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Control of Defects and Spacelike Structures in Delayed Dynamical Systems
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In many nonequilibrium dynamical situations delays are crucial in inducing chaotic scenarios. In
particular, a delayed feedback in an oscillator can break the regular oscillation into trains mutually
uncorrelated in phase, whereby the phase jumps are localized as defects in an extended system.
We show that an adaptive control procedure is effective in suppressing these defects and stabilizing
the regular oscillations. The analysis of the transient times for achieving control demonstrates that
stabilization is obtained within an amplitude turbulent regime, analogous to what is present in spatially
distributed systems. The control technique is robust against the presence of large amounts of noise.
[S0031-9007(97)04933-8]

PACS numbers: 05.45.+b, 47.52.+j, 47.54.+r

Since the original idea of Ott, Grebogi, and Yorke [1], space-timestructures, as defects and/or spatiotemporal in-
many different theoretical schemes [2] and experimentalermittency can be identified [5,6].
applications [3] have faced the problem of controling When T is larger than the oscillating period of the
unstable periodic orbits (UPO’s) in chaotic concentratedsystem, the behavior of a delayed system is analogous to
systems, i.e., in systems modeled by ordinary differentiahn extended one with = 1. In particular, it may display
equations. phase defects, i.e., points where the phase suddenly

Some proposals of controlling spatially extended syschanges its value and the amplitude goes to zero.
tems, i.e., systems ruled by partial differential equations In this Letter we introduce a control technique to sup-
whose order parameteris am dimensional vectorg =  press these defects, stabilizing the oscillations of a delayed
1) in phase space, withcomponentsi = 1) inreal space, system. The control restores regular patterns in two dif-
have been put forward for the cake= 2 [4]. However, ferent chaotic regimes, namely, phase turbulence and am-
experimentally implementable tools have not yet been inplitude turbulence, this last one implying the presence of
troduced for controlling unstable periodic patterns (UPPa large number of defects. The control efficiency persists
in extended systems. even in the presence of a large amount of noise.

The essential problems arising in the passage from For the sake of exemplification, we make reference to
concentrated to extended systems are already presenttime following delayed dynamics:

delayed dynamical systems, i.e., systems ruled by A= eA + BIAXE — TIA + Bod*(t — T)A 3)
- 1 - 2 - 5

y=Fy.ya), @)
wherey = y(r) € R™, dot denotes temporal derivative, s = M(S _m kA2>. (4)
F is a nonlinear function, and; = y(r — T), T being a
time delay. Here, all quantities are reald is an order parameter,

Experimental evidence of the analogy between delayed js the time-dependent linear gait;, B2, w1,k are
and extended systems was provided for & @Ber with  syjtable fixed parameterg, is a measure of the ratio
delayed feedback [5] and supported by a theoretical modgJetween the characteristic time scales fomnd &, and
[6]. Most of the statistical indicators for delayed systems,s s 3 measure of the power provided to the system.
such as the fractal dimensions, are extensive parametersgquations (3) and (4) are rather general. For instance,
proportional to7’, which thus plays a role analogous t0 when7 =0, S <0, 81 >0, 82 <0, u > 0, u; > 0,
the size for the extended case [7]. _k > 0 they model an excitable system, producing the so

The conversion from the former to the latter case isca|ledLeontovitchbifurcation, evidence of which has been
based on a two variable time representation, defined by spown experimentally on a G@aser with intracavity satu-

t=o0+ 0T, (2)  rable absorber [8]. F&F # 0, they are similar to the mod-
where0 = o = T is a continuous spacelike variable andels already used to describe self-sustained oscillations of
6 € N plays the role of a discrete temporal variable [5].confined jets [9], or memory induced low frequency oscil-
By such a representation the long range interactions intrdations in closed convection boxes [10], or even the pulsed
duced by the delay are reinterpreted as short range interadynamics of a fountain [11]. Equations (3) and (4) have
tions along the direction, since now,; = y(o,6 — 1).  been found also to be a good model for the temperature
In this framework, the formation and propagation ofevolution in a well controlled time-dependent convection
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experiment [12]. For convenience we spend a few words 128 mm
to recall the main features of such an experiment, since it streamlines tenperature sensor
provides evidence of the defects we want to control. -

