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Defect-enhanced anomaly in frequency synchronization of asymmetrically coupled spatially
extended systems
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We analytically establish and numerically show that anomalous frequency synchronization occurs in a pair
of asymmetrically coupled chaotic space extended oscillators. The transition to anomalous behaviors is cru-
cially dependent on asymmetries in the coupling configuration, while the presence of phase defects has the
effect of enhancing the anomaly in frequency synchronization with respect to the case of merely time chaotic
oscillators.
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In recent years, synchronization of complex systems havaomena can be found in RdB]. In particular, Eq(1) sup-
generated great interest in the scientific commuplfly as  ports two main turbulent regimes, namely phase turbulence
well as in the literature oriented to lay audien¢gs A rel-  (PT) and amplitude turbulendé\T) or defect turbulencg7].
evant and counterintuitive result is that an increase in couPT is a regime where the chaotic behavior of the field is
pling strength between two complex systems does not ne@ssentially dominated by the dynamics ¢(x,t), while the
essarily induce a better degree of synchronization. Aramplitude changes smoothly, and it is always bounded away
example is the anomalous behavior observed in the freffom zero. At variance, in AT the fluctuations pfx,t) be-
quency synchronization between a limit cycle and a timecome dominant over the phase dynamics, leading to large
chaotic oscillatof3,4], where increasing the coupling leads amplitude oscnlatlo_ns that can occaS|0r_1aIIy cause the occur-
initially to an increase of the frequency difference. rence of a space-time defect in the point wheris locally

In this paper we analytically establish and numericallyvan'sh'ng' In Ref[6] we have.numencally shown that when
show that:(i) anomalous frequency synchronizatigFS) is ~ cOUPling @ PT and a AT regime, one can have regular fre-
a generic phenomenon occurring also for space extended Sﬂgency synchronizatiofFS) or AFS, depef‘d'”g upon the_
tems, (ii) the transition to anomalous behaviors is cruciallyvalue of the asymmetry parameter. In this paper, we wil

s ) . . oncentrate on the case in which both CGLE are initi€ftly
dependent on asymmetries in the coupling configuration, an@zo) set in a regime of phase turbuler(@), i.e., we fix the

(iii) the presence of phase defects in spatially extended cha-, - o1 .in Eq) to be a=2, B,=-0.75, and8,=-0.9
otic oscillators has the role of enhancing the anomaly inpiq il indeed allow us to perform a detailed analytical
frequency synchronization with respect to the case of merelgtudy of the synchronization process, and to rigorously de-

time chaotic oscillators. . _ scribe the main dynamical and statistical features character-
Our starting point is a pair of asymmetrically coupled jzing AFS. Here, the condition to be fulfilled for
complex Ginzburg-Landau equatiofGGLE) 1:1 frequency synchronization is the vanishing of the mean
frequency mismatchAQ=0,-0,=0, where the mean
A=A ot (L i)y o— (1 +i A, -2A frequency of each field is given by Q;,
127 Azt ( Jobrz= (L+1A1 DAL A =limg_ ({1 20X, 1))/t ()« denoting spatial averape
c . .
21T O(Ara-Ar. (1) _ Flgure 1 reportsAQ) in .the parameter space, ) and
2 indicates that the transition to a frequency locked state

(AQ=0) can occur in a regulaiA() is a monotonically de-
creasing function ofc) or in an anomalous wayAQ) in-
creases initially withc), depending upon the level of asym-
metry in the coupling configuration. The arrow in Fig. 1

the svstem extension and are suitable real parameters indicates the critical valué, =~ —0.09 and marks the numeri-
cre ?/esents the coumlin éBtl%éZn th. anded< 1 ispa aram- ’ cally found transition point between the two frequency syn-
P Ping gmn, - b chronization behaviors.

