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FINITE ELEMENT MODEL FOR PREDICTING STIFFNESS

OF METAL‐PLATE‐CONNECTED TENSION‐SPLICE

AND HEEL JOINTS OF WOOD TRUSSES

J. M. Cabrero,  K. G. Gebremedhin

ABSTRACT. A finite element model that predicts axial stiffness of metal‐plate‐connected (MPC) tension‐splice and heel joints
of wood trusses is developed. The commercial software ABAQUS was used in developing the model. The model was based
on: (1) the assumption that the joints are two‐dimensional, (2) plane‐strain modeling, and (3) the assumption that the
properties of the wood and metal plate are linearly isotropic. The interface between the wood and the teeth of the metal plate
is modeled with a finite sliding formulation. Contact surfaces (rather than contact elements) model the slip of the teeth of the
metal plate and shear at the wood‐tooth interface. The tangential contact properties are set to a specified coefficient of friction
while the normal contact properties are set to a “hard” contact formulation, allowing for a possible separation of the nodes
after contact is achieved. Model predictions are validated against experimentally measured stiffness values obtained in the
literature. The data cover two wood species and three levels of modulus of elasticity (MOE). On the average, the model
predicts within 5% of the experimentally measured stiffness values. The unique features of the model include: (1) accounting
for friction at the tooth‐wood interface, (2) accounting for tooth slip, (3) requiring no empirical factor (such as foundation
modulus) in predicting axial stiffness, and (4) using the same methodology in modeling tension‐splice and heel joints.

Keywords. Axial stiffness, Finite element, Heel joint, Metal‐plate‐connected joint, Tension splice, Truss joint.

onventional methods of design of metal‐plate‐
connected (MPC) wood truss joints assume that
connections between the metal‐plate connector
and wood are either pinned or rigid. In reality, these

joints exhibit a semi‐rigid behavior, i.e., not purely pinned or
rigid but somewhere in between (Amanuel et al., 2000; Gupta
and Gebremedhin, 1990; Riley et al., 1993). Therefore, the
challenge is to determine the stiffness of these joints so that
their semi‐rigidity can be accounted for in the design of MPC
wood trusses. Modeling the behavior of the connector in truss
members is complicated by the composite nature of the metal
and wood and the configuration of the system (a row of teeth
embedded in wood and a gap existing between the wood ele‐
ments). The metal‐plate connection is the least understood in
truss design.

A simplified approach to truss design is to assume the truss
joints to be pin‐connected, which means that no bending mo‐
ment is transferred between adjacent members. This assump‐
tion violates the continuity of chord members at the joints. To
account for the indeterminacy of a truss when analyzed as
pin‐joined approximations, the Truss Plate Institute (TPI) has
provided empirically based Q‐factors to modify the bending
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moment or the buckling length of truss members (TPI, 1995).
The Q‐factors were developed based upon many years of ex‐
perience of design and extensive simulated investigation of
wood trusses of standard configurations using the Purdue
Plane Structures Analyzer (PPSA) (Purdue Research
Foundation, 1993). The PPSA is a matrix method of structur‐
al analysis that determines the axial forces and bending mo‐
ments of truss‐frame models. The tabulated Q‐factors
provided by TPI do not cover all ranges and combinations of
loading conditions, spans, and geometries. Therefore,
theoretical  models that provide realistic treatment of joints
are needed so that forces and moments can be predicted with
greater accuracy. Because of the wide application of MPC
wood trusses in commercial, industrial, residential, and agri‐
cultural buildings, even a reasonably small improvement in
the characterization of truss joints may result in significant
cost savings.

The main focus of this research is to develop a simple fi‐
nite element model for the tooth‐wood interface of MPC
tension‐splice and heel joints based on fundamental prin‐
ciples of contact mechanics that, apart from basic material
properties, requires no empirical factors to predict stiffness
values. Linear elastic finite elements represent the metal
plate, teeth, and wood, while contact surfaces transfer axial
and frictional forces between the wood and the teeth of the
metal plate as the joint is externally loaded. The commercial
software package ABAQUS was used to develop the contact
surfaces. Modeling the interface using contact surfaces can
have wide engineering applications, such as in modeling the
bond between steel and concrete in reinforced concrete struc‐
tures, modeling the transfer of frictional forces between piles
and soil in pile foundations, and modeling the rotational stiff‐
ness of MPC wood joints.

