
 e-ISSN: 2289-8131   Vol. 9 No. 1-2 47 

 

Replica Maintenance Strategy for Data Grid 
 

 

Mohammed K. Madi1, Yuhanis Yusof2, Hatim Mohamed Tahir2, Khuzairi Mohd Zaini2, Suhaidi Hassan2 
1Faculty of Engineering, Hasan Kalyoncu Üniversitesi, Gaziantep, Turkey. 
2School of Computing, Universiti Utara Malaysia, 06010 Kedah, Malaysia. 

mohammed.uum@gmail.com 

 

 
Abstract—Data Grid is an infrastructure that manages huge 

amount of data files, and provides intensive computational 

resources across geographically distributed collaboration. 

Increasing the performance of such system can be achieved by 

improving the overall resource usage, which includes network 

and storage resources. Improving network resource usage is 

achieved by good utilization of network bandwidth that is 

considered as an important factor affecting job execution time. 

Meanwhile, improving storage resource usage is achieved by 

good utilization of storage space usage. Data replication is one 

of the methods used to improve the performance of data access 

in distributed systems by replicating multiple copies of data files 

in the distributed sites. Having distributed the replicas to 

various locations, they need to be monitored. As a result of 

dynamic changes in the data grid environment, some of the 

replicas need to be relocated. In this paper we proposed a 

maintenance replica placement strategy termed as Unwanted 

Replica Deletion Strategy (URDS) as a part of Replica 

maintenance service. The main purpose of the proposed strategy 

is to find the placement of unwanted replicas to be deleted. 

OptorSim is used to evaluate the performance of the proposed 

strategy. The simulation results show that URDS requires less 

execution time and consumes less network usage and has a best 

utilization of storage space usage compared to existing 

approaches. 

 

Index Terms—Data Grid; Replica Deletion; Storage Usage. 

 

I. INTRODUCTION 

 

A Data Grid [1, 2] is an infrastructure that deals with huge 

amounts of data to enable grid applications to share data files 

in a coordinated manner. Such an approach is seen to provide 

fast, reliable and transparent data access. Nevertheless, Data 

Grid creates a challenging problem in a grid environment 

because the volume of data to be shared is large despite the 

limited storage space and network bandwidth [3, 4]. 

Furthermore, resources involved are heterogeneous as they 

belong to different administrative domains in a distributed 

environment. It is unfeasible for all users to access a single 

instance of data (e.g. a data file) from one single organization 

(e.g. site).  This would lead to the increase of data access 

latency. Furthermore, one single organization may not be able 

to handle such a huge volume of data by itself.   

Motivated by these considerations, a common strategy is 

used in Data Grids as well as in distributed systems, and this 

strategy is known as replication. 

Replication vouches efficient access without large 

bandwidth consumption and access latency [5-11]. The 

replication technique is one of the major factors affecting the 

performance of Data Grids [12]. Creating replicas can reroute 

client requests to certain replica sites and offer higher access 

speeds. Hence, well-defined replication strategies will 

smooth data access, and reduce job execution cost [13].  

Dynamic replication is a long-term optimization technique 

which aims at reducing average job execution time in a Data 

Grid [14]. Data replication has two direct improvements on 

the performance of the Data Grid. One is to speed up data 

access, which leads to a shorter execution time of grid jobs; 

and the other one is to save bandwidth between sites, which 

can avoid network congestion with the sudden frequently 

required data. However, replication is also bounded by two 

factors: the size of storage available at different sites within 

the Data Grid and the bandwidth between these sites [15].  

Furthermore, the files in a Data Grid are mostly large [16, 17]; 

so, replication to every site and hosting unlimited number of 

replicas would be unfeasible. 

Due to the dynamic nature of data grids, the candidate site 

that holds replicas may currently not be the best sites to fetch 

replicas in subsequent periods [18]. Therefore, replica 

maintenance is needed to delete or relocate replicas to 

different sites if the performance metric degrades. Replica 

maintenance service comprises two functions: firstly, moving 

replicas to the appropriate location based on the information 

collected relating to some effect factors [19, 20]. Secondly, 

deleting unwanted replicas that got low demand and not used 

by users [21]. Replicas should be adjusted to the appropriate 

locations that are closer to the computing devices in order to 

adapt the current network environment to reduce time when 

the computing device accesses the data, as well as to maintain 

optimal performance of the network environment. 

