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In a recent papefPhys. Rev. Lett.91, 064103(2003] we described the effects of asymmetric coupling
configurations on the synchronization of spatially extended systems. In this paper, we report the consequences
induced by the presence of asymmetries in the coupling scheme on the synchronization process of a pair of
one-dimensional fields obeying complex Ginzburg-Landau equations. While synchronization always occurs for
large enough coupling strengths, asymmetries have the effect of enhancing synchronization and play a crucial
role in setting the threshold for the appearance of the synchronized dynamics, as well as in selecting the
statistical and dynamical properties of the synchronized motion. We analyze the process of synchronization in
the presence of asymmetries when the dynamics is affected by the presence of phase singularities, and show
that defects tend to anchor one system to the other. In addition, asymmetry controls the number of synchro-
nized defects that are present in the dynamics. Possible consequences of such asymmetry induced effects in
biological and natural systems are discussed.
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I. INTRODUCTION complete synchronization, and plays an important role in

o . controlling the properties of the final synchronized dynam-
The synchronization of coupled chaotic systems has beejg

a topic of intense study since 1990)]. In this context, dif- In this paper, we present a detailed characterization of
ferent type of synchronization have been described: identicaﬁsymmetric coupling on the synchronization of a pair of non
and generalized synchronization, phase synchronization, Iagentical CGLE, for both small and large parameter mis-
and intermittent lag synchronization, and anticipating synmatches. We will analyze the type of synchronized dynamics
chronization. Furthermore, Synchronization effects have beeaccurring in the presence of asymmetric Coup”ng in a” pos_
explored in natural phenomena and laboratory experimenisiple dynamical states emerging from CGLE, and we will
[2-5]. Unified approaches to describing and measuring synshow(i) that in all cases the threshold for the appearance of
chronization states have also been propdsed. ~ synchronized motion depends non trivially on the asymmetry
Recently, interest has moved to the study of synchronizain the couplingy(ii) the selection of the dynamics within the
tion phenomena in space-extended systems, such as largfa| synchronized manifold is always crucially affected by
populations of coupled chaotic units and neural netwfBks  the asymmetry(iii ) the process leading to synchronization is
globally or locally coupled map latticg§—11], coupled map  anticipated by defect-defect synchronization, inducing the si-
networks [12] as well as other space-extended systemsnyltaneous appearance in the coupled fields of phase singu-
[13-19. larities, even in the cases in which the uncoupled dynamics

In most cases, studies of chaotic synchronization havef hoth fieldsdoes notinclude the presence of defects.
mainly considered external forcings, and bidirectional sym-

metric or unidirectional master-slave coupling configura- Il. THE MODEL
tions. In many practical situations, however, one cannot €x- \we will consider a pair of one-dimensional fields obeying
pect to have purely unidirectional, nor perfectly symmetricalcomplex Ginzburg-Landau equations. This equation has been
coupling configurations. As a result, recent interest has fogytensively investigated in the context of space-time chaos,
cused on detecting asymmetric coupling configurati@®®,  sjnce it describes the universal dynamical features of an ex-
and quantifying asymmetries in the coupling scheme in relyenged system close to a Hopf bifurcati@s], and therefore
evant applicationgsuch as the study of the human cardiores-j; -an pe considered as a good model equation in many dif-
piratory system[21], and then to characterize the effects of forent physical situations, such as occur in laser phygids
asymmetric coupling on synchronizatigfor example, be-  f,id dynamics[25], chemical turbulencd26], bluff body
tween pairs of one-dimensional space extended chaotic Ofjakes[27], or arrays of Josephson’s junctiof8]. A recent
cillators [22]). In particular, Ref[22] has shown that asym- aview on the CGLE[29] comprehensively describes the
metry in the coupling of two one-dimensional fields obeying,yide class of physical situations where CGLE represents a
complex Ginzburg-Landau equation€CGLE) enhances good model equation.
We will consider a pair of complex field#\ x(x,t)
=pp Ax,0)€?12%Y  of amplitudes p; 4(x,t) and phases
*Electronic address: jbragard@fisica.unav.es &1 5(X,1), whose dynamics obeys
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35 and a spatiotemporal intermittent regime. The borders in pa-

