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Controlling and synchronizing space time chaos
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Control and synchronization of continuous space-extended systems is realized by means of a finite number
of local tiny perturbations. The perturbations are selected by an adaptive technique, and they are able to restore
each of the independent unstable patterns present within a space time chaotic regime, as well as to synchronize
two space time chaotic states. The effectiveness of the method and the robustness against external noise is
demonstrated for the amplitude and phase turbulent regimes of the one-dimensional complex Ginzburg-Landau
equation. The problem of the minimum number of local perturbations necessary to achieve control is discussed
as compared with the number of independent spatial correlation lehgth363-651X99)00806-5

PACS numbegs): 05.45-a

In the last decade, control and synchronization of chaosounterparts to the quite large body of theoretical proposals
have attracted the attention of the scientific community. IM17—23. The main reason for this lack of experiments is that
both cases, a chaotic dynamics is conveniently disturbed bglmost all proposed methods used space-extended perturba-
means of an external perturbatigasually small as com- tions, that is, perturbations which had to be applied at any
pared with the unperturbed dynamici order to force the point of the system. The few examples of global confti@],
appearence of a goal behavig(t) compatible with the natu- ©r control with a finite number of local perturbatiof0],
ral evolution of the system. In the former case, the goal dyhave so far been limited to discrete systems, i.e., to coupled
namics corresponds to one unstable periodic orbit embeddéfiap lattices. The most relevant problem in passing from
within the chaotic attractof1], in the latter case it corre- concentrated to space-extended continuous systems arises,

sponds to compensating for the difference of the same sysndeed, when considering that an extended continuous sys-
tem due to different initial conditions. tem is an intrinsically infinite dimensional system. Therefore,
Since the first proposals for contri#] and synchroniza- While control or synchronization of a concentrated system
tion [3] of chaos, many other approaches have been sudMplies a perturbation on a single control parameter, or a
gested for chaos contrp#,5], while the concept of chaotic Single state variable, in the case of a continuous extended
synchronization has been recently extended to that of phag®/stem it is still unclear whether the perturbation itself
synchronizatior{6] and lag synchronizatiofi7]. The transi- should be extended in space, i.e., should affect all points of
tion between different types of synchronization processes hd§e considered system. This last requirement would, indeed,
been extensively studied in a pair of symmetrically coupledde very difficult to realize experimentally, thus frustrating
chaotic oscillatord7,8]. On the other hand, the control of the possibility of implementing control and/or synchroniza-
chaos has been shown to be effective even in the case §Pn of space time chaotic states.
delayed dynamical systeni8], by the use of the adaptative In this paper, we show that both control and synchroniza-
technique[5]. tion can be achieved in a continuous extended system by
The huge body of literature devoted to these issues igeans of dinite number of local controllers, i.e., by a finite
justified by the large interest that they have in practical aphumber of nonextended perturbations, each affecting a dif-
plications, such as communicating with chdd$)], secure ferent point in the system. The minimum number of control-
communication process¢$1,17, and experimental control lers will be derived, and the robustness of both processes
of chaos in many areas such as, e.g., Chem[gt@’ laser against the presence of noise will be verified.
physics[14], electronic circuits[15], and mechanical sys- For the sake of exemplification, and without lack of gen-
tems[16]. erality, we refer to the one dimensional complex Ginzburg-
Only recently, control mechanisms have been investigateliandau equation
in space-extended systems. After some preliminary attempts .
[17] to control spatiotemporal chaos, attention has been di- A=A+ (1+ium)Ay— (1+iu,)|Al2A, (0]
rected to the control of two-dimensional patterfik3], _
coupled map latticeg19,20, or particular model equations, whereA(x,t)=p(x,t)e' ¥ is a complex field of amplitude
such as the complex Ginzburg-Landau equaflj and the p and phasey, and the dot denotes a temporal derivative.
Swift-Hohenberg equation for lasdi@2]. Furthermore, syn- A, stands for the second derivative Afwith respect to the
chronization has been proved in extended systems with unspace variable €x=<L, where L represents the system
directional(drive-responseconfiguration[23]. length, andw4, and u, are suitable real control parameters.
However, while for concentrated systems the differentThe boundary conditions are chosen to be periodic.
proposed techniques have easily found experimental verifi- Equation(1) describes the universal dynamical features of
cations, in the extended case there are not yet experimentah extended system close to a Hopf bifurcafi@d], and it
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has been used to describe many different situations in lasaufficient to assure the collapse Afx,t) onto any goal pat-
physics[25], fluid dynamics26], chemical turbulencg27],  terng(x,t) compatible with the natural evolution of the sys-
bluff body wakes[28], etc. Different chaotic regimes were tem.

