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Unifying framework for synchronization of coupled dynamical systems
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A definition of synchronization of coupled dynamical systems is provided. We discuss how such a definition
allows one to identify a unifying framework for synchronization of dynamical systems, and show how to
encompass some of the different phenomena described so far in the context of synchronization of chaotic
systems.
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The word synchronization has a greek root However, in spite of such a plethora of theoretical studies
“ovy xpOvos” that means “to share the common time.” and experimental verifications, there is still a lack of a uni-
This original meaning has been maintained in the colloquiafying framework for synchronization of coupled dynamical
use of the word synchronization, as agreement or correlatiofyStems. Recently Brown and Kocaré®K) [12] made an
in time of different processefl]. While the study of syn- interesting attempt to provide a general definition of syn-

chronization phenomena in periodic dynamical systems ha&ronization, with the idea that there are different kinds of
-Synchronization that might be captured in a single formalism.

: . . ) Their approach assumes a total system divisible into two
phenomenon has been actively investigated in coupled Ch%‘ubsystems in which one can define functigmeperties on
otic systems. In this latter framework, many different syn-g5ch subsystem that are mappings from the space of trajec-
chronization features have been described so far, namelygries and time to some Cartesian space. Mathematically this
complete or identical synchronizatiot®) [2], phasePS [3]  looks as follows: The total system is given by[x,y], z
and lag(LS) synchronizatior{4], generalized synchroniza- <R™*™2, x e R™, y e R™2, with each subsystem forming a
tion (GS [5], intermittent lag synchronizatiofiLS) [4,6],  trajectory¢,(z,) and ¢,(zo) (zo being a generic initial con-
and almost synchronizatio\S) [7]. dition) that are mapped by propertigg and g, to a new

IS is the simplest form of synchronization and describegsPaceR”. A functionh(g,,g,) on these trajectory properties
the interaction of two identical systems, leading to their traS required with eithed|h|[=0 or [|h[|—0 ast—c. The

jectories remaining exactly in step with each other in theShoices 0fg,,g, andh determine the type of synchroniza-

course of the timé2]. GS goes further in using completely tion. The use of the trajectory spaces is necessitated since

different svstems and associating the outout of one svstem several definitions of synchronization need averages or inte-
) ySte 9 P ys tgs)rals over(infinitely) long-time segments of system trajecto-
a given function of the output of the other systébi. PS is

ries.

an intermediate regime characterized by the asymptotic e will show that we can simplify and generalize the
boundedness of the phase difference of the two outputgjefinition of synchronization to a more condensed and con-
whereas the two chaotic amplitudes remain uncorrelg8gd crete form than the one abowe will not have to appeal to
The relevance of PS for chaotic systems relies on the fadhfinite dimensional trajectory spagesOur approach will
that a generic chaotic flow can be seen as composed of Gapture all the cases that the Brown and Kocarev approach
small number of intrinsic modes of proper rotation, whosedoes along with an entire class that their approach misses.
phases may be easily computg®]. LS is an intermediate Let us assume for now that our syst&me R™ is divided
state between PS and IS, implying the asymptotic bounded0 tWo subsystemsX e R™ andY e R™ (m;+m;=m).

ness of the difference between the output of one system aityplcally when one states that a systésayy) is synchro-

timet and the output of the other shifted in time of a lag time ?)I(:Z(:euc:‘st(\)/vl’?gr?tge(;ztigﬂlea rn::/?r]]? ;2%232 e&'ﬁ&g\?ﬂ]’vﬁgi
Tiag [4]. ILS implies that the two systems are verifying LS b )

most of the time, but intermittent bursts of local nonsynchro stated that synchronization means prediction of one system's

behavi ol i ith th ‘values from another. One can identify events with points in
nous behavior may occ{4,6] in concomitance with the pas- o nhase or state space of the subsystems and capture the

sage of the system trajectory into attractor regions with & qinn of prediction by stating that there is a function fré¥m
local Lyapunov exponent different in sign from its global {4 v sych that a particular point X is mapped, uniquely, to

value[4,6]. Finally, AS results in the asymptotic bounded- one point inY. The mathematically rigorous definition of a
ness of the difference between a subset of the variables @finction is adhered to here: one and only one point in the
one system and the corresponding subset of variables of thenge for each point in the domain. However, we want our
other systenj7]. synchronization function to be realistic. Typically, when we
The natural continuation of these pioneering works was tgearch for evidence of synchronization in data or in numeri-
investigate synchronization phenomena in spatially extendedal calculations we never have data that fall right on a given
or infinite dimensional systeni$], to test synchronization in x or on a giveny. Rather, we have that the closg(t) is to
experiment$ 10], and to investigate the mechanisms leadingy e closery(t) is to y. The latter statement is captured
to destruction of synchronized stafesl]. rigorously by acontinuousfunction; namely, the trajectories
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FIG. 1. The curved one-dimensional manifold in the two-
dimensional phase space,Y) is straightened out by the diffeomor-
phismF(z=(x,y))=(w=(u,v)) , so that the two projections of the
new systermu="P;(w) e U,v =P,(w) e V form a synchronous state
at any pair of points§,v).

