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This paper discusses automatic phonetic transcription to be applied in Hungarian speech recog-
nition. It first deals with the basic technologies of automatic speech recognition (ASR) for the
sake of readers not familiar with this scientific field, then it discusses the place of (automatic)
phonetic transcription in ASR. After that, our method developed for transcribing Hungarian
texts automatically is introduced. This technique is an extension of the traditional linear tran-
scription approach; its output is called ‘optioned’ because it contains pronunciation options in
parallel arcs. We present our experiences with promising improvements in recogniser training
efficiency. The achievements are due to the application of deeper linguistic (phonological)
knowledge. With the training technique developed not only the quality of the acoustic models
can be enhanced, but also, at the same time, the amount of the required manual work can
effectively be decreased.
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Automatic speech recognition (ASR) has been an extensively researched area
in the past few decades, and now it has reached the level of practical ap-
plicability and is already used, mainly in telephony applications. Currently
the best technology is phone-based, therefore the words to be recognised have
to be transcribed into phone sequences; this process will be called phonetic
transcription, which has a significant role in ASR as it will be shown.

The operation of modern recognisers is based on statistical models, which
is, perhaps, their most important feature. This means that the characteristics
of the basic phone units (which are often called acoustic models, i.e., the mod-
els of the speech sounds) are estimated using large speech databases recorded
from hundreds or thousands of speakers. In other words, the most successful
ASR approach is somewhat similar to the human method: “First teach it,
then use it!”. A key point in teaching a speech recogniser (estimating the
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parameters of the acoustic models) is the need for the phonetic transcription
of the recorded training speech.

Some training algorithms require not only the uttered phone sequence,
i.e., the phonetic transcription, but also the time boundaries of the speech
sounds. Based on the transcription and some initial acoustic models, the time
boundaries can be generated using a special technique called “forced align-
ment”, which will be discussed later. Nevertheless, a large amount of spoken
text has to be transcribed phonetically. This is a time-consuming, tedious
work for a human (and so it is an expensive procedure). Since Hungarian or-
thography and pronunciation are in relatively close correspondence, it seemed
plausible to automate the process of phonetic transcription as well. However,
as we have experienced, the development of a general transcription method
for ASR purposes is not a straightforward task.

In this paper we give a very brief introduction to current mainstream
speech recognition technology, and show the place of phonetic transcription
in automatic speech recognition. The problems of automatic phonetic tran-
scription (APT) particularly for ASR are discussed, namely alternative pro-
nunciation options, and the behaviour of adjacent consonants at morpheme or
word boundaries. Then we propose a method for isolated-word APT, extend
it for training texts and finally present our experimental results on isolated-
word recognition tasks.

For the sake of linguist readers, some explanations have to be given here
to avoid misunderstandings concerning some terms. First of all, we use the
term ‘phoneme’ in the generative phonology sense, and for speech sounds
the expression ‘phone’ will be used. When dealing with APT, we focus on
the investigation and modelling of (alternative) phonetic transcriptions re-
sulting from the interaction of adjacent phonemes (e.g., ������� → [E c s a: z],
[E ţ: a: z] ‘one hundred’), which can be described more or less by pronun-
ciation rules. The phenomena in which the construction of the phonetic
transcription(s) is based on exception-like rules or no rules at all (e.g., �����
→ [s ø l: ø:] ‘grapes’ or �	 → [f o r i n t] ‘HUF’) are typically ignored here.
It should be mentioned that instead of dealing with the motivation for the
phonological process involved, we consider the subject of phonetic transcrip-
tion from an engineering point of view. So our main criterion is whether the
application of a certain kind of phonetic transcription technique decreases the
recognition error rate or not, as compared to another PT procedure.
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As mentioned earlier, today’s most successful ASR technology is a statistics-
based one, often referred to as “Hidden Markov-Model” technique. The
core of this technology is that every speech sound has one (or more) sim-
ple model(s) and these phone-models are joined to each other depending on
the recognition task resulting in a “big” Hidden Markov-Model. This com-
posite HMM is a directed graph, which always has a starting and an ending
node, and is able to recognise any possible phone sequence, which represents
a path between the start and the end nodes.

e  z e 

o1 oT ot 

qi qj 

r 

t  í  z ? 