rameter space for each one of these dynamical regimes are
schematically drawn in Fig. 1, together with the BFN line. In
this work, we will mainly concentrate on PT and AT, since
they constitute the fundamental dynamical states for the evo-
lution of the uncoupled fields, and their main properfi@4
have received considerable attention in recent years includ-
ing the definition of suitable order parameters marking the
transition between ther85], as well as the study of nonlin-
ear structurege.g., Nozaki-Bekki holes, modulated ampli-
tude waves and homoclor®rming the “building blocks” of
the nonlinear dynamics of the CGLB6,37. Related studies
of synchronization phenomena in CGLE with bidirectional
0.7 ' symmetrical coupling configurations can be found in Refs.
-1.5 -1.2 -0.9 -0.6 -0.3 0.0 [17,38—4Q
PT is a regime where the chaotic behavior of the field is
FIG. 1. (a,B) parameter space for E¢l) for c=0. The lines mainly dominated by the dynamics ¢fx,t), the amplitude
delimit the borders for each one of the dynamical regimes produceg(x,t) changing only smoothly, and being always bounded
by Eq. (1), and the Benjamin-Feir-Newel line for stability of the away from zero. On the other hand, AT is the dynamical
plane wave solutions. regime wherein the fluctuations pfx,t) become dominant
over the phase dynamics. Here, the complex field experi-
. o, _ , c ences large amplitude oscillations which giotally and oc-
A=A+ (L+i@)d A 2= (1+iB1)|A I A o+ 51760 casionally causep(x, ) to vanish. As a consequence, at all
those pointghereinafter called space-time defects or phase
X(Ag 1= A1) (1) singularitie3 the global phase of the field®
=arctafilm(A)/Re(A)] shows a singularity. Phase singulari-

the second derivative with respect to the space variabld€S have been proved to play a crucial role in the description
0=<x<L (L being the system extensiprr and 3, , are suit- of the dynamics of opticgl1], fluid [42], and chemical43]

able real parameters,represents the coupling strength, and€XPeriments as well in cosmolog4]. Furthermore, the
0 is a parameter accounting for the asymmetry in the cou2003 Nobel prize for physics has been awarded for re-
pling. The case#=0 describes the bidirectional symmetric searches in the field of superconductors and superfluids, that

coupling configuration, whereas the casel (§=-1) recov-  C&n be described phenomenologically with the help of the

ers the unidirectional master-slave scheme, with the figld CGLE [45].
(A,) driving the response o4, (A,).

Whenc=0 (the uncoupled cagedifferent dynamical re- lll. METHODS AND INDICATORS
gimes occur in Eq(l) for different choices of the parameters
a, B [30-33. The full parameter space for the dynamics of
the CGLE is shown in Fig. 1. In particular, E¢L) admits
plane wave solutionPWS of the form

2.3

AT

21+

No chaos

1.4

Here, overdots denote temporal derivativeé,stays for

The purpose of our paper is to report the different syn-
chronization states that are selected when asymmetrically
coupling exists between the two CGLE fields. In order to be
as exhaustive as possible, we will consider different regimes

Ayx,) =11 —rd@¢a 1< qg<1. (2 for the two CQLE. The reference as a starting point is the
i i i case treated in Refl22] (i.e., =2, B;=-0.7, andB,=

Here, q is the Wave_number in Fourier éspace, anc_j the—l,oa, For this parameter choice, the two fields are origi-
temporal frequency is given hy=-B-(a=B)q". The stabil- 4y prepared to display PT and AT, respectively. As a con-
ity of such PWS can be analytically studied below thegequence, hereinafter we will denote this situation as PT-
Benjamin-Feir-Newe(BFN) line (defined byag=-1inthe  AT(). Another possible choice for an initial PT-AT
parameter spageNamely, for «3>-1, one can define a configuration, whose relevance will be momentarily clear, is

critical wave number, to considera=2, 8,=-0.95, andB,=-1.2 [we will denote
1+aB such a situation as PT-Al)]. Finally, we will consider also
Q.= \/ > , (3 cases of small parameter mismatch, where the two systems
21+p)+1+ap

