
Chaos suppression through asymmetric coupling
J. Bragard,a� G. Vidal, and H. Mancini
Department of Physics and Applied Math, Universidad de Navarra, Irunlarrea s/n,
E-31080 Pamplona, Spain

C. Mendoza
Institute of Physics, Pontifical Catholic University of Valparaiso, 234-0025 Valparaiso, Chile

S. Boccalettib�

CNR-Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy

�Received 19 June 2007; accepted 20 September 2007; published online 22 October 2007�

We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler �in the
funnel and no funnel regimes�, Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all
four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the
numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist
that render the two oscillators periodic and synchronized. The values of the coupling strength for
which this phenomenon occurs is well below the previously known value for complete synchroni-
zation. We have found that this behavior exists for all the chaotic oscillators that we have used in
the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order
to complete the study, we have tested the robustness of this phenomenon of chaos suppression
versus the addition of some Gaussian noise. We found that chaos suppression is robust for the
addition of finite noise level. Finally, we propose some extension to this research. © 2007 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2797378�

Chaos suppression has been realized in the past by using
techniques related to parameter perturbations as well
parametric forcings. In the present paper, we introduce a
new technique based on couplings. Here the recipe rests
on selecting an adequate coupling able to drive a chaotic
dynamics towards a regular periodic attractor.

I. INTRODUCTION

The question that it is addressed throughout this paper,
i.e., chaos suppression through coupling, fits in the more
general framework of synchronization. Historically, the re-
gain of interest in the study of synchronization of chaotic
systems started back from the seminal work of Pecora and
Caroll1 in 1990. These authors were able to show experimen-
tally that electronic chaotic circuits were amenable to stable
synchronization. These authors also forecast the future appli-
cations of their findings in the description of neural pro-
cesses. Other experimental evidence of synchrony in nonlin-
ear electronic circuits were given by del Rio et al.;2 these
authors used both mutual and unidirectional couplings be-
tween chaotic circuits. From the theoretical side, a study of
the Japanese Fujisaka and Yamada3 as early as 1983 describ-
ing the synchronization of chaotic coupled maps demon-
strated that chaotic dynamics and synchronization are two
concepts that can coexist. There is evidence that synchroni-
zation is ubiquitous in nature and some examples are to be
found from clapping hands, flashing fireflies, and cardiac and

neural processes just to cite few of them. Therefore, it is not
surprising that synchronization concepts have also percolated
in the lay audience literature.4 An excellent account of the
status of synchronization research can be found in the fol-
lowing, more technical, references.5,6

The purpose of this work is to show that an adequate
coupling between two identical chaotic oscillators may force
their dynamics towards regular periodic oscillations. As
counterintuitive as it may seem, the two subsystems oscillate
at the same frequency but follow a different limit cycle. The
latter means that in terms of synchronization theory they are
in a generalized synchronization state. Previous studies on
chaos suppression, which is of crucial interest in technologi-
cal contexts, have focused on different techniques. In 1996,
Gutierrez et al. have successfully implemented a method of
chaos suppression through changes in the system variables.7

In 2001, Kiss and Hudson8 showed that by applying an ex-
ternal periodic forcing with a special frequency and ampli-
tude, a chaotic chemical oscillator was forced back to a non-
chaotic behavior. In 2002, Patidar et al.9 numerically
demonstrated the suppression of chaos in coupling two Duf-
fing oscillators, one in the chaotic regime and the other in a
periodic regime. In 2005, a Lorenz system driven by a para-
metric forcing of high frequency as well as with a stochastic
forcing was shown to exhibit chaos suppression.10 More re-
cently, the study of chaos suppression has been considered
for a ring network of activator-inhibitor chaotic reactions in
order to mimic biochemical reaction pathways.11 In this last
study, the authors showed that by adding extra random long-
range coupling inside the network the system can exhibit
chaos suppression and complete synchronization. While re-
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lated to these previous studies, our analysis is different be-
cause we only consider connecting two identical chaotic os-
cillators in an asymmetric fashion. This is related to one
early study of some of the present authors.12