C
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OBJECTIVES
The specific objectives of this study were:
� To develop a simple finite element model that predicts

axial stiffness values for tension‐splice and heel joints
of wood trusses, taking into account friction at the
tooth‐wood interface and tooth slip, and requiring no
empirical factor such as foundation modulus to predict
stiffness.

� To validate the predicted stiffness against measured
values.

LITERATURE REVIEW

Several theoretical studies were conducted to model MPC
wood truss joints. Foschi (1977) was the first to propose a
theoretical  expression that represents the nonlinear load‐slip
relationship of connectors. Most of the subsequently devel‐
oped theoretical expressions that represent nonlinear behav‐
ior of MPC joints have been based on Foschi's work. Foschi's
approach was based on the relative displacement between
two points on a joint that initially had the same coordinates:
one referring to the metal plate, and the other referring to the
wood member. Foschi modeled the wood and the metal plate
as rigid bodies connected by specified properties of non‐
linear springs.

Triche and Suddarth (1988) developed a finite element
based analysis for MPC joints. They employed Foschi's
(1977) mathematical load‐deformation relationship to pre‐
dict the relative displacement between the surface of the
metal‐plate connector and the wood. Conventional frame
elements were used to model lumber, special wood‐to‐plate
elements were used to model the nonlinear load‐slip behavior
between the surface of the metal‐plate connector and frame
elements, and special plate elements were used to model
strain in the metal‐plate surface (non‐tooth portion of the
plate). They reported good agreement of stiffness values be‐
tween model predictions and experimental results.

Sasaki and Takemura (1990) developed a model based on
replacing MPC joints with a set of three linear elastic springs
representing axial, shear, and rotational stiffness characteris‐
tics. They performed a matrix analysis for a member having
semi‐rigid joint connections at its ends by replacing the joints
with springs. Their mathematical expression is similar to that
of Foschi (1977). Similarly, Cramer et al. (1990) developed
a two‐dimensional, non‐linear, plane‐stress, finite element
model for a tension‐splice joint. Similar to Foschi (1977),
they used spring elements to model the wood, metal plate,
and the wood‐metal interface. The wood was modeled as a
linearly elastic and orthotropic material. They concluded that
current design assumptions represent realistic approxima‐
tions only for relatively small plates. In another study, Cram‐
er et al. (1993) developed “a more efficient scheme for
computing the stiffness of a metal‐plate‐connected joint” that
accounts for joint eccentricities, nonlinear semi‐rigid joint
performance,  and which includes an automated means to
compute the geometric characteristics of each plate‐wood
contact surface. Their approach was that each plate‐wood
connection is modeled as a single element with a set of three
springs (two translational and one rotational) located at the
center of gravity of each plate‐wood contact area. The springs
were connected to the wood element, which was idealized as
a frame member along the wood‐member centerline, and to
the plate model through rigid links. Their model is semi‐
analytical  because the analysis requires that the stiffness

characteristics representing the contact area be computed
from the geometric and individual tooth load‐slip character‐
istics of a given plate obtained from testing.

Crovella and Gebremedhin (1990) developed two theoret‐
ical models, a two‐dimensional linear finite element model
and an elastic foundation model, that predict stiffness values
of MPC tension‐splice joints. The finite element model used
linear three‐node triangular elements to model the joint. The
elements did not account for bending. Experimental tests
were conducted to validate the predicted results. It was re‐
ported that the finite element model overpredicted the stiff‐
ness values due to the properties of the triangular elements
used to mesh the domain. The stiffness values predicted by
the elastic foundation model were, however, close to actual
experimental  results. The elastic foundation model requires,
as an input, a foundation modulus, which must be obtained
from experimental bearing tests.

Groom and Polensek (1992) developed a theoretical mod‐
el that accurately predicted the ultimate load and failure
modes of different joints. Their method was based on a beam
on an elastic foundation and included the inelastic behavior
of the tooth and wood. A linear step‐by‐step loading proce‐
dure was used to better represent the nonlinear response of the
foundation. Their model accurately predicted the load‐
displacement  curves and the ultimate load of MPC joints con‐
sidering wood‐grain orientation and plate geometry.

