.e., temperature gradients�. The
analysis of the spatiotemporal periodicity of the modulation
of the light beam, that has crossed the fluid layer, provides
information about the temperature field of a certain pattern.
In a similar experimental cell the deflection induced by trav-
eling waves was below 1 �m for a depth of 3 mm �17�,
therefore the information analyzed comes from the convec-
tive flow in the bulk. Once it is reflected back at the mirrored
bottom the output beam is projected into a screen. The shad-
owgraph method allows us to observe the thermal gradients
in the bulk of the fluid layer as a modulation of the light
intensity on the screen. The screen image is recorded with a
CCD video camera with a resolution, in units of pixels �px�,
of 570 px�485 px, keeping constant the focal length, the
aperture and the gain. The shadowgraphy image is an instan-
taneous image of the screen �Fig. 2�. There, we can observe
a central dark line �HL� and a bright modulation in both sides
of HL by symmetry due to the effect of thermal lenses. Pe-
riodically, a line over the bright modulation next to HL is
recorded to obtain a spatiotemporal diagram S�x , t�, and an-
other line placed perpendicular to HL is also recorded to
obtain a spatiotemporal diagram S�y , t�. With the developed
image analysis software, the signal S�y , t� is averaged over a
temporal sequence to determine a medium contrasted posi-
tion in ŷ to place the acquisition line that records the spa-
tiotemporal diagram S�x , t� �with an acquisition rate of
1 s−1�. The signal S�x , t� is processed via a bidimensional
Fourier transform and complex demodulation techniques in
order to determine the amplitudes Aj, the wave numbers kj,
and the frequencies 	 j of each fundamental Fourier mode

TABLE I. Physical properties of the 5 cSt silicone oil.

Surface tension �25 °C� 
=19.7 mN m−1

Thermal conductivity �50 °C� �=0.117 W m−1 K−1

Thermal diffusivity �� /�cp� �=6.68�10−8 m2 s−1

Kinematic viscosity �25 °C� �=5 cSt �5�10−6 m2 s−1�
Density �25 °C� �=913 kg m−3

Refractive index �25 °C� n=1.3960

Linear expansion coefficient 
=0.00105 K−1

Surface tension/temperature �


�T
=−8�10−5 N m−1 K−1
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FIG. 2. Shadowgraphy images for three different regimes, below
the dynamics of hotspots over HL is sketched �a zoom view of the
selected area above�: �a� stationary state ST for d=3 mm; �b� trav-
eling waves �TW� for d=4 mm; �c� alternating waves �ALT� for
d=4 mm. The arrows between hotspots indicate the direction of
their movement.
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M�kj ,	 j� �39�. S�x , t� can also be filtered by discriminating
the normalized amplitude below a critical value �.

The control parameters are the depth of fluid layer d and
the vertical temperature difference �Tv=Th−Ta. Under these
conditions, we have obtained the smaller threshold for the
primary bifurcation at d=4.5 mm. To build the stability dia-
gram we have explored depths d=2.5, 3, 3.5, 4, 4.5, and
5 mm. To locate the different asymptotic regimes we have
worked with step ��Th�=2 K, except at d=2.5 with a bigger
step ���Th�=5 K� and some isolated measurements at d
=3.5 looking for TW. Meanwhile boundaries have been de-
fined with a maximum step of ��Th�=1 K. To determine the
nature of the bifurcations at d=4 and 4.5 mm, we increase
and decrease �Tv by steps ��Th�=1, 0.5, and 0.3 K, allowing
the system to achieve the asymptotic state for 1 h in the
ascending sequences and 3 h in the descending sequences
nearby the threshold. Experimentally, we have determined
that the relaxing time for a step of �Th=1 K is approxi-
mately 1 h and the relaxing time for a step of �Th=−1 K is
approximately 2 h and 30 min.

III. RESULTS

A. Dynamics of the hotspots

The effect of thermal lenses produces on the screen a
convergence of the emerging rays corresponding to the
bright profiles �see Fig. 2�, as well as a divergence for the
ascending convective flow over HL which corresponds to a
distribution of aligned dark spots or hotspots. In Fig. 2 we
show the shadowgraphy images belonging to the previously
introduced regimes: ST �stationary�, TW �traveling wave�,
and ALT �alternating�. Below the shadowgraphy images we
have sketched how the dynamics of the hotspots is observed
over HL and the space symmetries of the contours of maxi-
mum brightness.

If we take the wavelength of the basic cellular pattern ST,
�s, as the space occupied by a hotspot, we have got roughly
75 oscillators which are differently coupled, regarding the
type of pattern, in a dissipative system. At the same time, a
driving force is applied into them when we increase �Tv.
The ratio between wavelengths of different patterns is con-
served for different depths �i.e., see Fig. 3�a� for d=4 mm�.
The frequencies are shown in Fig. 3�b�, and the phase veloci-
ties can be obtained as v�=	 /k.