? 

Start Stop 

$��� %
Illustration of HMM-based isolated-word number recognition

(#&#� [E z E r] ‘thousand’, . . . , �'& [t i: z] ‘ten’ are parallel
branches representing recognition alternatives)
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First the sound (the intensity change of the air pressure) is converted to
an electromagnetic signal by a microphone, and then it is digitised to pro-
vide a “comprehensible” input for the computer. An acoustic pre-processing
step follows, which aims to transform the waveform into a frequency-domain
signal—similarly to pre-processing in the human ear. The result is a sequence
(equally spaced in time) of feature vectors (o1, o2, . . . , oT), where each vector
acoustically characterises the respective 30 ms long part of the speech signal.

The main task of the recogniser is to choose the best (most likely) path
between the start and end nodes according to the actual feature vector of
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the sequence. Each phone-model has its own “similarity” function, so the
simplest way of operation is to measure the similarity (or likelihood) for each
feature vector in each phone-model and then choose the most likely phone
sequence from all possible paths. An efficient implementation of this method
is the Viterbi algorithm (Rabiner–Juang 1993).

���� ����
�
� �� ������� ������

In order to be able to compute the likelihood of a feature vector in a phone
model, the likelihood function of the sound model must be estimated in some
way. This estimation process is called the “training of acoustic models”.
Generally the Maximum Likelihood (ML) criterion is used, which can be
illustrated by the following example: if we would like to estimate the likelihood
function of the phone-model [O], then in general it is expected to respond with
the maximum value in case of feature vectors originating from an [O] sound as
compared to feature vectors originated from any other sound ([a:], [ b ], . . . ).

There are two main approaches to performing such training. Both re-
quire a large amount of recorded speech—as much as possible—because the
likelihood functions to be determined are estimated from statistics of fea-
ture vectors derived from a (training) speech database. In the first case the
boundaries of the speech sounds are needed, so that each feature vector can
be unambiguously mapped to a phone-model. Then, the likelihood functions
of the phone-models can be estimated one by one typically with a K-means
algorithm as mixtures of Gaussian functions (Rabiner–Juang 1993). To re-
fine the estimation, the so-called Viterbi realignment is used (Young et al.
2000). Training within this approach is relatively effective in terms of quality
of acoustic models and convergence speed; it requires, however, not only the
uttered phone sequence but the exact boundaries of the speech sounds, too.

The other widely used training method is the embedded Baum–Welch
re-estimation procedure (Young et al. 2000). An important characteristic of
this approach is that it does not need any information about the boundaries
of the speech sounds, because it determines them implicitly and iteratively.
So, this procedure requires only the uttered phone sequence—the phonetic
transcription—of the recorded training speech. This is an advantage as com-
pared to the previous approach, but this embedded training can be very slow
as it estimates the phone-model functions simultaneously and may require
many iterations. Actually, the embedded training iterations generally follow
a K-means and Viterbi-training to further refine the acoustic models.
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This is a frequently mentioned technique which deserves to be described in a
little more detail. In fact, the basic forced alignment method is an extremely
simplified recognition procedure aiming only at the segmentation of the input
speech signal, based on its phonetic transcription. The way of doing this is the
following: according to the precise phonetic transcription of the input speech
the phone-models are sequentially joined to each other resulting in a ������

hidden Markov-model. This HMM is used for recognising the input speech
utterance. (Actually, the recogniser has no other choice than to recognise the
actual given phone sequence, therefore it is called “forced” alignment). Thus,
the result of the recognition is trivial (there is only one path between the
start and end nodes), we use only the side effect of the recognition process,
namely the mapping of every feature vector to a phone-model whereby the
input speech is segmented on the phone level.