identified in Eq.(1) in different regions of the parameter In fact, we expect that the number of local perturbations
space fuq, 1) [29]. In fact, Eq.(1) has plane wave solutions necessary to slav&(x,t) to a general goal patteig(x,t) be

of the type smaller thanN, because of nonlinear constraints within the
system, which make each correlation domain interacting

, with all the others. Therefore, in the following, we first dem-

=./1— g2el (ax+wt) o ' S

A 1-q% ' 2) onstrate that the above sufficient condition holds for a judi-

cious choice of the local perturbations, and then we will
where —1<qg<1, q being the wave number in Fourier MOVe to show that the necessary condition for the control
space, and the dispersion relation is can, in fact, be obtained with a number of local controllers
smaller than\.
Let us begin with the problem of control of space time
==y~ (1~ u2)q%. (3)  chaos. For this purpose, we set=2.1 andu,=—1.3 in
Eqg. (1) in order to enter the AT regime. In the following, we
will numerically solve Eq(1) with L= 64, periodic boundary
. conditions, and random initial conditions. The numerical
a criical _value ZOf the wave —numberd.  co4e s hased on a semi-implicit scheme in time with finite
= \/(1+#1M2)_/[2(1+ #2) T 1+ pape], such that all the  gigrerences in space. The precision of the code is first order
plane waves in the range qc<qg<gq. are linearly stable. i, time and second order in space. In all the simulations we
Outside this range, they become unstable through the S%se a space discretizatiox=0.125(512 mesh poinjsand a
called Eckhaus instabilitf30]. Since g, vanishes as the ime step for the integratiodt=0.001. For the selected,
productu,u, approaches-1, all plane waves become un- gnq,,. the spatial correlation length &= 4.39, correspond-
stable when crossing from below the lipgu,=—1in pa-  jng roughly to 35 points of the mesiNE 17). Control of
rameter space. Such a line is called the Benjamin-Feir Ofpace time chaos here implies the emergence of some un-
Newell line. Above this line, Ref29] identifies three differ-  giapje periodic pattern out from the AT regime. In this case,
ent turbulent regimes—namely, phase turbule®®), am- e goal patterrg(x,t) is represented by any of the plane
plitude turbulenceAT), or defect turbulence—and bichaos. \y5e solutiong2), which are unstable in AT.
In the following we will concentrate on PT and AT, sinceé | grder to control the system to the desired goal pattern,
they have received special attention in the scientific commug, the right hand side of Eq1) we add a perturbative term
nity [3_1]. _ _ _ U(x,t) of the type
PT is the dynamical regime encountered just above the
Benjamin-Feir line, and it is characterized by the fact that the

In the parameter regionu,u,>—1, there exists

chaotic behavior ofA(x,t) is essentially dominated by the U(x,t)=0 for x#x;

dynamics of the phasg(x,t), whereas the amplitude(x,t)

changes smoothly, and is always bounded away from zero. )
By further moving away from the Benjamin-Feir line, a tran-

sition is encountered toward AT, wherein the amplitude dy- Ux,t)=U;(t) for x=x;

namics becomes dominant over the phase dynamics, leading

to large amplitude oscillations which can occasionally drive

p(x,t) to zero. The vanishing g causes the occurrence of Wherei=1,... M andx;=1+(i—1)» are the positions of

a space-time defect. M local controllers, mutually separated by a distance
Both PT and AT are characterized by the fact that they (Xi+1—X;i="v).

spatial autocorrelation function decays exponentially with a For the time being, we will use=¢, so thatM =N, in
spatial correlation lengtlj which is smaller than the system order to show that a sufficient condition for a robust control

sizel, that is, is that the number of controllers equals the number of corre-
lation domains. Later on, we will show that control can also
be achieved fon>¢ (M <N), and we will therefore prove
C(x,x’)z(A(x,t)A*(x’,t))t:e*“’xl"f, 4 that the minimum requested number of local controllers is, in
fact, smaller than the number of correlation domains, thus

h d h | | ol di making our approach of some help for overcoming the en-
w erg( )t denotes the temporal average. In two spatial di-,nereqd difficulties in practical experimental implementa-
mensions it has been theoretically predictef] and experi- ;0o

mentally verified[32] that defects have a dynamical role in The strength of thal perturbationsU; (t) is selected by

