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A B S T R A C T

We measured the ex vivo uptake and release of [3H]noradrenaline ([3H]NA) from perfused rat spinal cord slice
preparations at 1, 3 and 14 days after unilateral hemisection-induced spinal cord injury (SCI) compared with
control slice preparations.

After surgical hemisection under anaesthesia, the rats showed characteristic signs of hemiplegia, with no
movement of the ipsilateral hindlimb. After 3 days, the electron microscopy images showed overall degeneration
of neuronal organelles and the myelin sheath, but the synapses seemed to be intact. In ex vivo experiments, the
spinal cord injury did not influence uptake but increased [3H]NA release at rest and in response to axonal
stimulation. The effect of a selective noradrenaline reuptake inhibitor, nisoxetine, was studied to identify the
mechanisms underlying the increase in NA release. Nisoxetine potentiated stimulation-evoked [3H]NA release
from the non-injured tissue, but it gradually lost its effectiveness after injury, depending on the time (1 and
3 days) elapsed after hemisection, indicating that the noradrenaline transporter binding sites of the terminals
become impaired after decentralisation.

1. Introduction

Spinal cord trauma is an injury with devastating consequences,
including high societal costs in developed countries and high mortality
rates in developing countries (Lee et al., 2014; Jazayeri et al., 2015).
Current therapies do not provide major improvements in neuronal and
motor function (Yilmaz and Kaptanoglu, 2015); thus, spinal cord injury
results in a permanently disabling condition. According to epidemiolo-
gical data, an estimated 180,000 new injuries occur per year world-
wide, but this rate is increasing, reflecting the increase in motor vehicle
use (Cripps et al., 2011; Lee et al., 2014; Jazayeri et al., 2015).

In addition to the primary mechanical damage, increasing evidence
has shown many secondary factors that contribute to spinal cord
damage (Wrathall et al., 1992; Park et al., 2004; Liu and Xu, 2012),
such as ischaemia, inflammation and excitotoxicity resulting from the
excessive release of various neurotransmitters (Liu et al., 1990; Simpson
et al., 1990; Uchihashi et al., 1998; Nakai et al., 1999; Sumiya et al.,
2001; Padro and Sanders, 2014; Yilmaz and Kaptanoglu, 2015).

Inflammation and overactivation of the sympathetic nervous system

have been increasingly accepted as key contributors to the pathophy-
siology of ischemic damage of stroke and spinal cord injury (Akpınar
et al., 2016; Wei et al., 2016; Zhang et al., 2016a, 2016b; Zuo et al.,
2016). In addition, it is also known that this condition may lead to
immunosuppression (Meisel et al., 2005; Zhang et al., 2016a, 2016b),
so the treatment of stroke remains a great global challenge (Prass et al.,
2003; Kumar et al., 2010).

The excessive release of glutamate has neurotoxic effects (Faden and
Simon, 1988; Wrathall et al., 1992; Lipton and Rosenberg, 1994;
Brassai et al., 2015) and leads to the release of noradrenaline from
the spinal cord (Klarica et al., 1996). As shown in previous in vitro
neurochemical studies, ischaemic conditions induce the excessive
release of noradrenaline from the spinal cord (Uchihashi et al., 1998;
Nakai et al., 1999; Sumiya et al., 2001), which may be at least partially
responsible for the neurotoxicity resulting from the toxic aldehyde
metabolites of this compound, 3,4-dihydroxyphenylacetaldehyde (DO-
PAL) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) (Burke
et al., 2004) and for immune suppression (Elenkov et al., 1995;
Woiciechowsky et al., 1998; Haskó et al., 1998; Elenkov et al., 2000;
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Vizi and Elenkov, 2002; Szelényi and Vizi, 2007; Zhang et al., 2013).
Therefore, we examined whether injured spinal cord preparations
exhibit changes in noradrenaline release from decentralised nerve
terminals, i.e., the side where motor function was completely lost.
These findings will improve our current understanding of the processes
of secondary spinal cord injury, which is essential for the development
of new therapeutic strategies.

2. Materials and methods

2.1. Experimental animals

Female Wistar rats weighing 210–340 g (average weight: 256 g,
average age: 137 days) were housed in cages and maintained on 12-h
light-dark cycles. Food and water were provided ad libitum. All animal
procedures were performed in accordance with the guidelines of the
NIH Guide for the Care and Use of Laboratory Animals, 6th Edition,
2010. The minimum number of animals was used for these experiments,
and care was taken to reduce any suffering.