In this way, such a simple recognition procedure is able to determine
the boundaries of the sounds in the speech sample using only phonetic tran-
scription. (Of course, some trained initial acoustic models are needed for the
recognition, too. They can be based on a small amount of manually labelled
data, which requires only a limited amount of work.)

Now it can be seen why forced alignment was mentioned above: we
can conclude that the phonetic transcription of training sentences cannot be
avoided, unless the phone segmentation of the complete training material is
performed (entirely) manually.
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Let us consider now where and how it is necessary or profitable to apply
automatic phonetic transcription in ASR. The first evident application area
is isolated-word recognition. Isolated-word recognition means that only one
utterance (typically one word or phrase) should be recognised at one attempt.
In other words, the utterance has a definite start and a definite end and no
longer pauses occur between them. In this case, assuming that the acoustic
models are already trained, the main task in constructing a recogniser is to
perform the phonetic segmentation of the words to be recognised. An impor-
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tant point here is that if one word has more than one possible correct pronun-
ciations, then, of course, all correct phonetic transcription versions should be
presented to the recogniser. As the vocabulary size, i.e., the number of words
to be recognised, can be several thousands (e.g., in one of our applications, a
Hungarian city-name recogniser) it may be worth the effort to do the phonetic
transcriptions automatically. A further advantage of the automatic method
is that the phonetic transcriptions can easily be converted into pronunciation
networks, which are effective forms of vocabulary representation considering
recognition speed and memory load.

���� �����
���� ����
�
�

Another ASR field where APT can promisingly be applied is recogniser train-
ing. As mentioned earlier, the recorded words and sentences have to be
accompanied by their correct phonetic transcription in the training phase.
There are many possible ways to produce phonetic transcriptions. Perhaps
one of the highest quality solutions is to listen to all recordings and do each
and every phonetic transcription “by ear”. This approach has a great advan-
tage: independently of the written text, the actual, ������� phone sequence
is recorded which otherwise might not be the case due to misreading. But
as usual, the “human factor” causes failures, too. This kind of transcription
technique, however, requires a qualified employee with excellent hearing abil-
ities, also the work is very monotonous and tiresome. So, considering the
quite large amount of speech data (some 100 hours or more) this is a really
expensive method. In a variant of the previous system, an automatic phonetic
transcription—based on the known read text—is made first, and the human’s
task is merely to modify the (automatic) transcription if necessary after listen-
ing to the recorded speech material. (Remark: currently for Hungarian—as
well as for other languages—the large majority of training materials are read
speech, so the source text is generally available.) This variant may result
in faster work than the previous one, but the automatically generated phone
transcriptions might bias the listener.

The other approach is to do the phonetic transcriptions fully automati-
cally, based on the read text. Undoubtedly, once an APT technique is readily
available, this is the fastest and the most inexpensive way, but of course, as
the “printed” and “spoken” text may differ from each other, the automat-
ically made phonetic transcription will contain errors. In a variant of this
system, a manual correction on the source text is made first after a quick
listening to the recordings. The aim of this step is to repair or indicate the
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evident errors made during the reading (such as misreading, stopping in the
middle of the word, hesitation, etc.). This step is frequently called ‘annota-
tion’ and requires much less human work than the correction of APT errors.
The automatic phonetic transcription of an annotated text may be close to a
manual transcription of the same text.

However, there is a theoretical difficulty with the automatic generation
of the (guessed) uttered phone sequence, similarly to the transcription of vo-
cabulary elements in isolated-word recognition. That is, the actual utterance
realisation of a read text cannot be fully predicted in advance, because very
often variations can occur in the way it is pronounced. While for distinct
(isolated) words the number of alternative phonetic realisations is generally
one or two, the number of possible pronunciations of a complete sentence is
much higher. The reason, the source of the variation, is not only that a sen-
tence includes a number of words and so, trivially, the word variations are
multiplied by one another. Additional phenomena are the optional pauses be-
tween words and the phonological interactions at word boundaries. However,
in the case of training sentences, the real difficulty is that the options cannot
be directly represented because the training algorithms need an actual linear
phone sequence, as opposed to isolated-word recognitions.