On the other hand, the network environment is changeable, 

which makes the same replica sites not always being the best 

choice to download data while reducing transmission time. 

Increasing storage space availability leads to decrease 

number of times the system invokes replacement strategy and 

reduce the processing time and improve the performance of 

other replication strategies. In this work, we propose a 

maintenance replica placement strategy termed as Unwanted 

Replica Deletion Strategy (URDS) as a part of Replica 

maintenance service. The main purpose of the proposed 

strategy is to find the placement of unwanted replicas to be 

deleted.  

Current works [20, 21, 24, 25] interested in most valuable 

files (hot files), i.e. identifying placement of replicas to be 

created. However, the unwanted files are out of the 

considerations, i.e. identifying placement of replicas to be 

deleted. As a result, there will be an insufficient utilizing of 

storage resource space, which in turn will lead to less storage 

availability. According to [22, 23] less storage availability 

would lead to longer job execution time and larger network 

usage because only fewer replicas can be accommodated in 

the Data Grid, and most files will be read remotely. 

Moreover, the proliferations of data lead to think more in 

saving storage space because the storage media acts as an 

extra hardware and thus increase the total system cost. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/83553348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of Telecommunication, Electronic and Computer Engineering 

48 e-ISSN: 2289-8131   Vol. 9 No. 1-2  

The rest of this paper is structured as follows. Section 2 

provides a brief description on existing work in dynamic 

replication strategies. We include the details of our proposed 

strategy in Section 3 and the performance evaluation is 

presented in Section 4. Finally, we summarize some 

conclusions in Section 5. 

 

II. RELATED WORKS 

 

The popularity of the file or the file value is used in two 

directions: the first direction is to trigger replica 

creation/deletion strategy. The second direction is to trigger 

replica replacement strategy, as the less valuable file is 

replaced by the most valuable file. The difference between 

replica deletion and replica replacement is that replica 

deletion is invoked before the replica replacement strategy 

where the files that have the minimum values are deleted. 

The work in [26] suggested a model that helps to determine 

number of replicas needed to maintain the desired availability 

in P2P communities so that each site within the Data Grid is 

authorized to create replicas for the files. The availability of 

a file depends on the failure rate of peers in the network. A 

function has been developed to calculate the number of 

replicas needed for a certain availability threshold. However 

this model has disadvantages: firstly, the exact number of 

replicas is not determined; rather it depends on the location 

service accuracy which depends on the existing number of 

replicas. The accuracy of the replica location service 

determines the percentage of accessible files, and thus if the 

location service is ineffective, more replicas are created to 

ensure data availability. Secondly, the replica deletion 

mechanism is not considered, thus the storage cost may be 

increased.  

In a different approach, the authors of [20] proposed a 

dynamic maintenance strategy called Dynamic Maintenance 

Service (DMS) to improve the performance of the grid 

environment. DMS decides where to place the replicas based 

on two main parameters: request frequency and free storage 

space. However, the replica deletion mechanism is not 

considered; rather the system does not locate the replica at a 

site unless there is enough space even if it brings benefit to 

system performance. 

The authors in [27, 28] proposed a placement algorithm so 

that the workload of user requests among the replicas is 

balanced. The workload is defined as number of requests that 

a server satisfies. Given the data usage and maximum 

workload allowed for each replica server, they suggested 

algorithm can efficiently determine the minimum number of 

replicas required. On the other hand, the authors in [26] 

suggested an algorithm that provides a function that evaluates 

the placement of replica. The objective of this function is to 

maximize the difference between the replication benefits and 

replication cost (storage cost and transfer time). The benefit 

is the reduction in transfer time to the potential users, the 

storage cost is the storage cost at the remote site, and the 

transfer time is the duration from the current location to the 

new location. Yet again, the replica deletion mechanism was 

still not considered, thus the storage space cost may be 

increased. 

 
III. UNWANTED REPLICA PLACEMENT STRATEGY 

 

In our previous work [29], we proposed a replica creation 

model that evaluates the files based on the exponential and 

dependency level of files in grid system. Each file in the 

system is evaluated and given a File Value (FV). The main 

goal of our previous works [29] was to decide on which 

replica to be created (wanted files) or deleted (unwanted files) 

and how many copies. Details on such approach can be seen 

in [29]. In this work, we are pursuing to identify sites that best 

to delete the replicas from. Thus we assume that the unwanted 

files already determined and we use their values in this work. 