For the secondary instabilities that are going to be quan-
tified in the following sections we show in Fig. 4 the char-

acteristic spatiotemporal diagrams S�x , t� and their respective
bidimensional Fourier spectra �k ,	�. The fundamental
modes for each pattern have been pointed out as Ms �the
stationary mode� and Mv� �the traveling modes to the right
��� and left ����. The dynamics of the hotspots allow us to
describe the different regimes.

�i� The continuous spatial translation symmetry of the pat-
tern PC is broken into a steady cellular pattern ST �Fig. 4�a��.
In this pattern the hotspots keep their positions fixed at a
distance �s�2d �i.e., at d=4 mm see Fig. 3�a�� of their first
neighbors, so we have a discrete translation symmetry on
space �x̂� and a continuous one on time �Fig. 2�a��. The cor-
responding fundamental mode is Ms�ks ,0�.

�ii� The transition from ST to TW breaks the parity sym-
metry �x→−x� and the temporal continuous translation sym-
metry. In the TW regime �Fig. 4�b��, the new discrete trans-
lation symmetry on space is given by a wavelength �TW
�3�s /2��3s/2 �i.e., at d=4 mm see Fig. 3�a��. This result
differs from the doubling period obtained in a previous work
�17� because the precision for both, the experimental tech-
niques and the analytic data processing, has been remarkably
improved. The hotspots decide to travel at the same time
towards a privileged direction selected by the system at a
frequency 	TW, which varies linearly with �Tv �Fig. 3�b��.
The mean period is approximately 25 s. The velocity at
which hotspots travel is the phase velocity v�

=�3s/2	TW /2�, because we have measured that the linear
group velocity verifies vg=d	 /dk�0, as will be shown
further on. So the phase velocity increases linearly with
an increasing control parameter �Tv as we go beyond the
threshold of the secondary bifurcation to TW. The
corresponding fundamental mode is �either right or left�:
Mv��k2s/3 , �	TW�.

�iii� In the ALT pattern �Fig. 4�c�� the hotspots are oscil-
lating in counterphase with a new discrete spatial translation
symmetry given by �ALT�2�s=�2s �i.e., at d=4 mm see
Fig. 3�a�� in agreement with previous experimental work
�17�. So hotspots behave as oscillators that by pairs inter-
change their positions to recover their initial positions after a
cycle of frequency 	ALT. This frequency is almost constant
as we increase �Tv �Fig. 3�b��. The mean period is about
23 s. So, for an ascending sequence the phase velocity keeps
constant as we go beyond the threshold of the secondary
bifurcation to ALT. This pattern is strongly nonlinear as the
result of the competition between the fundamental modes of
a resonant triad: Ms�ks ,0� and Mv��ks/2 , �	ALT�. The sta-

FIG. 3. At d=4 mm evolution
vs �Tv �with step �Th=0.5 K� of
�a� the dimensionless wave num-
bers �horizontal continuous lines
correspond to the averaged wave
numbers for the same patterns at
d=3 mm and d=4 mm� and �b�
the frequencies ���=3.2 s� for
each involved fundamental mode:
Ms �stationary mode�, Mv� �right-
left traveling modes�. Vertical
dashed lines separate different
patterns.
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tionary mode Ms�ks ,0� characteristic of the cellular pattern
ST has been a sort of “restored.”

In this array of coupled oscillators there may exist local-
ized discontinuities that correspond to boundaries. These
boundaries or fronts break the dynamics into two different
groups of oscillators, each one of them with a great spa-
tiotemporal coherence. On the spatiotemporal diagram S�x , t�
these regions are called localized domains. Such is the case
of the existence of one or various localized domains in the
ALT pattern coexisting with the ST pattern as a “mixed”
state, ST/ALT pattern �Fig. 4�d��. This domains usually col-
lapse, they have fluctuating boundaries with variable spa-
tiotemporal areas.

B. Primary and secondary instabilities

A smooth increase of the control parameter �Tv can lead
from the homogeneous pattern PC to the onset of two differ-

ent kinds of primary bifurcations depending on the depth of
the layer d �see the stability diagram in Fig. 5�.

�i� For d�3.5 mm, as soon as �Tv�0 the ST pattern
becomes unstable. For this pattern we find a higher threshold
as we increase the depth d from 3.5 to 4.5 mm.

�ii� For d�4.5 mm, the TW pattern becomes unstable
from the primary roll PC. This bifurcation is thought to be
supercritical concerning the experimental fact that the TW
pattern appears simultaneously along the cell from an homo-
geneous pattern at d=5 mm.