We have recently elaborated a special technique to solve the problem
addressed. Our method is the following: first a special—we call it ‘optioned’—
phonetic transcription is generated automatically from the annotated source
text for every sentence. This kind of transcription contains parallel phone
sequence options allowing for alternative pronunciations.

(1) ������������	

(a) Original source text:
(�� �	��)�	&, "����? ‘What are you doing, Andrew?’

(b) Annotated source text:
��� �	��)�	& "����

(c) Possible phonetic transcriptions:
m i t � Ù i n a: l s � b O n d i
m i Ù i n a: l s � b O n d i
m i t � Ù i n a: l z b O n d i
m i Ù i n a: l z b O n d i

(d) Optioned phonetic transcription:
mi 〈t � | 〉Ù i n a: l 〈s� | z 〉b On d i

(In this example, the optioned transcription includes four possible phonetic
transcriptions. A pronunciation option begins with ‘〈’, the alternative pho-
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netic realizations are separated by ‘�’, and the return from an option is de-
noted by ‘〉’. ‘�’ denotes speech silence.)

Then these optioned transcriptions are used for forced alignment. For
this method the basic forced alignment method has been extended to han-
dle parallel alternatives. The forced alignment chooses a uniquely estimated
phone sequence among all possible pronunciations allowed by the optioned
transcription. In this step the time boundaries of the speech sounds are de-
termined, too, but they can be discarded if not needed. So, essentially, the
computer is used for listening to the recordings instead of humans.

The question is whether the performance of our method is good enough,
and how the “optioned” phonetic transcriptions can be generated automat-
ically. For the answer we had to work in the reverse direction: first we
generated the transcriptions automatically and then conducted some experi-
ments to evaluate the efficiency of optioned phonetic transcription from the
recognition point of view. The rest of the article is devoted to this issue.

�� �������� ���
���� ���
��������
 �� �
�����
 �� ��

In what follows, we discuss the problems related to automatic phonetic tran-
scription of Hungarian texts, give a method for isolated words and then ex-
tend it for training sentences.

���� !�������

The process of phonetic transcription can be divided into two main steps.
The first one is to identify the letters in the input text—with a special care to
the multi-character letters, which abound in Hungarian—and then to convert
them into phonemes; the result is the canonical phonemic transcription. In
the second step, the interactions of adjacent speech sounds or phonemes are
taken into account, and so we get the phone sequence(s) of the input word
according to its actual pronunciation as an output phonotypical transcription.

������ ����� ����" �����
�����
 �� ������������ ����� �
�� �������

With respect to automating the segmentation of Hungarian words into letters
one has to deal with the following problems:

(i) The identification of multi-character letters in the input word can be
ambiguous if higher-level linguistic knowledge is not applied in the source text.
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(2) �� 
����
 �� ��
 �
������ ��������� �� ��
 �	& ������	

(a) �)��	&#� → *� ) � �	 & # � or � ) � � 	& # � ? ‘chain-loop’

(b) ����	&*���	 → *� � � � 	& * � � � 	 or � � � �	 & * � � � 	 ? ‘jingle of a key’

(ii) Further difficulties arise when dealing with traditionally spelt or foreign
words or acronyms (like 
�		���� 〈family name〉, �-����, �
� . . . ). In these
cases, it makes no sense to segment the words into letters, obviously they
should be handled as exceptions.

So, the first problem to be solved is to identify the letters in the text, and
then they can be converted one by one into phonemes.

������ #���
� ����" ��
���
� ���
�������� ���������

Once the canonical phonemic transcription is arrived at, there is often no
need for further processing. However, in many cases the pronounced sequence
of phones is different from the canonical form because of the interaction of
neighbouring phonemes or speech sounds. Especially the consonants may
change, due to assimilations, mergers, etc. These phenomena are widely
known and often described as pronunciation rules (Hedvig–Puster 1994).

