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Abstract

Direct measurements of aboveground plant biomaseften not feasible, thus various
biomass proxies are in use. To obtain biomass atsnthese proxies are calibrated against
actual biomass, and the resulting proxy-biomasgicgiship is often used across multiple
years and experimental treatments within a study.iestigated how the proxy-biomass
relationship varied across years and consideredanhnual precipitation variability as a
contributing factor.

We sampled a perennial grassland for ten consecydiars (2003-2012) in central Hungary
and estimated vegetation cover and Normalized Eiffee Vegetation Index (NDVI); two
frequently used biomass proxies representing twbrasting methods. Aboveground live
herbaceous plant biomass was harvested from eathff@r sampling, and regression models
were used to assess the relationship between bsopnasies and actual aboveground
biomass.

We found that cover and NDVI were equally effectateestimating biomass. However, the
relationship between either biomass proxy and abioaass varied amongst years, and this
was related to the amount of precipitation. In eeyears, proxy-biomass relationships were
steeper than in drier years.

These results indicate that using the same proomass relationship across different years or
precipitation regimes may not be valid and mayoidiice systematic error into biomass

estimations in long-term studies or precipitatioanipulation experiments.
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aboveground plant biomass, field spectroscopyranteual validity, long-term studies,
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1. Introduction

Aboveground plant biomass and aboveground net pyipraductivity (ANPP) derived from
biomass data are amongst the most important prep@ft ecosystems (Eisfelder et al., 2017;
Knapp et al., 2015; McNaughton et al., 1989). Tinead way for assessing aboveground
biomass in grasslands is the harvest method, wieealioveground plant parts are cut,
divided into fractions, dried, and weighed (Singlale 1975). However, direct measurement
of biomass is very time intensive and is not felasib studies where plot size is limited and
regular biomass removal is not part of system dyosnt herefore, non-destructive biomass
estimation methods are widely applied in ecosystsearch (Paruelo et al., 1997), especially
in long-term field experiments (Kongstad et al.120Tielborger et al., 2014). The values
obtained from these non-destructive methods anereieported as proxies for aboveground
biomass, or are converted to aboveground biomasallametric equations obtained through
calibration (Byrne et al., 2011; Sala and Aust®)@, Singh et al., 1975).

The relationship between biomass proxies and abtaalass (called as “proxy-biomass
relationship” hereinafter) may change within ansgsbem, but this is often overlooked in
multi-year studies. Williamson (1987) found thag firoxy-biomass relationship in shortgrass
prairie varied markedly between years and everossa®espite this, long-term studies often
only calibrate proxies to aboveground biomass ¢Riella et al., 2004; Wang et al., 2012;
Wardle et al., 2016; Wu et al., 2012; Yahdjian &adla, 2006), and the resulting relationship
is used for multiple years. Even when calibratiares performed yearly, they are generally
only conducted under control or ambient conditiBwne et al., 2013; Evans and Burke,
2013; Koéchy and Wilson, 2004; Kongstad et al., 20i&lborger et al., 2014). However,
these relationships may be inappropriate for estmgdniomass across all treatments, since
experimental treatments may change the relatiort®tipeen biomass proxies and actual
biomass. For example, both fertilization (Shavealgt2001) and grazing (Frank and
McNaughton, 1990) have been shown to alter theypbaxmass relationship due to changes
in plant community composition (Sala and AustinQ@0Shaver et al., 2001). These findings
raise the question whether the same relationsigeaised across multiple years or across
different treatments.

The objective of this study was to evaluate theramnual validity of the relationship between
biomass proxies and actual live herbaceous biofeasao biomass estimation methods:
visual cover estimation and Normalized Differenaggtation Index (NDVI) measured by
field spectroscopy. Furthermore, since these natrgietive methods are often used in long-

term experiments where precipitation is manipulaiteé second step we wanted to test if the
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proxy-biomass relationship is affected by the ant@fiprecipitation in the different years.
Specifically, we asked three questions: (1) Howitdotwo non-destructive biomass
estimation methods, visual cover estimation and Nffer in accuracy? (2) How does the
proxy-biomass relationship differ among years™@8)v is the proxy-biomass relationship

related to the precipitation of different years?



2. Materials and methods

2.1. Study site and sampling design

The study site was located in the Kiskunsag NatiBiask (Central Hungary), in Orgovany (N
46° 47', E 19° 28’). The climate of the study ai®éemperate continental. Mean annual
precipitation is around 500 mm; mean monthly terapge ranges from -2 °C in January to
21 °C in July (Kovacs-Lang et al., 2000). The pareaterial is wind-blown calcareous sand,
resulting in a very poor sandy soil (sand contemver 95%) with extremely low (<1%)
humus content. The natural vegetation is foregipgewhere grassland patches range from
semidesert-like grasslands (dominatedbstuca vaginata Waldst. & Kit. ex Willd., and

Sipa pennata L.) to steppe-like grasslands (dominatedPoga angustifolia L., Sipa capillata

L., andScirpoides holoschoenus (L.) Sojak). These grasslands are completely ungetha

and only moderately grazed by wild herbivores (eers, hares, and invertebrates).

