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Weak Synchronization of Chaotic Coupled Map Lattices
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Phase synchronized states can emerge in the collective behavior of an ensemble of chaotic
coupled map lattices, due to a mean field interaction. This type of interaction is responsible for
synchronized chaotic global activity of the lattices, while the local activity of each map remains
unsynchronized. The resulting collective dynamics is called “weak synchronization.” The transition
to such a state is characterized in an ensemble of one-dimensional lattices of logistic maps, in terms
of the distance in phase among the different lattices. Its robustness against a small difference in the
map parameters is proved. We show that this phenomenon can be associated with pattern formation.
[S0031-9007(98)07439-0]

PACS numbers: 05.45.+b, 47.54.+r

Synchronizing chaotic systems means linking their tra- The aim of this Letter is twofold. The firstis to demon-
jectories to the same values at the same times, so that theyrate that phase synchronization behavior can be found in
remain in step with each other. The mechanism was origispatially extended systems (an ensemble of chaotic cou-
nally proposed by Pecora and Carroll (PC) [1], who havepled map lattices) due to a global coupling on each ele-
shown the possibility for two identical chaotic systemsment of the lattice. The second is to characterize this
evolving from different initial conditions to synchronize new dynamical regime which shows phase synchroniza-
by means of the transmission of a signal, provided that théon of the global activity of the lattices, while the local
sub-Liapunov exponents of the subsystem to be synchractivity of each map remainsmsynchronized Therefore,
nized are all negative. the emerging collective behavior will be called “weak

On the other hand, the possibility of encoding a messagsynchronization” (WS).
within a chaotic dynamics has also been shown [2]. This Let us consider an ensemble @& coupled one-
achievement, in connection with the original PC idea, haslimensional map lattices, each one formedIbjogistic
stimulated further investigations in order to produce securenaps. In this system, the statg of the kth map ¢ =
communication between a message sender and a messdge. ., L) of the ith lattice ( = 1,...,N) evolves at time
receiver [3]. n + 1 through the rule

Most recently, the concept of chaos synchronization has .
been extended to that of phase synchronization of chaoticti(n + 1) = (1 — 2&1 — 2&) Fi (xi(n))

systems [4] In this process, the interaction of'nonldentl.- + el Fii_ () + & Fi (i (n)

cal chaotic systems can lead to a perfect locking of their l, - ; -
phases, whereas their amplitudes remain uncorrelated. The + &2l (M (n) + e2 F{ (M7 (n)).
transition to phase synchronization behavior of two cou- @
pled oscillators has been characterized with reference to

the Rossler system [5,6]. In Eqg. (1),e1, &, are real coupling parameterg; is the

All of the above body of literature refers to synchroniza-10gistic map defined bfk () = pex(1 — x);0 < pg =
tion behavior of confined systems, i.e., systems modeled b§ [9], and M(n) = § 3 _, xi(n) is the mean activity of
ordinary differential equations. Synchronlzatlon of chaoghe ith lattice at timen.
or, more generally, phase locking of chaotic signalsinlarge Whene; = &, = 0, Eq. (1) describes the dynamics of
populations of coupled dynamical units, where each sepa¥ X L independent logistic maps.
rate unit may reside on a chaotic attractor, is currently a Assoonag; # 0, Eq. (1) can be seen as a collection of
subject of active investigations [7,8]. N independent one-dimensional lattices of logistic maps.
When dealing with populations of coupled dynamical The maps are now coupled within each lattice by means of
systems, sycnhronization behavior can affect either tha diffusive term.
global activity of a population or the local activity of each  Finally,e> # 0 implies a global coupling among the lat-
element of such a population. In Ref. [8], synchronizationtices which equally distributes on each element of one lat-
of the collective chaotic evolution of the populations istice the mean activity of the nearest lattices. This latter
found as a direct consequence of local synchronization gfoupling will be responsible for a collective synchroniza-
each single element of one population to the correspondingon behavior of the system, giving rise to WS. WS is
elements of the other populations. Therefore, both globatharacterized by the fact that the global signs(s) and
and local activity undergo chaos synchronization at onceM’(?) (i # j) of two lattices undergo phase synchroniza-
This process will be called “strong synchronization.” tion in time, but all the maps; () andx (1) (k = 1,...,L)
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of the lattices are uncorrelated to each other. At vari- (g) 9

ance with what was previously reported in the literature NN AN AN A AANA NN

[10] about mean field coupling effects within a single one- /VM/J\/\/\/\MW\/\»A

dimensional map lattice, here we consider the dynamical

correlations built between different one-dimensional lat- o /\ﬁ/\ﬁ/\ﬁ/\A/\ﬁ/\/\/\/W\/\N\/\/\/\/\/V\

tices, as a result of the exchange of their mean field.
Most of the results presented below pertain to 4he=