A difficulty that prevents the direct application of these rules in a compu-
ter-based system is that they utilise higher-level linguistic information, which
is not available by default. Moreover, the rules sometimes allow more than
one correct pronunciation options and it is not trivial how to handle them.

Let us see some examples for the pronunciation ambiguity of phoneme
pairs or triplets:

(a)(3) /t j/:
/ l a: t j O / → [ l a: c: O ] ‘can see it’
/a: t j a: r o:/ → [a: t j a: r o:] ‘passage’
In the first case, only the pronunciation involving [c :] is correct, while in the second
case only [t j].

(b) /t S/:
/O p a: t S a: g/ → [O p a: Ù: a: g] or [O p a: t S a: g] ‘abbey’ (Fekete 1992)
Both pronunciations are correct.

(c) /S t/:
/E z y S t/ → [E z y S t] ‘silver’
/E z y S t b a: ñ O/ → [E z y Z d b a: ñ O] ‘silver mine’ (Fekete 1992)
The sound [b] voices not only the adjacent sound [t], but the more distant [S], too.

(d) /s t g/:
/e: b r E s t g E t/ → [e: b r E z d g E t] or [e: b r E z g E t] ‘try to wake’
The [d] can optionally be dropped.
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It can be seen that the traditional linear phone sequence output approach
that is adequate in speech synthesis cannot be kept in speech recognition.
Here, all correct pronunciation options should be represented in some way in
the phonetic transcription.

���� $� �������� ���
���� ���
��������
 ������

In the following sections we introduce a method that is able to transcribe
individual (orthographic) words into phonotypical phone sequences including
pronunciation options. Also, the majority of the previously outlined problems
can be handled within this framework. The main steps of the method are
as follows:

������ %������� �
��&���

Most of the problems described above can be handled by taking the mor-
phological structure of words into account. Therefore, the first step of our
method is to perform morphological segmentation. The words are passed to a
morphological analyser that inserts special symbols at morpheme boundaries.
This method was originally proposed by Wothke (1991) and our system uses
similar symbols:

(4) = before a stem
+ before a derivational affix
% before an inflectional affix

(5) ����	&*���	 → =kulcs=zörg+és ‘jingle of a key’

������ 	��
��'�����
 �� ������ ��
������

After the boundaries of the morphemes have been determined, the input word
can be segmented into letters on a morpheme-by-morpheme basis. This turns
out to be a much easier task than segmenting the original word because
ambiguous combinations of the letters almost never occur inside morphemes.

Utilising that observation, Hungarian morphemes can be segmented un-
ambiguously into letters with the following method. The alphabet, including
long consonants, is stored in a table. The first letter of the morpheme is
the longest letter of the table that matches the beginning of the morpheme.
This letter is detached and the process is continued on the remaining part
of the morpheme:

���� ������	���� 
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(6) =dzsessz=sźın=ház → = dzs e ssz = sz ı́ n = h á z ‘jazz theatre’

������ (������������
��� ��
)�����


Due to the close correspondence, the mapping of letters to phonemes can be
considered unambiguous and can be done letter by letter. As a result we get
a phoneme sequence; the canonical phonemic transcription of the input word
extended with morpheme boundary symbols.

(a)(7) = t a x i → = t O k s i ‘taxi’

(b) = l y u k → = j u k ‘hole’

In the next step, we will switch from phonology to the phonetic level. There-
fore, the segmental units will be referred to as ‘phones’ or ‘speech sounds’
rather than ‘phonemes’. Also, the brackets surrounding phonetic transcrip-
tions will be omitted from now on.

������ ����������
 �� ���
�������� ����

The pronunciation variants of the input word are generated with the appro-
priate application of Hungarian phonological rules. For treating the problems
described in the previous section, we use the formalism below (after Wothke
1991), which permits the generation of alternative outputs for each rule and
is able to utilise morpheme boundary information.