To study the relationship between biomass proxXraioed from non-destructive sampling
and harvested biomass, we chose ten homogeneastagich patches (ca. 5 m in diameter)
that covered the variation in grassland produgtiwithin a 1-knf area. This resulted in a
relatively wide range of biomass values which miaéasier to estimate relationship between
biomass proxies and actual biomass. We sampledamdomly located 0.5 m x 0.5 m plot in
each patch in each year between 2003 and 201hd2atere permanent, but plots within
patches were not permanent to avoid the effecistditdbance due to repeated sampling. In
each plot, in each year, we estimated two biomessgs in a single day in mid-June at peak
aboveground green biomass (Table S6): plant coweugh visual cover estimation and
NDVI calculated from field spectroscopy data.

2.2. Sampling methods

In cover estimation, canopy cover of each vasa@pacies was visually estimated. We
typically used values of 25%, 30%, 35% etc. abd¥s 2over, full numbers between 2% and
20%, and estimated to one decimal digit when caxges below 2%, i.e. 1.5% or 0.4%, in
accordance with findings that finer resolution éeded at the ends of the scale (Hahn and
Scheuring, 2003). Sampling was performed by theesaenson (G. Onodi) throughout the
study according to previous recommendations (Sgkes, 1983). We calculated total canopy
cover of all vascular plant species by summingluppeecies’ covers (referred to as ‘cover’
hereinafter). In addition, we also calculated theer of species groups based on lifeform
(graminoids and forbs) and life span (annuals ardmmials) (Table S7). Most of our species

were too rare (less than six occurrences) to cdrepecies-level analysis.



NDVI data were obtained by measuring incoming afbbcted light intensity at eight
wavebands using a portable Cropscan MSR87 multispeadiometer (Cropscan, Inc.,
Rochester, Minnesota, USA) in each sampling plaadlirements were taken at 1.8 meters
height above the center of each sampling plot, dagsuring the entirety of each sampling
unit, with some additional area with the same vatgmt. We calculated NDVI (Tucker, 1979)
values based on reflectance measured by the reze(fered at 660 nm, bandwidth 10 nm)
and near-infrared (NIR; centered at 810 nm, banth\d® nm) channels of the instrument:
NDVI = (NIRg10— Res0) / (NIRg10 + Reeo)

NDVI is correlated with the amount of green vegeta{Tucker and Sellers, 1986), and can
be used as a proxy of aboveground live biomassmpeérate perennial grasslands (Briggs et
al., 1997; Paruelo et al., 1997).

Aboveground vascular plant biomass was harvestedéh sampling plot immediately after
completing non-destructive sampling. We sorted laissrby species, and separated live
materials from the standing dead and litter comptmnly live material was considered in

our analyses. Biomass samples were dried at 60rr@3fhours and then weighed.

2.3. Data analysis

The relationships between biomass proxies and smddiomass were tested by linear
regression models for each year separately (Far22@®p) in accordance with numerous
similar methodological studies (Redjad;j et al., 20R6ttgermann et al., 2000). Goodness of
the fitted calibration lines was measures by cofit of determination (£ and root mean
squared error (RMSE). The coefficients of deternigma(R) of the regression models of the
two proxies obtained for each of the ten years werepared using pairwise t-tests (in this
comparison RMSE would give the same results). Tedficients of determination met the
assumptions of normality for the paired t-test. FM&as also calculated for cases when
calibration lines fitted in each year were appliedther years.

Linear mixed models were built for biomass as ddpahvariables and biomass proxy
(visually estimated cover or NDVI), year (as catécgl variable), and their interaction as
fixed explanatory variables and plot as randomoiagZuur et al. 2009). In order to explore
the effect of precipitation on the relationshipvioe¢n proxies and biomass, we substituted
precipitation for year in a second set of lineaxedi models. Here, we considered cumulative
precipitation during the 60 days preceding biontessest (Table S6), because a preliminary
analysis showed that this period had the highasekedion with biomass in our study system

(Fig. S2). All analyses were carried out in R (R&€deam, 2013), for mixed models the



"nime" (Pinheiro et al. 2016), for’Ralculation the "MuMIn" (Barton 2016) packages aver
used.



