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Abstract 

Direct measurements of aboveground plant biomass are often not feasible, thus various 

biomass proxies are in use. To obtain biomass estimates, these proxies are calibrated against 

actual biomass, and the resulting proxy-biomass relationship is often used across multiple 

years and experimental treatments within a study. We investigated how the proxy-biomass 

relationship varied across years and considered interannual precipitation variability as a 

contributing factor. 

We sampled a perennial grassland for ten consecutive years (2003-2012) in central Hungary 

and estimated vegetation cover and Normalized Difference Vegetation Index (NDVI); two 

frequently used biomass proxies representing two contrasting methods. Aboveground live 

herbaceous plant biomass was harvested from each plot after sampling, and regression models 

were used to assess the relationship between biomass proxies and actual aboveground 

biomass. 

We found that cover and NDVI were equally effective at estimating biomass. However, the 

relationship between either biomass proxy and actual biomass varied amongst years, and this 

was related to the amount of precipitation. In wetter years, proxy-biomass relationships were 

steeper than in drier years. 

These results indicate that using the same proxy-biomass relationship across different years or 

precipitation regimes may not be valid and may introduce systematic error into biomass 

estimations in long-term studies or precipitation manipulation experiments. 
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1. Introduction 

Aboveground plant biomass and aboveground net primary productivity (ANPP) derived from 

biomass data are amongst the most important properties of ecosystems (Eisfelder et al., 2017; 

Knapp et al., 2015; McNaughton et al., 1989). The direct way for assessing aboveground 

biomass in grasslands is the harvest method, when the aboveground plant parts are cut, 

divided into fractions, dried, and weighed (Singh et al., 1975). However, direct measurement 

of biomass is very time intensive and is not feasible in studies where plot size is limited and 

regular biomass removal is not part of system dynamics. Therefore, non-destructive biomass 

estimation methods are widely applied in ecosystem research (Paruelo et al., 1997), especially 

in long-term field experiments (Kongstad et al., 2012; Tielbörger et al., 2014). The values 

obtained from these non-destructive methods are either reported as proxies for aboveground 

biomass, or are converted to aboveground biomass via allometric equations obtained through 

calibration (Byrne et al., 2011; Sala and Austin, 2000; Singh et al., 1975). 

The relationship between biomass proxies and actual biomass (called as “proxy-biomass 

relationship” hereinafter) may change within an ecosystem, but this is often overlooked in 

multi-year studies. Williamson (1987) found that the proxy-biomass relationship in shortgrass 

prairie varied markedly between years and even seasons. Despite this, long-term studies often 

only calibrate proxies to aboveground biomass once (Filella et al., 2004; Wang et al., 2012; 

Wardle et al., 2016; Wu et al., 2012; Yahdjian and Sala, 2006), and the resulting relationship 

is used for multiple years. Even when calibrations are performed yearly, they are generally 

only conducted under control or ambient conditions (Byrne et al., 2013; Evans and Burke, 

2013; Köchy and Wilson, 2004; Kongstad et al., 2012; Tielbörger et al., 2014). However, 

these relationships may be inappropriate for estimating biomass across all treatments, since 

experimental treatments may change the relationship between biomass proxies and actual 

biomass. For example, both fertilization (Shaver et al., 2001) and grazing (Frank and 

McNaughton, 1990) have been shown to alter the proxy-biomass relationship due to changes 

in plant community composition (Sala and Austin, 2000; Shaver et al., 2001). These findings 

raise the question whether the same relationship can be used across multiple years or across 

different treatments. 

The objective of this study was to evaluate the interannual validity of the relationship between 

biomass proxies and actual live herbaceous biomass for two biomass estimation methods: 

visual cover estimation and Normalized Difference Vegetation Index (NDVI) measured by 

field spectroscopy. Furthermore, since these non-destructive methods are often used in long-

term experiments where precipitation is manipulated, in a second step we wanted to test if the 
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proxy-biomass relationship is affected by the amount of precipitation in the different years. 