Riley et al. (1993) developed a semi‐analytical model that
predicted axial and rotational stiffness values of MPC truss
joints based on the concept that a tooth of a metal plate em‐
bedded in wood acts as a cantilever beam on an elastic
foundation. They assumed the wood to be linearly elastic and
neglected friction forces at the tooth‐wood interface. Their
model requires, as an input, a foundation modulus, which
must be obtained from experimental bearing tests.

Vatovec et al. (1995) used the ANSYS finite element pro‐
gram to predict the axial load‐deflection relationship of MPC
joints. They employed a three‐dimensional nonlinear model
in which each tooth was represented as a single point consist‐
ing of three non‐linear spring elements. The metal plate was
modeled without the slots that exist between teeth. Their
model represented the axial load‐deflection relationship “rel‐
atively well,” but they reported that the rotational response
of the model was not validated because of “insufficient
boundary conditions” in the experimental work. In addition,
the authors employed contact elements that were limited to
wood‐to‐wood interaction, but not tooth‐to‐wood interac‐
tion. In a later study, Vatovec et al. (1996) developed a three‐
dimension model for a tension‐splice joint. In this model, the
wood was modeled by a linear elastic isotropic beam and the
plate was assumed to be a rigid body. Three uni‐axial springs,
calibrated against experimental data, were used for the tooth‐
wood interface. The model required a long computational
time because of the high number of degrees of freedom, and
it was reported insensitive to variations in the modulus of
elasticity of wood or steel or inclusion of the holes of the met‐
al plate.

Riley and Gebremedhin (1999) developed a semi‐
analytical  model that predicted axial and rotational stiffness
values of MPC tension‐splice and heel joints. In the formula‐
tion of this model, the punched teeth were assumed to act like
cantilever beams in elastic foundations. The model is semi‐
analytical because it requires, as an input, a foundation mo‐
dulus, which needs to be specified. The model is based on the
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theory that the reaction forces of the foundation (wood) are
proportional at every point to the deflection of the beam at
that point. In the model, wood was treated as linearly elastic,
and friction at the tooth‐wood interface was neglected. The
model predictions were validated against extensive test data
of MPC wood joints. The stiffness predictions from our mod‐
el are validated against these data (Riley and Gebremedhin,
1999).

Amanuel et al. (2000) developed a finite element model
that predicts axial stiffness of MPC tension‐splice wood
joints. In this study, linear elastic finite elements were used
to model the metal‐plate surface, teeth, and wood, while non‐
linear contact elements were used to model slip at the tooth‐
wood interface. The commercial computer software ANSYS
was used to develop the contact elements. In this study, wood
was assumed to be isotropic, and frictional forces between
tooth and wood were not considered. The procedure, howev‐
er, required no empirical factor (such as foundation modulus)
to predict joint stiffness. The predictions were within 5% of
measured values.

None of the models reported previously (with the excep‐
tion of the study by Amanuel et al., 2000) have accounted for
slip at the tooth‐wood interface using contact surfaces. In
addition, most of the models reported herein required either
an empirical factor (foundation modulus) or do not account
for frictional forces. The model proposed herein accounts for
tooth slip and friction at the interface, and requires no founda‐
tion modulus to predict axial stiffness.

MODEL FORMULATION
A simple 2‐D finite element model that predicts axial stiff‐

ness of MPC tension‐splice and heel joints of wood trusses
was developed using the commercial computer software
ABAQUS. Several assumptions were made to simplify the
3‐D, composite, orthotropic (wood) problem into a 2‐D plain
strain problem. As was indicated previously, Vatovec et al.
(1996) modeled MPC wood joints as a 3‐D problem and re‐
ported a long computational time because of the high number
of degrees of freedom. The computational time would have
increased exponentially had they used contact elements to
model the interface. They used uni‐axial springs, calibrated
against experimental data, to simulate the tooth‐wood inter‐
face. In this study, a simple, computationally efficient, 2‐D
model is proposed.

ASSUMPTIONS

The following assumptions were made in this model:
� The deformation perpendicular to the direction of the

axial force was ignored. The deformation in the longi‐
tudinal direction (elongation in the direction of the ax‐
ial force) was assumed to be dominant. Because of this
assumption, the model is reduced to a plane strain prob‐
lem. The same assumption is made for the heel joint,
i.e., only force in the axial direction (parallel to the top
chord) is considered. This assumption corresponds to
the assumption made by Riley and Gebremedhin
(1999), whose data were used to validate our model.

