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Convective instabilities of synchronization manifolds in spatially extended systems
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We study the stability properties of anticipating synchronization in an open chain of unidirectionally coupled
identical chaotic oscillators. Despite being absolutely stable, the synchronization manifold is unstable to propa-
gating perturbations. We analyze and characterize such instabilities drawing a qualitative and quantitative
comparison with the convective instabilities typical of spatially extended systems.
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Synchronization of coupled chaotic systems has been thine coupling strengthy is the delay time in the coupling
object of intensive studies over the past yefdds Basically  factor, ; is the Kroneckers function, andf(r) is a vector
all relevant questions have been investigated and clarified ifield,
the context of low-dimensional systems, including the subtle
issues connected to the stability of the synchronization mani- f(r)=[-y-zx+ayb+z(x-0c)], 2
fold that may depend on the transversal Lyapunov exponent . . . .

: responsible for generating the locally chaotic dynamics. In
[2] or the Lyapunov functior3]. he followi 8=015b=02 c=10 N=100 and

Much less is known about synchronization properties ofne fo %ng’ \I/ve.se ; ~19.0=0.2,0=20,N=. and we
high-dimensional or, more specifically, extended systems. Ir?tUdy t fe evolution ? syzterﬁl_) _u_p?n ve(ljry_lngr ande,
this latter context, evidences of synchronization phenomenglt‘?1rt|ng rom a set of random initial conditiong0) cov-

have been given in large populations of coupled chaotic unit§""9 aII. the ipterval[o,—r] for each oscillatpr. Al re-
and neural networkg4], globally or locally coupled map ported simulations have been performed by implementing
lattices[5], and in space-extended syste[f§ a fourth order Runge-Kutta integration scheme with free

Among the few general features that have been estatRoundary conditions. _ - o
lished, one finds that linear stability analysis may even fail [N order to carry on the linear stability analysis, it is con-
altogether to predict the stability property of the synchronoud/@nient to pass from théri(t)} to the [ry(t), Ari={ri_4(t)
state[7]. —'ri(t—r)}] re'presentatlor?iwnh i>1). In.fact,'the. synchro-

In this paper we focus our interest on the recently discovNized state is characterized iy ;=0. Linearization of the
ered anticipating synchronizatids] in chains of unidirec- €quations for,; accounts simply for the Lyapunov exponents
tionally coupled oscillators. Here, tishory time delayrin  Of the single Rossler oscillator. The dynamics of an infini-
the mutual coupling makes the trajectories to converge totesimal perturbation;=(u;,v;,w) of the differencesar; is
wards an absolutely stable anticipating synchronizatioinstead described by
manifold (ASM) wherein the state of the response system
anticipates that of the driver by the same amount of time
Since absolute stability remains as such independent of the

U ==v; =W + (1= &)Uy —eu(t=17),

chain length, one is tempted to conclude that arbitrarily long v = U +az +e(l- Sy —evi(t— 1), 3)
anticipation times may be generated. The weirdness of the
seeming lack of causality together with the potential appli- W, = (X, — )W, + U, + e(1 = 8w — ew;(t — 7).

cation of this phenomenon in real-time forecasting has sug- ,> i
gested us to investigate more in detail the stability of thel N€ growth rates of;(i =2) define the so callettansversal

synchronized regime. As a result we find that the ASM abLyapunov exponents, insofar as they give information on the
solute stability is accompanied by a convective instability®volution of perturbations transversally to the ASképre-

which undermine the stability of the synchronous regime inS€nted by the fixed poinkr=0), and the negativity of the
long chains. maximum of such exponents is a necessary condition for

In order to address such a problem, let us consider aAbsolute stability of such a manifold. It is important to notice

open chain ofN unidirectionally coupled identical Réssler that while the dynamical law fop, is self-contained, the
oscillators[9], given by evolution of all other perturbations can be determined only

as a cascade process. A necessary condition for the synchro-

i =f(r) +e(1 = aplri-—rit— 11, (1) nized regime to be stable is that the growth rate
where the dots denote temporal derivativiess (x;,Y;,z) is 1 (oMl
the vector field of theth driven oscillatori=1,... N), ¢ is N :Tlim ?Inm
—00 2

of p, is negative. Since the Lyapunov expong&ntis a self-
* Also at Dept. of Phys. and Applied Math., University of Navarre, averaging quantity, it is sufficient to evolve a single ran-
Pamplona, Spain. domly chosen initial conditiofip,(t=0) and the sef{p,(t),
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FIG. 1. Transversal Lyapunov exponent (see text for defini-
tion) computed from systeni3) vs the coupling strengtla for
=0.12 (dot-dashed ling 7=0.1 (solid line), and v=0.08 (dashed
line). The three curves start froiy=0.0826, corresponding to the
maximum(positive) Lyapunov exponent for the Rossler oscillator.