start from the same initial dynamical state, suchaas2,

such that all PWS are linearly stable in the range<q  B1=-0.75, andB,=-0.9 (denoted by PT-PJrand a=2, 8,
<q,. Outside this range, PWS become unstable through th&—1.05, andB,=-1.2 (denoted by AT-A].
Eckhaus instability33]. In all cases, we consider values of the asymmetry param-
When crossing from below the BEN line in the parametereter 6  [-1, +1], and highlight the effects of asymmetry in
space, Eq(3) shows thaiy, vanishes and all PWS become the synchronization propertigs # 0) of system 1. Simula-
unstable. Above this line, Ref§30-32 identify different tions were performed with a Crank-Nicholson, Adams-
turbulent regimes, called, respectively, amplitude turbulenc&ashforth scheméwhich is second order in space and time
(AT) or defect turbulence, phase turbuler&), bi-chaos, [46]), with a time stepst=10"2 and a grid size5x=0.25, for
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T " T ' T ' T persion relation of the PW@&lashed lingand the numerical
simulations can be evaluated quite accurately in the PT re-
AN gime (right-hand side of the maximunby using the modi-
N 1 fied Kuramoto-Sivashinsky equati¢#49,50.
ool nte's,, I\ Considerations based on Fig. 2 dictate the choice for the
: M,J % .\\ parameterg’s in the rest of the presentation. Indeed, a ques-
® oo ‘-..\\ i tion to be clarified is how crucial is the role of the natural
(AN frequency for the selection of the dynamics for the two
0.8 '.‘.\ . coupled CGLE in the synchronized state. A previous study
Y | with bidirectional symmetrical coupling configuratiof®
%, =0) between a PT and a AT reginj&7] pointed out that the
0.7} (N - final synchronized dynamics occurs in a PT state. The above
result was obtained for a parameter choice for which the
12 ! 1 08 ' 0.6 frequencywpy Of the initial PT state was smaller than the one
B (wa7) Of the initial AT state. This was also the situation of the
case PT-AT) treated in Ref[22] (see Fig. 2 We will show
FIG. 2. Natural averaged frequenay(see text for definitiopvs  that, in the absence of asymmetries, the dynamics in the final
B for a=2. The filled dots report the values from simulations of Eq. synchronized state ialways selected to correspond to that
(1) atc=0. The dashed linew=-4 is the prediction given by the state having an originally smaller value of This property
dispersion relation of the plane wave solutions with zero wavengs dictated the choice of parameters for the case RTDAT
number. considered in the present pagg;=-0.95 and8,=-1.2). In
this case Fig. 2 shows thatot> war, and we will see that
L=100 (corresponding to 400 grid pointsind spatial peri- the synchronized motion #=0 develops onto a AT regime.
odic boundary conditionpA; (0,t)=A; 5(L,t)]. Let us now discuss how to characterize the synchroniza-
A crucial parameter in all our investigations, which dic- tion properties of the coupled fields by means of suitable
tated the choice of the parameters in the different cases, igdicators [19]. As we are dealing with extended chaotic
the natural average frequency of the single CGLE. Such &elds that may be in defect turbulence, concepts of phase
frequency is calculated from the numerical simulations of asynchronization may be hindered by the presence of phase
single CGLE by averaging in space the unfolded phase singularities in such regimes, that makes average phases dif-

defined inR rather than if0, 27r]. We have ficult to be properly defined.
On the other hand, complete synchronizati@$¥) states
w=lim (X, 1)x 4) can be detected by the use of Pearson’s coefficient defined as
t—o t '

where(- - -), represents a spatial average. = (e <plz)(f,)2 () N
Figure 2 showsw vs the parametegB at «=2. In order to V{(p2 = €p)) )V (p2 = (p2)))

construct Fig. 2, we have integrated the CGLE for a very

long time (t;=15000Q after eliminating transient behavior Where () denotes a full space-time average order to

(T=5000. Two different initial conditions for each value of avoid getting spurious values, we allow in general some tran-

B were chosen in order to measure the sensitivitwafith ~ Sient timeT to elapse before evaluating this coefficieng _

respect to selection of different initial conditions. It should Measures the degree of cross correlation between the moduli

be emphasized that all initial conditions were chosen to havéi(X,t) and py(x,t): When y=0 the two fields are linearly

a zero average phase gradigs], because the frequency in uncorrelated; whiley=1 marks complete correlation and

the PT regime is highly sensitive to the average phase gradr—1 indicates that the fields are negatively correlated.