For the explored depth range d=2.5–5 mm, there are the
following pathways to secondary bifurcations �see the stabil-
ity diagram in Fig. 5�.

�i� Thick layers: For 4.5�d�5 mm and further from the
threshold of the primary bifurcation to TW, the system un-
dergoes a new bifurcation to the ALT pattern. The relative
amplitudes verify �Av−���Av+� and �As���Av�� /2.

�ii� Intermediate layers: For 4�d�4.5 mm, the system
becomes unstable from ST to TW via a bistable regime. This
bistable regime consists of a mixed pattern ST/ALT coexist-
ing with the new TW pattern. The front connecting these two
regimes �ST/ALT and TW� is stationary for the front velocity
is vp�0.01 mm /s. This front velocity is determined by mea-
suring the slope of the front defined by the new mode, which
becomes unstable, at the spatiotemporal diagram. In order to
study this bistability we focus on this second instability to
TW for two intermediate depths 4 and 4.5 mm. Beyond the
TW pattern we report a new secondary bifurcation towards
the ALT pattern at d=4 mm.

�iii� Thin layers: For d�3 mm, from the basic flow pat-
tern ST, a cascade of secondary bifurcations takes places
towards a pattern of localized domains over the basic pattern
ST. These results will be reported elsewhere. The first insta-
bility from the basic pattern ST is the mixed ST/ALT pattern
�Fig. 4�d��. The quantitative analysis shows that �Av�� keeps
constant inside these domains along a sequence for increas-
ing steps.

For thinner layers �d�2.5 mm� and high temperatures
��Tv�55 K� the heating loses its linear localization and
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diagrams S�x , t�. PC and ST are stationary patterns, TW and ALT
are oscillatory patterns, and ST/ALT is the mixed pattern.
ST /ALT+TW defines the subcritical region where a stationary
front connects ST/ALT and TW. Double arrows correspond to the
stepped sequences of measurements reported.
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hence it turns into an homogeneous 2D heating. Under these
conditions, the system gives birth to an hexagonal pattern
arranged symmetrically with respect to HL, similar to the
classical Bénard-Marangoni convection.

Beyond the threshold of the last secondary bifurcation, for
each d and until the maximum value of �Tv applied, the
dynamics of the system still keeps the characteristic patterns,
but with the presence of defects of the type of dislocations
with topological charge +1. For transient regimes we have
observed the existence of pulses, sources, sinks and localized
drifting domains �see Fig. 6�. Also, in transients we can find
counterphase oscillating patterns �optical modes�. For steady
patterns when there is a domain boundary �or front� connect-
ing the patterns TW and ST/ALT, these oscillating patterns
are present as well. As it is shown later on, oscillatory pat-
terns are similar to the ALT pattern on account of the funda-
mental modes but with different amplitude rates. From now
on, our aim is to study the subcritical nature of the system in
the secondary bifurcation towards TW �with a backward

study research looking for an hysteresis cycle� and towards
ALT.

C. Secondary bifurcation to traveling waves and further

For intermediate layers, when the system approaches the
threshold from the cellular pattern ST to the secondary bifur-
cation to TW we define the reduced control parameter as �
=�Tv /�Tvc

a −1. �Tvc
a is defined as the critical parameter at

which the system becomes unstable towards the new state
TW for an ascending sequence of measurements with the
minimum step ��Th�. The amplitude of the corresponding
unstable mode �Av−� grows abruptly at this point meanwhile
the amplitudes �As� and �Av+� decay to zero �i.e., see Fig.
7�a��. The subcritical parameter for the hysteresis cycle is
given by �c=�Tvc

d /�Tvc
a −1�0, where �Tvc

d is the critical
parameter �corresponding to a descending sequence� at
which the system returns to the original state ST. Thus, the
range �c���0 is the subcritical interval. At d=4 mm, for
an ascending sequence with step 0.5 K from the amplitudes
diagram �Fig. 7�a�� we have measured �Tvc

a =17.7 K. To
verify the existence of hysteresis we have worked with as-
cending and descending steps of 0.3 K in the subcritical in-
terval and we have obtained �Tvc

a =16.4 K and �c=−0.07.
Close to the codimension-2 point �at d=4.5 mm� describ-

ing a cycle with step 0.3 K and with the same processing
protocol we have determined �c=−0.02. In a correlative
ascending sequence for the secondary bifurcation to TW
�Fig. 8�.

�a� For �c���0 the mixed pattern ST/ALT is present. In
the localized domains of the ALT pattern the competition
between the traveling modes Mv+�ks /2,	ST/ALT� and
Mv−�ks /2,−	ST/ALT�, with similar amplitudes, produce a
resonant nonlinear interaction with the stationary mode,
Ms�ks ,0�.