eter accounting for asymmetries in the coupling. CGLE has Since both fields are initially set in the PT regime, we can

e oaon i e ol of symplotic anaisis i crder 1o reduce
an exéended system close to a Hopf bifurcatjéh A de- escription to a pair of coupled Kur_amoto-Slvashl_nsKyB) :
tailed account of CGLE dynamics and synchronization phe?quatlons[S]. The KS model is nothing but an ordinary dif-
ferential Ginzburg-LandaGL) model plus spatial terms
that are “small” perturbations. In the following we will
evaluate such small perturbations and show that their prob-
*Electronic address: jbragard@fisica.unav.es ability distribution function(PDF) is very well approximated

Here Ay o(X,t)=py o(X,t)e¥12%V are two one-dimensional
complex fieldq of amplitudesp; »(x,t) and phasesg,; (x,t)],
the dots denote temporal derivativég, stays for the second
derivative with respect to the space variable ¥<L, L is
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and the frequency estimate given by the KS model-8

+s. An excellent agreement has been obtained for the fre-
guencies calculated with the two modéiS and full CGLB

in the whole PT regimé-0.9<3<-0.7).

In fact, as we are interested in a first-order perturbation
theory, we can limit ourselves to the first three terms in the
right-hand side of Eq(3), and still we have verified that the
agreement between the average frequencies calculated from
the full CGLE and the three-terms KS equation is very good

0.3 in the whole PT range.
1o c The advantage of the three-terms reduction of @g.is
that it is now straightforward to perform a spatial average of

FIG. 1. Frequency mismatdA()| vs the parameter space, 6) such reduced equation, that leads to
for Eq. (1). All parameters are specified in the text. The arrow

pointing at A, =~-0.09 discriminates between reguld, < 6<1) <¢>x = t2<¢2>x- (4)
and anomalou$-1< #< 4., frequency synchronization. X

Equation(4) is a very simple relationship for the correc-

by a Gaussian distribution, whose mean and standard devifion to the frequencywe recall thatw=-+(¢)y). In Fig.
tion depend on the parametersand 4. This allows one to  2(a), the time evolution of the termiZ) (from now on re-
perform a second reduction leading to a pair of ordinaryferred to as T2is displayed, as it is taken from the simula-
differential GL equations with suitable additive noise terms,tion of the full CGLE. The time evolution of T2 is clearly
and compare the prediction from this latter model with thechaotic and its probability distribution functidPDF) can be
results of the full CGLE, thus gathering a better understandeonveniently fitted by a Gaussidas shown in Fig. @)].

ing of the mechanisms behind AFS in spatially extended sysFurthermore, the time correlation function for T2 is reported

tems. in Fig. 2(c). There, by assuming an exponential decay, we
Let us start with a single CGLE equation; the couplingobtain an estimate for the correlation timeof51.2.

will be added later on. The equation is Such statistical properties make it possible to further re-

) duce our analysis to a pair of time-dependent coupled oscil-

A=A+ (1+ia)dA- (1 +iB)APA. (2)  lators(GL equation$ subjected to a colored Gaussian noise

proper mean, fluctuation, and correlation features
-0.75(B,=-0.9 we have that the mean of the PDF is
2.92x10°°% (u,=1.14x 1079, the standard deviation is

In the PT regime, the dynamics of the complex fieIdWitf
A(x,1) can be reduced to the dynamics of the real phase fieIé%l:
#(x,1), being the amplitude field(x,t) slaved to the dynam- #1~ , B2 ) leviation |
ics of the phase. The family of equations that describe thérl__"'—"46>< 1? (02=1.7X107), and the correlation time is
dynamics of the phase equations are called the Kuramotda=>1-2(72=15.3]. Notice that as3 is increasedin abso-

Sivashinsky equationg]. Such equations have been found !Ute valus, the system becomes more and more chaotic, thus
to properly describe chemical reactiors.g., Belousov- the correction to the frequency is larges indicated by a

Zhabotinsky reactionas well as flame propagation in the l2rgerw), the fluctuations are highéas indicated by a larger
case of mild combustion. The equation for the phase dynarr?): @nd the correlation time of the signal decdys con-
ics of the single CGLE has been derived by Sakagftj firmed by a lower value of).