Before starting with the technical details of our analysis,
let us briefly outline the plan of the article. In the next sec-
tion, we will successively consider the coupling of identical
chaotic oscillators formed by a pair of Roessler, a pair of
Roessler in the funnel regime, a pair of Lorenz, and finally a
pair of Lotka-Volterra model equations. A close look at the
Lyapunov exponents of the global system will reveal that
particular values for the coupling lead to chaos suppression
and as a by-product to generalized synchronization. In the
successive section, we will ensure of the robustness of these
synchronized states versus the addition of some Gaussian
noise. To end up, we will draw some conclusions and plan
some future researches.

II. CASE STUDIES

Chaotic systems are not easily amenable for analytical
calculations. In most cases, numerical simulations are the
only way to penetrate into the complexity of the chaotic
dynamics. In this paper, we will rely on numerical simula-
tions on different pairs of chaotic oscillators in order to study
the phenomenon of chaos suppression induced by coupling.
In order to be as general as possible, we will consider four
kinds of chaotic systems. For all of them, the procedure will
be the same and is summarized in the following protocol: We
take a pair of identical chaotic oscillators and couple them
through one of their state variables. The coupling is allowed
to be asymmetric and the parameter measuring the asymme-
try is called �. The coupling strength is also varied and is
called �. After having coupled the oscillators and let some
transient time to elapse, the Lyapunov exponents of the
coupled system are evaluated. As a result of the coupling,
four options are possible: periodic or chaotic; synchronized
or desynchronized behaviors. One observes that when the
behavior is periodic one always gets a state of generalized
synchronization reducing to three the different scenarios.

A. Roessler in the not funnel regime

Let us start our analysis with the celebrated Roessler
model.13 This model is one of the simplest dynamical sys-
tems that can exhibit chaotic solutions. It has been used ex-
tensively in numerical studies dealing with chaos. The model
that we will focus on here is composed by two identical
coupled Roessler oscillators,

ẋ1 = − �1y1 − z1 +
�

2
�1 + ���x2 − x1� , �1�

ẏ1 = �1x1 + ay1, �2�

ż1 = f + z1�x1 − c� , �3�

ẋ2 = − �2y2 − z2 +
�

2
�1 − ���x1 − x2� , �4�

ẏ2 = �2x2 + ay2, �5�

ż2 = f + z2�x2 − c� , �6�

where the first set of parameters that we have used is a
=0.15, f =0.2, c=10, �1=1, and �2=1. For these parameter
values, the Roessler system Eqs. �1�–�3�, with �=0 is in a
chaotic state characterized by a positive, a negative, and a
vanishing Lyapunov exponent and the attractor is in the no-
funnel regime which means that one can unequivocally de-
fine a phase for the state of the oscillator.5 In the following,
we are interested in characterizing how the coupling affects
the difference between the two oscillators. In general, one
can define the state of the system I, Eqs. �1�–�3�, with the
vector v1= �x1 ,y1 ,z1� and similarly the state of the system II,
Eqs. �4�–�6� with the vector v2= �x2 ,y2 ,z2�. A perfect syn-
chronized state occurs if v1�t�=v2�t� for all time after some
transient has brought the systems together. This has been
called in the field of synchronization as “complete” synchro-
nization. Others weaker synchronized states have also been
identified, phase- and in particular antiphase synchronization
is the state of synchrony between two weakly connected
identical pendulum clocks as observed by C. Hugyens 400
years ago. A modern setup of the Huygens’ experiment is
described in Ref. 14. Lag and anticipating synchronization
may also be observed if the coupling between the two sys-
tems allows for some time delay.15,16 These latter forms of
synchronization are being investigated for their potential
technological applications.17 Finally, a “generalized” syn-
chronized state exists, where there is no equality of the two
state variables but only a functional relation between
them,6,18

v1 = F�v2� ∀ t � t*. �7�

The requirements on the function F are time independence
and strict monotonicity in its domain of definition. These
conditions ensure that given the state of system II �v2� we
can infer the state of system I �v1� and vice versa. It is clear
that synchronization will be strongly dependent on the cou-
pling parameter � and the asymmetry of the coupling �.
While synchronization deals basically with the difference be-
tween the dynamics of the two subsystems, here we are also
interested in the attractor on which the two subsystems get
synchronized.