ent as shown by35]. Another indicator characterizing the disorder in the sys-
From Fig. 2 one clearly realizes that reaches a maxi- tem is the number of phase singularities defecty N. Theo-

mum for 8= -0.98, close to the transition from the PT to the retically, a defect is a poinfx,t) for which p(x,t)=0. This

AT regime. This transition has been extensively studied bymplies that defects are intersections of the 0-level curves in

several author§35,47,48, and it has been shown that it de- the(x,t) plane of the real and imaginary partsAf,(x,t). In

pends on the spatial extension on which E.is integrated, practice, because of the finite size of the mesh and of the

as well as on the average phase gradient. In addition, it ifinite resolution of the numerics, we must introduce a

interesting to noticgésee Fig. 2that on the right-hand side of method for the detection of a defect. A reliable criterium is to

the maximum(PT regim@ the two different initial conditions count as defects at tintethose points; where thep(x;,t) is

lead to nearly the same value for the averaged frequencgmaller than 0.025 and that are furthermore local minima for

while on the left-hand side of the maximuiAT regime) the  the functionp(x,t).

two initial conditions lead in general to two different values It is well known[47,48 thatN is an extensive quantity of

for w. This fact could serve as an alternative indicator for theboth time and space, and therefore it is sometimes conve-

characterization of the PT-AT transition. Furthermore, thenient to refer to the defect density, that is calculated as the

frequency difference between the prediction given by the disdefect numbeN per unit time and unit space. Anticipating

(5
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the results of Sec. VI, it appears that the defects of system 1
and system 2 tend to anchor each other in the synchronized
states.

In the following, we will describe the important effects of
asymmetries in the coupling of system 1, for different values
of the parameterg; and 8,, while =2 will be hereinafter
fixed.

IV. ASYMMETRY ENHANCED SYNCHRONIZATION

A striking effect of asymmetry in the coupling that has
already been highlighted in our previous analysis for the case
PT-AT (1) [22] is that one can improve dramatically the syn-
chronization threshold by selecting a suitable level of asym-
metry in the coupling. Conversely, one can also achieve de-
synchronization of the two coupled systems by varying the
asymmetry level in the coupling scheme.

A. Large parameter mismatch
FIG. 3. (a) Pearson’s coefficient (see text for definitiopvs the

. - parameter space, 6). Other parameters arwe=2, 8,=-0.95, and
match in the equations fok, ,, one can set the uncoupled B,=—1.2 [case PT-ATII)]. (b) Solid line, y vs 6 [cut of the y

evolutions ofA; andA, to be in PT and AT, respectively. By surface in(a)] at c=0.25, highlighting the role of asymmetry in

doing that, one Sti”_has three possibilities of ch_oosing theenhancing synchronization. The dashed line reports the same for the
parameters8 accordingly to the natural frequencies of the pr_aT() case already studied in Ré22].

two separate CGLE.

The first casgPT-AT(l)] corresponds to system 1 in the
PT regime(B;=-0.7 with a lower natural frequency than
system 2 in the AT regiméB,=-1.09. The natural frequen-
cies are approximately equal t®,=0.7 andw,=0.87> w,
(see Fig. 2 This situation has been extensively studied in B. Small parameter mismatch

Ref. [22] where both complete and frequency synchroniza- ,
tion features were discussed and characterized. The very same scenario of asymmetry enhanced synchro-

The second casgPT-AT(Il)] corresponds to preparing nization occurs when we select small parameter mismatches
system 1 in the PT regimgg,=—-0.95 with a higher natural in Eq.(2), i.e., we set the parameters so as th_e two uncoup_led
frequency than system 2 in the AT regimg,=—1.2). The fields are both either in PT or AT, thus confirming that this
natural frequencies are approximately equ;bgev.o.é and feature generally characterizes the emergence of the synchro-