Specifically, we asked three questions: (1) How do the two non-destructive biomass 

estimation methods, visual cover estimation and NDVI, differ in accuracy? (2) How does the 

proxy-biomass relationship differ among years? (3) How is the proxy-biomass relationship 

related to the precipitation of different years? 
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2. Materials and methods 

2.1. Study site and sampling design 

The study site was located in the Kiskunság National Park (Central Hungary), in Orgovány (N 

46˚ 47’, E 19˚ 28’). The climate of the study area is temperate continental. Mean annual 

precipitation is around 500 mm; mean monthly temperature ranges from -2 °C in January to 

21 °C in July (Kovács-Láng et al., 2000). The parent material is wind-blown calcareous sand, 

resulting in a very poor sandy soil (sand content is over 95%) with extremely low (<1%) 

humus content. The natural vegetation is forest-steppe, where grassland patches range from 

semidesert-like grasslands (dominated by Festuca vaginata Waldst. & Kit. ex Willd., and 

Stipa pennata L.) to steppe-like grasslands (dominated by Poa angustifolia L., Stipa capillata 

L., and Scirpoides holoschoenus (L.) Soják). These grasslands are completely unmanaged, 

and only moderately grazed by wild herbivores (roe deers, hares, and invertebrates). 

To study the relationship between biomass proxies obtained from non-destructive sampling 

and harvested biomass, we chose ten homogeneous grassland patches (ca. 5 m in diameter) 

that covered the variation in grassland productivity within a 1-km2 area. This resulted in a 

relatively wide range of biomass values which made it easier to estimate relationship between 

biomass proxies and actual biomass. We sampled one, randomly located 0.5 m x 0.5 m plot in 

each patch in each year between 2003 and 2012. Patches were permanent, but plots within 

patches were not permanent to avoid the effect of disturbance due to repeated sampling. In 

each plot, in each year, we estimated two biomass proxies in a single day in mid-June at peak 

aboveground green biomass (Table S6): plant cover through visual cover estimation and 

NDVI calculated from field spectroscopy data. 

 

2.2. Sampling methods 

In cover estimation, canopy cover of each vascular species was visually estimated. We 

typically used values of 25%, 30%, 35% etc. above 20% cover, full numbers between 2% and 

20%, and estimated to one decimal digit when cover was below 2%, i.e. 1.5% or 0.4%, in 

accordance with findings that finer resolution is needed at the ends of the scale (Hahn and 

Scheuring, 2003). Sampling was performed by the same person (G. Ónodi) throughout the 

study according to previous recommendations (Sykes et al., 1983). We calculated total canopy 

cover of all vascular plant species by summing up all species’ covers (referred to as ‘cover’ 

hereinafter). In addition, we also calculated the cover of species groups based on lifeform 

(graminoids and forbs) and life span (annuals and perennials) (Table S7). Most of our species 

were too rare (less than six occurrences) to conduct species-level analysis. 
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NDVI data were obtained by measuring incoming and reflected light intensity at eight 

wavebands using a portable Cropscan MSR87 multispectral radiometer (Cropscan, Inc., 

Rochester, Minnesota, USA) in each sampling plot. Measurements were taken at 1.8 meters 

height above the center of each sampling plot, thus capturing the entirety of each sampling 

unit, with some additional area with the same vegetation. We calculated NDVI (Tucker, 1979) 

values based on reflectance measured by the red (R; centered at 660 nm, bandwidth 10 nm) 

and near-infrared (NIR; centered at 810 nm, bandwidth 10 nm) channels of the instrument: 

NDVI = (NIR810 – R660) / (NIR810 + R660) 

NDVI is correlated with the amount of green vegetation (Tucker and Sellers, 1986), and can 

be used as a proxy of aboveground live biomass in temperate perennial grasslands (Briggs et 

al., 1997; Paruelo et al., 1997). 