(8) X{Y}Z → 〈W1�. . . �Wn〉

This rule changes the extended phone string Y to the alternative phone strings
W1,. . . ,Wn if it occurs in the phonetic transcription of the input word with
X as left and Z as right context. Both X and Z are (extended) phone string
sets as permitted string elements. (The use of phone sets is described later
in this section.)

Examples of the simple use of this formalism:

(a)(9) Rules (merger of consonants)
1. {t = j} → 〈t j〉
2. {t % j} → 〈c:〉
3. {t + S} → 〈t S | Ù:〉

(b) Application:
1. = a: t = j a: r o: → = a: t j a: r o: ‘passage’
2. = l a: t % j O → = l a: c: O ‘can see it’
3. = O p a: t + S a: g → = O p a: 〈 t S | Ù: 〉 a: g ‘abbey’
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There are two types of rules in terms of direction of application: ‘forward
rules’ and ‘backward rules’. In the case of forward rules, the best matching
rule is searched from the beginning of the extended input phone string and
applied if it exists. The search then continues with the next phoneme until
the word ends. In the case of backward rules, the evaluation sequence is
the opposite. Backward rules provide a convenient way to formulate rules
of assimilation:

(a)(10) Pronunciation rules (backward rules):
������� = {b d é g z Z

>
dz Ã}

// comment: consonants that can change
// the preceding consonant from voiceless to voiced
{ t } ������� → d
{ t = } ������� → d
{ S } ������� → Z
. . .

(b) Application:
= E z y S t =b a: ñ O → = E z y Z d b a: ñ O ‘silver mine’

In this example, the variable “�������” defines a phone set. When it occurs
in a rule, it matches any of the phones on the right hand side of its definition,
in this example it matches [b], [d], [é], . . . Starting with the second rule, [t]
is changed into [d]. In the next step, this [d] changes the preceding [s] into
[Z], using the third rule.

The rules are structured into groups. The evaluation direction is the
same within each group, so that a group of rules is evaluated at one time as
described. The phonotypical phonetic transcription of the input word, includ-
ing the pronunciation alternatives, is generated by the sequential application
of rule groups.

The rule groups may have illustrative linguistic meanings. With the
organisation of groups illustrated in Figure 2, words that are subject to more
than one pronunciation rule can also be transcribed.

The shortening/lengthening/insertion/dropping of vowels and consonants
can hardly be algorithmically described, therefore they are handled as excep-
tion-like rules. (Examples: ����� → [s ø l: ø:] ‘grapes’, ���� → [l E s:] ‘will be’,
��� → [j u] ‘sheep’, etc.)

Actually, in Figure 2—excluding the dashed line block—the pronunci-
ation is modelled at the phonological level. Of course, the scope of this
pronunciation modelling is limited, but many “problematic” words can be
transcribed in this way as it is shown in the right side of the figure (the
morpheme boundary symbols are not shown).

���� ������	���� 
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shortening, lengthening (vowel/consonant)

dropping and insertion of consonant

voicing assimilation,

place assimilation

shortening of consonants

full assimilation,

merger of consonants

shortening of consonants

canonincal transcription

optioned phonotypical transcription

illustrative examples:

kezdte ‘began it’
értsd ‘understand it!’

képzettség ‘qualiBcation’

kEzdtE, e:rtSd, ke:pzEt:Se:g

kEst:E, e:rdZd, ke:bzEt:Se:g

kEstE, e:rdZd, ke:bzEtSe:g

kEstE, e:r�:d, ke:bzE<tS|�:>e:g

kEstE, e:r�d, ke:bzE<tS|�:>e:g

backward rules

$��� �
The generation of phonotypical transcription including alternatives

by means of formalised pronunciation rules

����*� �� ���������� ��
)�����


Finally, the phonotypical transcription containing the pronunciation options—
which we call optioned phonetic transcription—is converted to graph represen-
tation. The result is a pronunciation phone-network, which can be effectively
stored and used in the computer. Of course, this last step is not a subtask of
the phonetic transcription, it is a wholly separate procedure but, as it nearly
always follows the transcription process, we included it in the description here.
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(11) O z o 〈 n m | m: 〉 o: d → 0 1 O;
1 2 z;
2 3 o;
3 4 n;
4 5 m;
3 5 m: ;
5 6 o: ;
6 7 d;