A cylindrical layer (diameter 128 mm) of silicon oll
(depth 15 mm) is heated from below by a square heater a) [
limited to the central part of the container [side 68 mm, SQUARE HEATER
cross section in Fig. 1(a)]. The heater is surrounded by the B
same insulating material of the vessel. A convective insta- ‘ ‘
bility driven simultaneously by buoyancy and temperature CYLINDRICAL VESSEL “thermal”
dependent surface tension (80% and 20%, respectively),
called Bénard-Marangoni convection, grows as the heat-
ing is increased. A steady state is reached and a stationary
pattern composed of four convective cells appears in the
hot region. Additional details on this experiment can be b) ‘ ‘ d’! Tl i |
found in Ref. [12]. 0 | R

If the heating is further increased, a time-dependent L i1
regime arises consisting in spatiotemporal modulations,
or thermals,generated at the bottom boundary layer and
then dragged by the flow along the cell as can be seen in —4 i 4 4 __tme (dec)|
Fig. 1(a). This configuration provides a natural delayed 0 1000 2000 8000
interaction insofar as it reiterates at each position the local 4
value of the order parameter after a delagorresponding
to the time lag necessary for the trip of the cell. In this
situation, an experimental measurement of the temperature
at the pointP of Fig. 1(a) yields the data of Fig. 1(b). The
vertical axis (temperature) is taken as representative of the C) o
order parameteA. The main feature of this experiment
consists of trains of modulated oscillations, interrupted
by localized events (phase defects), wherein the phase of
the signal changes suddenly and the amplitude decrease: by , Ume (dec)
to zero. 1300 1400 1500 1600 1700

The relaxation oscillations are represented by the normdflG. 1. (a) Cross section of the experimental setup. A hot

i i i i _ drop (thermal) is dragged by the flow and then reinjected
form of a Hopf bifurcation [Eq. (3)], in which the saturat into the heating region after having completed a round trip

ing terms are delayed _to account for the transport of th%f the cell in a mean time&’. P indicates the point where
convective cell. Equation (4) represents the slow evolutemperature is measured. (b) Experimental time behavior of the
tion (u < 1) of the control parametey, which is enhanced temperature at the poift Vertical axis reports the temperature
by the external pumg and depressed by the convectivein arbitrary units, horizontal axis reports the time in seconds
motion (—kAZ) which tends to uniformize top and bottom (7 = 330 sec). (c) Expanded view of the signal within the
temperatures. Equations (3) and (4) reproduce satisfact@l—rrowls which exhibits a phase jump (solid line) and reference
. . . gnal translated by (dashed line).
rily the experimental signal for rather long delays, and can
be considered as an adequate model of the situation we present. Both PT and AT have counterparts in a one-
want to control. dimensional complex Ginzburg-Landau equation. Here
The adaptive method we are going to apply is by nathe parameter space shows a transition from a regime of
means restricted to Egs. (3) and (4). In fact, it appliestable plane waves toward PT (Benjamin-Fair instability),
successfully to much simpler models as the one in Ref. [6lollowed by another transition to AT with evidence of
for a CQ laser with delayed feedback, which indeedspace-time defects [13].
displays phase defects as those reported on Fig. 1. We succeed in controlling both regimes by an adaptive
Let us see how phase defects emerge. We adjust thtechnique recently introduced for chaos recognition [14],
pump and delay paramete§sand T of Egs. (3) and (4) and applied to chaos control on concentrated systems [15],
so that the system enters the chaotic region. This regiorthaos synchronization [16], targeting of chaos [17], and fil-
in fact, is split into two different regimes. For loW  tering of noise from chaotic data sets [18]. This technique
values, chaos is due to a local chaotic evolution of theadds iteratively a small correctidii(z) to Eq. (3), as fol-
phase, whereas no appreciable amplitude fluctuations alews. Attimet,+; = t, + 7, (7, being an adaptive ob-
observed. We call this reginghase turbulencéPT). By  servation time interval to be later specified), the observer
increasingT’, we observe a transition towammplitude defines the variatioA(s,+; — Ty) — A(t,+1) between the
turbulence(AT), wherein the dynamics is dominated by actual value ofA and the value delayed by the period of
the amplitude fluctuations, and a large number of defectthe UPO to be controlledly being the Hopf period). The
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corresponding variation rate

_ L A(tn+1 - TH) - A(tn+1)
At = 108 | = T — A

n
allows one to select a new time interval, through the rule

(5)

Tn+l = Tn[l - tank(g/\n+l)]y g = 0, (6)
and, consequently, a new observation at the time =
thn+1 + Tu+1. The controlling term is given by

1
ut) = [A(r — Tw) — A(1)]. )

n+1

The details of the algorithm have been given in
Refs. [14—18]. For practical purposes, the following
approximation holds. Letr) denote the average of the
7, Set, then Eq. (6) can be written as