0 case. Letus then begin puttieg # 0, and suppose that M \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
all of the maps are identical, i.e., the paramejeysare all

equal to the same valye. Settingu > u,. = 3.569946, 50 \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
the maps enter the chaotic region [11]. In such a case,

Eq. (1) describes the behavior bfX N identical logistic

maps, all in the chaotic state, globally coupled through a \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
mean field interaction term. In the following, we focus % ‘

our attention on a system with = L = 100, starting 100
from random initial conditions, and with periodic boundary
conditions. We sett > u., and gradually increass.

. 125 . . 150
time (number of iterations)

For all choices ofu > u., a sharp transition toward a (® '® ; BT : '
WS state is observed a4 = &, .(w). InFig. 1a we report 9 ; oy R 09
the caseu = 3.755, &, = 0.019, where the formation of 80 : 08
two clusters of phase synchronized chadlit signals is £
found. Phase synchronization implies that the phase dis ° 5 o
tance of the signals is constant as a function of time [4,5]. 60 08
Therefore, the situation reported in Fig. 1a corresponds t¢ - s 05
a fully phase synchronized state. However, in the follow- o o
ing, we will distinguish amonghase clusterghat is, clus- ’
ters made by signals whose distance in phase is constant| 80 03

equal to zero. In such a case, phase clusters are define 20 :

as those containing the signals which show local maxima o z o

(minima) at the same time. W )
The corresponding local dynamics of the maps is unsyn- % 20 40 60 80 100 0

chronized with respect to that of the corresponding maps «

of other lattices belonging to the same phase cluster. ABIG. 1. (a) Temporal evolution of the global activities of

an example, we report in Fig. 1b the activity of all maps atthe lattices. The eight displayed signals correspond to eight

; ; P : : different lattices, forming two phase clusters (thin and thick
agiven t|m¢ y\{|th|nthe WS regime of Fig. 1a. The pattern"nes)_ The signals have been conveniently shifted in the
of local activities looks random.

RS ] vertical axis, in order to highlight the phase synchronization.
In order to quantitatively characterize WS and the tran-The scale in theM axis allows one to estimate the range

sition to WS, we now define thdistance in phasé;;  of the chaotic fluctuations of the signalg. = 3.755, &, = 0,
between the global activity of thigh andjth lattices. For agﬂ o l:())b(zjlr?daN ZCOLn thiég(s)' ra(rg)o)lorcnolrr;g?l gr?gi?]'t'on;&gpnd of
this purpose, let us cor_15|derthe signais (1) and;M-’(r), I%cal activities o:‘ythe maps, after 200 itergtions gwiit)hin WS.
and take the former signal as the reference signal for thgne codification gray scale is reported.

phase. Ateach time, at whichM'(r,) displays itsnth

local minimum (maximum), we check whethé /(r,,) is

also a local minimum (maximum). If the above condition The phase difference®,;; are distributed within a
does not hold, this means that the two signals do not belongrobability distribution function? (D), which assigns to

to the same phase clusterat 7, and we add one to their any value ofD the total number of lattice couples with
phase distance by writinQ; ;(n + 1) = D; j(n) + 1. In  phase differenc®. Such a distribution function is a good
the opposite case, the two signals are clustered in phasedicator of how much phase synchronization is realized
so that their phase distance is left unchanged. We theim the collective behavior of our system, and of how phase
look for the next local minimum (maximum) attimg.;.  synchronization is dynamically constructed.

After having traveled through the sign@‘(¢), we repeat Namely, we proceed as follows. Starting from random
the same procedure takirfyl/(¢) as the reference signal initial conditions, we let the system of Eq. (1) evolve for
for the phase. The final value oX; ; is an integer number a numberN, of iterates atu = 4 (ergodic chaos [11]).
ranging from zero (perfect phase clustering)Mp+ N;  Then, we increase, by a given step, and we consider as
(signals not clustered in phasey; (N;) being the total the initial condition the final state of the previous evolution
number of local extrema of thgh (jth) lattice. of the system. We let the system evolve for otidgy