The Unwanted Replica Deletion Strategy (URDS) finds 

location sites to delete the less valuable replica or the 

redundant replicas, such that the total Read Cost (RC) is 

minimized, which is defined as [30] the cost of transferring 

data file from the underlying site to the remote sites. The best 

locations to delete the replica from are the sites that host the 

redundant replicas. In this context the redundant replica is the 

one that cost the maximum read cost. Hence, choosing the 

best location sites depends on four parameters: 1) File 

Transfer Time, 2) Read cost, 3) Sites’ Workload and 4) 

Replication Sites. 

i. File Transfer Time (FTT): FTT is the data transmission 

time, and depends on the size of the file and the current 

network bandwidth of the link between the underlying 

two sites. FTT is computed as following Equation 

[11]: 
 

𝐹𝑇𝑇 =
𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ℎ
 (1) 

         

ii. Read Cost (RC): RC is the cost of transferring data file 

from the underlying site to the remote sites [30], and 

can be computed as: 
 

𝑅𝐶 =
∑ 𝐹𝑉𝑠𝑖 ∗ 𝐹𝑇𝑇𝑛

1

𝑚
 (2) 

 

where: 

𝑛: The total number of the sites in the grid. 

𝑚: Number of sites that request the replica from the 

underlying site. 

𝐹𝑉𝑠𝑖: The file value with respect to the specific site, 

which could be computed as: 
 

𝐹𝑉𝑠𝑖 =
𝑁𝑂𝑅𝑠𝑖

𝐹𝑖𝑙𝑒 𝑉𝑎𝑙𝑢𝑒
 (3) 

 

where: 

𝑁𝑂𝑅𝑠𝑖: Number of request for a file from a specific 

site. 

The proposed strategy, namely URDS, combines the five 

parameters together in order to make the decision on the 

placement of redundant replicas, according to the following 

steps shown in Figure 1: 

 

 
 

Figure 1: Pseudo code of URDS 



Replica Maintenance Strategy for Data Grid 

 e-ISSN: 2289-8131   Vol. 9 No. 1-2 49 

In order to understand the mechanism, consider the 

following example: suppose that we have eight sites and the 

bandwidth of the links between sites is shown in Figure 2. 

Suppose that new replicas of File1, File2, and File3 with size 

= 1000 MB, 400 MB, and 700 MB respectively need to be 

created by the system. File1 requires one replica, File2 two 

replicas, and File3 one replica. After computing the FTT of 

each file by applying equation 3, the graph become as shown 

in Figure 3, Figure 4, and Figure 5.  

 

 
 
Figure 2: A grid network consists of eight sites and their links that represent 

the network bandwidth 

 

Number of access from each site to the file is shown 

between the brackets. Suppose that site5 stores one replica of 

File1, site6 stores one replica of File2, and site1 stores one 

replica of File3. 

 

 
 

Figure 3: A grid network consists of eight sites and their links that represent 

the transfer time of File1 
 

 
 

Figure 4: A grid network consists of eight sites and their links that represent 

the transfer time of File2 
 

 

 
 

Figure 5: A grid network consists of eight sites and their links that represent 

the transfer time of File3 
 

The RC for the sites that hosting File1 are computed by 

applying equation 2, as shown below:  

RC for site2(File1) = 
9×5 + 12×19.9

2
 =  136.7 

RC for site1(File1) = 
79×14.9 + 7×19.9

2
 =  141.41 

RC for site3(File1) = 
7×5 + 12×19.9

2
 =  106.9 

The RC for the hosting sites for File2 are computed by 

applying equation 2, as shown below:  

RC for site2(File2) = 
9×2 + 5×7 +7×9.2

3
 =  31.8 

RC for site1(File2) = 
10×2 + 5×5 +7.2×7

3
 =  39.1 

RC for site3(File2) = 
9×5 + 10×7 +12.2×7

3
 =  63.4 

RC for site4(File2) = 
10×9.2 + 9×12.2 +9×7.2 

3
=  72.6 3 

The RC for the candidate sites for File3 are computed by 

applying equation 2, as shown below: 

RC for site5(File3) = 
9×11.2 + 11×8.33 +(8×12.5) 

3
=  97.4 

    RC for site6(File3) = 
5×8.33 + 8×20.83 

2
=  104.1 2 

    RC for site7(File3) = 
5×12.5 + 11×20.83 

3
=  145.8 

    Thus, the RC for each site that hosting the redundant 

replica can be tabulated, as shown in Table 1. The intersection 

of the Sites in the rows and the Files in the column is the RC 

for the site of a certain file. 