2.1.1. Uptake experiments
Sixteen animals were randomly divided into 4 groups: control,

control + nisoxetine, 3 days after SCI, and 3 days after SCI + nisox-
etine.

2.1.2. Fractional release experiments
Forty-nine animals were divided into the following groups: control,

1 day after SCI, 3 days after SCI, and 14 days after SCI. In the first three
groups, half of the measurements were performed in the presence of a
noradrenaline reuptake inhibitor, as described below.

Electron microscopy was performed on samples from untreated and
operated animals 3 days after SCI.

2.2. Surgical procedure

The spinal cord was hemisected at the 4th lumbar segment (L4)
using the procedure described below (Nosrat et al., 2001). The rats
were anaesthetised intramuscularly with a mixture of ketamine
(80 mg/kg, Calypsol, Richter Gedeon, Budapest, Hungary) and xylazine
(8 mg/kg, CP-Xylazine, CP-Pharma, Burgdorf, Germany). The first
lumbar vertebra was exposed by shaving and cutting the skin above
this region to free it from the adhering muscles. A laminectomy was
performed to provide access to the spinal cord, which was cut on the
right side with a crescent-shaped blade (BB512, B. Braun, Melsungen,
Germany) under sterile conditions. The muscles and skin were sutured
in layers.

2.3. Tissue preparation

Spinal cord segments L5-S1 located caudally and ipsilaterally to the
hemisection were prepared at 1, 3 or 14 days following surgery. The
caudal half of the vertebral column was removed and excised from the
attached muscles. Subsequently, the lumbar and upper sacral spinal
cord segments were removed and placed into ice-cold Krebs solution (in
mmol/l: NaCl, 113; KCl, 4.7; CaCl2, 2.5; KH2PO4, 1.2; MgSO4, 1.2;
NaHCO3, 2.5; glucose, 11.5; ascorbic acid, 0.3; and Na2EDTA, 0.03)
aerated with 95% O2 and 5% CO2. The spinal cord was freed from the
adhering meninges/arachnoid membranes and nerves. The right side
(ipsilateral to the hemisection) of spinal cord segments L5 to S1 was
isolated and cut into 400 μm slices using a McIllwain tissue chopper.
The average weight of the slices was 13.1 ± 2.9 mg, n = 65.

2.4. Tissue loading with [3H]NA

Spinal cord tissue slices were preincubated in aerated (95% O2 and
5% CO2) Krebs solution for 20 min at 37 °C and subsequently incubated

in a similar solution containing 5 μCi/ml radiolabelled [3H]NA
(10.8 Ci/mmol) (PerkinElmer, Waltham, MA, USA) for 45 min
(Umeda et al., 1997). The slices were subsequently washed 3 times
with Krebs solution and placed in superfusion chambers (Vizi et al.,
1985). The chambers were perfused with aerated Krebs solution at
37 °C at a rate of 0.5 ml/min. A preperfusion period of 60 min was
applied to remove all of the [3H]NA isotope that was not taken up by
the tissues.

In half of the uptake experiments, 1 μM nisoxetine (Tocris
Bioscience, Bristol, UK) was added to the preincubation and incubation
solutions and maintained throughout the experiments.

2.5. Measurement and calculation of noradrenaline uptake

At the end of the perfusion experiment, the tissue slices were
weighed and homogenised in 0.5 ml of 10% trichloroacetic acid. Then,
0.1 ml of the homogenised tissue was mixed with 2 ml of liquid
scintillation cocktail (Ultima Gold, PerkinElmer, Waltham, MA, USA).
The radioactivity of these samples was determined using a Packard
1900 Tricarb liquid scintillation spectrometer (Packard, Canberra,
Australia). The radioactivity was expressed as the number of disin-
tegrations/sec/gram of spinal cord tissue (Bq/g).

2.6. Stimulated noradrenaline release

Following preperfusion, the chamber effluents were collected in 19
consecutive fractions, each of which was 200 s in length. Electrical field
stimuli (40 V, 3 Hz, and 1 msec impulse duration) were applied with
platinum electrodes for 80 s at the beginning of the 3rd (S1) and 13th
(S2) fractions.

In half of the fractional release experiments, 1 μM nisoxetine was
added to the perfusion solution starting at the 8th fraction and was
maintained throughout the experiments.

2.7. Measurement and calculation of fractional noradrenaline release

After the fractions were collected, 0.5 ml of each perfusate was
mixed with 2 ml of liquid scintillation cocktail. Radioactivity was
determined as described above. The fractional release value represents
the percentage of the total [3H]NA content present at the beginning of
the fraction collection period that was released from the tissue in a
specific fraction. The transmitter release observed in the 4 fractions
following electrical stimulation (fractions 3–6 and 13–16) in addition to
resting release was considered the release resulting from stimulation
(FRS1 and FRS2). The release in the two subsequent consecutive
fractions (7–8 and 17–18) was considered resting release.