and reads as Taking back into account the coupling term, using proper
_ noise terms and assuming small parameter mismatches, the
& = iy + 1> + t3bt tadubro t 52y + tod s reduced GL mode|3,11] for the phasesp;(t), #,(t) of the

3) chaotic oscillators becomes

where t;=1+aB, t,=B-a, t3=—a?(1+B%)12, t,=—2a(1 ¢1==B1— [ Bi(cose—1) = sing] + 7y,

+32), ts=—a(1+%), andtg=—2(1+?). Equation(3) is ob-

tained by doing an asymptotic expansion of E2).in pow- Y _ :

ers of d,, the smallness parameter being the degree of spatial 2=~ Bo= CABo(COSe = 1) +sine] + 7o, ®

modulation of the phase. wheree= ¢,— ¢ represents the phase difference between the
By using the Adams-Bashforth integration scheme, bothtwo oscillators,c;=c(1-6)/2, c,=c(1+6)/2, and»,, 7, are

Eq. (2) and Eq.(3) have been simulated with the same grid the two colored Gaussian noise terms specified above. Equa-

spacingsx=0.25, with time stepst=1072, and with periodic  tions (5) are a set of stochastic differential equati¢B®E),

boundary conditions. As initial condition for E(), we se-  where the noise terms,, 7, have been surrogated from the

lected a Gaussian noise with zero mean and standard devifill CGLE with the corresponding parametess 8, andc

tion o=10"% In Eq. (3), after some transient, the phagds =0 (uncoupled. The numerical integration of the set of Egs.

drifting linearly with time ((¢),~st+b, wheres is the slope  (5) is straightforward 12,13 and allows us to compare the

of the linear drift evaluated by performing a lineap.fithe  full CGLE to its SDE counterpart.

validity of the KS model is then checked by comparing the Before proceeding with numerical integration, some ana-

average frequency obtained from the full CGILEq. (2)] lytical studies of Egs(5) can be performed, following what
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FIG. 2. (a) Time evolution of
(d(x,1)2) from Eg. (2) with «
=2 andB=-0.75. For a better sta-
tistics, nine different random ini-
1 ] tial conditions have been consid-

800

10000

= 400 |-

(b)

0.002 0.004
< ¢§ >

C(1)

()

20000 ered, and the integration lasts until
t=1C. (b) The probability distri-
bution function of the data shown
in (a) (dotted line and its fit by a
Gaussian PDFsolid line). (c) The
time correlation function of the
- signal shown in(a).
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was done in Refl4]. Namely, by neglecting the noise terms fers to the case of regular FS #=0.88 (of AFS at ¢
and subtracting Eqg$5), one is able to write an equation for =—0.88. The agreement between the S and the full

¢ in a closed form. Then frequency synchronization is studCGLE (1) is very good at low coupling stregths. However,
the frequency detuningiAQ)™  for larger values oft, we observe an increasing difference

ied by calculating

=1/2w3"de/ ¢, yielding

|AQ|= VB2 +cB[6B, - B_] +¢?,

between the two cases, which is especially pronounced in the
case of AFS. In particular, the full CGLE shows an enhance-
(6) ment of the anomaly with respect to the STCH.
In order to identify the reasons for such a difference, we

where B, (B.) stays for 8;+8, (B1~=B2). The interest of point out that the derivation of the reduced SDE model is
expressior(6) is that one can analytically estimate the tran-rigorous only in the absence of coupling. While one can
sition point between FS and AFS. Indeed, the slope of theeasonably expect that the validity of such reduction would
detuning at zero coupling indicates regulérnegative or  hold also for small values df, at larger coupling strengths

anomalous (if positive) frequency synchronization. It is intrinsic spatial effects become dominant in the dynamics of
straightforward to calculate the value 6ffor the transition  the coupled fields. In particular, even though initially the two

