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Abstract: Stochastic volatility (SV) model is widely applied in the extension of the constant

volatility in Black-Scholes option pricing. In this paper, we extend the SV model driven by

fractional Brownian motion (FBM). A crucial problem in its application is how the unknown

parameters in the model are to be estimated. We propose the innovation algorithm, and follow

by the maximum likelihood estimation approach, which enables us to derive the estimators of

parameters involved in this model. We will also present the simulation outcomes to illustrate

the efficiency and reliability of the proposed method.

Key Words: stochastic volatility, fractional Brownian motion, innovation algorithm, maxi-

mum likelihood estimation

1. Introduction

Black-Scholes model is a jewel in financial world. Ever since its debut in 1973 by
Black, extensive works have been conducted to improve the performance of this
model. Interested readers can refer to [Elliott and Kopp (2005)] for more details
in this study. Recent works implore the possibility of extending the constant
volatility in Black-Scholes market to the stochastic volatility (SV). This idea is
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more reasonable in real application. It allows us to capture the impact of time-
varying volatility in financial data. However, many econometrician struggled
to estimate these models in early years. Only in 1990s that the estimation and
the simulation works for these models begin to develop. Readers are referred
to some works in [Melino and Turnbull (1990); Andersen and Sørensen (1996);
Harvey et. al. (1994)].

This problem keep intrigue researchers. The second generation of works on
SV begin to focus on some more advance extension. Some considered jumps
in the dynamics of asset prices [Creeel & Kristensen (2015); Cheang, Chiarella
& Ziogas (2013); Anderson (2007); Eraker et. al. (2003)]. Others considered
the long memory property in SV model [Shirota, Hizu & Omori (2014); Bos,
Koopman & Ooms (2014); Breidt et. al.(1998); Comte and Renault (1998);
Andersen and Bollerslev (1997)]. Recent works on this problem can be found
in [Casas and Gao (2008); Hu (2004)]. Most of these works assumed the model
to be generated by the finite parameter model. They used spectral density to
extract the memory parameter in its autocovariances to define the long memory
in SV model. Some exceptions are works by Høg and Frederiksen (2006) and
Hult (2003). They consider the model in continuous time. Fractional Brownian
motion (FBM) is considered to define the long memory process. Høg used
Kalman filter approach to estimate the parameters, but state the noise as a
stationary ARFIMA (0, d, 0) process. Hult (2003) however, used the spectral
density in his estimation process.

The study of FBM as the governing noises in some financial model begin
in 1968. This is due to works by Mandelbrot and his colleagues [Mandelbrot &
van Ness (1968); Mandelbrot & Wallis (1969); Mandelbrot (1972)]. Although
some has addressed FBM in finance in sceptical view [Rogers (1997)], this issue
never fail to capture researchers’ interest. Work by Hu and Øksendal (2003) has
motivated renewed interest and faith to FBM in financial modeling. Readers
are referred to works by [Mandelbrot (2004); Taleb (2007)] for a critical view
on the randomness by standard Brownian motion (BM). It is reasonable to
consider FBM in the SV model. A crucial problem with the real applications of
this model, is how to get the unknown values of the parameters in SV models,
in particular, the a, σ and H. They represent the drift, diffusion coefficient
and Hurst parameter, respectively. Once these parameters are estimated, the
valuing process in option can be done in the SV setting.

Most of earlier works consider Ornstein-Uhlenbeck (OU) process to model
this SV model. It is natural to extend this standard OU process in the nature
of fractality, by substituting FBM to the standard BM. This is called fractional
Ornstein-Uhlenbeck (FOU) process. Some works on FOU have appeared in
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literature in recent years [Cheridito et. al. (2003); Kleptsyna and Le Breton
(2002); Høg and Frederiksen (2006)], but they only developed the theoretical
investigation on this matter. Some works on FOU that begin to provide estima-
tions on the proposed methods include Brouste & Iacus (2013; Tanaka (2013)
and Salomon & Fort (2013), to mention just a few. We noted that Hult (2003)
has estimated the parameter involved in FOU, based on discrete observation
by using the spectral representation. We would also like to mention work by
Hu (2004) who explore this process in financial environment. He considered
this process in option pricing problem. However, this exploratory study too,
concerned on the theoretical investigation. In this paper, our aim is to use the
innovation algorithm, couple with the maximum likelihood (ML) estimation
procedure, to give efficient estimate to the parameters involved in this pro-
cess. We will also present the numerical investigation to better suit the real-life
problem.