�b� For �=0 the system bifurcates towards TW at the
same time that coexists with the original ST/ALT pattern,
this is the bistable regime. In this regime a discontinuity of

t

x

FIG. 6. Spatiotemporal diagram of TW �d=4 mm, �Tv=20 K�
with localized drifting domains in the ALT pattern in a transient �for
an upward jump with step �Th=4 K� and the presence of a source
of TW in the left-hand side.

FIG. 7. �a� Bifurcation diagram at d=4 mm for ascending steps of 0.5 K. The continuous line is a guide to the eye. The discontinuous
arrow show the upward jump of the amplitude mode Mv− at �Tv=17.7 K ��=0� for the secondary bifurcation to TW. Far from this threshold
at �Tv�19.2 K the amplitude of the mode Mv− decays in favor of the counterpropagative mode Mv+ representing the advance of the front
which splits the patterns TW and ALT. �b� Sketch of the mechanism of activation of resonant triad in the ALT domains �mixed ST/ALT
pattern� by the emerging TW modes. 	sr is the frequency at the subcritical interval �−�c���0�.
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the amplitude of the traveling mode Mv−�k2s/3 ,−	TW� has
been produced in the corresponding domain, the TW pattern.
The front velocity is approximately zero, vp�0.01 mm /s.

�c� For ��0 the whole system has bifurcated to TW with-
out the existence of boundaries, neither sources nor sinks, so
Mv−�k2s/3 ,−	TW� is a global unstable mode.

For this secondary bifurcation to TW if we artificially
excite �perturbing locally the free surface� the basic state ST
just below −�c at �d=4 mm, �Tv=15.5 K�, we observe the
birth of a TW domain �see Fig. 9�a��. This domain vanishes
after a while because of the attenuation of the amplitude
of the unstable traveling mode �Fig. 9�b�� with a front veloc-
ity of vp�0.17 mm /s. This is what is expected for a nega-
tive growthrate when we are below and close to the thresh-
old. For these control parameter values the TW pattern is
said to be convectively unstable with a negative group ve-
locity: �vg��0.12 mm /s and then the phase velocity verifies
v��−3.5 vg. If we perturb the system above and close to the
threshold, the group velocity is null.

Further from threshold at d=4 mm the basic state of TW
bifurcates to the new state ALT via a dynamics of stationary
fronts at the asymptotic states �see the spatiotemporal and

filtered diagrams in Figs. 10�a� and 10�b��. For these fronts
we have measured a front velocity of vp�0.01 mm /s. We
define a new threshold for an ascending sequence �with step
1 K� as ��=�Tv /�Tvc−1=0 where at �Tvc the ALT pattern
appears for the first time ��Tv=21.5 K�. From this point on
and as far as we increase �Tv, the front invades the TW
pattern until at ��=0.29 the whole system dynamics has tran-
sitioned to the ALT state �Fig. 10�c��. In this transition we
have measured a finite jump for the amplitudes of the trav-
eling modes at the threshold �Av���ALT��3 �Av− � �TW�
while the amplitude of the stationary mode fulfills
�As��ALT���Av�� /2�ALT�.

For higher ��Tv�, the turbulent ALT pattern has a dynam-
ics of defects �dislocations� �Figs. 11�a� and 11�b��. Buoy-
ancy plumes can be observed in the shadowgraphy image,
they are detached along the perpendicular axis to HL. On the
phase gradient in Fig. 11�c� we can observe how these de-
fects are spontaneously generated, adjusting locally the wave
number of the pattern.

Because of the subcritical behavior of the system in the
secondary bifurcation to TW, nonlinear interactions between
the original �ST/ALT� and the new �TW� patterns in the

ε c < ε < 0 ε 0= ε > 0

(b)(a) (c)

t
x

FIG. 8. Spatiotemporal diagrams corresponding to the secondary bifurcation to TW at d=4 mm �for an ascending sequence�: �a� the
mixed ST/ALT pattern belongs to the subcritical interval, the boundary of the ALT domain has been highlighted �filtering with �=0.5�; �b�
the bistable pattern: ST/ALT and TW at the threshold, these patterns are connected by a stationary front; �c� the TW pattern above the
threshold.

FIG. 9. �a� Spatiotemporal diagram with a localized mechanical perturbation close to the threshold to TW at �d=4 mm, �Tv=15.5 K�.
The boundary of the transient TW domain �filtered with �=0.37� has been sketched; �b� Attenuation of the module of the traveling mode
Mv− inside the transient domain.
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bistable regime �Fig. 12�a�� are expected. Indeed the bound-
ary is likely to show this nonlinear behavior by resonant
interactions between the competing modes. In consequence,
we focus not on the evolution of each of the coexisting do-
mains, but on the overlapping between the original mode Ms
�representing the mixed ST/ALT pattern� and the new mode
Mv− �representing the new pattern TW� at the front. For this
analysis the signal S�x , t� has been filtered with �=0.37. The
average width of the front is defined as a subcritical length
Lsub, where the mode Ms is interacting nonlinearly with the
others �Mv��.