Aboveground vascular plant biomass was harvested in each sampling plot immediately after 

completing non-destructive sampling. We sorted biomass by species, and separated live 

materials from the standing dead and litter components. Only live material was considered in 

our analyses. Biomass samples were dried at 60 °C for 48 hours and then weighed. 

 

2.3. Data analysis 

The relationships between biomass proxies and harvested biomass were tested by linear 

regression models for each year separately (Faraway, 2005) in accordance with numerous 

similar methodological studies (Redjadj et al., 2012; Röttgermann et al., 2000). Goodness of 

the fitted calibration lines was measures by coefficient of determination (R2) and root mean 

squared error (RMSE). The coefficients of determination (R2) of the regression models of the 

two proxies obtained for each of the ten years were compared using pairwise t-tests (in this 

comparison RMSE would give the same results). The coefficients of determination met the 

assumptions of normality for the paired t-test. RMSE was also calculated for cases when 

calibration lines fitted in each year were applied in other years. 

Linear mixed models were built for biomass as dependent variables and biomass proxy 

(visually estimated cover or NDVI), year (as categorical variable), and their interaction as 

fixed explanatory variables and plot as random factor (Zuur et al. 2009). In order to explore 

the effect of precipitation on the relationship between proxies and biomass, we substituted 

precipitation for year in a second set of linear mixed models. Here, we considered cumulative 

precipitation during the 60 days preceding biomass harvest (Table S6), because a preliminary 

analysis showed that this period had the highest correlation with biomass in our study system 

(Fig. S2). All analyses were carried out in R (R Core Team, 2013), for mixed models the 
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"nlme" (Pinheiro et al. 2016), for R2 calculation the "MuMIn" (Barton 2016) packages were 

used.  
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3. Results 

We found positive relationships between biomass proxies (visually estimated cover or NDVI) 

and aboveground live biomass for both methods in each year (Fig. S3). Across the ten-year 

period, the two methods did not differ in the coefficient of determination (R2) of the 

regressions (Fig. 1) (mean R2
cover = 0.8252, mean R2NDVI = 0.8042, paired t-test t = 0.9117, df 

= 9, P = 0.3857). Annual mean values of biomass and biomass proxies showed no linear trend 

through time (Fig. S1). 

 

Fig. 1 Coefficients of determination (R2) of linear regression models between visually 

estimated cover or NDVI and biomass for ten years (for each regression, n = 10, P < 0.011). 

For more information about the relationships between harvested biomass and biomass proxies 

in the different years see Fig. S3. 

 

In the linear mixed models, biomass proxies (visually estimated cover or NDVI) explained 

much of the variance in aboveground live biomass (Table 1). For each proxy, the proxy-

biomass relationship varied between years (see cover*year and NDVI*year in Table 1). 

Consequently, regressions between biomass proxies and biomass varied considerably among 

years for both proxies (Fig. 2a,b). At average NDVI of the whole dataset (0.467), modelled 

biomass ranged from 73 g/m2 to 192 g/m2 (ca. 2.6-fold difference). Similarly, modelled 
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biomass at the mean visually estimated cover (59%) ranged from 90 g/m2 to 161 g/m2 (ca. 

1.8-fold difference) depending on the year. Possible estimation error when a model fitted to 

one year was applied to other years ranged from 19.8 g/m2 to 119.0 g/m2 for visual cover 

estimation, and from 24.2 g/m2 to 274.7 g/m2 for NDVI (Table S1). 