In what follows, we summarize some important results reported in Ahmed
& Charalambous (2002). Let (Ω,F , P ) be a probability space and H ∈ (0, 1),
whereH is the index of the self-similarity known as Hurst parameter. A random
process {BH , t ≥ 0}, defined on the probability space (Ω,Fe, P ) is said to be
a FBM if the following conditions are satisfied.

(i) P{BH(0) = 0} = 1;

(ii) for each t ∈ R+ ≡ [0,∞), BH(t) is an Fe−measurable random variable
having Gaussian distribution with E{BH(t)} = 0;

(iii) for t, s ∈ R+, E{BH(t)BH(s)} = 1
2{t

2H + s2H − |t− s|2H};

(iv) for H > 1
2 , the sample paths of BH are continuous with probability one

but nowhere differentiable; and

(v) BH is self similar in the sense that, for any α > 0, the probability laws of
{BH(αt)} and {αHBH(t)} coincide.

2. Model Simplification

The fractional Ornstein-Uhlenbeck process can be written in the form of

dx(t) = −a1x(t)dt+ σ1dBH1
(t)

x(0) = x0,
(1)
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where a1 > 0 and σ1 are constant parameters, normally known as drift and
diffusion coefficients, respectively. (BH(t), t ≥ 0) is a fractional Brownian mo-
tion on some probability space (Ω,F , P ) with Hurst parameter, H. This model
is used to replace the constant volatility in risky asset model. Some used this
model as a short rate model [De Rossi, 2004].

Consider the measurement dynamics as

dy(t) = a2x(t)dt+ σ2dBH2
(t)

y(0) = 0,
(2)

where a2 ∈ R and σ2 ∈ R are drift and diffusion coefficients, respectively.
In order to simplify this problem, let the systems be considered in discrete
processes. The system now becomes:

x(t+∆t)− x(t) = −a1x(t)∆t+ σ1(BH1
(t+∆t)−BH1

(t)) (3)

and the measurement dynamics is

y(t+∆t)− y(t) = a2x(t)∆t+ σ2(BH2
(t+∆t)−BH2

(t)) (4)

By considering t = k∆t,

x((k+1)∆t)−x(k∆t) = −a1x(k∆t)∆t+σ1(BH1
((k+1)∆t)−BH1

(k∆t)) (5)

and

y((k + 1)∆t)− y(k∆t) = a2x(k∆t)∆t+ σ2(BH2
((k + 1)∆t)−BH2

(k∆t)) (6)

Denote X̃k+1 = x((k + 1)∆t), Ỹk = y((k + 1)∆t) − y(k∆t), ξk+1 = BH1
((k +

1)∆t)−BH1
(k∆t), and ηk = BH2

((k+1)∆t)−BH2
(k∆t). Our simplified version

now becomes:
X̃k+1 = (1− a1∆t)X̃k + σ1ξk+1 (7)

Ỹk = a2∆tX̃k + σ2ηk, (8)

with ηk ∼ N(0, (∆t)2H2) and ξk ∼ N(0, (∆t)2H1). Note that (7) is an autore-
gressive (AR) process. We follow iteration process and the Cauchy criterion in
[Brockwell and Davis, 1987] and further stated the (AR) process as:

X̃k+1 =

∞∑

j=0

(1− a1∆t)jσ1ξk+1−j, (9)

with |1− a1∆t| < 1.
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By using the property on the increment of the FBM, {BH(t+∆t)−BH(t)},
the covariances of η and ξ can be expressed as:

γη(m) = cov(ηk, ηk−m) =
1

2
[|(m+1)∆t|2H2+|(m−1)∆t|2H2−2|m∆t|2H2 ] (10)

and

γξ(m) = cov(ξk, ξk−m) =
1

2
[|(m+1)∆t|2H1+|(m−1)∆t|2H1−2|m∆t|2H1 ], (11)

respectively. Note that when H < 1
2 , the increments are negatively correlated

whereas H > 1
2 shows the positive correlation. The increment is a stationary

process, which is often referred to as fractional Gaussian noise.