To explain the resonance of the amplitude �As� as a non-
linear coupling between the triad �Ms, Mv−, and Mv+� along
Lsub, we study the profile of the modulus of the amplitudes of
the fundamental modes in the direction perpendicular to the
front, so we can check the amplitude gain of �As� at t
=131 s �see Fig. 12�b�� and the minimum value of �As� at t

=489 s �see Fig. 12�c��. The mode Ms is coupled with the
propagative modes in the boundary where the unstable mode
Mv− penetrates beyond the stationary front, and therefore in
this region the modulus �As� will be greater. Filtering with
�=0.37 and for t=131 s, in the region Lsub, we obtain the
following results �As� / �Av−��2 and �Av−� / �Av+��6. In the
boundary the kinematic resonant conditions �40� for the
wave numbers 0.7774 mm−1�0.4438 mm−1+0.3135 mm−1

and for the frequencies 0.0030 s−1�−0.2102 s−1

+0.2210 s−1 are fulfilled. For each one of these data the cor-
responding error from the analytic processing is negligible
considering the experimental error due to temperature inho-
mogeneities.

The corresponding oscillatory pattern that shapes the
boundary contour is very similar to the previously mentioned
for the optical modes. This pattern differs from the ALT
uniquely on account of the different ratios between ampli-
tudes.

We can interpret the growth of the modulus �As� �Fig.
12�b�� as a positive energy transference from the propagative
mode Mv− �TW� to the stationary one Ms �ST/ALT�. At t
=489 s the amplitude of Ms has been attenuated regarding
the previous result at t=131 s, meanwhile for the propaga-
tive modes the ratio of amplitudes accomplishes �Av−� / �Av+�
�1 �see Fig. 12�c��.

Concerning the correlation length for the subcritical insta-
bility to TW, we may associate the subcritical length Lsub
with an attenuation length of the new pattern �TW� inside the
original one �ST/ALT�. Nevertheless, the evolution of the
averaged front width, as a correlation length parameter, has
not revealed any evidence at the onset of this transition.
Fluctuations of the amplitude �As� are caused by the nonlinear
resonance at the front, so this fact has to be considered to
implement the most suitable strategy for the data analysis in
bistable regimes.

IV. DISCUSSION AND CONCLUSIONS

A. An extended 1D convective system

The two counter-rotating rolls �PC� in this experiment re-
main for any �Tv, so we might compare the basic cellular
pattern ST �which is a transverse cellular pattern regarding

Filtered
ALT pattern

(a) (b) (c)

x
t

FIG. 10. Spatiotemporal diagrams corresponding to a secondary bifurcation to ALT above the threshold: �a� there is a front connecting
the TW and ALT patterns at ��=0.11; �b� contrasted profile of the front �the left traveling mode has been filtered with �=0.37� at ��

=0.15; �c� the ALT pattern has invaded the whole cell far from the threshold at ��=0.38.
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FIG. 11. ALT pattern with the presence of defects at d=5 mm
and �Tv=62 K: �a� the shadowgraphy image on the screen; �b� the
spatiotemporal diagram; �c� phase gradient of the stationary mode
Ms, the discontinuities correspond to dislocations.
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the wave vector of the primary roll� with other systems with
similar behavior such as the lateral heating experiment in a
rectangular cell with Pr=10 �11�. In this experiment, the fluid
dynamics for deep layers corresponds to stationary rolls with
a wave vector perpendicular to the temperature gradient, this
pattern belongs to the type of stationary rolls predicted by
Smith and Davis �41�. These stationary rolls become un-
stable over the underlying “unique” roll which invades the
whole cell. For larger horizontal temperature gradients the
system becomes unstable via an oscillatory pattern of optical
modes. This pattern has a strong affinity with the resonant
triad of the ALT regime where the counterpropagative modes
Mv� have restored the stationary mode Ms.

For each pattern, the dynamics of the central 31 cm of the
cell is equivalent to the dynamics of an array of 56 oscilla-
tors �from a total of 75� interacting with their neighbors. We
are studying the collective behavior of a set of macroscopic
particles �hotspots�, a 1D array of nonlinear coupled oscilla-
tors that become unstable. Experimentally we are performing
“coarse graining” when we associate to the hotspots on HL
microscopic variables of the convective system such as the
thermal fluctuations. In addition, as the physical aspect ratios
for the cellular pattern at d=3 and 4 mm are, respectively,
��=Lx /�s=75 and 59, we may consider our system to be
extended.