They are many ways to couple two dynamical systems19

and the scheme that we have used here enter in the family of
the so-called diffusive coupling. Diffusion is not always
symmetric, for example, if the diffusion parameter is not
constant20 or if it exists an asymmetry due to some con-
straint as, for example, in physiological membranes that se-
lectively diffuse the ions.21 The latter justifies our choice of
including a parameter that characterize the asymmetry of the
coupling ���.

The natural thing to start with is to compute the
Lyapunov exponents as a function of the coupling param-
eters � and �. The Lyapunov exponents have been used in the
past in synchronization studies as it is reported in Refs. 5 and
6. They also have been successfully used as an indicator for
defining phase transition.22 In this study, it is sufficient to
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compute the two larger Lyapunov exponents in order to de-
termine and characterize the presence of chaotic or periodic
states. In order to compute the first two Lyapunov exponents
�LE�, we have to integrate Eqs. �1�–�6� and two additional
copies of a linearized version of the full system �1�–�6�. The
numerical integrations are performed using a standard
Runge-Kutta algorithm of fourth order and the time step is
fixed to dt=10−2.23 The transient time necessary to erase the
effect of the initial condition has been fixed to 9�104 for
Eqs. �1�–�6� and the additional transient time in the tangent
space �for the computation of the Lyapunov spectrum� has
been set to 5�104 in order to get an accurate determination
of the Lyapunov exponents. The time spent on the attractor
for the computation of the LE is fixed to 65 536 in dimen-
sionless time units and the Gram-Schmidt orthogonalization
algorithm used to renormalize the Lyapunov vectors is per-
formed every 50 time steps that corresponds to t=0.5. This
amounts to a number of orthogonalizations equal to 131 072,
which is the most costly part in term of CPU time of the
present numerical simulations. The error in the evaluation of
the LE is further checked by using the formula er .
=��LE� /max�LE�, where � is the standard deviation of the
maximum �positive� LE. One has found that er. is of order of
2%, which is sufficiently small for the purpose of the present
analysis.

The main objective of the present analysis is to show
that values of � and � that lead to chaos suppression exist. As
a by-product, we will show that for these values of the cou-
pling we also have “generalized” synchronized �GS� states
for values of � well below the threshold of complete syn-
chronization �CS�. In the first case treated here �i.e., Roessler
no-funnel�, let us recall that the threshold for CS is equal to
�=0.2 and is independent of the asymmetry �. Figure 1 dis-
plays the value of the first two LEs as a function of the two
coupling parameters, i.e., the coupling strength � and the
asymmetry in the coupling �. From the figure, one clearly
observes that when the second LE is vanishing �around �
=0.2� the system enters in the CS state as previously studied
in Ref. 24. The novelty of the present study is to allow for
two parameters in the coupling �strength and asymmetry�;
the latest is measured by the � parameter.12 As it is seen from
Fig. 1, one sees an island where the maximum Lyapunov
exponent is vanishing. This occurs roughly in the range
�0.06���0.08 and symmetrically in the range −0.2��
�0.2�. Due to the coupling between subsystem I �Eqs.
�1�–�3�� and subsystem II �Eqs. �4�–�6�� the dynamical re-
gime has lost its chaotic character. This is not surprising per
se because the full coupled system lies in a six-dimensional
phase space and therefore the variety of dynamical regimes
that one encounters is also enlarged. In particular, some is-
lands exist, where the dynamics is no longer chaotic. In the
following, we are interested in further characterizing these
islands where periodic behavior is observed.