 
Table 1 

RC of three unwanted files for eight sites 

 

 File1 File2 File3 

Site0    

Site1 136.7 31.8  
Site2 141.41 39.1  

Site3 106.9 63.4  

Site4  72.6  
Site5   97.4 

Site6   104.1 

Site7   145.8 

 

According to the information in Table 1, the implemented 

mechanism will decide to place File1 in Site3, as it has the 

minimum RC, two copies of File2 in Site1 and Site2, and one 

copy of File3 in Site5. 

 

IV. PERFORMANCE EVALUATION 

 

A Java-based data grid simulator called OptorSim was 

developed by the European Data Grid Project (EDG project) 

[31]. OptorSim provides a framework to simulate real-world 

data grids by considering an array of parameters and 

scenarios found in reality conclusion. 



Journal of Telecommunication, Electronic and Computer Engineering 

50 e-ISSN: 2289-8131   Vol. 9 No. 1-2  

A. Simulation Setup 

The study of RPS was carried out using the model of LALW 

DataGrid32 sites and their associated network geometry 

shown in Figure 6. It comprises of 12 grid sites, each site has 

a storage capacity of 50 GB, while Site8 has 100 GB to hold 

all the original files. This configuration has four clusters and 

each one has three sites. One site has the most capacity in order 

to hold all the master files at the beginning of the simulation. 

The others have a uniform size of 50GB. The network 

bandwidth is set as 100 Mbit/sec, while the connection 

bandwidth is 100 Mbps. We ran the simulation with 500 jobs. 

 
 

Figure 6: LALW Test bed Sites and their associated network geometry 

 

A job is submitted to Resource Broker every 25 second. 

Resource Broker then submits to Computing Element 

according to an QAC scheduling algorithm. There are 6 job 

types, and each job type requires specific files for execution. 

The order of files accessed in a job is sequential and is set in 

the job configuration file as an input to the simulation. The 

number of files in our simulation is 150, and a file size is 1 

GB. 

 

B. Evaluation Metrics 

The performance metrics we chose to evaluate the proposed 

system are: Mean Job Execution Time (MJET), Efficient 

Network Usage (ENU), and Average Storage Usage (ASU). 

MJET is the average time a job takes to execute; from the 

moment it is scheduled to Computing Element to the moment 

when it has finished processing all the required files. ENU is 

defined as a measure of how well the replication strategy uses 

the network [3, 4], A lower value indicates that the utilization 

of network bandwidth is more efficient. ASU is the percentage 

of capacity reserved by files according to the total capacity for 

the underlying storage. 

 

V. RESULTS AND DISCUSSION 

 

The proposed model (URDS) is compared against LALW 

algorithm [32] and other existing algorithms that are employed 

in OptorSim (LFU, LRU, and Economy algorithm) [33, 34] 

that have been mentioned in details in Section 2 of this paper. 

The results of our simulation are shown in Table 2 

 
Table 2  

Simulation results of URDS and other existing mechanisms 
 

# 

Jobs 
Metrics LRU LFU Economy LALW URDS 

500 
MJET 4358 4154 4814 4013 3448 
ENU 47.13 47.41 36.72 33.11 31.95 

ASU 34.52 36.63 36.78 31.91 29.52 

 

A better algorithm is the algorithm that has less MJET. As 

shown in Figure 7 and Figure 8, URDS performs the best 

among the compared existing algorithms. URDS consumes 

16.05% less MJET compared to LALW,30.02% over 

Economy, 18.89% over LFU, and 23.16% over LRU. This is 

due to the replication decision that has been made by URDS, 

in which decides to replicate a group of valuable files at the 

same time (i.e. in one decision). As a result, replicas of popular 

files are spread in grid and increase the availability. On the 

other hand, LALW that replicates only one popular file at one 

decision. In addition, URDS offers the decision includes the 

deletion of unwanted replicas, which helps in providing a free 

space in the storage element of sites. As a result, the need for 

invoking the replacement strategy will be decreased (save the 

time spent in determining the victim file). Thus, the replication 

process will be hastened, and spread the replicas as fast as 

possible. 