2.8. Electron microscopy

The transmission electron microscopy images were obtained from
healthy (control) and hemisected (3 days after SCI) spinal cord tissue
ipsilateral to the injury at segment L5, lamina VIII, where most of the
locus coeruleus axons terminate (Clark and Proudfit, 1991). The
surgical procedure and tissue preparation were performed as described
above. The spinal cord slices were fixed in 4% paraformaldehyde, post-
fixed in 1% OsO4 (Taab, Aldermaston, Berkshire, UK) for 20 min,
dehydrated in a graded ethanol series and embedded in Taab 812
(Taab). During dehydration, the sections were treated with 1% uranyl
acetate in 50% ethanol for 20 min. Ultrathin sections were cut with a
Leica EM UC6 ultramicrotome (Leica Microsystems, Vienna, Austria)
and analysed using a Hitachi 7100 transmission electron microscope
(Hitachi, Tokyo, Japan) equipped with a Veleta side-mounted TEM CCD
camera (Olympus, Tokyo, Japan). Contrast and brightness of electron
micrographs were edited using Adobe Photoshop CS3 (Adobe Systems,
San Jose, CA, USA).
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2.9. Statistical analysis

Radioactivity values corresponding to [3H]NA uptake and release
were statistically analysed using two-way ANOVA with RopStat statis-
tical software (RopStat, Budapest, Hungary). The data are presented as
means ± SD. A p value of< 0.05 was considered statistically signifi-
cant.

3. Results

3.1. Uptake and release in the control experiments

Following tissue loading, the average uptake of radioactivity in the
spinal cord slices from the control group was 149 ± 32 kBq/g
(Table 1, n = 4). Over a 200 s resting period, the average release from
the slices was 0.67 ± 0.13% of the total radioactivity content of the
tissue (FRR1). In response to electrical stimulation (S1) (3 Hz, 240
shocks), the release was 2.60 ± 0.45% of the total radioactivity
present in the slices in the 3rd fraction. Subsequently, the rate slowly
decreased to its resting value (Fig. 1a). In response to the second
electrical stimulation (S2), the increase was less pronounced
(FRS2 = 1.94 ± 0.57%) and the FRS2/FRS1 ratio was 0.73 ± 0.21
(n = 7).

3.2. Effects of surgical hemisection

At up to 3 days after surgical hemisection, [3H]NA uptake did not
change compared to control experiments (158 ± 10 kBq/g, p > 0.05)
(Table 1, n = 4). However, surgical hemisection resulted in an overall
increase in the amount of [3H]NA released at rest. FRR1 was
0.81 ± 0.09% 3 days after and 1.01 ± 0.46% 14 days after hemisec-
tion; these values were significantly higher (p < 0.01) than the values
measured in control slices. These findings are shown in Fig. 1, and the
release observed 3 days after SCI was compared with the release
observed in the control group. After electrical stimulation, the max-
imum release (3rd fraction) increased from 2.60 ± 0.45% to
3.12 ± 0.53%, and the FRS1 increased from 2.73 ± 0.68% to
3.21 ± 0.74% (Fig. 2); both of these changes were statistically

significant (p < 0.05). These numbers correspond to a 20% increase
in resting release and an additional 18% increase in stimulated [3H]NA
release following hemisection. A significant change in the FRS2/FRS1
ratio was not observed after hemisection. The ratio was 0.63 at 1 day
after SCI and 0.70 at 3 days after SCI (n = 7 in each group).

Fourteen days after hemisection, large variations were observed in
the fractional release values, and only 3 out of the 7 experiments
resulted in a regular curve characteristic of stimulated transmitter
release. Thus, we did not perform experiments with nisoxetine in this
group.

3.3. Effect of nisoxetine

Noradrenaline uptake was potently inhibited by the application of
the noradrenaline reuptake inhibitor nisoxetine at a concentration of
1 μM during the preincubation and loading period, resulting in an
average radioactivity of 37 ± 9 kBq/g (control + nisoxetine) in the
tissues, a 75% decrease in uptake compared with the control group.
Three days after hemisection, nisoxetine decreased noradrenaline
uptake to a significantly (p < 0.01) lesser extent (61 ± 16 kBq/g)
(Table 1, n = 4 in each group).