O z o
n m

m:
dO:

0 1 2 3
4

5 6 7

$��� �
The pronunciation graph representation of the Hungarian word

�&���!� [O z o n m o: d] or [O z o m: o: d] ‘right away’

���� ��� � ��
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The previously presented method generates the optioned phonetic transcrip-
tion of an input word. The question is: How can it be enhanced to transcribe
whole sentences? Fortunately, the answer is quite simple: only the introduc-
tion of word boundary symbols and the corresponding rules are necessary,
otherwise the entire process described is applicable.

(a)(12) An example rule:
{t �� = s} → 〈t � s | t s | ţ:〉
//comment: symbol ‘�’ denotes the beginning and ending of a word

(b) Application: (�� 	&!�	&? ‘What do you say?’
� = m i % t �� = s o: l % s � → � = m i% 〈 t � s | t s | ţ: 〉o: l% s �

Due to optional pauses between words and possible consonant clusters across
word boundaries, it is not a straightforward job to construct a compact set
of rules for sentences. But our aim is to produce correct (optioned) pho-
netic transcriptions for the large majority of sentences; the elaboration of a
perfectly precise technology would be unrealistic.

Besides, as the training algorithms are statistical, they are relatively in-
sensitive to transcription or other errors. The only important thing is that
there should be many more correct forms than erroneous ones. But if this is
true, do we really need the optioned transcriptions? Would it not be enough
to use some simple linear phone sequences for training? To answer these
questions we carried out some experiments, which will be described in the
following section.
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Two types of experiments have been conducted. In the first one, the 	
�

������� ������������
� of the words to be recognised was investigated; the
linear transcription was compared to the optioned one in a particular recog-
nition problem. In the second type of experiment—which has been done very
recently—the scope of our investigation was the �������� ����
�, the recogni-
tion environment was the same in every experiment. Three different kinds of
phonetic transcription were used for training, and the recognition efficiencies
of the resulting three different acoustic models were compared to each other
in a series of experiments.

*��� .���� �����
����
 ����� ���� ��/���
�
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�����
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In this set of experiments, the BABEL high quality speech database was
used (Vicsi–Vig 1998). It consists of three different parts: compound number
utterances (like ��		� ‘two’, ��������	����	 ‘four hundred and fifty-six’, �����
���� ‘one thousand and twenty’, etc.), CVC syllables, and continuously read
paragraph-sized speech samples. The number of speakers available is 20 (10
men and 10 women), and there are altogether about 900 sentences and 9700
numbers in the database. The voice of 14 speakers composed the training set,
and the rest of the compound number data were used in the recognition tests.
In the experiments the numbers and the paragraphs were used separately for
training, resulting in two different acoustic model sets.

Because only a small fraction of the database was segmented at phone
level, the model training was carried out in two steps. In the first step initial
models were trained using a K-means algorithm and Viterbi-training on the
manually segmented data. Then the rest of the database was segmented auto-
matically by forced alignment with the FlexiScribe tool (Szarvas et al. 2000).
For forced alignment the traditional “linear” phonetic transcriptions provided
by the developers of the database were used. In the second step the entire
training material was used for training with the labels generated previously.

During the isolated number recognition tests, all 140 numbers occurring
in the test database were listed in the vocabulary. The numbers were tran-
scribed to phoneme sequences automatically. In the experiment the effect
of the presence or the absence of pronunciation alternatives was investigated
(Table 1). In the first case the canonical pronunciation was used while in the
second case all alternatives were listed in the vocabulary.
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+�,�# %

Isolated number recognition error rates using two different pronunciation models.
Acoustic models were trained by numbers (a) and by general speech (b)

(a)
Vocabulary representation Error rate Relative improvement
Canonical pronunciation 0.48%
Pronunciation alternatives 0.45% 6.3%

(b)
Vocabulary representation Error rate Relative improvement
Canonical pronunciation 2.69%
Pronunciation alternatives 2.58% 4.1%

The error rates decreased slightly for both acoustic model sets, but the im-
provements cannot be considered significant due to the very small difference
in the absolute error rates.