Note that from (7)the covariance for X̃ can be obtained as follows:

γX̃(m) = cov(X̃k, X̃k−m)

= cov(

∞∑

j=0

(1− a1∆t)jσ1ξk−j,

∞∑

i=0

(1− a1∆t)iσ1ξk−m−i)

=
∞∑

j=0

∞∑

i=0

(1− a1∆t)j+iσ2
1cov(ξk−j , ξk−m−i)

=

∞∑

i=0

∞∑

j=0

(1− a1∆t)i+jσ2
1γξ(m+ i− j)

By choosing sufficiently large L, (12) can now be written as

γX̃(m) ≈

L∑

i=0

L∑

j=0

(1− a1∆t)i+jσ2
1γξ(m+ i− j) (12)

with |a1∆t| < 1.

Further, denote (Ỹ1, ..., ỸT ) ∼ N((µ, ..., µ),Σ), with Σ = (γỸ (i − j))T{i,j=1}.

By using (8), write covariance for Ỹ as:

γỸ (m) = cov(Ỹk, Ỹk−m)

= (a2∆t)2cov(X̃k, X̃k−m) + (σ2)
2cov(ηk, ηk−m)

= (a2∆t)2γX̃(m) + σ2
2γη(m).
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3. Methodology of Estimation

In this section, our aim is to estimate the parameters a1, a2, σ1, σ2,H1 and H2

involved in the model considered. Here, the likelihood function is presented for
our problem.

By considering (8), we illustrate the likelihood function for (Ỹ1, ..., ỸT ) as
follows:

L(a1, a2, σ1, σ2,H1,H2) =
1

(2π)T/2(det(ΣT ))1/2
exp{−

1

2
(Ỹ − µ)′Σ−1

T (Ỹ − µ)}

(13)
It is known that the maximum likelihood imply the efficient estimates of param-
eters. However, in (13), it is very difficult to find the gradient of the likelihood
function with respect to the parameters. This system is too involved. In order
to cater this problem, the innovation algorithm is implemented.

Suppose that {Ỹ1, ..., ỸT } is stationary and

Ỹn|n−1 = φn1(Ỹn − µ) + φn2(Ỹn−1 − µ) + ...+ φnn(Ỹ1 − µ) + µ (14)

The last term of (14) is to ensure E[Ỹn − Ỹn|n−1] = 0.
Based on Shumway & Stoffer (2006), the coefficients {φn1, φn2, ..., φnn} sat-

isfy

E[(Ỹn+1 −
n∑

k=1

φnkỸn+1−k)Ỹn+1−k] = 0, k = 1, ..., n,

or
n∑

k=1

φnkγỸ (k − j) = γỸ (k), k = 1, ..., n. (15)

(15) can be rewritten in matrix notation as obtained from the Yule-Walker
equations,

Γnφn = γn, (16)

where Γn = {γỸ (k−j)}nj,k=1 is an n×n covariance matrix, φn = (φn1, ..., φnn)
T

is an n× 1 vector, and

γn = (γỸ (1), ..., γỸ (n))
T (17)

is an n×1 vector. Equation (14) and (16) are known as the one-step prediction
equation.

Thus,

φn = Γ−1
n γn. (18)
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Let γ̃n−1 = (γỸ (n− 1), ..., γỸ (1))
T . Then,

Γn =

[
Γn−1 γ̃n−1

γ̃Tn−1 γỸ (0)

]
.

