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Abstract. - The dynamics of Bknard-Marangoni convection with unidimensional heating in a pure 
fluid is studied experimentally. Convection begins with rolls parallel to the heater. The 
characteristics of these primary rolls have been determined. When the temperature difference 
across the liquid layer is increased beyond a critical value a secondary instability appears. 
Motions transverse to the heater with a definite wavelength can be seen. Moreover, for small 
angles between the heater and the fluid surface, the pattern drifts along the heater with a 
velocity that depends almost linearly on the inclination. A phenomenological phase equation is 
proposed to interpret this observation. 

Convective motions due to a quasi-one-dimensional (1D) heating have been studied in 
different contexts. Kayser and Berg[l] studied the surface deformation of a fluid layer 
heated by a resistive wire on the bottom of a convective cell. The main result of this 
experiment is that the free surface just above the wire deflects to a concave or convex 
surface, depending on the liquid depth. This effect can be explained as a competition between 
temperature-depending surface tension forces that lead to a concave free surface (Bhard  
effect) and the buoyancy forces that tend to make the surface convex (Rayleigh effect). Later 
on, Anthore et al. [2] noticed that a laser beam that crosses the fluid in a small convective cell 
parallel to the free liquid surface begins to heat. These authors realized that when the laser 
beam crosses the fluid near the free liquid surface the beating has the same period as the 
surface deformation. The same group carried out a different experiment to elucidate the 
nature of those oscillations [31. In the former studies they placed a short (L  = 3 em) resistive 
wire just below the free surface and they determined the temperature thresholds for the 
oscillatory instability of the free surface due to a BBnard effect. 
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TABLE I. - T h e m 1  conductivities of the cell. 

Air Plexiglas Glass Rubber Copper Silicon oil 

density 1.662 920 2600 1000 8920 910 
(kg/m3) 

(J/(kg K)) 
thermal conductivity 0.0256 0.209 0.76 0.15 395 0.2 
(w/(m k)) 

heat capacity 1005 1500 840 2100 384.6 1923 

More recently Vince and Dubois [4] examined the dynamics of a long (L  = 60 cm) resistive 
wire placed nearby under the free surface of a silicon oil fluid. The experimental set-up in this 
experiment allowed them to obtain spatio-temporal dynamics in this quasi-1D configuration. 
Nice propagative patterns are observed, with some sources or sinks, a kind of defects which 
are currently under study [5,6]. However, the physical mechanism responsible for this 
experimental observation is not completely understood. 

A common feature in the experimental set-up of those experiments is the small heat 
capacity of the heating device used to destabilize the fluid. In the present paper we present 
as well some results on quasi-1D convection in a liquid layer with a free surface, but using a 
copper line heater. Therefore, the main difference with previous studies is that a possible 
feedback mechanism between convective motions and the heater is reduced. A3 a 
consequence, our configuration is closer to the 1D version of the usual BBnard-Marangoni 
convection than previous experiments. 

A cross-section of the convective cell is shown in fig. 1. The cell has 4 cm width and 20 cm 
length and is filled with a fluid in contact with the atmosphere (at constant temperature). The 
lateral walls are made of Plexiglas. First surface mirrors (with a low thermal conductivity) 
are placed in the bottom. A rubber joint is placed between the copper block and the mirrors. 
The heating device consists of a copper parallelogram 4 cm wide, 1.5 cm high and 23 cm long, 
with a vertical lame (the heater) 1 mm wide, 20 cm long and 5 mm high. The copper block is 
drilled with two channels parallel to the heater. A thermostated (k 0.05 K) water circulation 
of 10 1 min-' keeps the temperature constant. This renders a very uniform temperature on 
the line heater in contact with the fluid. The heat from the copper block leads to a 
temperature distribution on the bottom and on the sidewalls. (The conductivities of the 
different materials of the convective cell are given in table I.) This temperature distribution 
does not induce qualitative changes in the selected range of temperatures because the main 
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Fig. 1. Fig. 2. 

Fig. 1. - Sketch of the convective cell. 
Fig. 2. - Streamlines for a liquid depth d = 4 mm. Typical velocity at the surface is 5.5" s-l .  
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destabilizing effects are produced by the heater in contact with the fluid. We performed 
numerical simulations of the conductive state in this configuration and the temperature 
profiles between the heater and the lateral walls are very similar to a sharp peak centred on 
the heater. Moreover, when convection appears the width of this temperature distribution 
peak decreases. The first surface mirrors are placed at the same height as the heater, thus 
forming a plane bottom ( f 10 pm). 

