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Motivated by experiments on optical patterns we analyze two-dimensional extended bistable systems with
drift after a quench above threshold. The evolution can be separated into successive stages: linear growth and
diffusion, coarsening, and transport, leading finally to a quasi-one-dimensional kink-antikink state. The phe-
nomenon is general and occurs when the bistability relates to uniform phases or two different patterns.
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In spatially extended dynamical systems the breaking
reflection symmetry along an axis due to drift has been s
ied, e.g., in Taylor vortices with through flow@1,2#. In con-
vection in complex fluids such as liquid crystals, drift is pr
duced by suitable alignment of the director at the bounda
@3#. Important features observed in the presence of drift
the transition from convective to absolute instability, and
occurrence of noise-induced structures in the convectiv
unstable regime.

In optical patterns drift may be generated by several f
tors, including oblique incidence of input light or misalign
ments in resonators@4–6#, spatial displacement in the feed
back loop of nonlinear interferometer@7,8#, and angular
walkoff between interacting waves in optical parametric
cillators @9#. In this context, different amounts of drift hav
been shown to induce transitions between different patte
e.g., hexagons, rolls, and zig-zag@7#.

We here study the influence of drift on bistable,~quasi-!
two-dimensional~2D! systems quenched into the absolute
unstable region. Without drift one initially has linear grow
of fluctuations, saturation, and then coarsening, where la
domains grow at the expense of smaller ones~we are not
concerned here with inhomogeneous growth via a front p
cess!. Curvature of the domain walls provides the drivin
force in this last regime. We will show that with drift in th
PRE 61063-651X/2000/61~6!/6045~4!/$15.00
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absolutely unstable region the system evolves to a nonp
odic array of 1D domains~stripes!, whereby further coars-
enig is effectively stopped. In this process a new analy
finger solution emerges, which may be relevant also in ot
curvature driven dynamical processes.

The investigation is motivated by experimental obser
tions in a system made of a liquid crystal light valve~an
effective Kerr medium! inserted in a ring cavity with a spa
tial displacement of the optical wavefront in the diffractiv
feedback loop. CallingL the free propagation length, andk0
the wave number of the pump laser, the system bifurcate
the appropriate range of lateral displacementsDx from the
homogeneous state toward two roll sets with wave num
q0'Apk0 /L @7#. The two sets of rolls are born as stationa
modes, with equal linear gain, and form an angleu1,25
6arccos@2p/(qDx)# with the direction of the wave fron
displacement. The roll amplitudes experience nonlinear co
petition, an effective diffusion arising from the curvature
the neutral surface and transport operated by the lat
wavefront shift. The asymptotic pattern observed after so
time consists of an array of striped domains with irregu
widths and parallel to the drift direction.

Model and simulations.To describe this process one ma
start from coupled amplitude equations for the envelope
the two degenerate roll systems. However, in order to br
R6045 ©2000 The American Physical Society
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out the generic features more clearly, we here present a s
of the minimal Ginzburg-Landau model for a real scalar fie
u(rW,t) @rW[(x,y)#,

] tu5lu2u31D¹2u1vg]xu. ~1!

Simulations with the coupled amplitude equations confirm
the robustness of our results. Equation~1! describes a
bistable system with symmetry-degenerate statesu56Al
and nonconserved order parameter~possibly an envelope!.
The group velocityvg(>0) accounts for the drift alongx.
The linear growth ratel and the diffusion coefficientD can
be scaled away; however, in our presentation we explic
keep them for the sake of clarity.