7

X
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of x(t) close tox are mapped near ¥ by a function that is
continuous at the pointx(y). Note that we do not require
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may only need to compare a subset of the new coordinates
andv from each system. Therefore, in the following we will
denote byF:R™ "M, R91%% 3 function that, after applica-
tion of the diffeomorphism, extracts; (d,) components out
of the firstm; (the secondm,) coordinates of the trans-
formed space.

We now have all the main features we need to construct a
more rigorous and very general definition of synchroniza-
tion: (1) a function from the original phase spar& a new
phase spaceu(v), (2) the projectionsP; and P, onto the
components of the new space, af®l the synchronization
relation, a continuous function.

Let us start by refining the definition of the continuous
function to include consistency with the dynamics.

Definition. A function f is a synchronization functiorat

(u,0) if (@ v=f(u), (b) it is continuous a1, and(c) it is

smoothness in our function, allowing us to encompass morgonsistent with the dynamidsi(t),v(t)) locally, that is, if 5

exotic relationships like generalized synchronizafibh

and e are a valid pair for the continuity properuu—ﬁ|

Before making the above into a rigorous mathematical<5implies|f(u)—5|<e], then the dynamics is such that if

statement, we use two examples to point out that one mo

one can have a continuous function fronto y. However,
suppose we consider a diffeomorphisfiz —W, w= F{(z)

that “straightens out” the manifold. Then, if one considers

the two projections of the transformed systers P;(w)
e U,u="P,y(w) eV, the new manifold inu andv forms a

synchronization manifold and one can define a synchronou

state at any pair of pointai(v). In fact, if the new manifold
is a line at 45° to theu axis, one can even identify the
continuous function fromu—u: the identity. We note that

such a transformation is not possible in the BK formalism,

, , \ reﬁ.l(t)—ﬁ|<5we have|v (t) —v|<e.
stage is necessary. The first example is a curved one-

dimensional manifold in a two-dimensional phase spac
(my=m,=1), like the one shown in Fig. 1. Assume that the
dynamics are on that manifold. In general there is no wa);1

In words, near ,v) the function describes well the pre-

edictability of subsystenV dynamics from subsystetd dy-

amics. Now for the sake of rigor we pay closer attention to
such details as initial conditions and time. For the time be-
ing, let B be the basin of attraction for the attractdrof a
dynamical systerd CIR™. Let P, andP, be projections from
R9179%2 t0 R% and toR%, respectively.

Definition. For a given function7:R™—R%*%, a dy-
gamical systenZ CR™ containslocally synchronous sub-
systemsn ze A if V zye B there is a timeT such that for
t=T a synchronization function exists &ii="7P;(F(z)),v
=P2(H(2))).

We can think of the subsystems as having propeties

although it can be inserted as a preliminary step. The secormhdv that are synchronous only near the part of the trajec-

example is suggested by tests for PS between two sulory, assuming the trajectory comes closeutoWe cannot
systemsx andy. In some cases, phase information can besay what the relationship is betwee(t) andv(t) anywhere

acquired by the help of the Hilbert transforfi4] of the
components  of z  r(t)=(1/m) It —t)D(t’
—t,z(t)) dt’, where ®,(t’',z(t)) is the ith component of
the flow causing(t)—z(t+t"). The phases are here gener-
ated as “new coordinates’u;(t) = arctanfr;(t)/x(t)] and
vi(t)= arctarﬁriml(t)/yi(t)], and can be compared for a given
i (we assume for now thah;=m,). What is important to
note is that the transformation from-r— (u,v) requires an
integration over the trajectors(t), but it does not require a
function from the space of trajectories o Rather, the ex-
pression used is just a function fromft) —r(t), point to
point; it is the flow function that allows us to avoid the more

else on the trajectory. The nature of the synchronization
functionf and the functionF determine the type of synchro-
nization we are considering.