� The predicted axial stiffness of the joints is governed
by tooth slip and friction at the wood‐tooth interface
and the resulting deformation of the wood (elongation
in the direction of the load).

� For the tension‐splice joint, the force in each row of
teeth (parallel to the direction of load) was assumed to
be the same for simplicity, and is commonly assumed
in design practice as well. For the heel joint, however,
the force in each row of teeth was assumed to be differ‐
ent. A row of teeth is defined parallel to the top chord,
and the row at the interface of the top and bottom
chords (the longest row) was taken for calculating stiff‐
ness.

� The number of teeth located in the top chord was as‐
sumed to be half of the total teeth of the plate (60 teeth),
and the other half were assumed to be located in the bot‐
tom chord. This is consistent with the assumption made
by Riley and Gebremedhin (1999).

� Both wood and steel were assumed to be elastic and iso‐
tropic. Wood is an orthotropic material (Goodman and
Bodig, 1973), but since the joints are modeled as a 2‐D
problem, only material properties in the direction of the
load were considered.

GEOMETRICAL MODEL

The wood lumber species groups used in this study were
spruce‐pine fir and southern pine. The actual size of the lum‐
ber was 38 mm thick and 89 mm wide (nominal 2 × 4). Plates
were 20‐gauge steel and were 76.2 × 102 mm for the tension‐
splice joint and 76.2 × 127 mm for the heel joint. These were
the same lumber species groups, lumber size, and steel plate
sizes that were used in the experimental study by Riley and
Gebremedhin (1999). Figure 1 shows the configuration of the
tension‐splice joint, and figure 2 shows the heel joint.

Some simplifications were made in modeling the geome‐
try of the plate. The slots (because of punched teeth) were not
considered in modeling. The tooth of a metal plate, which is
actually twisted and tapered toward the end, was modeled as
flat rectangular surface having a thickness equal to the nomi‐
nal thickness of the plate. A similar assumption was made by
Amanuel et al. (2000).

The hole in the wood was assumed to be 0.01 mm smaller
than the thickness of the tooth. This technique allows good
initial contact between the tooth and the wood. From the start,
good contact was established by relocating the nodes on the
wood (initially “inside” the steel) to the metal‐plate surface.
This was accomplished inside the software.

Figure 1. Diagram of a tension‐splice joint: (a) top view and (b) side view
with line of symmetry shown.
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Figure 2. (a) Diagram of the heel joint studied herein and tested by Riley
and Gebremedhin (1999), and (b) teeth layout and axis (X‐X) that sepa‐
rates the computational domain.

BOUNDARY CONDITIONS

In modeling the tension‐splice joint, only half of the width
of the wood member and half of the width of the metal plate
in one member (fig. 1b) was considered because of symme‐
try. Rollers were defined along the line of symmetry of the
lumber to allow movement in the direction of the load. The
metal plate was hinged at midpoint (at the gap), and displace‐
ment perpendicular to the longitudinal direction was re‐
stricted to avoid rigid‐body motion.

For the heel joint, the computational domain was repre‐
sented by the metal plate that is located at the top chord (X‐X
axis in fig. 2b). For simplification, it was assumed that the
line passes through a tooth slot at every other row along the
plane. Otherwise, more than one section would have to be
considered. In this model, the number of teeth modeled was
ten because the plate has ten rows.

LOAD APPLICATION
Tensile force was applied at one end of the wood of the

tension‐splice joint, and compressive force was applied at the
top chord of the heel joint (Riley and Gebremedhin, 1999).
The forces were applied as uniform pressures. In the model,
to achieve uniform load distribution and avoid local stress
concentration,  the load was applied 50 mm away from the last
row of teeth.

ELEMENT USED IN THE MODEL

The element used in the model, CPE3, is available in the
ABAQUS library (ABAQUS, 2004). The element, adapted
for plane strain models, is a solid continuum three‐node

Figure 3. Finite element model: (a) meshed metal plate and (b) meshed
wood member. The two figures are not drawn to the same scale.

triangular element. Each node has two degrees of freedom,
i.e., translation in the x and y directions. Because the ele‐
ments are triangular in shape, they are less sensitive to geo‐
metrical distortions, which could potentially happen to the
teeth due to bending.

