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Abstract

One main result about the welfare effects of third-degree price discrimination by a monopolist is that
an increase in total output is a necessary condition for welfare improvement. This note provides two
examples showing that this proposition cannot be generalized to an oligopoly with heterogenous firms.
In these examples, price discrimination makes competition more favorable to the low cost firm. This fact
induces a cost saving that overcome the welfare loss from consumer misallocations associated to price
discrimination.
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I Introduction

One of the well-known conclusions about the welfare effects of third-degree price discrimination by a mo-

nopolist is that “an increase in total output is a necessary condition for welfare improvement.” To avoid rep-

etition, in our paper this is called “proposition WO,” or simply, “WO.” Schmalensee (1981), Varian (1985),

and Schwartz (1990) proved WO with different levels of generality. This note shows that, although WO is

valid for a monopolist, it does not extend to every situation with more than one firm.

The logic of WO is clear. There is a consumer inefficiency associated with third-degree price discrimina-

tion: output is not optimally distributed to consumers because their marginal utilities will be unequal. With a

change from uniform price to price discrimination, units of the good are taken away from consumers with a

higher valuation of the good, and given to consumers with lower willingness to pay. Proposition WO asserts

that the only way to overcome this consumer inefficiency is a sufficient increase in total output. This is true

when there is only one cost function. But, with heterogeneous firms, cost saving by a better redistribution

of output among firms can also overcome the consumer surplus inefficiency. When this is the case, it is no

longer true that welfare must fall if output decreases when price discrimination is introduced.

Some papers challenge proposition WO. Adachi (2002, 2005) shows that WO may not hold in the pres-

ence of consumption externalities. One example of these externalities is a bar that gives discounts on drinks

sold to women to attract more women, hoping to attract more men as well. The willingness to pay of men

increases with the number of women. However, an improvement in welfare due to positive externalities is

not a big surprise.

Yoshida (2000) refers to proposition WO because his result is in stark contrast with it, but not because

it is in opposition to it. In Yoshida’s model, an upstream monopolist, by price discriminating, can induce

production inefficiencies by increasing the price of its product to the more efficient downstream firms, and

lowering its price to the less efficient firms. In this way inefficient firms increase their production and

efficient firms reduce it. Yoshida shows that with price discrimination total welfare is reduced when the

aggregate production of the final good is increased: exactly the opposite of WO. But, in Yoshida’s model

there is no consumer inefficiency to overcome, which is the source of inefficiency in proposition WO. Be-

sides, proposition WO refers to consumer inefficiencies, that get worse when total quantity is reduced, while

in Yoshida’s model, price discrimination in the input market generates production inefficiencies, that get

aggravated as output rises. Yoshida proves that, in his model, these inefficiencies overcome the increase in

value due to a higher production.

To our knowledge, the welfare effects of price discrimination when competition is present have been
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studied (see Stole (2003) for a good survey), but WO has never been challenged when more than one firm is

introduced. Holmes (1989, note 2) is right when he states, without proof, that WO “holds for this oligopoly

analysis”, because in his paper each firm produces with the same constant average cost. Corts (1998)

considers consumer welfare and firm profit, but does not attempt an analysis of the relation between a

reduction in output and welfare. Armstrong and Vickers (2001), when considering WO in duopoly, assume

symmetric and constant marginal costs between firms. Stole (2003), citing a previous version of this paper

–see Galera (2003)–, is aware of the problem of the possible influence of asymmetric costs in WO. As most

models suppose symmetric costs among firms, sometimes it is affirmed that WO is true more generally than

the monopoly case, without reference to the costs. See, for example, Layson (1994, p. 323).

The plan of this note is very simple. In the next section we present the examples, and we finish the paper

with some conclusions.

II The examples

Both examples present a homogeneus good industry with two firms. One of the firms, Firm L has low cost

and the other, Firm H, high cost. They compete in quantities. Consumers can be divided into two separate

markets. There are also two possible price regimes: price discrimination, whose variables we denote with a

hat (for example Q̂), and uniform price: we use a bar to denote these variables, for instance p̄.

II.1 A Cournot duopoly

Example 1. Our first example is a Cournot duopoly. Both firms have constant marginal cost, c = cH > cL =

0, and sell in two distinguishable markets A and B. In market A, demand is QA = Ap−a, with a ≤ 1. In

market B, demand is QB = Bp−b, also with b ≤ 1. That is, both market demand curves are of the constant

elasticity type, and both inelastic. We will show that, within a whole range of values of the parameters a and

b, proposition WO is no longer true. To prove it, we present three propositions in this example. The first one

provides some useful results for the Cournot oligopoly. The second states that total output is always reduced

with the introduction of price discrimination for all the relevant parameter values. And the last result says

that welfare is reduced for some values of the parameters.