The above definition is bcal definition (that is, it refers

explicitly to a given positiorz e A). While extension of such
a definition for global synchronization will be provided in

the following, at the present stage it is important to remark
that such a feature is crucial if one wants to describe phe-

nomena such as ILS, which is, indeed, intimately related to

the local stability properties of the flow on the chaotic attrac-
tor.

We now discuss how to extend the definition to the entire

abstract and complex trajectory space. The use of the flowrajectory of the transformed system(t) so as to have a

function must be done first on the entire trajecta(y) and

single continuous function everywhere on the image of the

cannot be done separately on components since, in generalttractor underF. This might seem to be just a matter of
the components are coupled and each one’s dynamics dbhaving enough points of local synchronization, but there are
pends on the other. Finally, we note that we could includewo things to consider carefully. One is that we want to make

any BK types of property functiong, andg, (with appro-

sure every point on the trajectory is mapped by a synchroni-

priate modificationsusing a flow and then a general trans- zation function between the two subsystemanduv. The
formationg=(g,,,9,) that splits into the two properties. An other is more subtle. We would like there to be @oatinu-
important point to highlight is that, for some applications, weousfunction on the whole trajectory or attractor. As our defi-
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nition stands, generally, we have a function associated with This last definition recovers the previous one &+ 0,
each synchronization paiti(v), but the functions may be and is tantamount to saying that the consistency of the syn-
different in their local continuity. The valid and e pairs chronization functiorf with the dynamics holds only up to a

need not have any particular relationship between differenfinimum scaleo, giving the minimal coarsening or preci-
synchronization functions sion scale for which states in one subspace may be put in

A single function that maps th&) projection of F(A) correspondence with states in the other subspace. Although

At the value ofo is not constrained in our definition, we should
[P1(F(A))=U] to the V projection of F(A) [P.(F(A)) X P . ,
=\1/] can be attained, and we will show this in t2he theoremPOInt out that ifa is larger than the diameter G%,(F(A))

below. The essential feature we need to add is a set of syflen the above is trivially satisfietf >0 and Vz,e B.
chronization points on the attractor that provide a “Cover_Thergfore, the only relevant cases are the ones in whith
ing” property. considerably smaller than the diameter/f(F(.A)).

Definition. If {u;} is a set of points otJ and{f,} is a set Furthermore, globadr synchronization may be described
of continuous functions, one associated with eaghfrom U as the case for which locat-synchronization features are
to V, then the functions provide @ntinuity coveringof U if ~ displayed independently of the particular choicezefA.

V &>0 the set of all valids;'s associated withe [one for With the help of what is discussed above, let us move to

each (i;,f;) pair] covers the set). show some examples of synchronization phenomena that can
This gives the following theorem that provides the uniquePe encompassed within our definition.

synchronization function. Generalized and identical synchronizatidn.Refs.[2,5],

Theorem|f the subsystent contains a set of synchroni- GS and IS are characterized by the fact that the asymptotic
zation points{u;} and the associated functiof§} provide a  evolution of the system occurs within a manifold defined by
continuity covering ofU, then there exists a unique, global, Y=K(x), K being a generic functiorilS is the case for
continuous synchronization functidnU— V. which m;=m, and K coincides with the identity In our

Proof. Let us proceed by absurdity, and suppose therdramework, GS can be considered as a particular case of
exist two different realizations of the dynamizse A and ~ global synchronization withr=0, by settingu=x and v

z,e A such that Py(F(z,))=Pi(F(z,))=U, Py(F(z)) =Y=K(x), so as the synchronization function comes out to
=v,, and P,(F(z,))=v,. Let n=|v,—v,| be the distance bef=K. o o _
between the two images af, and z, in R%, and picke Phase synchronizatio®S consists in a collective evolu-

< yl2. Letu, be the synchronization point whose neighbor-tion of a pair of weakly coupled chaotic systems character-
hood of radiuss,(e) containsu (its existence is guaranteed zed by a phase distance that is asymptotically bounded
by the continuity covering propentyand letf, be the asso- around a constant valug whereas the amplitudes may re-
ciated synchronization function. Because of the consistencji@in uncorrelatedi3]. We assume the above situation is de-
of f, with the dynamics, we must hayé(u,) —v,|<e and ~ Scribed by two proper phase functiopgx(t)) and #(y(t)),
|fi(u) —vol<e. Adding the latter two inequalities and us- whose outputs are time dependent scalar quantities ranging
ing the triangular inequality we havle;—uv,|< 7, which  from 0 to 2, that are chosen so ag(x) — i(y)| <R, where
contradicts our hypothesis. Thence, there exists a funétion R is the size of the residual fluctuations of the phase distance
mapping all pointsue U into the corresponding points around c. Let F be the function having comp_onents
=f(u)eV. P(x),(y) (dy=d,=1). What we have to show is that