According to the experimental results the system may
suffer two different bifurcations to TW: subcritical and
supercritical, depending on the basic state and thus, on d.
In consequence, from the homogeneous state PC the system
undergoes an oscillatory supercritical Hopf bifurcation
that can be theoretically described by the cubic complex
Ginzburg-Landau equation. Experimentally, this kind
of supercritical bifurcation has been found in many
other extended systems �Refs. �11,24�, and references
therein�. Meanwhile the system is behaving subcritically for
d�4.5 mm.

From these results we may infer that as the dynamic Bond
number is BoD�d2, when BoD decreases �as we move to the
left in the stability diagram of Fig. 5� a subcritical nature of
the secondary bifurcations arises. So in this experiment sub-
criticality may be linked to the fact that thermocapillary ef-
fects are becoming more important the thinner the layer is.

Subcriticality via a Hopf bifurcation to TW has been reported
experimentally, for example, in binary mixture of fluids �42�.

Our results for the secondary transition to TW show that
�TW /�s�3 /2. Under the light of this result we leave an open
question to derive a suitable model as the one developed by
Gil �30� for a 1D system. This model, for a Floquet exponent
q=1 /2, differs from CI because the constraint over equal
amplitudes of the right-left envelope functions �propagating
modes� is relaxed. Hence this model can describe mixed pat-
terns and localized coherent structures from a secondary in-
stability, fortunately not too close to the threshold because a
phase shift mode has not been disregarded �29�. In conse-
quence, a model similar to this could be tried out for a Flo-
quet exponent q=2 /3.

From the experimental point of view, we are not able to
attribute the mode q=2 /3 only to 1D dynamics. Although
the dynamics of the hotspots are confined to HL �in the x̂
direction�, meanwhile the wave dynamics on both lateral
sides, from HL to the boundary cooling walls �in the ŷ direc-
tion�, does not correspond to a traveling 2D pattern. We
might consider a possible contribution to the selected wave-
length from the coupling between the dynamics at the bound-
ary cooling walls and the inner quasi-1D dynamics. In order
to check this coupling out, two cells �Lx=4 cm, Lx=6 cm�
had been tested before in the TW regime but with a different
temperature profile at the bottom �17�, these results showed
no dependence of q on the different geometrical aspect ratio
�Lx /Ly� but the selected mode was q=1 /2. In consequence,
the mode q=2 /3 could be the result of different thermal
boundary conditions at the bottom plate.

Meanwhile, in the secondary bifurcation to ALT we show
that �ALT /�s�2, for this reason this instability, in accor-
dance with the generic instabilities from one-dimensional
cellular patterns of the CI theory, belongs to the type of
spatial period-doubling oscillatory bifurcation, although it is
build in the framework of a weakly nonlinear regime.

B. Stability diagram

Experimental studies for silicone oils with Pr�O�10�
�43� show that each regime in the stability diagram is well
defined because it is confined in large regions of the param-
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FIG. 12. �a� For �d=4 mm, �Tv=16 K� the spatiotemporal diagram of a bistable pattern in the secondary bifurcation to TW where the
previous pattern ST/ALT and TW coexist. The boundary domain where the stationary mode Ms is coupled with the traveling modes Mv� has
been sketched �with �=0.37�. Lsub is the average width of the boundary domain. The evolution of the amplitudes of the fundamental modes
for the same spatiotemporal diagram �b� at t=131 s and �c� t=489 s. The growth of As corresponds to the resonant interaction at the front.
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eter space. In other words, there is a long pathway towards
turbulence with a great diversity of regimes. Therefore con-
secutive instabilities can be evaluated separately. Our system
�Pr�75� exhibits about eight different regimes in the ex-
plored space of the control parameters �d ,�Tv� including
bistable regimes.

For d�4 mm the quantitative study of the evolution of
the amplitudes ��As� and �Av��� does not allow to discover the
nature of the transition from the ST pattern to the mixed
ST/ALT pattern. We may assert that for d�4 mm the basic
pattern ST never loses its stability. On the other hand, we
have measured that the surface occupied by the localized
domains in the ALT pattern with respect to the total surface
of the spatiotemporal diagram is variable as we increase �Tv.