Thus

Γ−1
n =

[
I −Γ−1

n−1γ̃n−1

0 1

][
Γ−1
n−1 0

0 (γỸ (0)− γ̃Tn−1Γ
−1
n−1γ̃n−1)

−1

]

×
[

I 0

−γ̃Tn−1Γ
−1
n−1 1

]
. (19)

According to (20), we can compute Γ−1
n recursively. Let

εn = Ỹn − Ỹn|n−1

= Ỹn − µ−

n∑

k=1

φnk(Ỹk − µ).

where εn is a sequence of random variables with mean zero and standard devia-
tion υn such that {υ−1

n εn} is i.i.d, φnk and υn are respectively the autoregressive
and standard deviation parameters.

Thus,




ε1
ε2
:
εT




=



1 0 0 ... 0
−φ11 1 0 ... 0
: ... ... ... ...

−φ(T−1)1 −φ(T−1)2 ... −φ(T−1)(T−1) 1







Ỹ1 − µ

Ỹ2 − µ

:

ỸT − µ




. (20)

Let Y = [Ỹ1 − µ, ..., ỸT − µ]T , and ε = [ε1, ..., εT ], where εT ∼ N(o, υ2T ), with
υ2T is the mean square prediction error,

υ2T = γ(0)− γT ′Γ
−1
T γT . (21)

(20) can be rewritten as

ε = AY.
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Thus,
Y = A−1ε.

Hence, the autocovariance function,

ΣT = cov(Y,Y) = E(YYT) = A−1E[εεT ](A−1)T

= A−1




E(ε1)
2 0 ... 0

0 E(ε2)
2 ... 0

...

0 ... E(εT )
2


 (A−1)T.

From (22), Σ−1

T can be written as

Σ−1

T = AT




1
υ2

1

0 ... 0

0 1
υ2

2

... 0

...

0 ... 1
υ2

T


A. (22)

and

det(ΣT ) =
T∏

i=1

E(εi)
2 =

T∏

i=1

υ2i . (23)

From (22) and (23), the likelihood function (13) can now be calculated.
Now, the likelihood function is transformed into the following optimization

problem.

Problem P. Maximizes the cost function

L(θ) (24)

subject to

E(Ỹ − µ)2 ≥ 0

υ2 ≥ 0.
(25)

where θ = (a1, a2, σ1, σ2,H1,H2).
This optimization problem is very difficult to solve. The constraints are

too involved with covariance functions. To simplify this problem, we use the
constraint transcription method reported in Jenning and Teo 1990.

Maximizes the cost function:

L(θ) (26)
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subject to
gi(θ) ≤ 0, i = 1, 2, (27)

where gi are the constraints in the original problem. Let this problem be referred
to as Problem P. For each i = 1, 2, we approximate gi with Gi,ε(θ), where

Gi,ε(θ) =





gi, gi > ε
(gi+ε)2

4ε −ε < gi < ε

0 gi < −ε,

(28)

where ε some small number. We now append the approximate functions Gi,ε

into the cost function L(θ) to an appended cost function given below.

Problem Pε,γ

L̂(θ) = −L(θ)− γ

m∑

j=1

Gj,ε(θ), (29)

where γ > 0 is a penalty parameter. This is an unconstraint optimization
problem, which is referred to as Problem Pε,γ . It is known (see Jenning and
Teo 1990) that for any given ε > 0, there exists a γ(ε) such that, for γ > γ(ε),
the solution of Problem Pε,γ will satisfy the constraints of Problem P. Let γ̂(ε)
be such a γ for each ε > 0. Furthermore, the solution of Problem Pε,γ̂(ε)

converges to the solution of Problem P.
We propose an algorithm to solve Problem Pε,γ .

3.1. Algorithm

Here, we present an algorithm to compute the likelihood function using the
innovation algorithm.

Step 0. Set the initial value of parameters, {a1, a2, σ1, σ2,H1,H2}. Initialize
γξ(0) = 0, γη = 0, γX̃(0) = 0 and γỸ = 0 and set L to be a large number.