In order to characterize synchronized states one disposes
of some “classical” indicators.12 The one that is used here is
the Pearson coefficient which is the cross-correlation be-
tween the subsystem I �Eqs. �1�–�3�� and the subsystem II
�Eqs. �4�–�6��. As the structure of the Roessler attractor is

somewhat particular, it is of interest to separate the cross
correlation for the individual variables along the different
axes �x.y.z�. In doing so one defines

�x =
��x1 − �x1���x2 − �x2���

�x1
�x2

�8�

which is the cross correlation for the x variable. In the above
formula, the brackets �…� stand for time average and �
stands for standard deviations with respect to the average
values. It is well known that when CS occurs all � tends to
one. However, it is less evident that when GS occurs, the � is
not necessarily close to one.

Let us evaluate the Pearson coefficient in the first case
�Roessler no-funnel�.

Figure 2 shows the results of the calculation of the Pear-
son coefficients. Let us explain in detail how these figures
have been obtained. For each couple �� ,��, the same initial
conditions �each state variables taken randomly in the inter-
val �0,1�� and the same conditions for transient times and
evaluation time for the calculation of the time average are
used. Let us mention that some further checks have been
done to ensure that changes in the initial conditions do not
affect any of the displayed results. From Fig. 2, it is apparent
that CS occurs for a value of �	0.2 and that is independent
of �. Also the �z tends to one with increasing � much slower
than �x. This is due to the particular geometry of the Roessler

FIG. 1. �Color� The largest �a� and second largest �b� Lyapunov exponent of
Eqs. �1�–�6� for the Roessler no-funnel case �see the text for the correspond-
ing parameter values�. The horizontal axis indicates the asymmetry of the
coupling in the range −1���1 and the vertical axis is for the coupling
strength 0���0.3. Note that the same color bar is used for both figures in
order to ease the comparison between the two figures.
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attractor. The island that was identified in Fig. 1 is also vis-
ible in Fig. 2. However, here the island corresponds to values
of the Pearson coefficient lower than the value in the neigh-
borhood. This would lead to the wrong impression that there
is a lack of synchronization in this region. In fact, the Pear-
son indicator is a good indicator for CS but it is a poor
indicator for weaker synchronized states. Indeed, one must
be reminded that the Pearson indicator is a perfect tool to
prove linear correlation between two signals. If we are facing
GS, the relation between the two signals is in general not
linear and therefore this linear indicator may miss the iden-
tification of GS states.

Identification of GS states
In this paragraph, we show that the region where the

maximum LE vanishes corresponds to GS states. In order to
identify GS, Abarbanel and co-workers have developed an
involved technique called mutual false nearest neighbor.18,25

In the present case, it is not necessary to use this method,
which is computationally demanding, because the attractors
in each of the two subsystems are not chaotic. It is straight-
forward to find a function that relates v1 and v2 if both states
are periodic.

It is seen from Fig. 3�a� that the dynamics loses its cha-
otic character if the coupling is set to �=0.07 and �=0.15
which are values taken in the island identified in Fig. 1. In
addition, it is shown in Fig. 3�b�, that the projection in the
plane �x1 ,x2� is a curve rather than a cloud of points as it

would be if the dynamics were chaotic. When the system is
in a CS state, the curve in Fig. 3�b� is a straight line �the first
bisector�. Here below, we show that the system is in a GS
state. Before evaluating the function relating v1 and v2, let us
display the attractor for these particular parameter values ��
=0.07 and �=0.15�.

Figure 4 shows that the selected coupling values ��
=0.07 and �=0.15� are able to restore a regular �not chaotic�
dynamics. It is important to note that the value of the cou-
pling strength is well below �three times lower than� the
threshold of CS ��	0.2�. Surprisingly and left unnoticed by

FIG. 2. �Color� Pearson coefficients: at the top �a� �x and at the bottom �b�
�z for the Roessler �no-funnel�; see the text for the corresponding parameter
values. The horizontal axis is for the asymmetry −1���1 and the vertical
axis is for the coupling strength 0���0.3.

FIG. 3. �Color online� �a� time evolution of x1�t� solid line and x2�t� dashed
line. �b� the projection of the dynamics on the plane �x1 ,x2�, which is remi-
niscent of a Lissajous figure. Coupling values are �=0.07 and �=0.15 �the
others parameters are for the Roessler no-funnel, see the text for parameter
values�.