w,~0.84< w; (see Fig. 2 For this case, we will show how hized motion in our system.
asymmetry enhances the setting of complete synchroniza-
tion. 1. AT-AT case
Notice that a further situation could be studied if the two | this case. we s, =—1.05 and3,=—1.2. Both systems
systems are prepared_m the PT and AT regimes, respectiveljo\ are in the AT regime, with system 1 having a natural
but they have approximatively the same natural frequencw—.reOIuenCy higher than the one of system 2.
This more complex case, where one might expect some kind Figyre 4 shows Pearson’s coefficient vs the parameter
of resonance coming _mto play in the process of SynChron"space(c,a) (a), as well as a cut of the surface ac=0.17
zation, will be dealt with elsewhere. (b), showing that asymmetry in the coupling is still playing
Figure 3a) reportsy vs the parameter space, ¢) forthe 5 important role in modifying the level of synchronization
PT-AT(ll) case, and show_s the nontrivial dependence of they, 5 fixed value of the coupling strength It is not surpris-
threshold for synchronization on the asymmetry param@ter g that the complete synchronization threshold is now lower
A better way to visualize such a dependence is by making @ompared to the PT-AT cases. This, indeed, is related to the
cut of the surface at a fixed value of the couplif®g.,C  fact that smaller parameter mismatches induce closer initial

=0.25, see Fig. ®)]. Both in the PT-ATII) case and in the  4ynamics, which are therefore easier to synchronize.
PT-AT(l) case(already reported in Fig. 1b of Ref22]), a

better synchronization level is obtained for the unidirectional
configuration where the system in the PT regime is driving
the system in the AT regim@=1). The surfaces and curves  Finally, in order to complete this first part of the discus-
of Fig. 3@ and 3b) have been obtained by making averagession, we examine the PT-PT case. Now, parameters3are

over a timet;=15000 after a large transitory has elapsed=-0.75 andB,=-0.9, determining an initial PT state for both

By selecting in(1) a sufficiently large parameter mis-

(T=6000 in order to ensure that we are measuring stationary
synchronization states.

2. PT-PT case
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FIG. 5. (a) Pearson’s coefficieng (see text for definitionvs the

1 03 g 03 ! parameter space, ¢). Parameters are=2, 8,=-0.75, andB,=
—-0.9 (PT-PT casg (b) y vs 6 [cut of the y surface in(a)] at ¢
FIG. 4. (a) Pearson’s coefficient (see text for definitiopvs the ~ =0.095. In this case a total tinte=15 000 was used for the calcu-
parameter spacé, 6). Parameters are=2, 8;=-1.05, andB,= lation of the spatiotemporal averages.

—-1.2 (AT-AT case. (b) y vs @ [cut of the y surface in(a)] at ¢

=0.17 showing the dependence of the synchronization thresholgublished[5,51,53 indicating different modes of synchroni-

with asymmetry. The figure is obtained by using statistics over timezation for animal populations.

t;=50 000 rather thaty=15 000(as for the other figurgsin order Let us recall that in Eq(1) the coupling is a mapping of

to have smoother curves. all the grid points of system 1 on their corresponding grid

i , i points of system 2. We could, in fact, imagine more compli-

uncoupled fields, with system 1 having a lower natural fre-ateq and probably more realistic configurations where cou-

quency with respect to system 2. , plings, besides being asymmetric, would be spatially depen-
Figures %a) and b) describe the behavior of as @  gent or even asynchronous. While it is likely that real

function of the coupling and the asymmetry. Once again,  gystems show combinations of asymmetric, asynchronous

asymmetry plays a decisive role in enhancing the appearancg,y gpatially dependent coupling schemes to control and

of a synchronized motion in system 1. Notice that here theyynchronize in an optimal way their dynamical regimes, here

values ofc required for a synchronized motion are smaller,; only focused on the effects of asymmetries, since the

than in any of_ the previous cases, reflecting the fact that the anario of emerging dynamics is already extremely rich in
present situation corresponds to the smallest parameter migs;g “simplified” approach.