In half of the release experiments, nisoxetine was added to the
superfusion solution starting at the 8th fraction to inhibit [3H]NA
reuptake. Thus, the release evoked by the second stimulation (S2) was
significantly higher and more [3H]NA remained in the collected super-
fusion solution (Fig. 3b), resulting in a significant (p < 0.01) increase
in noradrenaline release (FRS2/FRS1 = 1.26 ± 0.20, n = 7).

An examination of the effect of nisoxetine on slices prepared from
the injured spinal cord revealed a significant increase in the FRS2/FRS1

Table 1
Effects of spinal cord hemisection and nisoxetine on [3H]noradrenaline uptake in spinal
cord slices. 1 μM nisoxetine was added to the slices during preincubation and maintained
throughout the experiments. n = 16.

Uptake (kBq/g)

Control 3 days after SCI p

No drug 149 ± 32 158 ± 10 not significant
Nisoxetine, 1 μM 37 ± 9 61 ± 16 <0.01
p <0.01 <0.01

Fig. 1. Fractional release of [3H]noradrenaline from spinal cord slices in response to electrical field stimulation at the beginning of the 3rd and 13th fractions. 1 μM nisoxetine was added
to the superfusion solution starting at the 8th fraction. Non-injured tissue (a), 3 days after SCI by hemisection (b). n = 28.

Fig. 2. FRS1 and FRS2 values, which represent the release following electrical stimulation
(S1 and S2) in addition to the resting release. n = 28. Note, that after SCI by hemisection
nisoxetine (1 μM) failed to increase the release of [3H]NA in response to field stimulation.
[3H] release values expressed in kBq/g: FRS1 (control 4.07 ± 1.01, after SCI
4.85 ± 1.12), FRS2 (control 2.72 ± 0.80, after SCI 3.18 ± 0.66), FRS2 with nisoxetine
(control 4.43 ± 0.33, after SCI 4.35 ± 0.44).
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ratio (p < 0.01) in each group: 1.05 ± 0.21 at 1 day after SCI and
1.07 ± 0.11 at 3 days after SCI. In the presence of nisoxetine, FRS2
was increased by 74% in the control group; at 1 and 3 days after SCI,
this value decreased to 61% and 37%, respectively (Fig. 2).

3.4. Electron microscopy images

Images of the healthy and injured spinal cord tissue were obtained
3 days after SCI to evaluate how the morphology of the tissue correlates
with the findings of the release experiments.

At 3 days after SCI, the L5 spinal cord segment, which is located
approximately 2 mm caudal to the injury, showed overall degeneration
of the neuronal organelles and myelin sheath. However, many intact
synapses were observed (Fig. 4).

4. Discussion

Noradrenergic innervation is a major neurotransmitter system in the
CNS (including the spinal cord) that is involved in many behavioural
processes. Three different ponto-spinal noradrenergic pathways origi-
nating from A5, A6 (locus coeruleus), and A7 cell groups innervate the
ipsilateral spinal cord (Clark and Proudfit, 1991; Bruinstroop et al.,
2012). NA release in the spinal cord has been shown to be involved in
the control of somatosensory transmission (Bruinstroop et al., 2012).

This study is the first to reveal the modulation of NA release from
the decentralised nerve terminals of noradrenergic nerves by unilateral
hemisection of the spinal cord in adult rats. The experiments in the
present study were performed to determine whether an artificially
induced spinal cord injury had similar effects on noradrenaline uptake
and release as the simulation of ischaemic conditions in healthy tissues
in vitro (Uchihashi et al., 1998; Nakai et al., 1999; Sumiya et al., 2001;
Sircuta et al., 2016) and in vivo (Globus et al., 1989). In contrast to the
above-mentioned studies, normal Krebs perfusion solution was used in
the present study, but the spinal cord tissue was isolated caudally and in
close proximity (2–5 mm) to an artificial injury (Schoultz and DeLuca,

1974). After surgical hemisection, the rats showed typical signs of
hemiplegia, with no movement of the right hindlimb. After 3 days, the
macroscopic appearance of the spinal cord resembled healthy tissue.
Electron microscopy images revealed overall degeneration of the
neuronal organelles and myelin sheath, but many synapses remained
intact, despite the surrounding inflammation and their detachment
from the cell body. Both resting and stimulation-evoked NA release
were observed. Thus, NA release was observed from the terminals
several days after and caudal to hemisection. However, both resting and
stimulated [3H]NA release increased significantly after injury, indicat-
ing that the reuptake of the transmitter was impaired.