;ned|at|ng|th(:: Sthrltr;kllngt pt))rohces:s ¢f thus in the passage the following algorithm. At each controller position and at

ro\rrv_:ﬁgu ardo urbu (fen_ e ?r\]/'oz . . each integration timeg,, theith controller measures the dis-
ithin a domain of siz&, the dynamics remains space tance §;(t,) between the actual dynamiégx;,t,) and the

correlated. Therefore, oncé has been measured, the main al )

. . ; patterrg(x; ,t,):

features of the space time chaotic dynamics can be capturgé)

by considering a collection dfi=int(L/&) +1 uncorrelated

domains. A single local perturbation within each domain is Si(ty) =A(X,t) —a(X;,t,). (6)
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Then the controller evaluates the local variation rates

N ‘& 7
(t)= 575, ()
and selects the perturbation as
Ui(t) = Ki(ta) (9(Xi ,tn) = A(X; ,th)), €S)
where
1
Ki(tn)=K—0[1—tanl*(o)\i(tn))], >0, Ky>0. (9

Real Modulus

. The a'go”thfn of Eqs(6)_—(9) is an extension of the adap- FIG. 1. Spacedhorizonta)—time(vertica) plots of the real part
tlv_e algorithm introduced in Re@], and suc_cessfully ap- of A (left) and the modulus oA (right). Time increases downwards
plied glsq to chao§ synchronlzat!@hZ], targeting of chaos from 1000 to 180(u.t.). The first 1000 time units correspond to the
[33], filtering of noise from chaotic data s€34], and con-  yansient before the system reaches the chdsfl domain start-
trol of delayed dynamical systenpS]. ing from random initial conditions. The patterns have been coded in

The adaptive nature of the algorithm is clear when onesg gray levelgwhite corresponds to maxitaThe parameters are
considers that the strength of the perturbation in Byde- =21, u,=—1.3, dt=0.001, L =64, anddx=0.125. The con-

pends adaptively on the local dynamics of the system. Introl (¢=0.1, K,=1) starts atT=1400 (indicated by an arrow
deed, wherA(x; ,t,,) naturally tends to shadow the goal pat- The goal dynamics is chosen to be the particular plane wave solu-
terng(x; ,t,), this implies a temporal decreasing behavior oftion (2) havingg=0.589(corresponding to six wavelengths for this
8i(t), and a consequently negativeg(t), and therefore a system sizg The associated frequency and amplitude @re0.12
reduction of the weight facto;(t) in Eq. (9). Conversely, andA,=0.808. Under these conditions, the control is reached after
whenever the natural evolution of the dynamics tends to push very fast transient and with oniy =17 controllers.

the system away from the goal pattern, this is reflected by a

growth ofK;(t). In other words the perturbation is adapted to  Finally, we discuss the problem of chaos synchronization.
the local dynamics, since the furth@lose) the systemisto | this case we consider two complex fields(x,t) and

the goal pattern, the largésmalle) is the weight given to A,(x,t), each obeying Eq1) with the same parameters,
B e L et otz 82 I the above case The o s evobe rom
of Ref. [4], implying a constant weighk, in Eq. (9). The ifferent random initial conditions, thus producing two space
positive quantityo represents the sensitivity of the method,
and it plays a crucial role in assuring the smallness of the
perturbations as well as the effectiveness of the copfpl

Figure 1 reports the control of one of the unstable plane
waves(2) for c=0.1 andK,=1. The control procedure im-
plies the suppression of the defects, until the controlled am-
plitude relaxes to a constant value. The arrow indicates the
instant at which control is switched on. The control proce-
dure is effective for a large range of andK, values.

The control process here introduced works also in PT,
with similar features as in Fig. 1. In this case, the absence o___
defects allows an even larger rangemfandK, values for
the effectiveness of the control procedure.