match.
At variance with all the other cases, an interesting feature
of Fig. 5b) is that an increase in the asymmetry does not V. SELECTION OFE THE FINAL STATE

always yield a monotonic increase ¢f Anticipating the re-
sults of Sec. VI, this anomalous feature is due to a substantial Next, we move to describe how asymmetries play a cru-
number of defects being generated in both systems in theial role in setting the state of the dynamics within the syn-
intermediate stage before synchronization, even if both dychronized regime, which occur for large values of the cou-
namics were in the absence of couplifag c=0) in the PT  pling strength. Let us recall the methods adopted for our
regime. investigation of the dynamics within the synchronized re-
At this stage, we can already draw some interesting congime. Initially (t=0) we begin a trial simulation of the two
clusions. We have seen that changing asymmetry in the colzgs. (1) connected with a nonzero value of We impose
pling configuration for the same coupling strength has theandom initial conditions on both systems, which in general
effect of enhancing the appearance of a synchronized motiowill have different parameters. As a consequence, the dy-
or destroying synchronization, regardless of the initial un-namics usually attains synchronized motion only after a tran-
coupled state of the dynamics. We conjecture that this magient timeT. Since we are not here interested in characteriz-
have relevant consequences in biological systems, wheigg the dynamics in the transient stage, we let a certain
changes in asymmetry of the interactions could be a way tétransient timeT elapse(we have verified thal =6000 is
efficiently synchronize-desynchronize the dynamics for thdarge enough for reaching such asymptotic gthefore start-
same strength of interaction. Some studies have indeed beérg to calculate the indicators of any asymptotic synchro-
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-1 -0.5 0 0.5 1

FIG. 7. Dynamical states of the synchronized motijohtained
for large values for the coupling strength attained by the two
subsystems in the PT-AT cases. The upf&wer) bar corresponds
to the PT-ATI) [the PT-AT(II)]. The dashed zone refers to a com-
mon AT regime while the blank zone marks a common PT regime.

FIG. 6. Total number of defects counted during a time fth b iqinall . .
=15 000 for the PT-A{ll) case(a) Number of defects appearing in one of the subsystem originally set in PT. In Fig. 7 we sum-

system 1, that was set initially in the PT regimesa®: (b) Number ~ Marize the result of the comparative study of the two cases.
of defects appearing in system 2, that was set initially in the ATWe choose a sufficiently large value of the coupling strength
regime atc=0. so as to ensure a synchronized state, and we have represented
with a dashed regiofa blank region the range off values
for which the synchronized motion develops into an @r
nized state. In this way, we can measure such indicatorBT) regime.
within the statistically stationary state represented by the First of all we observe that a#=0 (i.e., in the bidirec-
asymptotic synchronized motion. tional symmetrical cagehe system with a lower natural fre-

While it is not surprising that when coupling two initially quency is the dominant one at the moment of selecting the
PT stategAT states the final synchronized motion will per- final synchronized state. Furthermore, in Fig. 7 we observe a
sist in the PT regiméAT regime), a relevant point concerns very different scenario for the two PT-AT cases. In the PT-
what mechanisms control the selection of the synchronizedT(l) case a final state in PT is selected for most of the
motion, once the two fields originally start from different values of the asymmetry parameiemtil §=-0.84, below
regimes. To address such an issue, we will focus in thevhich a final state in AT takes overn contrast, in the PT-
present section on the two PT-AT cases. In these cases, it AT (Il) case for most of the asymmetry valuésp to 6
not trivial to predicta priori what will be the resulting dy- =0.64) the final state is selected in the AT regime.
namical state for the synchronized motion. The conclusion of the present section is that asymmetries

Figures 6a) and @b) show the total number of defects in the coupling configuration play a decisive role in the se-
counted for a time;=15 000 in the parameter spageg, 6) lection of the dynamics and the statistical properties of the
for the PT-AT(Il) case. Namely, Fig. (@) [Fig. 6b)] corre-  synchronized state.
sponds to the defects appearing in systefim kystem 2 that
was set initially in the PT regimén the AT regimé at c
=0. One clearly sees that both systems exhibit a large num-
ber of defects for nonzero coupling. Furthermore, for asymp-
totically large values of the couplingc=0.5) leading to a
synchronized motion, the asymmetry paramefeplays a In this last section we finally discuss the role of topologi-
crucial role in setting the synchronized dynamics on either a&al defects in the process of synchronization. Let us recall
PT regime or an AT regime. The defect numlwvstthe pa- that a defect is defined as a point in the space-time plot
rameter space for the case PT(NTwas already reported by where the modulus of the complex field is vanishing. In the
us in Fig. 2 of Ref.[22], where again was emphasized the present case, the spatial boundary conditions are periodic,
role of the asymmetry in the selection of the synchronizedvhich prevents defects from disappearing at the boun@esry
dynamical regime. is the case of rigid boundary conditiprOur initial condi-