 

 
 

Figure 7: The MJET of URDS and existing Algorithms 

 

 
 

Figure 8: The ENU of URDS and existing Algorithms 

 

 
 

Figure 9: The ASU of URDS and existing Algorithms 



Replica Maintenance Strategy for Data Grid 

 e-ISSN: 2289-8131   Vol. 9 No. 1-2 51 

The effect of replica deletion process on ASU is quite 

pronounced, as shown in Figure 9, URDS uses the least 

amount of storage usage (ASU) by outperforming LALW by 

7.49%.  

 

VI. CONCLUSIONS 

 

This study describes the replica deletion services as a part 

of replication management in Data Grid. In this context, 

replica deletion service includes determining the place of 

redundant replicas to be deleted. The key advantage of the 

proposed strategy is that it introduces a deletion function that 

removes unwanted replicas from the system. Thus, increase 

the storage space availability. Increasing storage space 

availability leads to decrease number of times the system 

invokes replacement strategy and reduce the processing time 

and improve the performance of other replication strategies. 

 As a future work, this work could be further improved and 

extended in several aspects, such that relocating the replicas 

to location sites that provide better services in the context of 

the current situation and network conditions. Furthermore, 

the throughput and system performance could be exposed by 

running simulation in different scenarios. 

 

REFERENCES 

 
[1] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. 

Nefedova, J. Lee, A. Sim, A. Shoshani, and B. Drach, "High-

performance remote access to climate simulation data: A challenge 
problem for data grid technologies," in Super Computing, 2003, 1335-

1356. 

[2] I. Foster, E. Alpert, A. Chervenak, B. Drach, C. Kesselman, V. 
Nefedova, D. Middleton, A. Shoshani, A. Sim, and D. Williams, "The 

Earth System Grid II: Turning climate datasets into community 

resources," in Annual Meeting of the American Meteorological 
Society, 2002. 

[3] B. Wilkinson, Grid computing: techniques and applications: Chapman 

& Hall/CRC, 2009. 
[4] C. Nicholson, D. G. Cameron, A. T. Doyle, A. P. Millar, and K. 

Stockinger, "Dynamic data replication in lcg 2008," Concurrency and 

Computation: Practice and Experience, 20, 1259-1271, 2008. 
[5] A. Chervenak, E. Deelman, I. Foster, W. Hoschek, A. Iamnitchi, C. 

Kesselman, M. Ripeanu, B. Schwartzkopf, H. Stockinger, and B. 

Tierney, "Giggle: A framework for constructing scalable replica 
location services," in International IEEE Supercomputing Conference 

(SC 2002) Baltimore, USA, 2002, 1-17. 

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke., 
"The Data Grid: Towards an Architecture for the Distributed 

Management and Analysis of Large Scientific Datasets," Journal of 

Network and Computer Applications, 23, 2001. 
[7] L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger, 

"Replica management in data grids," in Global Grid Forum. 5, 2002. 

[8] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman, 
"Simulation of dynamic data replication strategies in data grids," in 

Proceedings of 12th Heterogeneous Computing Workshop 

(HCW2003), Nice, France, 2003. 

[9] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, "Data 

Replication Strategies in Grid Environments," in Fifth International 

Conference on Algorithms and Architectures for Parallel Processing, 
2002, 378. 

[10] E. Otoo, F. Olken, and A. Shoshani, "Disk cache replacement algorithm 

for storage resource managers in data grids," in 2002 ACM/IEEE 
conference on Supercomputing, Baltimore, Maryland 2002, 1-15. 

[11] K. Ranganathan and I. Foster, "Identifying Dynamic Replication 

Strategies for a High-Performance Data Grid," International Grid 
Computing Workshop, 75-86, 2001. 

[12] X. You, G. Chang, X. Chen, C. Tian, and C. Zhu, "Utility-Based 

Replication Strategies in Data Grids," in Fifth International Conference 

on Grid and Cooperative Computing, 2006, 500-507. 

[13] M. Tang, B. S. Lee, X. Tang, and C. K. Yeo, "The impact of data 
replication on job scheduling performance in the Data Grid," Future 

Generation Computer Systems, 22, 254-268, 2006. 

[14] S. M. Park, J. H. Kim, Y. B. Ko, and W. S. Yoon, "Dynamic data grid 
replication strategy based on Internet hierarchy," International 

Workshop on Grid and Cooperative Computing, 1001, 1324–1331, 

2004. 
[15] S. Venugopal, R. Buyya, and K. Ramamohanarao, "A taxonomy of data 

grids for distributed data sharing, management, and processing," ACM 

Computing Surveys (CSUR), 38, 2006. 
[16] R. M. Rahman, K. Barker, and R. Alhajj, "Replica placement strategies 

in data grid," Journal of Grid Computing, 6, 103-123, 2008. 