The mean size of the element is fixed at 0.5 mm. This size
ensures two layers of elements for the teeth. The same mesh
density was used for both wood and steel components. The
resulting mesh is shown in figure 3.

CONTACT
Load transfer between teeth and wood occurs at the con‐

tact interfaces. The contact interface is defined by two sur‐
faces, one for the wood and the other for the metal plate. In
this study, the interface was defined by contact surfaces rath‐
er than by contact elements. This approach is easier because
no matching mesh between the surfaces of contact is re‐
quired. This method consists of defining the surfaces using a
pair of rigid or deformable surfaces. In addition, in this ap‐
proach, one of the surfaces must be defined as a “master” and
the other surface as a “slave” (ABAQUS, 2004). The nodes
of the slave surface are constrained from penetrating into the
master surface. The nodes of the master surface, however,
could penetrate into the slave surface. Loads are transferred
to the master nodes according to the contact properties de‐
fined and the position of the slave node.

The specification of the surfaces is critical because of the
way the interactions (of the surfaces) are discretized. For
each node on the slave surface, ABAQUS looks for the clos‐
est point on the master surface of the contact pair where the
normal of the master surface passes through the node on the
slave surface (fig. 4). The interaction is then discretized be‐
tween the point on the master surface and the node on the
slave surface. Actually, only the master surface geometry and
orientation are defined. The direction of the slave surface is
normal to the master surface. In the model, the surface corre‐
sponding to the metal plate is defined as master and that of
the wood as slave. It is recommended to define the surface of
the stiffer material to be the master surface.

To model the transfer of normal forces, a “hard” contact
relationship was chosen. The metal plate is assumed to trans‐
fer only compressive forces when in contact, and the contact
pressure reduces to zero when the surfaces are disengaged.
No tensile forces are transferred through the interface.

When the teeth of the metal plate deform, they press
against the wood, and may also slip and transmit tangential
forces. At contact, surfaces transmit shear and normal forces
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Figure 4. Definition of contact pairs between nodes (ABAQUS, 2004).

across the interface. ABAQUS uses an isotropic Coulomb
friction model to account for friction between the contacting
surfaces. The critical shear stress, �crit., at which sliding of the
surfaces begins, is defined in the model. The critical shear
stress is defined as:

 �crit. = �p (1)

where � is the coefficient of friction, and p is the normal con‐
tact pressure.

In this study, friction was assumed to be equal in all direc‐
tions. Normally, there is a difference in magnitude between
friction when slippage is initiated and when it is underway.
Due to lack of data, the same friction coefficient (0.5) was as‐
sumed for both cases.

A finite sliding model formulation was applied. This for‐
mulation allows the contact surfaces to separate and slide
with finite amplitude and arbitrary rotation. As mentioned
previously, the hole in the wood is a little bit smaller (by
0.01�mm) than the thickness of the idealized tooth. This en‐
sures an initial contact between wood and tooth. The initial
contact is adjusted automatically by “moving” the overpas‐
sing nodes to the exact contact position. This technique en‐
sures the necessary good initial contact.

Figure 5. Free‐body diagram of the heel joint. Axial displacement of the joint
is defined along the wood grain of the top chord. The forces and moments that
were ignored in modeling the joint are shown in broken lines.

TRANSFORMATION OF PROPERTIES
For the heel joint, the internal force, FA, is in the plane of

the top chord but is at an angle to the grain of the bottom chord
(fig. 5). Therefore, the MOE value measured along the grain
of the bottom chord needs to be transformed to the plane of
FA using elastic theory. The stiffness matrix of the bottom
chord in the direction of force FA is calculated as:

 S� = TST-1 (2)

where S� is the stiffness matrix of the bottom chord in the
plane of force FA, S is the stiffness matrix in the direction of
grain of the bottom chord, and T is the transformation matrix.