FIG. 4. �Color online� Plot of the two attractors: v1 and v2 in the case of
�=0.07 and �=0.15. The two curves nearly coincide and chaos has disap-
peared due to the particular coupling between the two chaotic oscillators.
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previous studies, for such a low value of the coupling
strength, the system lies in a state of GS. As it is seen from
Fig. 4 the system is looping in the �x ,y� plane and it is not
directly related to the state v1 and v2. The easiest way to
proceed is to define two sets of curvilinear coordinates along
the parametric curves v1�t� and v2�t� that measure the arc
length along the attractor I and attractor II. The origin of
these coordinates is arbitrarily chosen to be where z�t� is
maximum. The arc lengths are denoted by s1�t� and s2�t�,
respectively. After each period �cycle� on the attractor, we
reset the arc length to zero. If a GS state exists, given any
location in subsystem I, one is able to find unequivocally the
corresponding location on the attractor II, and this will hap-
pen for any time.

Figure 5 reveals that for �=0.07 and �=0.15, the cou-
pling of the two identical Roessler attractors reduce to two
periodic attractors that are slightly different. If we know the
state of one of the two subsystems v1 or v2, we can predict
the other. Indeed, the nonlinear function relating s1 and s2 is
monotonously increasing and it is time independent. Note
that the discontinuity in the function is not a problem and it
is due to the specific choice of the origin of coordinates. If
one repeats the same procedure for other coupling values ��,
�� situated in the island where the maximum Lyapunov ex-
ponent vanishes, one finds that a generalized synchronized
state always exists. If one compares the results of the present
work with the one of Rulkov et al.,25 one sees that here GS
comes from the particular coupling between two identical
Roessler attractors. On the contrary, in Rulkov analysis, there
was already a CS state that is “artificially” transformed into
GS by a nonlinear change of variables. The objective of
Rulkov et al. was to prove that their method of detecting GS
is relevant. They actually demonstrated that the false mutual
nearest neighbor method is indeed an excellent method to
detect GS states between two �or more� chaotic oscillators.

B. Roessler in the funnel regime

The first question that immediately arises after observing
these GS states is the following: Is this phenomenon of sup-
pression of chaos by asymmetric coupling generic? To test
this hypothesis one has to carefully check several issues.
First of all, one has to ascertain that different random initial
conditions do not modify the conclusions. This has been

checked successfully. Furthermore, we have to check that
this phenomenon is not specific to a particular choice of
attractor. It may well be that one is observing a GS phenom-
enon just by chance. This phenomenon will be called generic
if it happens for different values of the parameters and also
for a different class of chaotic attractors �like Lorenz attrac-
tor, Lotka-Volterra model, etc.�.

In this section, the first test that we have performed is to
modify the parameter values of the Roessler attractor. In par-
ticular by fixing the values of the parameters in Eqs. �1�–�6�
to a=0.343, f =1.82, c=9.75, �1=1, and �2=1, the attractor
transforms into a funnel attractor26 which is topologically
very different from the no-funnel attractor �regular case� that
we have analyzed in the previous section.

If the attractor is very different one may suspect that its
response to coupling will also be different. In this section, we
have redone the same analysis as in the previous section but
for the funnel attractor. Figure 6 shows that the presence of
islands where the maximum LE vanish is again observed. In
this case, the transition to CS is obtained for �	0.4 and it is
still independent of the asymmetry of the coupling �. In Fig.
6, one identifies a small island of regular behavior for �
	0.05 and �=0. This indicates that regular periodic behav-
ior can be obtained even in the absence of asymmetry in the
coupling. Asymmetrical coupling surely enhances the num-
ber of islands where regular behavior is observed but it is not

FIG. 5. Plot of the arc length along the two attractors: s1 and s2 are taken
from an arbitrary �but common� origin. �=0.07 and �=0.15.