This vessel contains a thin layer ((1 i 5) mm) of 5 cSt silicon oil. (Its properties can be 
found in ref. [7].) The aspect ratio in these experiments (one-half of the channel width divided 
by the liquid depth d)  is kept within the range F = 4 + 20. 

The visualization technique is a usual shadowgraph by reflection on the bottom mirrors. 
We restricted the images to the 17 cm central part of the channel, where meniscus effects do 
not perturb the measurements. The evolution of the patterns is registered with a CCD 
camera having a resolution of 512 x 512 pixels and 256 grey levels. These images are sent to a 
computer for image processing. 

Experimental results are grouped in two parts: the primary instability and secondary 
patterns. The primary instability consists in the formation of two rolls parallel to the heater 
line. They fill the entire width of the container (zero wave number) and have uprising motions 
over the heater and descending motions near the lateral walls. The appearance of these 
convective motions is easily observed because they lead to a curvature (concave or convex) of 
the free interface just above the heating line, thus giving a broader shadow of the 
(non-reflective) heater. The primary cells appear as soon as a small temperature difference in 
the linear heater is applied. (Due to the accuracy of our experimental set-up we are not able 
to determine the corresponding temperature threshold AT.) These primary cells are similar 
to those observed in the lateral heating convection[7]. 

The physical mechanism of instability is the same as in ref.[l], e.g. a combination of 
buoyancy and thermocapillary effects. The two dimensionless numbers that correspond to 
these effects are the Rayleigh number R and the Marangoni number M. Typical values for 
convective thresholds are R =670 and M =SO. Then in our experiment the primary 
instability can appear for AT c 1 K (for d > 1 mm), i.e. smaller than the precision of the 
temperature measurement. 

The streamlines can be observed by adding aluminum powder to  the silicon oil, in a 
quantity small enough to leave the main fluid properties unchanged. (This mixture of liquid 
and aluminum powder is only used to characterize the primary rolls.) A laser sheet parallel to 
the bottom plate crosses the convective cell, allowing to visualize the trajectories and the 

Fig. 3. - Pattern formed by the secondary instability. The central part of the cell is shown. By the effect 
of surface curvature (meniscus) the vertical and horizontal scales are not the same. Actual vertical 
height: 2 em. (d = 3.35 mm and AT = 25 "C.) 
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velocity of aluminum particles at  different heights. The streamlines have the form sketched 
in fig. 2. The fastest particles, i .e .  those travelling near the centre of the cell and the top of 
the fluid, have velocities between 5 mm s-l and 5.5 mm s-'. (The layer was 4.5 mm deep and 
the temperature difference about AT = 20 K.) The velocity distribution is quite asymmetric. 
This fact is not surprising because the heat supply is very localized. For example, both 
stagnation points are in the upper part of the cell near the centre (fig. 2). 

When the temperature of the heating line is increased, a secondary instability appears. 
This forms perturbations overimposed on the primary rolls and perpendicular to the linear 
heater. The temperature difference threshold ATc for this instability changes with d. By 
changing d from 1 mm to 2 mm the threshold ATe decreases from 15 K to 5 K. For a depth 
range d = (2.5 t 4) mm, ATe remains approximately constant (= 3 K). For d > 4 mm, ATc 
increases with d. (For example, ATc = 5 K for d = 5 mm.) (Primary rolls hinder to accurately 
determine these thresholds.) These thresholds correspond to  dimensionless numbers 
R 3 3000 and M 3 3000. The transition seems to be gradual and the intensity of the 
secondary pattern increases with AT, An example of a completely developed secondary 
pattern is given in fig. 3. (AT = 25 "C, d = 3.35mm.) 

With the shadowgraph technique we are unable to determine the mechanism responsible 
for this secondary instability. The pattern could be formed either by quite small convective 
rolls or by some undulations of the free surface. The existence of a temperature threshold 
suggests a destabilization of the thermal boundary layer similar to the bimodal instability [81 
in Rayleigh-Bhard convection, that would lead to rolls. However, aluminum particle 
trajectories do not reveal noticeable transverse velocity, therefore suggesting a surface 
deformation mechanism. 