To calculate the MOE in the plane of force FA, the
compliance element (S�,1) must first be calculated as (Bodig
and Jayne, 1982):
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The MOE in the plane of force FA is then obtained as the
inverse of the compliance element (S�,1) as (Bodig and Jayne,
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MOE in the radial direction, GLR is the shear modulus in the
longitudinal‐radial  plane, and vRL is Poisson's ratio,
considering an active strain in the longitudinal direction and
a resulting passive strain in the radial plane.
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where ET is the MOE in the tangential axis, GLT is the shear
modulus in the longitudinal‐tangential plane, and GRT is the
shear modulus in the radial‐tangential plane.

Poisson's ratio in the longitudinal direction, vLR = 0.4, and
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were used in this study. These values were proposed by Bodig
and Jayne (1982) for softwood.

RESULTS AND DISCUSSION
TENSION‐SPLICE JOINT

In analyzing the tension‐splice joint, test results (from
Riley and Gebremedhin, 1999) of modulus of elasticity of
two wood species groups, southern pine and spruce‐pine fir,
were used. These values were 8.49 MPa for spruce‐pine fir,
and 10.85 and 15.17 MPa for southern pine. The modulus of
elasticity used for steel was 203,000 N/mm2, and Poisson's
ratios used for steel and wood were 0.3 and 0.4, respectively.

The elongation of the joint was calculated at two locations
that are vertical to each other. These two locations are
identified by the two nodes shown in figure 6. Node NA is
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Figure 6. Model definition and node locations where displacements were
calculated for the tension‐splice joint.

located along the axis of symmetry below the last tooth, and
the second node (NB) is located at the tip end of the last tooth.
These two locations correspond to where measurements of
elongations were made by Riley and Gebremedhin (1999). In
calculating displacements, the contributions of the teeth and
wood were taken into account.

The predicted node displacement (� h) is equal to one‐half
the displacement of the joint. The corresponding force (Fh)
is equal to the reaction force. The effective stiffness was,
therefore, calculated by dividing Fh by � h. The location of
node NA accounts for the displacement due to bending of all
teeth, axial extension of the plate, and deformation of the
wood. The location of node NB, however, does not take into
account the deformation of the wood. The predicted stiffness
values are compared (table 1) against values measured by
Riley and Gebremedhin (1999). The maximum difference
between the predicted and measured stiffness values is 4% at
node NA and 10% at node NB. On the average, the stiffness
at node NA is less than 2% and that at NB is less than 9%
different from the measured values (table 1). It can be
concluded that the model predicts axial stiffness of MPC
tension‐splice joints reasonably well.

Contour plots of displacement of the joint are shown in
figure 7. The load‐displacement relationships for the three
MOE values used in the model are shown in figure 8. The
relationships are almost linear, and it appears that no initial
slip occurred due to lack of initial contacts between teeth and
wood.

The modeling technique used herein provides some
insight into what is happening at the tooth‐wood interface.
Figure 9 shows the contact pressure in the teeth and wood
surfaces. Note that high pressure is produced at the tooth‐
wood interface closest to the metal‐plate surface (base of

Figure 8. Load‐displacement results for the tension‐splice joint for three
MOE values.

tooth), and some at the tooth bottom end. No negative
pressure (tension) is shown in the figure when a tension force
was applied from left to right, which validates the assumption
that no tension force is transmitted between the contact
surfaces.

The pressure profile, shown in figure 9, is different from
those reported by Riley and Gebremedhin (1999) and by
Groom and Polensek (1992). These studies assumed that the
punched teeth act like cantilever beams in an elastic
foundation. The pressure profile reported by Riley and
Gebremedhin (1999) is shown in figure 10. Similarly, the
maximum pressure is at the base of the tooth but decreases
toward the tip of the tooth. In our model, the top segment of
the tooth presses against the wood in one direction, whereas
the bottom segment presses in the opposite direction, as
shown in figure 11. Pressure varies with tooth location, being
lower on the tooth closest to the joint gap.

The shear due to contact friction is shown in figure 12. The
friction profile is different for each tooth. The friction force
is lower for the tooth closer to the gap and higher for the tooth
farthest from the gap. The stress distribution in the metal‐
plate surface and wood are shown in figures 13a and 13b,
respectively. The metal plate closest to the gap is more
stressed than the surface farther away, and the wood close to
the tooth base and tip show higher stresses than any other
point in the wood.

Table 1. Measured and predicted stiffness values for MPC tension‐splice wood truss
joint (values in the parentheses are percent differences from measured values).