 

Table 1 Linear mixed models of total aboveground live biomass 

Explanatory variables DF F P 

cover * year model R2 = 0.7175 

 intercept 1, 71 113.67 <0.001 

 cover 1, 71 139.41 <0.001 

 year 9, 71 5.21 <0.001 

 cover * year 9, 71 3.71 <0.001 

NDVI * year model R2 = 0.7125 

 intercept 1, 71 108.36 <0.001 

 NDVI 1, 71 140.64 <0.001 

 year 9, 71 4.17 <0.001 

 NDVI*year 9, 71 4.15 <0.001 

cover * precipitation model R2 = 0.5158 

 intercept 1, 87 65.17 <0.001 

 cover 1, 87 93.84 <0.001 

 precipitation 1, 87 8.69 0.004 

 cover * precipitation 1, 87 10.82 0.002 

NDVI * precipitation model R2 = 0.5299 

 intercept 1, 87 68.99 <0.001 

 NDVI 1, 87 95.14 <0.001 

 precipitation 1, 87 0.07 0.797 

 NDVI*precipitation 1, 87 10.82 0.002 

R2 shows the adjusted coefficient of determination of the marginal (fixed factor) effect for 

each model. DF shows the numerator and denominator degrees of freedom, F and P are the 

statistics and significance levels of the analysis. 
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When year was replaced by precipitation in the linear mixed models, the cover*precipitation 

or NDVI*precipitation interaction terms were also significant (Table 1). Thus, cover-biomass 

or NDVI-biomass relationships were dependent on the amount of precipitation. Regression 

lines became steeper with increasing precipitation (Fig. 2c,d). 

 

 

Fig. 2 Regression lines between visually estimated cover (a) or NDVI (b) and aboveground 

live biomass for each of the ten years; and the effect of precipitation on the linear regression 

models of visual cover estimation (c) and NDVI (d). 

When we performed these same analyses for the cover of different plant functional groups 

(annuals/perennials, or forbs/graminoids) instead of total vascular cover, the significant 

cover*year and cover*precipitation interaction terms were maintained in the linear mixed 

models (Table S2-S5). 
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4. Discussion 

We found that proxy-biomass relationships varied by year for both visual cover estimation 

and NDVI, which indicates that a single relationship does not hold across multiple years. 

These findings imply that yearly calibrations may be necessary for reliable biomass 

estimation, as carried out in some long-term studies (Tielbörger et al., 2014; Zhang and 

Welker, 1996). Our results do not support the applicability of a proxy-biomass relationship in 

a subsequent year as found by Wylie et al. (2002), and question the use of a single 

relationship across multiple years in long-term studies (Brancaleoni et al., 2007; Filella et al., 

2004; Lee et al., 2014; Wardle et al., 2016; Wu et al., 2012; Yahdjian and Sala, 2006). 

The different proxy-biomass relationships across years may result from changing morphology 

within each species, or from an altered share of constituent species, i.e. a compositional 

change. Water availability, for instance, has been shown to affect the specific leaf area (SLA) 

of plant species (Milla et al., 2008). By changing SLA, water availability can alter the density 

of biomass within a given area and can therefore cause differences in actual biomass between 

sites or years with the same biomass proxy value. In addition, as canopy structure depends 

greatly on plant species morphology, changing species composition between years or 

experimental treatments may have a profound effect on how biomass proxies translate into 

biomass (Eisfelder et al., 2017; Shaver et al., 2001). This finding suggests that the labour-

intensive approach of calibrating for individual species may be a solution. Indeed, in a 

comprehensive study of 154 species, Huenneke et al. (2001) found only a minority of cases 

when the relationship between a biomass proxy (“volume”) and biomass for single species 

changed between years, seasons, or sites. Calibrating for major species groups (Brancaleoni et 

al., 2007) instead of individual species, however, may not be enough, as we found significant 

year and precipitation effect also for the species groups tested. 