3. Results

We found positive relationships between biomasgipso(visually estimated cover or NDVI)
and aboveground live biomass for both methods ¢h gaar (Fig. S3). Across the ten-year
period, the two methods did not differ in the camét of determination (B of the

regressions (Fig. 1) (meafRe = 0.8252, mean Rpvi = 0.8042, paired t-test t = 0.9117, df
=9, P =0.3857). Annual mean values of biomasshamuass proxies showed no linear trend
through time (Fig. S1).

1.0

0.8

0.6

Coefficient of determination
04

0.2

0.0

I \
Visually estimated cover NDVI

Method

Fig. 1 Coefficients of determination {Rof linear regression models between visually
estimated cover or NDVI and biomass for ten yefansgach regression, n = 10, P < 0.011).
For more information about the relationships betwlegrvested biomass and biomass proxies
in the different years see Fig. S3.

In the linear mixed models, biomass proxies (vigusdtimated cover or NDVI) explained
much of the variance in aboveground live biomasbld 1). For each proxy, the proxy-
biomass relationship varied between years (seetemar and NDVI*year in Table 1).
Consequently, regressions between biomass proxgebiamass varied considerably among
years for both proxies (Fig. 2a,b). At average ND¥the whole dataset (0.467), modelled
biomass ranged from 73 gfrto 192 g/m (ca. 2.6-fold difference). Similarly, modelled



biomass at the mean visually estimated cover (58#ged from 90 g/fto 161 g/m (ca.
1.8-fold difference) depending on the year. Poss#istimation error when a model fitted to
one year was applied to other years ranged frod g/@f to 119.0 g/rifor visual cover
estimation, and from 24.2 gfto 274.7 g/mfor NDVI (Table S1).

Table 1 Linear mixed models of total abovegroumd biomass

Explanatory variables DF F P
cover * year model R® = 0.7175
intercept 1,71 113.67 <0.001
cover 1,71 139.41 <0.001
year 9,71 5.21 <0.001
cover * year 9,71 3.71 <0.001
NDVI * year model R% = 0.7125
intercept 1,71 108.36  <0.001
NDVI 1,71 140.64 <0.001
year 9,71 4.17 <0.001
NDVI*year 9,71 4.15 <0.001
cover * precipitation model R? = 0.5158
intercept 1, 87 65.17 <0.001
cover 1,87 93.84 <0.001
precipitation 1, 87 8.69 0.004
cover * precipitation 1, 87 10.82 0.002
NDVI * precipitation model R? = 0.5299
intercept 1, 87 68.99 <0.001
NDVI 1, 87 95.14 <0.001
precipitation 1, 87 0.07 0.797
NDVI*precipitation 1, 87 10.82 0.002

R? shows the adjusted coefficient of determinatiothefmarginal (fixed factor) effect for
each model. DF shows the numerator and denomidatgees of freedom, F and P are the

statistics and significance levels of the analysis.
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When year was replaced by precipitation in thedimaixed models, the cover*precipitation
or NDVI*precipitation interaction terms were aldgrsficant (Table 1). Thus, cover-biomass
or NDVI-biomass relationships were dependent oratheunt of precipitation. Regression

lines became steeper with increasing precipitaftog. 2c,d).
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Fig. 2 Regression lines between visually estimatagr () or NDVI (b) and aboveground
live biomass for each of the ten years; and thecefif precipitation on the linear regression
models of visual cover estimation (c) and NDVI (d).

When we performed these same analyses for the obdéferent plant functional groups
(annuals/perennials, or forbs/graminoids) instéadtal vascular cover, the significant
cover*year and cover*precipitation interaction termere maintained in the linear mixed
models (Table S2-S5).
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4. Discussion

We found that proxy-biomass relationships variegégr for both visual cover estimation
and NDVI, which indicates that a single relatiopstioes not hold across multiple years.
These findings imply that yearly calibrations mayriecessary for reliable biomass
estimation, as carried out in some long-term stufieelborger et al., 2014; Zhang and
Welker, 1996). Our results do not support the appiliity of a proxy-biomass relationship in
a subsequent year as found by Wylie et al. (2001),question the use of a single
relationship across multiple years in long-terndsds (Brancaleoni et al., 2007; Filella et al.,
2004; Lee et al., 2014; Wardle et al., 2016; Walgt2012; Yahdjian and Sala, 2006).

The different proxy-biomass relationships acrossyenay result from changing morphology
within each species, or from an altered share p$titnent species, i.e. a compositional
change. Water availability, for instance, has b&®wn to affect the specific leaf area (SLA)
of plant species (Milla et al., 2008). By changBIgA, water availability can alter the density
of biomass within a given area and can therefousedifferences in actual biomass between
sites or years with the same biomass proxy vatuadtition, as canopy structure depends
greatly on plant species morphology, changing ggecbmposition between years or
experimental treatments may have a profound effe¢tow biomass proxies translate into
biomass (Eisfelder et al., 2017; Shaver et al. 1200his finding suggests that the labour-
intensive approach of calibrating for individuaksges may be a solution. Indeed, in a
comprehensive study of 154 species, Huenneke Qfl1) found only a minority of cases
when the relationship between a biomass proxy (Iiva”) and biomass for single species
changed between years, seasons, or sites. Calidpfatimajor species groups (Brancaleoni et
al., 2007) instead of individual species, howewgay not be enough, as we found significant
year and precipitation effect also for the spegmesips tested.