-7<t<0}] for a time T long enough. In Fig. 1, we have
plotted the values ok, vs the coupling strength, for differ-
ent choices ofr, for T=1000 andadopting as nornfj-|| the
maximum of the absolute values of the three component
of p. Consistently with what observed in RdB], \ | is
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FIG. 2. Temporal evolution obxs for 7=0.1 ande=4.1. The
trajectory starts from random initial conditions and is subjected to a
zero averages-correlated Gaussian noise perturbatiog(t) (D
=0.005 added to the variablg,.

size of the deviations tend to grow exponentially wiith

In order to clarify the whole process, we prefer to inves-
tigate the response of the system tosdike perturbation.
More precisely, we have let the systéfr) evolve from ran-
dom initial condition at=0 (with 7=0.1 ande=4.1) until it
reachegwithin numerical accuragythe ASM. Then, evolu-
tion is restarted after perturbing; by a small amountz,

negative for a suitable parameter range, indicating that th@nile all other variables are left unchanged. Convergence
ASM is there absolutely stable. Notice that for all choicespack to the ASM is studied by monitoring the single step
of 7, A, at zero coupling is positive and equal to the anticipation error ?=([x;(t—7)-x,_1(t)]?, where angular
maximum Lyapunov exponent of the single ROssler sysy,cets denote an average over an ensemble of independent

tem, \y=0.0826(for the chosen parameter valyueBor the
relatively small r values considered in Fig. 1, one can
verify that A\, approximately scales as, =(1/7)L(e7).
The scaling 1 is what is well known to occur in delayed
systems in the limit of very long delay times. It is there-
fore remarkable here to observe the very same scalin

choices of the initial conditions.

In the limit of small perturbations, instead of following
two separate trajectories, it is sufficient to let a perturbation
evolve in tangent space: in this limit’=(u?. The curves
corresponding to different oscillators that are plotted in Fig.
g clearly indicate that the deviation from the ASM initially

properties at already small values anfAs for the depen-
dence oner, this would imply a maximal stability foe
=1/7. However, from Fig. 2 of the first of Ref$8], one
clearly sees that stability is completely lost fe= 0.8,

grows but eventually converges to 0 thus confirming its ab-
solute stability. On the other hand, oscillators labeled by
largeri values are characterized by higher peaks. Figure 3
X ) . also demonstrates that the behavior of the system is basically
thus implying that such a scaling property holds only for insensitive on whether calculations are performed in the nor-
values small e_nough. - . mal or in the tangent space.

On the basis of the results reported in Fig. 1, one IS rpis hhenomenon is very much reminiscent of convective

tempted to conclude that arbitrarily long anticipation times,yjjities in spatially extended systems where a localized
can be obtained by just coupling a sufficiently large number

N of oscillators. Since théh oscillator anticipates its driver c; ' T ' T
by a time 7, its dynamics is expected to collapse onto a B %
manifold whereinr;(t)=r[t+(i—1)7]. In fact, this would be 8x10 T 7
possible only if absolute stability were a sufficient condition _9'
for the settings of such a manifold. Figure 2 indeed shows 6x10 T T
that this is not the case. Systdt) is evolved from random [
initial condition for N=100,7=0.1, ande=4.1 (from the 4x10”F )
solid curve in Fig. 1, one can clearly see that the correspond- I
ing A\, is negativeé up to the time at which the ASM is 2x10° 75 .
reached. At this point a zero averageorrelated Gaussian I ’s 50

G 1 oA A

noise D&(t) of small amplitudeD=0.005 is added to the
variabley,. The deviations from the ASM are thereby moni-
tored by evaluatingx; =[x, (t) - x(t—(i—1)7)|. From Fig. 2 it FIG. 3. Time evolution of the ensemble averaged differences
is clear that the trajectory abandons the absolutely stablg?=(u?) for i=25,50,75, and 99the corresponding numbers are
ASM manifold 6x;=0 as a result of the applied perturbation on the top of each curyeData is obtained from an ensemble aver-
although the deviations in the fifth oscillator are still quite age of 10 000 perturbations, far=0.1, e=4.1, and7=5X 1073,
small. In fact, it is crucial to add that the asymptdiittime) The solid(dotted lines refer to phaséangeny space.
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perturbation dies if observed where it has been generated
while it appears to grow in suitably moving frames. The
analogy relies on the interpretation of the integdabeling

the oscillators as a space variable, but an exact mapping with
convective phenomena is hindered by the additional presence
of the “delayed” interactions which make the problem con-
ceptually more complex.