These transverse motions have a well-defined wavelength A and are carried along by the 
primary rolls. One can also notice in fig. 3 that these transverse convective motions suffer a 
splitting process when they are carried downstream. The dimensionless wavelengths 
A = A/d in these patterns have been measured. We notice that the A of this pattern ( A  = 2.2) 
is more similar to  that of the Rayleigh convective rolls ( A  = 2.3) than to that for 
Bhard-Marangoni cells ( A  = 3.1). For a fixed d, A increases with AT, For a fixed AT, A 
remains constant when d is changed (see fig. 4). 

The dynamical evolution of the secondary transverse pattern can be easily seen by 
recording a line of pixels parallel to the heating line, quite close to the heater's shadow in fig. 3. 
By stacking these lines at regular time intervals one can build a spatio-temporal 
representation of the evolution of the pattern. A typical stationary pattern is shown in fig. 5. 
(Oscillations of small temporal scale are due to the splitting process downstream.) The 
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pattern remains stable for more than 4000s and no global drift is noticeable in the 
spatio-temporal diagram. 

During the measurements on the secondary instability we realized that the levelling of the 
convective cell has important consequences on the pattern. Small inclinations (few 
milliradians, i.e. liquid depth variation of few pn) in the direction of the linear heater are 
enough to induce the transverse pattern to propagate in the direction of the heating line (see 
fig. 6). The pattern travels in the cell from the deep end to the shallow end at  a constant 
(average) velocity. Due to the depth differences, the secondary pattern readjusts its 
wavelength as it travels (fig. 6). The right side of fig. 6 corresponds to the wall on the shallow 
end of the container that acts as a sink of waves. (Correspondingly, the deep end is a source of 
waves.) 

The velocity of the travelling patterns for different tilting angles e and different depths 
has been measured. The results are gathered in fig. 7. The mean A turns out to be 
independent of 8 as is shown in fig. 8. Similar results are obtained by changing the sign of e. 
Therefore, this propagation is not due to imperfections in the cell. 

These features of transverse motions can be gathered together in a minimal-phase 
phenomenological model, following the lines suggested by Brand [9]. First of all, the tilting in 
the cell breaks the symmetry x + - x, and is responsible for the drift and for a spatial change 

Fig. 5. - Space-time representation of the evolution of the stationary pattern. This image covers 
512 X 256 pixels (512s X 6cm). 
Fig. 6. - Space-time representation of a pattern travelling due to a small tilt (0 = 2.5 mrad). This 
images covers 373 s x 10 cm. 
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Fig. 7. - Frequency of the drifting pattern vs. tilting angle: d = 2.7 mm, AT = 25 "C; o d = 2.9 mm, 
AT = 20°C; A d = 3.4mm, AT = 25°C. 
Fig. 8. - The dimensionless wavelength A vs. tilt angle 8, at Theater = 50 "C. d = 2.7 mm, 
o d = 3.4". 

in the wave number. Then one can take the following phase equation[lOl: 

where x is in the direction of the heating line and the last term a0 accounts for the phase 
change due to the inclination. Moreover, we assume an asymmetric diffusion constant that, 
for small tilting, can be developed as D ( x )  = Do + cex, where c is a constant. (Notice that for 
8 = 0 we recover the usual phase diffusion equation [lll.) Then eq. (1) leads to  

The first two terms account for the propagation at a constant velocity, proportional to 0 
(fig. 8). The last two terms lead to a slight variation in the wave number k = a$/ax along the 
pattern (Ak 1: ( a / D o )  e Ax a Ad) which results from a variation in the depth. 

We also notice that for a flat layer the secondary stationary pattern is spontaneously 
destabilized when AT is further increased. It begins to  travel to the right or  to the left in 
different regions of the container and some defects (sources or sinks) appear. The description 
and characterization of these travelling patterns will be reported in a future work. 

In conclusion, some preliminary results on the instabilities in a quasi-1D heating 
convective cell are presented. A primary instability forms a pair of rolls that are parallel to  
the heater and fill the cell. A secondary instability appears for a further supercritical heating. 
Further studies using local probes would allow to determine whether these secondary 
motions are due to surface distortions or to some thermal boundary layer destabilization. 
Finally, we notice that small tilts in the cell lead to  a drift of the secondary pattern with a 
velocity proportional to the tilting angle. This feature can be partially understood by means 
of a phenomenological phase equation. 
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