Precipitation is the most important limiting factafrproductivity and aboveground
herbaceous biomass in semi-arid grasslands (Mawll,e2015), but its effect on the
relationship between biomass proxies and biomassdiabeen documented yet. We showed
that precipitation affects this relationship foe thboveground live biomass of all vascular
species and of the studied species groups. Thdsfinmplies that applying a relationship
obtained under a certain precipitation regime ftadollected under a different precipitation
regime may be problematic. It can be particularigleading in precipitation manipulation
experiments (Beier et al., 2012; Krbéel-Dulay et 2015; Wu et al., 2011), where differently
treated plots receive different amounts of preatmn. As we found that regression lines

become steeper with increasing amount of precipitdor both methods, establishing a
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relationship in control plots (or outside the pjaiad then applying the same relationship for
drought or irrigated plots (Evans and Burke, 2K&;hy and Wilson, 2004; Kongstad et al.,
2012; Tielborger et al., 2014) may introduce systigererror into biomass estimations.

The two non-destructive biomass estimation methadsal cover estimation and NDVI,
performed similarly well in estimating abovegroyslent biomass in our study systenf (R
around 0.8), and provided consistent results regaite effect of sampling year or
precipitation. The consistency of our results astbe two methods suggests that the effects
of sampling year and precipitation are robust agfjathanging biomass proxy. The similarly
high performance of the two methods indicates blo#tt are suitable for estimating above-
ground plant biomass, and method choice can bellmsadditional things, such as specific
research question, the structure of the studiedtatign, and the available workforce
(Catchpole and Wheeler, 1992).

Given the potential systematic error in proxy-baseanass estimations we demonstrated
above, one could conclude that we should reportigscand not convert them into biomass
However, we argue that emphasis should ratherdmegdlon increasing the reliability of
biomass estimations. Ecosystem responses reportesirig biomass proxies (e.g. cover,
NDVI) only, and not biomass itself, may be validlz level of each individual study, but it
makes the synthesis of multiple studies difficuid roblematic. A recent meta-analysis of
vegetation responses to warming in arctic ecosys{&imendorf et al., 2012) included
studies that report biomass, cover, frequencyportgrame hits, and referred to these metrics
collectively as “abundance”. However, this aggregatriable may easily be biased by the
different sensitivities of these various proxiesremtments. Therefore, the importance of
improved biomass estimations should be emphasiz&dure studies.

To better guide future research efforts, we havehsgsized the following recommendations.
1. Whenever possible, direct measurements by biomawesting should be preferred over
biomass estimation by proxy (Fay et al., 2011; 8hetral., 2008). 2. Where direct harvesting
is not possible, calibration should be repeateghich year of the study (Byrne et al., 2013;
Kongstad et al., 2012; Tielborger et al., 2014;r&hand Welker, 1996). 3. In precipitation
manipulation experiments, measuring multiple intticaof vegetation abundance in addition
to cover, such as height (Byrne et al., 2013; Eilet al., 2004; Kongstad et al., 2012;
Tielborger et al., 2014) and leaf blade length (Mhhson et al., 1987) may improve the
calibration. 4. In addition, where multiple caliboas from years with different amounts of
precipitation are available, the data can be usgéitameterize an improved model. This step

could lead to a higher accuracy of biomass estonati treatments with different
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precipitation amounts. 5. In experiments where cagitpnal change may occur, separate
calibrations for major species (Huenneke et alb12®eichmann et al., 2013) may be
important to account for changing species compositshaver et al., 2001). 6. Finally, when
an experiment is shut down, a final biomass harstestild be done to evaluate the accuracy

of non-destructive biomass estimates used duriagalrse of the experiment.

5. Conclusions

We found that the relationship between biomassipsoand actual live herbaceous biomass
varied between years, and was affected by intedmpracipitation variability. We also
illustrated that two very different methods — visc@aver estimation and field spectroscopy —
yielded very similar results. Our findings indicaéibat using the same proxy-biomass
relationship across different years or precipitatiegimes may not be valid, and may
introduce systematic error into biomass estimatiorisng-term studies or precipitation
manipulation experiments. These findings highlidpet need for testing the domain of validity
of proxy-biomass relationships in such studies, &ntkcessary, for a refinement of biomass

estimation methods.
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