FIG. 6. �Color� The largest �a� and second largest �b� Lyapunov exponent of
Eqs. �1�–�6� for the funnel case �see the text for the corresponding parameter
values�. The horizontal axis is for the asymmetry −1���1 and the vertical
axis is for the coupling strength 0���0.6. Note that the epsilon range has
been doubled with respect to the no-funnel case.
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a necessary condition for its occurrence as we see in Fig. 6.
A close look at the dynamical system when �	0.05 and �=0
indeed shows that the dynamics of subsystems I and II is
periodic and again the system is in a GS state as it is proven
in Fig. 7.

It is important to mention that regular �nonchaotic� be-
havior does not imply at all that the system will automati-
cally lie in a GS state. Inside each island, one has to check if
there is a function relating the states of the two subsystems.
One has to be able to predict the state of v1 from v2 and vice
versa. Here we have verified that in each island we have GS
states. This is presumably due to the fact that if two identical
systems �initially chaotic� are coupled and fall into a periodic
attractor, they very likely be synchronized.

C. Lorenz attractors

In this section, we repeat the procedure of the previous
two sections but this time working with a pair of coupled
Lorenz attractors,27

x1 = a�y1 − x1� +
�

2
�1 + ���x2 − x1� , �9�

y1 = x1�r − z1� − y1, �10�

z1 = x1y1 − bz1, �11�

x2 = a�y2 − x2� +
�

2
�1 − ���x1 − x2� , �12�

y2 = x2�r − z2� − y2, �13�

z2 = x2y2 − bz2, �14�

where the chosen parameter values are a=10, r=28, and
b=8/3. For these values the Lorenz system is chaotic and
the attractor displays its well-known “butterfly” shape �see
Fig. 8�.

Again, with the Lorenz attractor, one finds areas in the
��, �� plane where the coupling eliminates the chaotic char-
acter of the attractor and imposes a periodic regime as it is
exemplified in Fig. 7�b� for parameter values ��=3.7 and �
=0.2�. Figure 7�b� exemplifies that the two subsystems do
not fall on the same attractor. However, we have checked

that the frequencies are the same which is also a different
way to ensure for GS between periodic attractors.

Even if the Lorenz attractor has a maximum Lyapunov
exponent one order of magnitude larger than the Roessler
attractor, the same behavior is encountered. Obviously, the
value for which one gets complete synchronization is much
higher than in the Roessler case and is close to �=8 and
again independent of �.

D. Lotka-Volterra model

To end up with case studies, let us consider a model
coming from Ecology which is the four-dimensional Lotka-
Volterra for competitive species,28,29

ẋi
�1� = rixi

�1�
1 − �
k=1

4

	ikxk
�1�� + 
i,1

�

2
�1 + ���x1

�2� − x1
�1�� ,

�15�

ẋi
�2� = rixi

�2�
1 − �
k=1

4

	ikxk
�2�� + 
i,1

�

2
�1 − ���x1

�1� − x1
�2�� ,

where in Eqs. �15�, i=1, . . . ,4 is an equation index and the
superscript indicates subsystem I or subsystem II. The cou-
pling, as usual, is realized only over the first variable and

FIG. 7. Plot of the arc length relation in the plane �s1, s2� for the funnel case
and �=0.05, �=0.

FIG. 8. �Color� The largest �a� Lyapunov exponent for the Lorenz system;
blue regions represent the area where the maximum Lyapunov exponent is
vanishing �b�. Projections of the attractors v1 �black curve� and v2 �red
curve� when ��=3.7 and �=0.2�, showing that the system is no longer
chaotic.
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therefore to have a consistent notation, we have used the
usual Kronecker symbol 
i,1 in order to condense the nota-
tion. The parameters are identical for the two system and are
given by rT= �1;0.72;1.53,1.27� and the interspecies matrix
is given by

� = 
1 1.09 1.52 0

0 1 0.44 1.36

2.33 0 1 0.47

1.21 0.51 0.35 1
�

for the parameter values given in the above matrix, the com-
petitive species model is in the chaotic range. The popula-
tions of the four species in the two subsystems fluctuate in a
chaotic manner.