*��� 0��& 
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These experiments were made to evaluate the efficiency of our method de-
veloped for the transcription of training sentences. Three differently made
phonetic transcriptions were compared to each other, the basis of comparison
were the recognition error rates of the three differently taught recognisers on
the same recognition task.

MTBA, the first public Hungarian telephony speech database was used
for training (Vicsi 2002). At the time of experimentation the first 100 speak-
ers’ data was segmented manually (phonetically rich words and sentences),
so we utilized this part of the material. From the database we were able to
exploit the following components (beyond the waveform files): the annotated
source text of the read sentences, their automatically made linear phonetic
transcriptions, and the manually made phone-level segmentation of the sen-
tences. Based on these facts, we made a comparative analysis of phonetic
transcription methods in the following way:

• First we split the speech data of the 100 speakers into two parts. The
acoustic models used later for forced alignment were trained on the first
50 speakers’ data utilising manual segmentation, and only the other 50
speakers’ data was used for the rest of the experiments.

• Three different phonetic transcriptions were collected for each sentence.
The first was the above-mentioned, automatically made one. The second
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was the manual one; we got these from the manual segmentations by
simply leaving the time boundaries out. The third one was the optioned
phonetic transcription which was generated by our transcription method
from the annotated source text. (The morpheme analysis step was not
implemented yet in the algorithm.)

• Forced alignment was performed with all three transcriptions for all
sentences. As a result we got three segmentations for all training utter-
ances.

• Initiated by these three segmentations, three training procedures were
performed in the same way using the Cambridge Hidden Markov-Model
Tool Kit (HTK) functions (Young et al. 2000). All training consisted
of 26 iterations. The first step was the K-means and Viterbi training
(Hinit) with 1 Gauss function per phone-model, and it was followed
by the embedded Baum–Welch re-estimations (HERest) with mixture
increments. (Mixture: the number of Gauss functions at a phone-model)

• After each training iteration a Hungarian city name recognition was
carried out on an independent telephony speech database with a vo-
cabulary size of 480. All utterances came from different speakers. The
recognition rates are shown in Figure 4 (overleaf).

In order to check our—somewhat surprising—results, we repeated the whole
series of experiments by swapping the first and second half of the hundred
speakers available (Figure 5, overleaf).

It can be seen that our automatically made optioned phonetic method
outperformed not only the traditional automatic but the manual method as
well. It is important to sharply distinguish the original manual segmenta-
tion from the segmentation provided by a forced alignment using manually
transcribed data; our comparison is valid for the latter case.

1� 0�
�����
�

In this article we summarised our work and experiences with Hungarian pho-
netic transcription in automatic speech recognition. We also gave a short
introduction on speech recognition principles for people not familiar with this
scientific field.
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City name recognition error rates referring to the acoustic models
of speakers 50–99, trained using different phonetic transcriptions
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City name recognition error rates referring to the acoustic models
of speakers 0–49, trained using different phonetic transcriptions
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We have developed a method for transcribing Hungarian texts automat-
ically, which is an extension of the traditional linear transcription approach.
Its output is called ‘optioned’ because it contains pronunciation options in
parallel arcs. We presented our experiences with promising improvements in
training efficiency. The achievements were due to the application of deeper
linguistic (phonological) knowledge. Moreover, with the training technique
developed not only the quality of the acoustic models can be enhanced, but
also, at the same time, the amount of the required manual work can effectively
be decreased because of the automatic method.

This paper does not deal with connected-word or continuous recognition,
which are discussed in another paper (Szarvas–Furui to appear).
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