Starting from spatially distributed random initial cond
tions with zero average and rmsu0!1, drift and diffusion
act as follows. First, diffusion and linear growth togeth
create a selective amplification of the long-wavelength va
tions ~‘‘linear coarsening’’!, yielding a random spatial distri
bution of the field. Then, the nonlinearity transforms th
distribution into saturated patches of either phase separ
by ~comparatively! sharp interfaces moving under the infl
ence of curvature and drift. The effect of the drift, togeth
with nonperiodic boundary conditions, is to drive the 2
patches towards a quasi-1D pattern with a random distr
tion of stripes. Once the pattern has become 1D, a cut in
direction perpendicular to the drift shows a structure of kin
and antikinks. It is well established@10# that in an ideal
system, this structure will eventually relax to one of the tw
phases. However, due to the very weak kink-antikink int
actions, this takes an exponentially long time. Moreover
real systems as well as in simulations this process is actu
stopped at some stage due to the effect of pinning.

The scenario is illustrated in Fig. 1, where a numeri

FIG. 1. Snapshots of the time evolution of the patterns obtai
for l51, D50.2, vg50.2 at four different times. The directionx
of drift is downward. The size of the box is 1003100, spatial dis-
cretizationDx50.25, time stepDt50.1. The boundary condition
areu50 for x50, 100 and periodic in they direction. The initial
uncorrelated noise is uniformly distributed,21022,u,11022.
dy
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simulation of Eq.~1! with nonperiodic boundary condition
without bias for one of the two stable phases is shown. W
periodic boundary conditions in the direction of the drift, n
stripes form because the drift term can be eliminated b
Galilean transformation.

Linear growth and saturation.To elucidate the quantita
tive aspects of this scenario, we consider Eq.~1! in a rectan-
gular region 0,x,Lx , 0,y,Ly , with boundary condi-
tions u50 for x50, Lx ~note that Neumann condition
]u/]x50 do not change qualitatively the pictures describ
here! and with periodic boundary conditions in they direc-
tion (Lx ,Ly@j5AD/l). In the linear regime (uuu!1), we
expand u in terms of a set of modal solution
es(q,p)tFq,p(x,y) that satisfy the boundary conditions. On
finds Fq,p5 f q(x)eipy, where f q5e2x/ l D sinqx, p
52pny /Ly , ny50,61, . . . , q5pnx /Lx , nx51,2, . . . .
Here, l D52D/vg is the ‘‘drift-versus-diffusion length’’ and

s5l82D~q21p2!, l85l~12vg
2/vmax

2 !. ~2!

The velocityvmax52AlD separates the range of absolu
(vg,vmax) from that of convective instability (vg.vmax) of
the trivial solutionu50. In the convectively unstable rang
the solutionsu56Al are, in the absence of permane
noise, swept out of the system by the drift term, restoring
trivial state. With our spatially distributed initial condition
the reduction of the growth rate by the drift@see Eq.~2!# is
relevant only near the ‘‘inflow’’ boundaryx50 within a
strip of width ; l D . Further downstream advection restor
the unreduced growth. Our results for the casevg;vmax will
demonstrate the influence of the reduction factor.

From Eq.~2! we see a selective amplification of mod
nearq5p50 out of the broad band of modes initially ex
cited. Thus, within the linear range, at time t, one expect
distribution of wave numbersp ~irrespective ofq) propor-
tional to Pl(p,t)5e2Dp2t.

Whenu becomes of order 1 one enters the nonlinear
gime. This occurs when the fastest growing mode (q,p)
50 reaches 1, i.e., whenū0el8t l'1, ū05u0 /(NxNy), where
Ni5Li /Dx are the number of lattice points in the two dire

FIG. 2. Distribution of stripe widths as obtained from 200 sim
lations at velocityvg50.2 is shown on a log-linear scale~triangles!.
Same parameters as in Fig. 1, different noise realizations. A
shown are results from very long 1D systems~circles, squares!.
Dashed curve, distribution functionPl(w) from Eq. ~3!; solid
curve, corrected distributionPm(w) with a50.015.
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tions. The saturation processes actually represents an
solved problem@11,12#. However, it rapidly leads to the re
gime of ‘‘late time coarsening,’’ where one has 2D patch
with u56Al separated by domain walls of width;j
5AD/l. The first snapshot in Fig. 1 corresponds to th
stage.