The system is bistable in the range of intermediate layers
�4 mm�d�4.5 mm�, where a ST/ALT domain may coexist
with a TW domain. Bistability is the reason why, in the sec-
ondary bifurcation to TW, two states with high spatiotempo-
ral coherence are solution of the system for the same range
of the control parameters �d ,�Tv�. In Fig. 7�b� it has been
sketched how the mixed ST/ALT pattern can be considered
as a “transitional” pattern selected by the system for the sub-
critical bifurcation to TW. As we approach the bistable re-
gime and until the system has fully transitioned to TW, the
emerging traveling modes with wave numbers k2s/3 play a
destabilizing role towards the nearby oscillating modes with
wave numbers ks/2. As the frequencies in the subcritical in-
terval are roughly the same for both oscillatory modes �see
Fig. 3�b�� 	sr close to the subcritical parameter −�c the sta-
tionary mode Ms�ks ,0� activates the resonant ALT modes
M�v�ks/2 ,	sr� before the TW modes M�v�k2s/3 ,	sr�, which
are responsible for the next global bifurcation. Attending to
the first nonlinear resonant criterion, a resonant interaction
cannot be triggered between the stationary and the traveling
modes. For the propagative modes in this mixed ST/ALT
pattern, we have measured �Fig. 3�a�� a finite jump of wave-
lengths ��kd�0.25� in comparison with the average wave-
length of the propagative modes in the ALT pattern, this
difference is smaller than the experimental error.

As we get closer to the codimension-2 point the subcriti-
cal parameter �c tends to zero. At this critical point and de-
pending on the way we approach it, the system may bifurcate
to TW from two different patterns: homogeneous �PC� or
cellular �ST�. From d�4.5 mm the threshold for the PC to-
wards the ST pattern gradually decreases until d�3, where
the ST pattern settles with no threshold. This experimental
result is in agreement with the theoretical prediction �a linear
stability analysis� for a similar experimental setup �44� that
shows that, as far as the Gaussian profile of the temperature
field flattens a smaller threshold for the ST pattern is ex-
pected.

From the PC pattern and for d�4.5 mm, the system un-
dergoes a supercritical bifurcation towards TW. At the
threshold, we may think of a whole array of hotspots that
cooperatively decide to travel towards a privileged direction,
so the correlation length is supposed to diverge and conse-
quently, for this supercritical transition, there are no fronts
�even though the presence of fronts is not necessarily linked
to subcriticality�.

From the results obtained for the secondary bifurcation to
ALT, we can assert that bistability is the cause for the coex-

istence of the patterns TW and ALT. Furthermore, it is the
cause for the existence of localized drifting domains in the
ALT regime in transients. This is the case for an abrupt up-
ward jump �in terms of �Tv� above the TW threshold where
the presence of drifting domains in ALT have locally broken
the symmetry imposed by the basic TW pattern �Fig. 6�.

It should be pointed out that the ALT pattern is strongly
nonlinear and far from the threshold it shows a typical tur-
bulent dynamics of defects �see Fig. 11�. In the threshold to
the ALT pattern and above, the system always selects the two
counterpropagative modes Mv��ks/2 ,	ALT� which restore the
stationary one Ms�ks ,0� by nonlinear resonance. By contrast,
at the threshold of the secondary bifurcation to TW there are
two possible modes that may become unstable Mv− or Mv+,
only one of them will be selected by the system due to non-
linear effects.

In both secondary bifurcations the fronts that connect
bistable patterns are stationary. Certainly, for intermediate
layers, the predominant thermogravitational effect together
with the underlying cellular pattern �for ST/ALT and ALT�
are the major causes for the strong locking that restrains
uniformly the diffusion of a new pattern into the original one
at the asymptotic states. On the contrary, for thinner layers
�d�4 mm� the thermocapillary effects probably account for
the fluctuating fronts in the ST/ALT pattern.

C. Convective and absolute instability towards traveling waves
and the subsequent alternating pattern

For an experimental 1D convective system which under-
goes a secondary bifurcation to TW, we have shown how the
existence of hysteresis can be tested studying the amplitude
of the fundamental traveling modes ��Av+� or �Av−��. Accord-
ing to the existence of a subcritical interval for the secondary
bifurcation to TW, at d=4 mm the finite jump of wave num-
bers and frequencies is produced at �Tvc

a =17.2 K �Figs. 3�a�
and 3�b��, before the jump of the amplitude of the mode Mv−
at �Tvc

a =17.7 K �Fig. 7�a�� for an ascending sequence �with
step 0.5 K�. These results suggest a coupling between the
amplitude of the unstable mode �Mv+ or Mv−� and the phase
gradients close to the threshold of the secondary bifurcation
to TW. This fact might not be surprising if we follow the
usual form developed by Coullet, Goldstein, and co-workers
�31,45�, under the symmetries of the problem for a parity-
breaking bifurcation with time reversal symmetry. This
model represents, at lowest order, the coupling between the
slowly varying phase � �phase mismatch between the trav-
eling pattern �TW� domain and the underlying symmetric
pattern �ST�� and the slowly varying amplitude A of the
unstable mode �the traveling mode Mv+ or Mv−�:

At = Axx + f�A� + 
�xA + �AAx + ¯ , �1�

�t = �xx + �A + ¯ , �2�

where 
, �, and � are the coupling parameters. In our sub-
critical bifurcation to TW, f�A� is expressed in terms of a
fifth-degree polynomial of A. In accordance to equation Eq.
�1�, when we mechanically perturb the fluid �Fig. 9�, the
excitation of the amplitude of the traveling mode produces a
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coupling between the amplitude of the critical mode associ-
ated to the secondary bifurcation with the phase gradient ��x
is the wave vector shift�. In the same way, from Eq. �2� we
might interpret the rate at which TW are generated as � �31�.
This model also deals with the advection of the generated
traveling domain arising from the terms �xA and AAx. The
attenuation of the traveling mode in Fig. 9�b� shows that the
domain in TW disappears because of a relaxation dynamics
for the unstable mode below the threshold.

We have observed the bistable pattern �coexistence of the
ST/ALT and TW patterns� for positive and small values of �
because our measurements are restricted by the size of the
step �Th. From the experimental results at the threshold, if
we compare two ascending sequences with different steps
0.5 K �Fig. 7� and 0.3 K, we find that the discontinuous
jump in the amplitude �Av−� is produced before with the
smaller step at �Tvc

a =16.3 K ��Tvc
a =17.7 K with step

0.5 K�. This fact may suggest that for smaller steps we
would measure decreasing values for �Tvc

a , nevertheless we
have shown that the subcritical interval increases the smaller
the depth is.

At d=4 mm, for the two subsequent secondary bifurca-
tions the fronts, in the bistable regimes, are normal fronts
that connect two stable states. We have shown that these
fronts are stationary for a large range of the control param-
eter �Tv. As �Tv is increased the new unstable state will
finally invade the whole cell, consequently the system has
developed a global instability. This kind of behavior has also
been found in catalytic reaction systems where stationary
fronts appear in 1D heating with a platinum wire �46�. Theo-
retically the minimum velocity of the front is achieved at the
Maxwell point �32�, so in accordance to our results we are
supposed to have a “Maxwell interval.” This interval, with a
minimum and constant velocity, has already been included in
some theoretical models for reaction-diffusive systems
�47,48�. These models �for heterogeneous catalysis� show
how a system with two competing diffusivities �D2 /D1�1�
is able to sustain a quasistationary front for a finite interval
of the control parameter with velocity vp�	D2. According
to the high Prandtl number in our experiment, if we apply the
previous theoretical model, the thermal diffusivity would
play the role of D2 and therefore, for intermediate layers this
model fits the stationary front dynamics.

Because of a small linear group velocity, that has been
measured below the threshold to TW for a FKPP front �Fig.
9�, the convective nature of the TW instability has an abso-
lute character, therefore the threshold of the global instability
is considered the same as for the convective one. Also, this

global convective and absolute instability to the TW pattern
compares well with the theoretical work for oscillatory insta-
bilities in the case of large Pr number fluids in which the
buoyancy effect is becoming important �49�. This is the case
for d=4 mm where BoD�1.7. On the other hand, the sub-
critical behavior of the system vanishes for d�4.5 mm, so
from the codimension-2 point �BoD�2.38� and for increas-
ing depths no fronts do exist. For a supercritical model it has
been proved that the “convective” critical control parameter
for a confined system verifies �c=�a+O�Lx

−2�, where �a is the
“absolute” critical control parameter for the corresponding
extended system �50�, so for d�4.5 mm the approximation
�c��a is valid.

The bifurcation to ALT has also a subcritical behavior and
at the threshold the pattern ALT becomes unstable at any
position in the cell. The existence of a stationary front could
be attributed to an inhomogeneous heating along HL. Nev-
ertheless, the subcritical interval is about 6 K and the inho-
mogeneity of the temperature field between opposite sides of
Lx is less than 1 K. Moreover the system bifurcates super-
critically for d�4.5 mm. The strong coupling between the
different Fourier modes present for large values of �Tv does
not allow us to characterize the successive bifurcations quan-
titatively. Therefore the quantitative analysis is useful in the
weak nonlinear regimes, at least for the secondary bifurca-
tion to TW.

For fluids with high Prandtl numbers these results contrib-
ute to broaden the experimental evidence about cellular pat-
terns which undergo subcritical transitions, so modeling sys-
tems with similar behavior could be carried out in the future.
Close to the threshold of the secondary bifurcation to TW,
the global unstable mode by nonlinear coupling drives the
dynamics through a bistable regime. The domain that has
become unstable towards TW has previously crossed a
mixed pattern where the resonant triad has been activated.
Far from the secondary instability to the ALT pattern strong
nonlinear interactions between fundamental and harmonic
modes are the reason for a defect dynamics. This defect me-
diated chaos is the last stage of our bifurcation scenario,
restricted by the available control parameter �Tv.
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