Step 1. By updating the functions, calculate γη(m), γξ(m), γX̃(m) and
γ(Ỹ−µ)(m), where m from 1 to L.

Step 2. Set k from 2 to T . Compute Γ−1
k in (19).

Step 3. Compute φk in (18) and υk in (21).

Step 4. Calculate Σ−1
T and detΣT in (22) and (23), respectively.

Step 5. Calculate the updated likelihood function, LT (a
T
1 , a

T
2 , σ

T
1 , σ

T
2 ,H

T
1 ,H

T
2 ).

This provides the efficient parameters, {aT1 , a
T
2 , σ

T
1 , σ

T
2 ,H

T
1 ,H

T
2 } involved

in this system.
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4. Simulation Study

In order to examine the performance of the proposed estimators, we have carried
out some simulation experiments. First, we generate the data from model (8).
We take the parameters a1 = 2, a2 = 2.5, σ1 = 1, σ2 = 0.5,H1 = 0.7 and H2 =
0.6, while ∆t = 1

5 . We simulate the time series from this discrete time model and
apply our methodology to estimate the parameters ϑ = (a1, a2, σ1, σ2,H1,H2)′
using the simulated data set. The simulated annealing method is used in order
to find the optimal parameters, simultaneously. The simulation is repeated one
hundred times. The simulated outcomes of the average value of estimates based
on 100 replications, with bias and variances, are reported in Table 1. The 5
cases of sample sizes n = 100, 200, 300, 400, 500 are considered in the table.

Table 1: Average value of estimates based on 100 replications, with
bias in ( ) and variance in [ ]

n 100 200 300 400 500

2.4156 2.4233 2.2133 2.2085 2.0884

a1
(0.4156)
[0.5958]

(0.4233)
[0.4429]

(0.2133)
[0.2144]

(0.2085)
[0.2118]

(0.0884)
[0.0736]

2.4829 2.5533 2.5046 2.4917 2.4814

a2
(−0.0171)
[0.1137]

(0.0533)
[0.0695]

(0.0046)
[0.0631]

(−0.0083)
[0.0520]

(−0.0186)
[0.0527]

0.9898 1.0329 0.9879 0.9981 0.9707

σ1
(−0.0102)
[0.0951]

(0.0329)
[0.0313]

(−0.0122)
[0.0069]

(−0.0019)
[0.0164]

(−0.0293)
[0.0059]

0.5556 0.5387 0.5419 0.5445 0.5455

σ2
(0.0556)
[0.0118]

(0.0387)
[0.0087]

(0.0419)
[0.0047]

(0.0445)
[0.0077]

(0.0455)
[0.0054]

0.7037 0.6998 0.7046 0.7026 0.7062

H1
(0.0037)
[0.0012]

(−0.00025)
[0.000345]

(0.0046)
[0.00046]

(0.0026)
[0.00065]

(0.0062)
[0.00036]

0.6084 0.6067 0.6048 0.6042 0.6024

H2
(0.0084)
[0.0016]

(0.0067)
[0.000625]

(0.0048)
[0.000416]

(0.0042)
[0.00058]

(0.0024)
[0.00031]

From the results obtained in Table 1, it shows that our methodology is
efficient. Most of the biases and variance obtained are within an acceptable
tolerance. All of our estimates for σ1, σ2,H1 and H2 are obviously quite stable
and less biased. The performance on the estimation of a1 and a2 are fairly sat-
isfactory. This simulation outcomes indicate that our methodology is promising
in obtaining statistically efficient estimators for FOU.
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5. Empirical Results

5.1. Data

We used a data set from federal reserve interest rate available online at
http://www.federalreserve.gov. The interest rate of business day from 2 Jan-
uary 2009 to 31 December 2009 is examined, with 252 observations. A summary
of the time series can be found in Table 2, where the mean of this series is 0.1597
and the variance is 0.001502.