Proposition 1 In a Cournot duopoly, where firms H and L have constant marginal cost c = cH > cL = 0,

the price and equilibrium quantities, if they exist, satisfy the following equations:
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(1) qL = εQ; qH = (1− ε)Q.

(2) p =
c

2− 1
ε

Proof. For k = L,H, the profit of firm k is πk(qk) =
(
P(Q)− ck

)
qk −Fk, where Fk is the fixed cost.

The first order condition is: P′(Q)qk + P(Q)− ck = 0. Arranging from here, as cL = 0, P′(Q) ≡ 1/Q′(p),

and ε ≡−pQ′(p)/Q, we have equation 1. Adding the first order conditions across firms, we get P′(Q)Q+

2P(Q)− c = 0, and thus, −p/ε +2p− c = 0. Rearranging, we obtain expression 2. 2

Without loss of generality, we normalize the equilibrium uniform price to be p̄ = 1. We get the following

proposition:

Proposition 2 If 0.5 < a < 1, 0.5 < b < 1 and a 6= b, then total output is reduced; if a > 1, b > 1 and a 6= b,

total output is increased.

Proof. First we get total output in both regimes. As p̄ = 1, in the uniform price market total output is

Q = A+B. With price discrimination, total output is Q̂ = Ap̂−a
A +Bp̂−b

B . Now we find the normalized cost.

In the whole market, at uniform price p̄ = 1, elasticity is easily seen to be ε̄ = (aA+bB)/(A+B). Applying

equation (2) to this market, we get that

(3) c = 2− A+B
aA+bB

=
A(2a−1)+B(2b−1)

aA+bB
.

And finally we get the equilibrium prices. Applying again equation (2) to markets A and B, with elastic-

ities a and b respectively, we get

(4) p̂A =
ac

2a−1
, p̂B =

bc
2b−1

.

Now, we will use a generalization for real exponents of the Bernouilli inequality –see, for example,

Weisstein, E. W., (2005). This inequality states the following: “If 0 6= x >−1 and 0 < a < 1 are real values,
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then (1 + x)a < 1 + ax; if 0 6= x > −1 and a > 1, then (1 + x)a > 1 + ax.” It is clear that if x = 0, or a = 1,

the inequality becomes an equality. In order to apply this inequality to our purposes, we need to know that
1
p̂k
−1 >−1 for k = A,B. Under our hypothesis, this is clear because as 0.5 < a and 0.5 < b, then c > 0 and

p̂k > 0 for k = A,B. Now, with some algebra, we obtain:

(5)
1
p̂A

=
2a−1

ac
= 1+

1
p̂A
−1 = 1+B

a−b
a(A(2a−1)+B(2b−1))

.

A similar expression can be obtained for 1/p̂B. Applying the Bernoulli inequality, for a < 1 and b < 1,

we have:

(6) p̂−a
A =

(
1
p̂A

)a

< 1+B
a−b

A(2a−1)+B(2b−1)
;

and

(7) p̂−b
B =

(
1
p̂B

)b

< 1+A
b−a

A(2a−1)+B(2b−1)
.

These inequalities are valid for all the parameter values, except when a = b. Total output with price

discrimination is:

(8) Q̂ = Ap̂−a
A +Bp̂−b

B < A(1+B
a−b

A(2a−1)+B(2b−1)
)+B(1+A

b−a
A(2a−1)+B(2b−1)

) = A+B.

This result proves the proposition. That is, total output is reduced under price discrimination. It is clear

that if a < 1 and b = 1, total output is also reduced. With a > 1 and b > 1, it is easy to get the inverse result.

2

Now, we proceed to our last result for this example.

Result 1 When A = B, for all values with a and b over the curve in Figure 1, and not in the diagonal,

welfare is increased when price discrimination is introduced. A similar result is valid when A 6= B.

Proof. We have already got the equilibrium prices, p̄, p̂A p̂B. For these prices, we will now compute

changes in the set of variables that have an influence on welfare. Total income with uniform price is A+B.

As elasticity is ε̄ = (aA+bB)/(A+B), total cost is c(1−a)A+c(1−b)B. So, total profit is π̄ = A(1−c(1−

a))+B(1−c(1−b)). With a price discrimination regime, total income in market A is p̂AAp̂−a
A = Ap̂1−a

A , and

total cost is c(1−a)Ap̂−a
A . Total profit is the difference between these values, π̂A = Ap̂1−a

A − c(1−a)Ap̂−a
A .
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For market B the expressions are similar. The increment in consumer surplus (CS) is:

(9) ∆CS =
∫ 1

p̂A

Ap−ad p+
∫ 1

p̂B

Bp−bd p = A
1− p̂1−a

A
1−a

+B
1− p̂1−b

B
1−b

.