Let us compare and discuss more fully these two cases. Itions are chosen so as to be free of topological defects. As a
Sec. lll, we have already seen that the main difference besonsequence, the constraint of charge conservation for the
tween the cases PT-Al) and PT-ATII) is in terms of the defects insures that the total charge stays zero at all subse-
initial natural frequencies of the two subsystems. Namely, imquent times(up to the precision of the numerical calcula-
the PT-AT(l) [the PT-AT(II)] case the natural frequency of tions). In the following we analyze in detail the AT-AT and
the subsystem originally set in AT is large@mallep than the  PT-PT cases.

VI. DEFECT ANALYSIS
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FIG. 8. Total number of defects counted during a time
=15 000 for the PT-PT casé€a) corresponds to system 1 wiiBy
=-0.75;(b) corresponds to system 2 wij,=-0.9.

FIG. 9. Total number of defects counted during a time
=50 000 for the AT-AT case(a) corresponds to system 1 wifBy
=-1.05;(b) corresponds to system 2 wiiB,=-1.2.

A. PT-PT case
The PT-PT case corresponds to setting systems 1 and 2 tne slave subsystem, and it is to be expected that the average

the PT regime with3,=-0.75 andB,=—0.9. Such a param- llrequency of the synchronized dynamics equals the original

JIL ~ frequency of the master system. However, witsh+1, a
eter choice implies that the natural frequeriey c=0) of .nontrivial point to be discussed concerns the dependence of

Sz:ttﬁ: rl?lalrlls lrz\;\é?/;ﬁagézguosle gesﬁfgmuﬁégg'Sleﬂtusat's?gn'ﬁhe average frequency of the synchronized state on the asym-
b y P Y %etry in the coupling configuration. In order to explore this

have initially no defects, and the final synchronized state - ;
. . . eature, we have set a sufficiently large coupling strength
develqps _a_lso in a PT regime without defects. Thereforefczo_s) and we have checked thatythe ?requen?:y gf the s?/n-
one’s intuition mghtl Iegd one to conclude that the whole hronized dynamics shows an approximately linear depen-
process of synchronization of the two sgbsyste_r_ns would nogence in the asymmetry parameterstarting from the fre-
be affected by the presence Of. phase smgula_nﬂgs. quency w; (corresponding to the original frequency of
Figures 8a) and §b) show instead that this is not the ;ubsystem 1 at=0) for #=1 and ending at the frequenay

case. In fact a finite number of defects are produced fo corresponding to the original freauency of subsvstem 2 at
intermediate values of the coupling strength. Moreover, suclg_ P _' g fo the orgi quency UDSY;
=0) for 6=-1. This indicates that for large couplings and

a feature characterizes the synchronization process in the i:n:_termediate values of the asymmetry. the svnchronization
termediate stages for all values of the asymmetry parametep Y Y Y
rocess corresponds to an adjustment of the two subsystems

Obviously, when one of the systems does not receive irmu%’nto a common rhythm of oscillation which is intermediate
from the other(as occurs when it is the master in a master- y

slave configuration ap=+1) then no defects are injected between the original different rhythms of the two spatial os-

there all throughout the synchronization process. In contras?,'”ators atc=0.
when 6+ +£1, the appearance of defects characterize both
subsystems during the whole process leading to synchroni-
zation. B. AT-AT
Figures 8a) and §b) show a further interesting feature of ~ We finally consider the AT-AT case, where system 1 is
defect formation in the intermediate stage. Namely, we noeriginally in the AT regime aj3;=-1.05 and is characterized
tice that the maximum number of defects in the subsysterby a natural frequency higher than the one of system 2
having an initially lower natural frequenggystem }is ap-  (which is also originally in the AT regime g8,=-1.2. In
proximately an order of magnitude higher than the maximunthis situation, a substantial number of phase defects charac-
number of defects in the subsystem having an initially higheterizes the initial states of both subsystems, the final synchro-
natural frequencysystem 2. Eventually, when the two sub- nized dynamics, as well as all intermediate stages in the pro-
systems give rise to a synchronized motion for large valuesess of synchronization, which takes place by a mechanism
of the coupling(c>0.3), defects disappear, indicating that of anchoring of phase singularities.
the synchronized dynamics takes place in a PT regime. As shown in Figs. @) and 9b), the total number of de-
For 6=+1, we have a master-slave coupling scheme. Irfects in the two subsystems varies with the coupling and the
this condition, the master obviously imposes its dynamics orasymmetry parameters. In particular, system 1 experiences a
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a)

a
100 )