Table 2: Summary of the interest rate

Min. 1st Qu. Median Mean Var 3rd Qu. Max.
0.05 0.13 0.16 0.1597 0.0015 0.18 0.25

5.2. Estimation

We present in this subsection the results of our study of modeling the data
by FOU. Let us describe how the estimation procedure is conducted. First, we
use many different cases of the initial values in the model estimation procedure.
Each of these cases is computed by using the simulated annealing method. This
method produces optimal parameters for each case of initial values considered.
Then, we examine the likelihood values for these cases. The likelihood that is
the maximum is chosen as the suggested estimates. In Table 3, we show some
results from these cases, where the initial values are

• i : a1 = 2, a2 = 2.5, σ1 = 1, σ2 = 0.5, H1 = 0.7 and H2 = 0.6;

• ii : a1 = 3, a2 = 5, σ1 = 0.5, σ2 = 0.7, H1 = 0.8 and H2 = 0.6;

• iii : a1 = 0.1597, a2 = 0.1597, σ1 = 0.0387, σ2 = 0.0387, H1 = 0.8 and
H2 = 0.7;

• iv : a1 = 1, a2 = 2, σ1 = 1, σ2 = 0.7, H1 = 0.7 and H2 = 0.7;

• v : a1 = 3, a2 = 1, σ1 = 0.6, σ2 = 0.8, H1 = 0.8 and H2 = 0.8;

• vi : a1 = 3, a2 = 5, σ1 = 0.5, σ2 = 0.7, H1 = 0.5 and H2 = 0.5;
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• vii : a1 = 3, a2 = 5, σ1 = 0.5, σ2 = 0.7, H1 = 0.51 and H2 = 0.51;

• viii : a1 = 1, a2 = 2, σ1 = 1, σ2 = 0.7, H1 = 0.5 and H2 = 0.5;

• ix : a1 = 5, a2 = 2, σ1 = 1, σ2 = 0.5, H1 = 0.7 and H2 = 0.7;

• x : a1 = 5, a2 = 3, σ1 = 1, σ2 = 0.7, H1 = 0.6 and H2 = 0.8.

Here, we take ∆t = 1
5 which is similar to that of previous section. We

can see from Table 3 that the suggested estimates are a1 = 2.277, a2 = 4.237,
σ1 = 0.509, σ2 = 0.713, H1 = 0.809 and H2 = 0.982. Obviously the long-
memory property is rather strong in interest rate process.

Table 3: Likelihood value of different initials

Initial â1 â2 σ̂1 σ̂2 Ĥ1 Ĥ2 likelihood value

i 4.529 0.557 0.559 0.917 0.699 0.94 -20629.275
ii 1.563 16.11 0.157 0.636 0.773 0.89 27929.3925
iii 0.227 10.167 0.063 4.33 0.865 0.997 -41402.1124
iv 5.999 0.889 0.966 1.073 0.878 0.913 3340.3349
v 0.813 7.112 0.254 3.818 0.711 0.99 -63041.7107
vi 1.601 15.989 0.096 0.585 0.721 0.868 -94979.9325
vii 1.833 15.851 0.081 1.161 0.521 0.9 90338.7164
viii 2.786 1.088 2.681 0.042 0.921 0.593 -1189.4721
ix 2.277 4.237 0.509 0.713 0.809 0.982 1900437.9156
x 6.414 1.947 0.545 0.585 0.617 0.846 -45609.6661

6. Conclusion

In this paper, we proposed a novel method for estimating the unknown parame-
ters in fractional Ornstein-Uhlenbeck (FOU) model. The likelihood function for
FOU is difficult to solve analytically. Its covariance calculation is very expen-
sive. Due to this, we proposed the innovation algorithm approach to simplify
this problems. The likelihood function now transformed to an optimization
problem with some constraints. The constraints transcription method is ap-
plied to append the approximate constraints to the cost function. Then, we
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solved a standard unconstrained optimization problem, by using simulated an-
nealing method. We carried out some simulation study so as to illustrate the
efficiency of our method. We also carried out empirical study to the interest
rate data.
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