Next we show thaf is continuous at all pointae U. For ¥V >0 3 6>0 such that
all e/2 there is a; associated with one of the synchroniza-
tion pointsu; such thadg— uj| <4 . Pick 6>0 so that the | (X)) — p(X) | < 5= |p(y) — p(Y)| <&,V Zz=(X.y).
setSs={u’:|u’ —u|< 8} is completely contained in the set
of points within 6; aroundu;. Because of consistency &f  now,
with the dynamicsV u’'eS; we must have |f(u’)
—fj(uj)|<e/2. On the other hand, we also hayg(u;) ~ ~ ~ ~

i\ i _ - _ _ _
—f(u)|<el2. Using again the triangular inequality we have [9(Y) = g =[4(Y) = g0+ §(3) = h(y) + h(X) — ()|
[f(u")—f(u)|<e wheneverfu’ —u|<é. _ _ 0 — il

The above provides a definition of perfect synchroniza- <[p(y) = d) [+ ()= uly)]

tion. In many realistic applications, however, one must ac- + | (x) — (X))
count for noise, or for a finite measurement resolution, so
that it is useful to introduce a fuzziness parameter, setting up <2R+|p(x)— ¢(7<)|.

the minimal coarsening scale at which the states of one pro-
jected set may be put in correspondence with the states of thlenerefore, selecting=2R and 5=& — 2R, the definition of
other projected set. _ m diid global o synchronization is satisfied.

D§f|n|t|on. For a given function:R™—-R™ "%, a dy- Lag and almost synchronizatiohS refers to a case in
namical sxstemz contains locally o-synchronous sub- which asymptoticallyx(t) — y(t— Tlag)|<Rv for a given lag
systemsin ze A if V zye B there is a timeT such that {jme Tiag [4]. LS can be identified with a global
V e>o 3 5>0 such thatt=T and |Py(F(®(t,20))  g-synchronization phenomenon. Now with=(x,y) define
—P1(F(2)| < 6=|Po(F(D(t,20))) — Po(F(2)| <e. the transformatiorn such that
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u=Pi(F2)=x and v=Py(F2))=P(P(—17,2))
=y(t—7).
Then
l[v(t)—u(t)|<R
and
[va(t) —va(t)][ =1 (t) —ug(t) + uz(t) —va(t) +uy(t)
—uy(t)]
<[v2(t) Uy ()] +|uz(t) —va(t)[+[uy(t)
—Up(1)]
<2R+|uy(t) —uy(t)].

o=2R and §(e) = ¢ — 2R satisfy our definition of global
o synchronization and wheR=0 we get the exact case of a
synchronization functiom: u—uv, where, in this casd,is just
the identity.

PHYSICAL REVIEW B3 066219

depends explicitly on the local stability property of the flow
onto the chaotic attractd#,6]. However, since ILS has an
intermittent nature, in the following we have to extend our
definition.

Definition. For a given functionF:R™—R%"9%2 a dy-
namical system containgtermittently o-synchronous sub-
systemgz’}C A if V zge B there is a timeT; and a time
interval AT, associated with eacly; such thatV e
>¢ 3 6>0 such thatV t;>T; 3 t,>t; for which t,
<t<t,+AT, and

|PLUF®D(t,2)) — Py(F(D(t—1,,20)))]
< 8= | Py(F(®(t,20))) — Po AD(t—15,20)))|
<eg

In the above we have a special case of our lecalynchro-
nization in that we have a continuous infinity of synchronous
points z(t) emerging from eacfz’ and reached in order
using the flond, but only over a finite interval of timaAT; .

AS corresponds to a situation where asymptotically'” the limit c—0 we obtain local functiong; that mapu

[P (x(1)— P (y(1)|<R, with I<m;,m, and P, being the

=P(F(P(t,2p))) tov="Py(F(P(t,zy))) in the appropriate

projector extracting the firdtcomponents out of the vectors ime intervals.

x andy [7]. The same demonstration used for LS holds for

o=2R, 6=¢—2R, and Fi=z ,i=
=1+1,...,2.
Intermittent phenomenaVe finally discuss how ILS can

1, PR ,I;f’i:Zi+ml,| ,i
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