As it appears clearly from Fig. 9, here again the coupling
between the two groups of population species also lead to
chaos suppression for some values of the coupling � and �.
All these numerical explorations give confidence on the gen-
erality of the observed phenomenon.

III. DISCUSSIONS ABOUT ROBUSTNESS

Finally we are interested in testing if this phenomenon of
chaos suppression is robust. It is well known that synchro-
nized states are highly vulnerable to noise added to the syn-
chronizing signal.30 In the following, some noise is added to
the coupling term in order to test for the robustness. The
noise is white Gaussian noise with some strength �character-
ized by its variance�. By the addition of a noisy term in each
of the coupling terms, the equations become a set of stochas-
tic differential equations.31 Some careful treatment is in order
in the numerical integration of these stochastic equations.
The addition of some noise permit us to test if we are not
facing mere numerical artifacts. Two white Gaussian noises,
�1 and �2, are added to Eqs. �1� and �4�, respectively. The
strength of the noise is measured by the standard deviation of
the distribution, we have ��1

2�= ��2
2�=�r

2. Obviously the noise
is chosen to have a zero mean, ��1�= ��2�=0.

Figure 10�a� shows that the addition of a noise with �r

=0.01 is not able to completely destroy the phenomenon of
chaos suppression that is observed for �	0.05 and �=0 in

the Roessler �funnel regime� in the absence of noise. How-
ever, due to the noisy term, the attractor is logically smeared
out, especially noticeable in the region of large z where the
expansion of the attractor is larger. On the contrary, the ad-
dition of a larger noise �see Fig. 10�b�� restores the two sub-
systems into chaotic dynamics.

A further check is done by increasing the added noise
from very small values to larger values. The objective is to
capture the transition �noise strength� for which the chaotic
behavior is restored. Figure 11 displays the maximum
Lyapunov exponent as a function of the increasing noise
level. It is clear from the figure that above a critical noise
strength that depends on the particular dynamical system
chaos suppression by coupling is no longer present.

IV. CONCLUSIONS

We have found by extensive numerical simulations that a
two parameter coupling ��, �� enlarges the number of situa-
tions that one may encounter in coupling a pair of identical
chaotic oscillators. For some specific values of the coupling,
we have identified four classes of chaotic oscillators to get
chaos suppression. This phenomenon seems to have been
unnoticed so far, at least between two identical chaotic oscil-
lators. In the framework of synchronization, this chaos sup-
pression is associated with GS states. The regions where GS
appears are spread out in the ��, �� plane and are character-

FIG. 9. �Color� The largest Lyapunov exponent for the Lotka-Volterra sys-
tem �Eqs. �15��; blue regions represent the area where the maximum
Lyapunov exponent is vanishing �see text for parameter values�.

FIG. 10. �Color online� The influence of noise on the GS states: �a� white
Gaussian noises with �r=0.01 are added to Eqs. �1� and �4� of the Roessler
attractor in the funnel region �case study �b��, the chaos suppression is still
present. �b� �r=1 and the attractors are back in the chaotic region. Parameter
values are �=0.05 and �=0.
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istic of each dynamical system. They are like their GS fin-
gerprints. Ideally one would like to get some analytical pre-
dictions about the localization and the extent of those regions
where chaos suppression occurs. This important task is left
for further studies. In this paper, we have shown that chaos
suppression is a generic behavior and that is also robust ver-
sus the addition of noise. This indicates that the basin of
attraction of these states is large enough to attract the trajec-
tories in them. We finally want to conjecture that natural and
biological systems may presumably use these specific cou-
plings in order to facilitate synchronization �communication�
between their different subunits.
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FIG. 11. �Color online� Influence of some added white Gaussian noise on
the phenomenon of chaos suppression. The curve marked with circles is for
the Roessler oscillators �funnel� with �=0.05 and �=0. The curve marked
with squares is for the Roessler oscillators �nonfunnel regime� with �
=0.07 and �=0.15. The curve marked with diamonds is for the Lotka-
Volterra model with �=0.06 and �=0. Note that we have used the logarith-
mic scale for the noise strength.
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