The simplest theory for the distribution of domain widt
w assumes that the distributionPl(p,t) of wave numbers in
the y direction transforms at a timetc't l into a distribution
of stripes of ‘‘double width’’ w52p/p. The factor of 2p
implies that the natural elementary unit comprises t
~black-white! stripes. Thus, we have for the~unnormalized!
distribution,

Pl~w!5udp/dwuPl~p!5~2p/w2!e2(wc /w)2
, ~3!

with wc
25(2p)2Dtc , tc5l821ln(1/ū0).

Next we compare the distributionPl(w) with the results
of simulations. In Fig. 2 the distribution of stripe width
obtained after a timet5200 is shown~triangles! for 100
simulations on a log-linear scale~same parameters as for Fi
1!. The dashed curve represents the distribution function~3!
with wc512.0 calculated from the noise strength. Clearly
function ~3! with adjusted prefactor~normalization! de-
scribes the simulations well except for largew ~there the
probability has already dropped by more than one orde
magnitude!. One may conclude that, atvg50.2, the width of
the stripes is mainly determined at the moment when
nonlinear regime starts.

In order to examine the discrepancies at large widths
have redone the simulations for a larger system (Lx5100,
Ly5200) without detecting a change~the triangles actually
include these results!. We also did analogous simulations o
a very long 1D system (L5Ly52000) with two very differ-
ent noise strengths. Interestingly, after rescalingwc accord-
ing to the noise strengthū0, the distribution of domain
widths is essentially indistinguishable from the 2D stri
widths; see Fig. 2.

The simple distribution functionPl(w) apparently over-
estimates the occurrence of wide domains. Indeed,
simple picture proposed above does not include proce
where a wide domain splits into three by the insertion o
smaller domain. Although this appears to be an interes
problem worthy of further study we proceed phenomenolo
cally by going over toPm(w)5Pl(w)exp@2a(w/wc)

2#; see
Fig. 2 ~solid line!, wherea50.015. We offer the following
interpretation: after the long-wave components ofu have
saturated, the shorter-wave contributions still grow som
what, thereby annihilating large domains~as mentioned be
fore!.

Thus, the final outcome is described rather well by a l
ear, and in fact even 1D, analysis of the problem, with
moderate nonlinear correction. This is to be expected
velocities such that the drift-versus-diffusion timetD

5D/vg
2 is small compared to~or at most of the order of! tc .

If this is not the case 2D coarsening enters the problem.
now study these effects.

Nonlinear domain growth. In the sharp-interface regim
the motion of the interface between different domains
driven by the local curvaturek according to the equation
@13#
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vn52Dk, ~4!

wherevn is the normal velocity of the interface in a fram
moving with the drift velocityvg . The coarsening proces
eliminates the small domains and tends to straighten out
interfaces; see Fig. 1,t580. Solving the above equation on
expects coarsening according toR}ADt, whereR is a mea-
sure of the domain size@11#. Note that this growth law is
indeed similar to the ‘‘linear coarsening’’ affected by th
selective amplification in the linear regime, as seen from
fall-off length wc . The boundary conditions atx50 in the
sharp-interface regime orient the domain walls perpendic
to the boundaries.

In the simulations of Eq.~1!, one often observes fingers o
one phase traveling in thex direction with a constant veloc
ity, preserving their shape; see Fig. 1. We found a family
exact solution of Eq.~4! that describes the fingers movin
with velocity vb ,

Y562 arctan~AeX2X021!1Y0 , ~5!

wherex2vbt5XlD8 /4 andy5YlD8 /4, l D8 52D/vb . The width
of the finger is 2p in the reduced units, orb5p l D8 /2
5pD/vb in physical units. Thus, the velocity of the finger
a unique function of the width:vb5pD/b, in the frame
moving with the drift velocity. In this frame the fingers re
tract. For the finger to grow in the laboratory frame,vg has to
overcomevb . Therefore, there is a minimum widthbmin
5pD/vg5p/2 l D . Note that the solution~5! is different
from the finger solution that occurs in crystal growth pr
cesses@14#.