Precipitation is the most important limiting factor of productivity and aboveground 

herbaceous biomass in semi-arid grasslands (Mowll et al., 2015), but its effect on the 

relationship between biomass proxies and biomass has not been documented yet. We showed 

that precipitation affects this relationship for the aboveground live biomass of all vascular 

species and of the studied species groups. This finding implies that applying a relationship 

obtained under a certain precipitation regime for data collected under a different precipitation 

regime may be problematic. It can be particularly misleading in precipitation manipulation 

experiments (Beier et al., 2012; Kröel-Dulay et al., 2015; Wu et al., 2011), where differently 

treated plots receive different amounts of precipitation. As we found that regression lines 

become steeper with increasing amount of precipitation for both methods, establishing a 
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relationship in control plots (or outside the plots) and then applying the same relationship for 

drought or irrigated plots (Evans and Burke, 2013; Köchy and Wilson, 2004; Kongstad et al., 

2012; Tielbörger et al., 2014) may introduce systematic error into biomass estimations. 

The two non-destructive biomass estimation methods, visual cover estimation and NDVI, 

performed similarly well in estimating aboveground plant biomass in our study system (R2 

around 0.8), and provided consistent results regarding the effect of sampling year or 

precipitation. The consistency of our results across the two methods suggests that the effects 

of sampling year and precipitation are robust against changing biomass proxy. The similarly 

high performance of the two methods indicates that both are suitable for estimating above-

ground plant biomass, and method choice can be based on additional things, such as specific 

research question, the structure of the studied vegetation, and the available workforce 

(Catchpole and Wheeler, 1992). 

Given the potential systematic error in proxy-based biomass estimations we demonstrated 

above, one could conclude that we should report proxies and not convert them into biomass 

However, we argue that emphasis should rather be placed on increasing the reliability of 

biomass estimations. Ecosystem responses reported by using biomass proxies (e.g. cover, 

NDVI) only, and not biomass itself, may be valid at the level of each individual study, but it 

makes the synthesis of multiple studies difficult and problematic. A recent meta-analysis of 

vegetation responses to warming in arctic ecosystems (Elmendorf et al., 2012) included 

studies that report biomass, cover, frequency, or point-frame hits, and referred to these metrics 

collectively as “abundance”. However, this aggregate variable may easily be biased by the 

different sensitivities of these various proxies to treatments. Therefore, the importance of 

improved biomass estimations should be emphasized in future studies.  

To better guide future research efforts, we have synthesized the following recommendations. 

1. Whenever possible, direct measurements by biomass harvesting should be preferred over 

biomass estimation by proxy (Fay et al., 2011; Sherry et al., 2008). 2. Where direct harvesting 

is not possible, calibration should be repeated in each year of the study (Byrne et al., 2013; 

Kongstad et al., 2012; Tielbörger et al., 2014; Zhang and Welker, 1996). 3. In precipitation 

manipulation experiments, measuring multiple indicators of vegetation abundance in addition 

to cover, such as height (Byrne et al., 2013; Filella et al., 2004; Kongstad et al., 2012; 

Tielbörger et al., 2014) and leaf blade length (Williamson et al., 1987) may improve the 

calibration. 4. In addition, where multiple calibrations from years with different amounts of 

precipitation are available, the data can be used to parameterize an improved model. This step 

could lead to a higher accuracy of biomass estimation in treatments with different 
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precipitation amounts. 5. In experiments where compositional change may occur, separate 

calibrations for major species (Huenneke et al., 2001; Reichmann et al., 2013) may be 

important to account for changing species composition (Shaver et al., 2001). 6. Finally, when 

an experiment is shut down, a final biomass harvest should be done to evaluate the accuracy 

of non-destructive biomass estimates used during the course of the experiment. 

 

5. Conclusions 

We found that the relationship between biomass proxies and actual live herbaceous biomass 

varied between years, and was affected by interannual precipitation variability. We also 

illustrated that two very different methods – visual cover estimation and field spectroscopy – 

yielded very similar results. Our findings indicate that using the same proxy-biomass 

relationship across different years or precipitation regimes may not be valid, and may 

introduce systematic error into biomass estimations in long-term studies or precipitation 

manipulation experiments. These findings highlight the need for testing the domain of validity 

of proxy-biomass relationships in such studies, and, if necessary, for a refinement of biomass 

estimation methods. 
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