One can, nevertheless, test whether the evolution of an
initially localized perturbation follows the same scaling be-
havior as in spatially extended systems. In the context of
one-dimensional lattices, the convective Lyapunov exponent

is defined ag10] FIG. 4. Convective Lyapunov exponeni(v) vs propagation
1 |6(i =t t)| velocity v, computed by comparing the perturbation in different
A(v) =lim =In - (4) pairs of oscillators according to E@6). Dot-dashed, dotted, and
e |5(0,0)| solid lines correspond to the paif80,60, (60,40, and (40,20,

respectively. The maximum value of the exponent is marked by an
arrow. Inset: maximum value af; vs its time of occurrence. The
exponential best fit yields an exponent 0.202, in agreement with the
maximal convective Lyapunov exponent.

where §(i,t) denotes the perturbation amplitude in sitat
time t and is initially localized in a finite region around the
origin. This is equivalent to stating that
A
8(i,1) = exp(A(v)t) = ex;(ﬂi>

v

(5
Since the scaling behavior sets in only abdwe2, and the
for both|i| andt are large enough. maximal convective instability corresponds to a veloaity
From a numerical point of viewA(v) can be accurately =6, this means that this effect originates only for chain
estimated by comparing the perturbation amplitude at twdengths larger than about ten oscillators.

different space-time positior3; = (i1,t1), P,=(i,,1,), In conclusion, we have shown that convective instability
i prevents the occurrence of anticipating synchronization over

Al) = - v : |n|5(!2't2)| (6) arbitrarily long times in a chain of unidirectionally coupled

=iy |&iqg,ty)]’ identical chaotic oscillators, when even a small amount of

. . . noise is present.

wherev =i/t =i,/t,. In fact, provided that boti, and P, This er\)/idence indicates that absolute stability of the syn-

are _far enough f_rom the origin, multiplicative f|n|te—5|ze €OI" hronization manifold is only a necessary condition for the

trﬁctlon.s gﬁec&é n thé sgme way and thus disappear Whenrobustness of synchronization properties in coupled spatially
e rafio is taken in Eq(6). extended systems, and other types of space-time instabilities

The results reported in Fig. 4 confirm that the behavior thave to be taken into account.

perturbations in the context of Rdssler oscillators with de- A general consequence is that necessary and sufficient

layed coupling is analogous o that of convectively unStabl%onditions for the stability of synchronization properties in

systems. Indeed, the three curves obtained by comparing t@%atially extended systems strictly depend on the space-

following pairs of oscillators(_80,6(), (60,40, and'(40,20 extended nature of the dynamics and need to be assessed by
almost overlap, thus suggesting that the convective Spec”“?&king into account additional sources of instability, such as

A(v) is a well defined quantity in this context too. Next, the convective growth of perturbations in moving frames.

very existence of a positive maximum &f(v) implies that A further consequence concerns the possibility of imple-
perturbations traveling with a velocity in between the two  enting anticipating synchronization as a strategy for real-
zeros ofA(v) (approximately equal to 5 and) &re indeed ime forecasting of future states of a given dynamics. Such a
amplified. Furthermore, the maximum rate, approximately,ossibility needs to be reconsidered by a careful investiga-
equal to 0.203, is larger than the positive Lyapunov exponenfo, of the space-time instabilities that might be suffered by

of the single oscillatom,, indicating that such convective the synchronized dynamics when noisy perturbations are
instability is even stronger than local instability. The value ofgkeninto account.

the maximum convective exponent can be independently

checked by monitoring the values of the maximg of each The authors are indebted to H. U. Voss and J. Kurths for
o; versus their occurrence time. The best fit reported in thenany fruitful discussions. Work was partly supported by EU
inset of Fig. 4 corresponds to a growth rate of 0.202, in goodContract No. HPRN-CT-2000-00158, and MIUR-FIRB
agreement with the maximum of the convective spectrumProject No. RBNEO1CW3M-001.
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