Lumber Species
Group

Wood MOE
(MPa)

Measured Stiffness[a]

(kN/mm)

Predicted Stiffness at Specified Nodes (kN/mm)

NA NB

Spruce-pine fir 8.49 21.3 22.22 (+4%) 19.48 (-9%)
Southern pine 10.85 29.8 29.69 (-0.4%) 26.7 (-10%)
Southern pine 15.17 35.9 36.67 (+2%) 33.41 (-7%)

[a] From Riley and Gebremedhin (1999).

Figure 7. Contour plot of axial displacement (longitudinal direction) in the wood.
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Figure 9. Contact pressure distribution.

Figure 10. Pressure profile on a tooth of a metal plate assumed as a
cantilever beam in an elastic foundation (Riley and Gebremedhin, 1999).

Figure 11. Scaled deformed shape of the metal‐plate connector (scale of
the deformed shape is 25).

HEEL JOINT
The heel joint is much more complex than the tension‐

splice joint because of eccentric loading to the metal plate,
which creates rotation. As pointed out previously, the axial
stiffness of the joint is calculated based on the assumption
that the deformation of the joint is a result of the compressive
force in the top chord. The deformation that exists
perpendicular  to the compressive force is ignored. This
assumption reduced the model to a plane strain problem, and
thus allowed the heel joint to be modeled in the same way as
the tension‐splice joint. Riley and Gebremedhin (1999) also
ignored the perpendicular deformation in computing axial
stiffness of the heel joint.

Heel joints made of different lumber properties (MOE)
and slopes were analyzed. These were the same joints tested
by Riley and Gebremedhin (1999).

The displacement of the heel joint was calculated by
superposition, separately calculating the displacements of
the top and bottom chords. The geometrical model for both
chords is the same, but the MOE values for the bottom chord
need to be transformed, as explained previously. Since the
MOE of the top chord was in the direction of load and the
grain of the wood, no transformation was necessary.

Figure 12. Contact shear distribution due to friction.
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Figure 13. Stress contour (Von Mises reference stress): (a) in the metal plate and (b) in the wood.

Figure 14. Model definition and node locations where displacements were calculated for the heel joint.

Table 2. Measured and predicted stiffness values for MPC heel wood truss
joint (values in parentheses are percent differences from measured values).

Lumber Species
Group

Slope of
Top Chord

Wood MOE
(MPa)

Measured Stiffness[a]

(kN/mm)

Predicted Stiffness at Specified Nodes (kN/mm)

NA NB

Spruce-pine fir 5:12 10.25 3.24 3.59 (+11%) 3.51 (+8%)
Southern pine 5:12 10.35 3.60 3.61 (+0.3%) 3.53 (-2%)
Southern pine 3.5:12 9.30 4.36 4.13 (-6%) 3.78 (-14%)

[a] From Riley and Gebremedhin (1999).

The displacement for the top chord is represented by � TC
and that of the bottom chord is represented by � BC. The
stiffness of the heel joint was calculated as:

 
BCTC

F
k

Δ+Δ
=  (6)

where F is the top chord compressive force.
Displacements of the joint were calculated at two

locations (fig. 14), and the stiffness values were calculated at
these two locations. The maximum difference between the
predicted and measured stiffness values was 11% higher at
node NA and 14% lower at node NB. On the average, the
difference was less than 2% at node NA and less than 3% at
NB (table 2). Even though the model predicted accurately for
an MOE of 10.35 MPa, there was no clear trend in joint
stiffness with varying lumber MOE. This may be because of
the assumptions made to ignore rotation and deformation
perpendicular  to the direction of the axial force.

CONCLUSIONS
The following specific conclusions can be drawn from the

study:
� A simple and relatively accurate finite element model

that predicts axial stiffness of MPC tension‐splice and
heel joints of wood trusses was developed using the
ABAQUS (2004) commercial computer software.
Both joints were modeled as two‐dimensional plane
strain problems by accounting for tooth slip and for
friction at the tooth‐wood interface. The approach
required no empirical factor such as foundation
modulus.

� The model predictions were compared against
measured stiffness values available in the literature. On
the average, the model predicted within 5% (between
-10% and +4%) of measured values for the tension‐
splice joint, and within 0.5% (between -14% and
+11%) for the heel joint.
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