Th+1 = <T>(1 - g)‘n+1), (8)

where (i) 7, has been replaced with its ensemble average,

and (ii) the tanh function has been linearized. Point (i)
corresponds to fixing once forever a reference time scal

for the process under study, while point (ii) corresponds

to selecting a conveniently smallto keepgA,,+1 always
within the linear region of the tanh function. In the same
way, Eq. (5) can also be linearized as

1 Al) — At — Tp)
M) = 05 a0 = AG = Tp)”

(9)

e

where we have further approximated the discretized stro-

boscopic observations with a continuous inspection. Com
bining Eqgs. (8) and (9) into Eq. (7), this reduces to

U = Ki[AG = T) = A)]
F KA~ Ti) = AW], (10

with K; = % and K, = G% The consequences of this
approximation are interesting. First of all, f&s = 0 one

recovers the Pyragas control method [19].
our caseK; and K, can be independently selected, and
this introduces an extra degree of freedom with respect t
Ref. [19]. Now, the control is more active when the er-

FIG. 2. Spacef)-time(@) representation of the controlling
process for Egs. (3) and (4)8; = 1, B, = —1/16, u = 0.8,

wr =08, k=11, S=55 Ty =195. (a) T =15, PT
regime. The chaotic dynamics results in a local turbulent
phase of the Hopf oscillation which is corrected by the
controlling algorithm. K, = K, = 0.2. Arrow indicates the
instant at which control is switched on. (k) = 50, AT
regime. The dynamics is dominated by amplitude fluctuations,
with the presence of defects. The algorith&y (= K, = 0.2)

However, irsuppresses the defects and restores the regular oscillation.

Arrow indicates the instant at which control is switched on.
) Pyragas’ method.T = 50, AT regime. The dynamics is

irst perturbed withk; = 0.2, K, = 0 (first arrow). To achieve

control with K, = 0 it is necessary to sele&; = 10 (second

ror is increasing and vice versa, so reducing oscillationsarrow), which, however, produces a large amplitude distortion

Indeed, Eq. (10) performs as a proportional derivative con

¢the amplitude of the controlled oscillation is now one half of

troller, the more usual action for stabilizing feedback linearthe amplitude of the Hopf one).
systems, due to its effect which consists of increasing the
phase of the compensated system in a suitable frequen&jly give rise to relevant distortions of the roll amplitudes

band [20].
In Fig. 2 we report the application of our method to
Egs. (3) and (4). The desired oscillation, which in the

[Fig. 2(c)]. - . _ _
The stabilization consists in suppressing the defects
present in the AT regime. Suppose, indeed, that some

space-time representation gives rise to a roll set, is cordefects are present at the beginning of the controlling

trolled in PT [Fig. 2(a)] and in AT [Fig. 2(b)]. Going
back to the above discussion, the results show that, whil
the choicek; = K, = 0.2 assures the roll stabilization for
small perturbations (tha dynamics ranges from 0 to 2),
fixing K, = 0 as in the Pyragas’ case would have implied
prohibitively largeK; values for obtaining the same stabil-
ization (in our tests, ik, = 0, K; should be 10), resulting

procedure. The spontaneous lifetirfig of a defect can
be evaluated in a free running (no control) situation. The
scaling behavior off, as a function of the delay time
T depends on the nature of the turbulent process [5].
Namely, in AT, T, scales quadratically witl’. When

a control is applied, we expect it to be effective after a
transient timer, of the order off,. Thus a measurement

in very large perturbations of the system, which eventuof T, provides an estimate of the lifetin1g,.
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40 equations through the control feedback, hence affecting
T /'I‘ dynamically the evolution of the system. A relevant result
35. is that our method is robust against large amounts of noise.
] In Fig. 4 the control is achieved within AT for 10% noise
] [Fig. 4(a)] and for 20% noise [Fig. 4(b)]. The controlled
30 UPOQ is slightly distorted by the action of the noise fed back
] into the system.
25 In conclusion, we have introduced a control scheme for
stabilizing delayed systems. Its implementation is easy,
20 and experimental application is in progress and it will be
] T ,r reported elsewhere
] Hopf Work partly supported by Ministerio de Educacion
155' 10 15 20 25 30 y Ciencia, Spain (Grant No. PB95-0578), Universi-

) . dad de Navarra, Spain (PIUNA), European Contract
FIG. 3. Plot of the ratio7,/T as a function ofT /Ty (see No. ERBFMRX-CT96-0010, and Research Project

text for definitions). The quadratic scaling @f(7) confirms “ : »
that control is achieved within AT. Same parameters as in th(MURST 40% “Dynamical Systems and Control.
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