Let us now discuss the robustness of the control methoc
against white noise. For this purpose, in addition to the con-
trol perturbationU(x,t), to the right hand side of Eql) we
add a Gaussian noise(x,t) with zero average ané corre-
lated in space and time [{w(x,t));=0 and
(m(x,t)m* (x",t"))=yS8(x—x")8(t—1")]. The results are
shown in Fig. 2. for a noise strength of 1% of the unper-
turbed dynamicsA. The control process still leads to the  FIG. 2. Same as Fig. 1 with the addition of Gaussian noise with
appearance of the desired goal pattern for relatively high standard deviation 0.84A, /12 to all points of the mesh at each
noise strengthsup to 4%. The lower part of the right pic- time step. This noise is added to both the real and imaginary parts
ture shows that noise cancellation is effective only at theof the field A(x,t). The trace of theM =17 equispaced controllers
controller points. is now visible on the modulus.

Modulus
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FIG. 4. Plot of the transient tim€,; before achieving control as
a function of the numbeM of equidistantly spaced controllers.
Same parameters as in the caption of Figul=2.1, andu,=
—1.3, AT regime. The proposed method fails /<8, whereas a
controller for each double correlation length is enough to achieve
control.

tion (3), and of the expression & in Eqg. (2) allows one to
calculate the desired plane wave at all times and at all spatial
locations. Conversely, the synchronization process can be
implemented without any kind of previous knowledge on the
system.

FIG. 3. Synchronization of two identical systers(x,t) (left Let us now discuss the problem of the minimum number
column andA,(x,t), both in the AT regimésame parameters as in Of requested local perturbations. In Fig. 4 we report the tran-
Fig. 1). The right columns display the differences between the twosient timeT, for achieving control of the same plane wave
patterngupper, real parts; lower, moduliThe time runs from 1000 and in the same parameter conditions as in Fig. 1, as a func-

to 1600(u.t), and the synchronization starts B 1300 (indicated ~ tion of M. Looking at Fig. 4 one easily realizes thbt di-
by an arrow. verges to+o for M<8. Recalling thal. =64 andé=4.39,

so thatN=17, Fig. 4 actually tells us that control is possible,
unless associated with a larger transient time, even with a
controller distancer=2¢, that is, with a number of control-
lers about one half the number of correlation domains. This
improvement suggests that our adaptive method can over-

Ifor 'Tl(x’t) IIT Ax(x.1), anc_j v:::efversa. Inhother v;/ordf_s,léhe come the difficulties encountered so far for experimental
ocal controllers symmetrically force each complex field 0, 1o mentations of control of space time chaotic states.

collapse into the other one. The re_sul_ts are shovx_/n in Fig. 3, conclusion, we have shown that control and synchro-
for =0.1 andK,=1. The arrow indicates the instant at j,ation of a space-extended system can be realized by
which the controllers become active. Rather than suppressingaang of a finite number of local controllers, affecting dif-
ti}e defects, h_ere the. final synchronized statg(x,t) ferent points of the system, which can be mutually separated
=Az(x,t) remains amplitude turbulent, but the process dey, mqre than a space correlation length. Therefore, the mini-
termines the synchronization of the defects as shown by thg|,m controller number comes out to be smaller than the
equality of the amplitudes, andA,. Also in this case, the  , mper of correlation domains. The robustness of the proce-
process is effective in PT, and it is robust against externaljre against external noise has been proved in the special

noise up to 4% of the amplitude of both complex fields. 456 of the amplitude and phase turbulent regimes of a one-
It is important to point out that, while the proposed con- yimensional complex Ginzburg-Landau equation.
trol process crucially relies on a knowledge of the goal plane

wave, here the synchronization procedure is independent of

any previous knowledge of the system, since the local goal The work was partially supported by the Integrated Ac-
values for the two fields can be directly measured by theion Italy-Spain HI97-30. S.B. acknowledges financial sup-
same controllers at any time and at any controller location. Irport from the EU under Contract No. ERBFMBICT983466.
the control case, one should first individuate the coefficientd.B. benefitted from the EU Network under Grant No.
mq andu, in Eq. (1) by using a preliminary learning task on FMRXCT960010 ‘“Nonlinear Dynamics and Statistical

the unperturbed system. Then, the use of the dispersion rel@hysics of Spatially Extended Systems.”

-|Mo(A1)-Mo(A2)|

and time unsynchronized AT dynamics. In this case, the al
gorithm of Egs.(6)—(9) is used in order to select the pertur-
bations at each controller poirt. Now, the goal dynamics
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