This amounts to saying that the tip curvature impose
lower bound on the distribution of the stripe widths. Th
average finger widthw̄ is calculated from the distribution
Pm(w), limiting the integration tow>wmin52bmin ,

w̄5E
2bmin

`

dwwP~w!Y E
2bmin

`

dwP~w!. ~6!

FIG. 3. Average number of double stripesL/w̄ vs vg /vmax from
theory ~solid and dashed curves!. The symbols represent average
results from various numbers of trial simulations for the larg
noise amplitude ~number of trials from left to right:
25,100,100,100,100,100!. The discrepancies are presumably main
due to fluctuations.
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In Fig. 3 we show the average number of double stripen̄

ªLy /w̄ for the noise level used in the simulations~and for
much weaker noise!. The increase ofw̄ for low drift veloci-
ties is a direct consequence of the cutoff introduced abo
When wmin,,wc ~which means sufficiently high veloci
ties!, the lower cutoff becomes irrelevant. Then the integr
in Eq. ~6! can be calculated analytically leading tow̄
52p21/2exp(2a1/2)K0(2a1/2)wc'2.25wc . This approxi-
mates the results well in the region of the maximum and
the right of it.

Discussion and outlook.Coming back to the experimen
that motivated our study, the observed transient dynam
and the asymptotic pattern agree qualitatively with the th
retical mechanism proposed here. Observation of the va
tion of the distribution of domain widths, as predicted by t
model, would require either a variation of the diffusion c
efficient not easily obtainable, or a variation of the drift v
locity. However, the range of velocities where one has bis
bility is rather limited ~see Ref.@7#!. Thus, we propose to
perform experiments in other optical or hydrodynam
bistable systems.

In the framework of our description, pinning of doma
boundaries due to their interaction with the underlying p
tern is not captured. It is described by generalized Sw
Hohenberg equations where it can stabilize the front@15#.
Thus, it would be preferable to perform experiments in
system with homogeneous bistable states.

The finger solution presented for an interface moving
der the influence of surface tension may be of general in
est. It describes the asymptotics of a typical breakup scen
ll,
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of lamellae in bistable systems. The generalization to a n
symmetric situation where the flat interface moves with
velocity v0 is also applicable to bistable and excitable chem
cal media@16#.

Our analysis of the distribution of stripe widths show
that drift can serve as a tool to study diffusive coarsen
processes. Selecting the drift velocity properly and introd
ing a time delay before application of the drift~this can cer-
tainly be done in simulations and in some experimental s
tems! one can get an extended snapshot of the state of
system near the inflow boundary at a chosen time. Th
whereas fast drift that carries the system into the conv
tively unstable range can be used as a probe for subcri
noise, slow drift can probe some aspects of the supercrit
nonlinear regime.

Due to the generality of such a dynamical mechanism
has to be expected in other systems where diffusion and
act together. The case of a conserved order parameter, r
ing to spinodal decomposition, appears of interest. We
pect similar qualitative features, although the distribution
stripe widths should be quite different.
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Pérez–Garcı´a for fruitful discussions. Work partly supporte
by the Integrated Action Italy–Spain under Grant No.
97–30. J.B. and L.K. benefitted of EU Network grants und
Contract Nos. FMRXCT960010 and FMRXCT960085. S.
acknowledges financial support from EU Contract N
ERBFMBICT 983466.
lu-
he
-

ot

A
.

z

. A
d

@1# A. Tsameret and V. Steinberg, Phys. Rev. E49, 1309~1994!;
49, 4077~1994!; K.L. Babcock, G. Ahlers, and D.S. Canne
ibid. 50, 3670~1994!.
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