[17] R. M. Rahman, K. Barker, and R. Alhajj, "Performance evaluation of 
different replica placement algorithms," International Journal of Grid 

and Utility Computing, 1, 121-133, 2009. 

[18] M. R. Rahman, "Replica placement and selection strategies in data 
grids," in Department of Computer Science. vol. PhD. thesis Alberta: 

University of Calgary, 2007. 

[19] C. T. Yang, C. J. Huang, and T. C. Hsiao, "A Data Grid File Replication 
Maintenance Strategy Using Bayesian Networks," in Intelligent 

Systems Design and Applications, 2008. ISDA'08, 2008. 

[20] C. T. Yang, C. P. Fu, and C. J. Huang, "A dynamic file replication 

strategy in data grids," in TENCON 2007-2007 IEEE Region 10 

Conference, 2007, 1-5. 

[21] Saleh, A., Javidan, R., and FatehiKhajeh, M. T., “A four-phase data 
replication algorithm for data grid”, Journal of Advanced Computer 

Science & Technology, 4(1), 163-174, 2015. 
[22] Tos, U., Mokadem, R., Hameurlain, A., Ayav, T., and Bora, S. 

“Dynamic replication strategies in data grid systems: a survey” The 

Journal of Supercomputing, 71(11), 2015, 4116-4140. 
[23] David G. Cameron, "Replica management and optimisation for data 

grids," PhD. Thesis, University of Glasgow, 2005. 

[24] Rahmani, A.M., Fadaie, Z. and Chronopoulos, A.T., “Data placement 
using Dewey Encoding in a hierarchical data grid”, Journal of Network 

and Computer Applications, 49, 2015. 88-98. 

[25] Grace, R.K. and Manimegalai, R., “HGASA: An Efficient Hybrid 
Technique for Optimizing Data Access in Dynamic Data Grid”. In 

Distributed Computing and Internet Technology, 132-136, 2016. 

Springer International Publishing. 
[26] K. Ranganathan, A. Iamnitchi, and I. Foster, "Improving data 

availability through dynamic model-driven replication in large peer-to-

peer communities," in Global and Peer-to-Peer Computing on Large 

Scale Distributed Systems Workshop, 2002, 376–381. 

[27] L. Yi-Fang, L. Pangfeng, and W. Jan-Jan, "Optimal placement of 

replicas in data grid environments with locality assurance," in Parallel 
and Distributed Systems, 2006. ICPADS 2006. 12th International 

Conference on, 2006,  

[28] Y. F. Lin, J. J. Wu, and P. Liu, "A List-Based Strategy for Optimal 
Replica Placement in Data Grid Systems," in Proceedings of Parallel 

Processing, 2008. ICPP'08. 37th International Conference on, 2008, 

198-205. 
[29] M.K. Madi, H.M.  Tahir, Y. Yusof, and S. Hassan, S., “A novel 

dynamic replica creation mechanism for Data Grids”. In Game Physics 

and Mechanics International Conference (GAMEPEC), 2015, 1-5. 
IEEE. 

[30] Y. Mansouri, M. Garmehi, M. Sargolzaei, and M. Shadi, "Optimal 

Number of Replicas in Data Grid Environment," in First International 
Conference on Distributed Framework and Applications, 2008., 96-

101. 

[31] The European Data Grid Project.  http://eudatagrid.web.cern.ch/eu-
datagrid 

[32] C. Ruay-Shiung, C. Hui-Ping, and W. Yun-Ting, "A dynamic weighted 

data replication strategy in data grids," in AICCSA 2008: Proceedings 
of IEEE/ACS International Conference on computer systems and 

applications, 2008, 414-421. 

[33] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, K. 
Stockinger, and F. Zini, "Evaluating scheduling and replica 

optimisation strategies in OptorSim," Journal of Grid Computing, 57-

69, March 2004. 
[34] W. H. Bell, D. G. Cameron, L. Capozza, P. Millar, K. Stockinger, and 

F. Zini, "Simulation of Dynamic Grid Replication Strategies in 

OptorSim," Journal of High Performance Computing Applications, 17, 
2003. 

 