Nd

b
) 100
b
o0
FIG. 10. Localization of the defects in the spduertical) time 0 e ~ ‘
(horizonta) representation of the modulus &fin the AT-AT case 0 0.2 0.4 0.6
(B1=-1.05 andB,=-1.2). Other parameters are=0.3 and 0= c

—0.88.0O indicates defects in system(&) and ] indicates defects
in system 2(b). Only defects fort>300 are displayed. FIG. 11. Total number of defects in the systengsblid line),

total number of defects in the system(@ashed ling and total
number ofsynchronizeccommon defectgdotted ling vs c for the
huge increase in its defect numbgay nearly an order of AT-AT case.(a) corresponds t09=0.88; (b) corresponds tof=
magnitude for intermediate values of the couplireg=0.18, ~0.88.
when it is slaved by system 2. In contrast, the number of
defects in the system @vhose initial natural frequency is

lower) experiences a monotonic decrease when the couplingynchronizeddefects, reflecting a progressive anchoring of
strengthc increases. For large values of the number of phase singularities in the two subsystems, as the coupling
defects in the synchronized state depends almost linearly osirength increases.

the asymmetry starting from the original value Wf for

system .1 in the absence of coupling =1 and ending to VIl. CONCLUSIONS

the original value olN, for system 2 at¥=-1.

In order to visualize the anchoring mechanism of phase

In conclusion, we have reported and discussed several
singularities during the process of synchronization, in Figsasymmetry induced effects in the process of synchronization

10(a) and 1@b) we report the localization of the defects in of a pair of coupled complex space extended fields. While
both subsystems at an intermediate value of the couplingynchronization always occurs for large enough values of the
strength(c=0.3 and for #=-0.88, showing that already at coupling strength, the threshold for the setting of synchro-
this intermediate stage of synchronization more than half th@ized motion crucially depends on the asymmetry in the cou-
defects of system 1 are anchored with corresponding defecfding configuration. Furthermore, the asymmetry controls in
in system 2. relevant cases the statistical and dynamical properties of the
Finally, in Fig. 11 we present the total number of defectssynchronized motion, as is the case when the coupled sub-
in system 1(solid line), the total number of defects in system systems start from statistically different dynamical regimes.
2 (dashed lingand the total number afynchronizedlefects In this latter situation we have shown that a bidirectional
(dotted ling vs the coupling strengtlt for 6=0.88 [Fig. = symmetrical coupling configuration leads to a synchronized
11(a)] and #=-0.88 [Fig. 11(b)]. The number ofsynchro- motion where the statistical properties of the subsystem hav-
nizeddefects(dotted lines in Fig. 1lis defined as the total ing originally a lower natural frequency prevail, whereas
number of defects having same localizationt) in both  asymmetries can drastically change such a scenario. Finally,
subsystems.

we have studied the process of synchronization in the pres-
From Fig. 11 one can infer that the synchronization pro-ence of asymmetries when all stages of the dynamics are

cess is accompanied by a gradual increase of the number affected by the presence of phase singularities, showing that
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defects tend to anchor from one system to the other, and thaynchronized motion in ensembles of interacting complex
the asymmetry controls the number of synchronized defectsnits.
that are present in the motion.

We argue that such features may have relevant conse-

quences in biological and natural systems, where small Thijs work was partly supported by EU Contract No.
changes in the asymmetry of the interactions could be usedPRN-CT-2000-00158 COSYC of SENS, MIUR-FIRB
as an efficient way to synchronize or desynchronize the dyProject No. RBNEO1CW3M-001, and MCYT(Spain
namics, as well as select the main statistical properties of theroject No. BFM2002-0201INEFLUID).
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