0.2
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iterates. As soon as, becomes larger thag, ., the The phase histograms of Figs. 2d, (= 0.0182) and
system reaches WS. At this point, we begin decreasinge (g, = 0.0179) show the formation of microclusters of
the parametet, step-by-step, until again reaching phasephase synchronized lattices, which subtract the population
desynchronization, always taking as initial condition of theto the two main clusters, and finally the transition to
new iteration the final state of the previous one. the phase unsynchronized state occurseat= 0.0166
At the beginning of the process, the system is not phasf@-ig. 2f). Notice that the new phase distribution function
synchronized, and the phase differences are randomly digs centered at a smalldp value with respect to that of
tributed within a unimodal (single peak) function (Fig. 2a, Fig. 2a, meaning that phase desynchronization has already
ey = 0.0172). Whene, = &, = 0.0181 a sharp transi- occurred, but the system appears to retain some memory of
tion is observed toward WS, which is realized by the crethe fact that it is coming from a phase synchronized state,
ation of two phase clusters, each one of them formed by ao that the average phase difference is now smaller.
large number of phase synchronized lattices. The distribu- Let us introduce a new phase differendg between
tion function of the phase differences is reported in Fig. 2blatticesi and j (i # j), which is now the sum of thé&
The two peaks refer to the two clusters. Precisely, the peghase differences between each element ofittheattice
at D = 0 refers to the phase difference between two latand the corresponding one of théh lattice, calculated
tices of the same cluster, whereas the other peak refers o the same way as above. The comparison between
the phase difference between a lattice of one cluster andthe two probability distributions foD andd provides a
lattice of the other. By further increasimg, the two phase classification of the synchronization behavior. In strong
clusters grow, until taking all of the available lattices of synchronization [8], the two distribution functions are
the system (as can be appreciated by Fig. 2c, realized faqual, because global synchronization is the consequence
g, = 0.0185). At this point, the gradual reduction @b  of the simultaneous local synchronization of each lattice
starts from a totally phase synchronized state. element. However, in WS, the two distribution functions
The process of phase desynchronization appears to lmeay be very different, as can be appreciated by looking
very different from that of phase synchronization. Fromat Fig. 3, which reports the distribution function @ffor
one side, the transition from WS to phase desynchronizax = 4, g, = 0.0185. This distribution function should
tion is not sharp, but it passes through intermediate situébe compared with that of Fig. 2c. While the latter is
tions, where many small phase clusters appear, in addition signature of phase synchronized global activities, the
to the main two. From the other side, global desynchroformer does not show any synchronization feature.
nization reoccurs fot, values much smaller than ., thus The scenario described above is generally observed for
revealing the presence of some hysteresis phenomenon.any u > u..
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FIG. 2. Distribution functions ofD (see text for defini-
tion) for (a) e; = 0.0172, (b) &, = 0.0181, (c) &, = 0.0185, FIG. 3. Distribution function ofd (see text for definition)
(d) &, = 0.0182, (e) &, = 0.0179 (f) & = 0.0166. In all for w =4, ¢, =0, and ¢ = 0.0185 [same situation as
casesu = 4. Other parameters, initial, and boundary condi-in Fig. 2(c)]. While the lattices are phase synchronized
tions as in the caption of Fig. 1. In all cases, the vertical[Fig. 2(c)], each map of the lattices is unsynchronized. The
axis is normalized to the value of the maximum of the his-vertical axis has been conveniently normalized to the maximum
togram of (c). value of the histogram.
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100 1 collective interaction (that occurring at # 0), implying

only mean field effects between lattices. Figure 4 shows
that the appearence of two-dimensional patterns can be
associated with WS phenomena.

In conclusion, we have shown that a phase synchronized
state can emerge in the collective behavior of an ensemble
of chaotic coupled map lattices, due to a mean field inter-
action. Such a new dynamical regime, and the transition
toit, has been quantitatively studied in an ensemble of one-
dimensional lattices of logistic maps. The relevance of WS
in parallel signal transmission and its relationship with pat-
tern formation phenomena will be studied elsewhere.
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If one further increases the coupling constantfar
above the critical value for the emergence of WS, the
system begins synchronizing the signaMi(s) (i
1,...,N) onto periodic states. More precisely, the syn-
chronized state now becomes periodic, and recapitulateél]
the bifurcation diagram of the single logistic map, from
the chaotic state up to the period one state, which is real
ized ate, = % The reason is that the coupling reduces
the map parametep to i = w(l — 2e;). Thus, the
single map reenters the periodic cascade region for large
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