Surprisingly, the [3H]NA uptake values observed 3 days after SCI
were similar to the values observed in the control group, consistent
with the findings of Globus et al. (1989) and Hofmeijer and Putten
(2012), who showed that the changes in synaptic function observed
during ischaemia are reversible following the restoration of blood flow
in the brain.

Based on the results of the present study, hemisection prevented
nisoxetine, a potent inhibitor of noradrenaline reuptake in the spinal
cord, from binding to the noradrenergic terminals and increasing
stimulation-evoked NA release. Hemisection induced significant
changes in the characteristics of inhibition. Although FRS2 was 74%
higher in the nisoxetine-treated group than in the control group
(without nisoxetine), the effect of nisoxetine was decreased to 61%
and 37% at 1 and 3 days after SCI, respectively, indicating that the
noradrenaline reuptake inhibitor gradually lost its effectiveness after
hemisection. A similar trend was observed in the uptake experiments.

This finding likely reflects the observation that some of the
noradrenaline transporters (NET) act as reverse carriers after injury
(Fig. 3c) (Vizi et al., 1982), suggesting that there is a different
magnitude but similar underlying mechanism of increased NA-release
during ischaemia and decentralisation. As proposed in the study by
Uchihashi et al. (1998) [3H]NA release from the spinal cord during
ischaemia is not subject to presynaptic modulation by α2A-adrenocep-
tors, indicating that release was not associated with exocytosis but

Fig. 3. Following an action potential or external electrical stimulation, [3H]noradrenaline is released from vesicles into the synaptic cleft. Some of this compound is taken up again by
noradrenaline transporters (NET), whereas the remaining [3H]noradrenaline is degraded by enzymes or washed out into the superfusion solution and collected as effluent, as in the
present study (a). When reuptake is inhibited with nisoxetine, a larger part of the released transmitter is washed out, resulting in a higher value for the measured noradrenaline release
(b). A similar increase occurs when the transporter function is reversed in response to spinal cord injury (c).

Fig. 4. Electron microscopy image of the spinal cord (segment L5, lamina VIII, ipsilateral to the injury). Synapses with intact morphology (arrow) were observed, even at 3 days after SCI.
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rather the reverse operation of the carrier (Uchihashi et al., 1998;
Sumiya et al., 2001).

The finding that NET loses its capacity to take up NA is consistent
with the observations of Szot et al. (2012), who showed that the
unilateral destruction of the locus coeruleus by 6-hydroxydopamine
reduces the NET binding sites for presynaptic α1- and α2 receptors,
including the sites on the contralateral side. Notably, the latter
observation requires further explanation. Based on our experiments,
hemisection at the lumbar level exclusively affects the terminal part of
noradrenergic neurons.

Glutamate release is enhanced and uptake processes are concomi-
tantly impaired in response to spinal cord injury (Demediuk et al.,
1989; Inquimbert et al., 2012) or ischaemia of the spinal cord (Simpson
et al., 1990) and the transmitter exhibits local neurotoxic effects
(Wrathall et al., 1992) by inducing calcium-mediated neuronal death.
The activation of NMDA and AMPA receptors induces noradrenaline
release (Klarica et al., 1996; Sundström et al., 1998), and conversely,
noradrenaline potentiates NMDA-mediated effects on the spinal cord
(Wohlberg et al., 1987). Plausibly, noradrenaline and glutamate
mutually reinforce the excessive release and injurious excitotoxic
effects of the other. This phenomenon may play a role in the
inflammation and subsequent loss of function following spinal cord
injuries.

Based on the results of the present study, spinal cord hemisection
increases the extracellular levels of NA in the affected spinal cord tissue,
which may be cytotoxic due to the presence of its metabolites (DOPAL
and DOPEGAL) (Burke et al., 2004). However, this increase is less
pronounced than the ischaemic injury-induced increase observed in
other studies (Uchihashi et al., 1998; Nakai et al., 1999; Sumiya et al.,
2001).

5. Conclusions

The results of the present study suggest the following:

• A 20% increase in resting release and an additional 18% increase in
stimulated noradrenaline release from the perfused spinal cord are
observed 3 days after spinal cord hemisection. Although this change
is statistically significant, it is well below the magnitude measured
during ischaemia.

• Nisoxetine inhibits noradrenaline reuptake in healthy tissue, but
after hemisection, this compound gradually loses its effectiveness at
inhibiting NA reuptake, presumably reflecting a gradual loss of the
binding capacity for the noradrenaline transporter, which acts as a
reverse carrier.

We conclude that spinal cord injury leads to an increase in the
extraneuronal concentration of NA, primarily reflecting an impairment
in NA uptake.
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