between FS and AFS

e =

For the particular case treated hg@,=-0.75 andp,
=-0.9, we havef,=-1/11=-0.09, in perfect agreement 0.84
with what is found numerically for the full CGLE model and
reported in Fig. 1. That means that fé, < <1, we have
regular FS. Conversely, in the range =8< 4, we have
AFS. Notice that Eq(7) is not at all applicable to the case G
reported by us in Fig. ) of Ref.[6], since the fundamental 0.78
assumption at the basis of whole theoretical derivation from
Eq. (2) to Eqgs.(5) (the fact that the amplitude field is almost
constant and bounded away from zelases validity insofar
as one of the two coupled fields is there in the amplitude
turbulent regime, with phase defects characterizing also its 4, . L . 0.6

B_._Bi=B

B, BitBs

uncoupled(c=0) evolution.
Finally, we compare the numerical integration of the SDE

(5) and of the full CGLE(1). In Fig. 3 we report the frequen-  FIG. 3. Mean frequencief; , calculated for the full CGLE1)

cies4,), versus the coupling strengthfor two asymmet-  (solid line) and the effective SDES5) model (dashed ling (a)

ric coupling configurations. Namely, Fig(e83 [Fig. 3b)] re-  6=0.88(regular F$. (b) 6=-0.88(AFS) (8,=-0.75,8,=-0.9.

fields are set in PT regimes, an intermediate coupling induces
the presence of a finite number of phase defé¢ptints
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FIG. 5. Number of defects in system(dolid line—left ordinate
and frequency mismatch(QS (dashed line—right ordinate, see text
N for definition) vs c for /=-0.88(AFS).
0 Phase defects are entirely responsible for the frequency
-1 03 mismatch observed in Fig. 3. Callings' (Q;) the mean
' frequency of system 1 as calculated with reference to the
(b) 6 ) c SDE model(the full CGLE model, in Fig. 5 we show that

for §=-0.88 (AFS), the 1:1 correlation between the fre-

FIG. 4. Total number of defectd generated in Eq(1) in the  guency mismatclAQ$=Q5"-0, and the number of defects
system(a) A; and (b) A, vs the parameter space, §). Other pa-  appearing in system 1 is indeed remarkable, indicating that a
rameters arer=2, 8,=-0.75,3,=-0.9. The defects at timehave  simple correction of the frequency proportional to the defect
been considered at those poinrtswhere thep(x;,t) is smaller than  numbers is enough to produce an excellent agreement be-
2.5x 1072 and that are, furthermore, local minima for the function tween the SDE and the full CGLE models for the whole
p(x,1). range ofc.
. , In summary, the comparison between two time-dependent
where locally and instantaneously the amplityd®,t) van-  ,sgjjiators and spatially extended oscillators cannot be con-
ished, as it appears from Fig. 4. Phase defects are objectycted without taking high care of phase defects. These last
inherent to the spatially extended nature of the system angpiacts are inherent to space extended systems and must be
cannot be retrieved in a SDE model. Notice that the smalf,yen into account if we want to study synchronization. In
parameter mismatct}B; -8,/ =0.15 guarantees the validity particular, AFS is further enhanced by phase defects, while in
of the phase descriptiofb) and hence the appearance of ihe case of regular FS, the presence of defects shifts down

phase defects in the spatially extended systntannot be  he threshold for synchronization, allowing for an easier fre-
related with the phenomenon of amplitude death oceurringyency locking.

between two coupled limit cycle oscillatof&4]. Indeed, in

the above derivation, one has to implicitly assume the dy- This work is partly supported by EU Contract No. HPRN-
namical regime of the CGLE to be in phase turbulenceCT-2000-00158(COSYC of SEN$ MIUR-FIRB Project
Therefore, the appearance of defects induce a breaking up dfo. RBNEO1CW3M-001, and MCYT ProjedSpain No.
the validity of the reduced modéb). BFM2002-02011(INEFLUID).
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