We have then that the welfare gain is

(10)

∆W = ∆CS+ π̂A + π̂B− π̄ =
Aa

1−a
(1− p̂1−a

A )+Ac(1−a)(1− p̂−a
A )+

Bb
1−b

(1− p̂1−b
B )+Bc(1−b)(1− p̂−b

B ).

Fixing the parameters A and B, total increment in welfare is ∆W = W (a,b). We have tried without

success to simplify analytically ∆W . But, although this function W (a,b) is not simple, it can be studied

with numerical methods. We represent W (a,b) = 0 in Figure 1 for A = B. It is easy to show, by numerical

example, that the values of a and b over these curves violate proposition WO. 2

[INSERT FIGURE 1 ABOUT HERE]

II.2 Partial competition

This example has the following economic rationale. Suppose that a high cost firm, Firm H, can sell only in

a segment of the whole market. If a lower cost firm, Firm L, that operates in the whole market, is bound to

a uniform price, then Firm L will suffer, in the whole market, the consequences of competition with firm H

in H’s particular market. Hence Firm L may prefer a soft competition with Firm H. This strategy of Firm L

allows Firm H to expand its production. The result may be an inefficiency in production. If we allow price

discrimination, then Firm L can limit the contest with Firm H to H’s own segment, without hampering its

profit in the other segments of the market. Thus, with price discrimination this inefficiency is avoided. This

situation is parallel to that studied by Gelman and Salop (1983), but changing capacity limitations to market

demand limitations.

Example 2. There are two markets, A and B, with demands Q = a− pA and Q = b− pB. There are also two

firms. Firm L has zero costs and sells in both markets. Firm H sells only in market A and has a constant

marginal cost that we normalize to c = 1. Let qA, qB be the quantities of the first firm in both markets

and xA the quantity of the second firm. There is Cournot competition in market A. We find the following

proposition:
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Proposition 3 For all points (a,b) inside the triangle with vertices (2,2), (2, 54
17) and (5,4), total output is

reduced and welfare is increased, when price discrimination is introduced.

Proof. Whatever price restrictions Firm L has, Firm H maximizes πH = (a− 1− xA − qA)xA at xA =
1
2(a−1−qA). That is, xA = a− xA−qA−1, or

(11) xA = pA−1.

With uniform pricing, both markets must have the same price. That is, p̄ = a− q̄A− x̄A and p̄ = b− q̄B.

Then Firm L maximizes: π̄L = p̄(a− x̄A − p̄ + b− p̄) at p̄ = 1
4(a− x̄A + b). Applying equation 11, x̄A =

p̄−1, we obtain p̄ = (a+b+1)/5. With price discrimination is easy to see that the equilibrium prices are

p̂A = (a+1)/3 and p̂B = b/2. We can use equation 2, or any other method, to find them.

Now we proceed with welfare. Total willingness to pay in market A is 1
2 a2 − 1

2 p2
A, for whatever price

regime. The increment in total willingess to pay in this market is thus (p̄2 − p̂2
A)/2. The same is true for

market B. As the cost of firm H is 1, total cost, by equation 11 is x̄A = p̄− 1 with uniform price, and

x̂A = p̂A−1 with price discrimination. Applying all this, we find the increment in welfare to be

(12) Ŵ −W = p̄2− 1
2

(
p̂2

A + p̂2
B
)
+ p̄− p̂A.

The increment of output in the industry is Q̂−Q = a− p̂A +b− p̂A− (a+b−2p̄) = 2p̄− p̂A− p̂B. With

some algebra we find that:

(13) Q̂−Q =
2a−3b+2

30
; and Ŵ −W =

51b−14a−134
60

2a−3b+2
30

.

If the values of a and b satisfy 2a+2
3 < b < 14a+134

51 , then Q̂ < Q and Ŵ > W . Firm H will sell a positive

quantity only if a > 2. These inequalities mean that for all (a,b) inside the triangle of vertices (2,2),

(2,54/17) and (5,4), welfare is increased with reduction in output. An example of a point with integer

values in this triangle is a = 3 and b = 3. 2

III Conclusion

We conclude with only one remark. It is known for a monopolist that an increase in total output is a

necessary condition for welfare improvement. This proposition presents a test that only requires knowledge
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of observable magnitudes. But to have policy relevance, the policy-maker should be sure that this proposition

is still valid under imperfect competition, because pure monopolies are rare. The extension to oligopoly

has not previously been revoked because most papers on price discrimination with imperfect competition

deal with symmetric cost firms. Unfortunately, this note shows that a generalization is not possible with

heterogeneous firms. Then, the policy-maker needs knowledge of variables such as costs; and costs are

often hard to measure.
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Figure 1: A Cournot model with A = B
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