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Summary 

Human confidence judgments are thought to originate from metacognitive processes that 

provide a subjective assessment about one’s beliefs. Alternatively, confidence is framed in 

mathematics as an objective statistical quantity: the estimated probability that a chosen 

hypothesis is correct. Despite similar terminology, it remains unclear whether the 

subjective feeling of confidence is related to the objective, statistical computation of 

confidence. To address this, we collected confidence reports from humans performing 

perceptual and knowledge-based psychometric decision tasks. We observed two 

counterintuitive patterns relating confidence to choice and evidence: apparent 

overconfidence in choices based on uninformative evidence, and for erroneous choices, that 

confidence decreased with increasing evidence strength. We show that these patterns 

lawfully arise when statistical confidence qualifies a decision. Furthermore, statistical 

confidence quantitatively accounted for human confidence in our tasks without 

necessitating heuristic operations. Accordingly, we suggest that the human feeling of 

confidence originates from a mental computation of statistical confidence. 

 

Introduction  

The scientific study of confidence has emerged from different traditions, reflecting its dual manifestation 

as a subjective feeling and an objective forecast.  In the psychological tradition, confidence is thought to 

arise from the monitoring of mental content; it is sometimes framed as a form of metacognition associated 

with other subjective human qualities, such as introspection, awareness and even self-reflective 

consciousness (Charles et al., 2013; Flavell, 1979; Kunimoto et al., 2001; Lau and Rosenthal, 2011; 

Metcalfe and Shimamura, 1994). A wealth of studies has confirmed that humans possess this ability, and 

have identified conditions under which confidence appears to be miscalibrated, predicting outcomes sub-

optimally (Bar-Tal et al., 2001; Baranski and Petrusic, 1994; Björkman et al., 1993; Camerer and Lovallo, 

1999; Griffin and Tversky, 1992; Juslin et al., 2000; Kvidera and Koutstaal, 2008; Moore and Healy, 

2008; Olsson and Winman, 1996; Shea et al., 2014; Stankov, 1998). In fact, human confidence often does 

not appear to reflect the underlying performance, suggesting that it is generated by an error-prone 

heuristic computation (Gigerenzer and Goldstein, 1996; Koriat, 2012; Tversky and Kahneman, 1974).  

A separate construct termed “confidence” has also been studied in many disciplines as a wholly objective 

mathematical quantity. Formally defined as the Bayesian posterior probability that a decision maker is 

correct, confidence refers to a computational tool used in statistical analysis to assess hypotheses based on 

noisy or unreliable evidence. This confidence formulation is central to statistical decision theory and can 

be exploited to improve machine learning algorithms (Schapire and Singer, 1999; Sollich, 2002). 

Statistical models have also been used successfully to account for the perceptual and motor systems in 

decision-making, which obey Bayesian principles when faced with uncertainty (Ernst and Banks, 2002; 

Fetsch et al., 2013; Fiser et al., 2010; Körding and Wolpert, 2004; Pouget et al., 2013; Stocker and 

Simoncelli, 2006; Trommershäuser et al., 2008). However, less is known about the degree to which these 

same principles can account for central cognitive processes such as confidence (Kepecs et al., 2008; Kiani 

and Shadlen, 2009; Komura et al., 2013; Tenenbaum et al., 2011).  

The idea that the subjective sense of confidence avails a statistical likelihood readout to the decision 

maker has been suggested only sparsely as a conjecture (Griffin and Tversky, 1992). Indeed, the Bayesian 
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confidence computation is often the de facto working assumption in economic studies when comparing 

human confidence to an ideal accuracy predictor. However, numerous attempts to model human 

confidence algorithmically have only considered indirect correlates such as reaction time (Audley, 1960; 

Kiani et al., 2014), decision variable balance (De Martino et al., 2013; Drugowitsch et al., 2014; Insabato 

et al., 2010; Kepecs et al., 2008; Vickers, 1979; Wei and Wang, 2015), decision variable variance (Yeung 

and Summerfield, 2012) and post-decisional deliberation (Pleskac and Busemeyer, 2010). These models 

have successfully accounted for a range of psychometric and chronometric aspects of human confidence. 

Importantly, these algorithmic models can make qualitatively different predictions depending on 

parameter choices, and no unifying predictions have emerged that directly relate these models with 

statistical confidence (Drugowitsch et al., 2014).  

Therefore we sought to better understand how the sense of confidence as a psychological construct relates 

to the statistical confidence formulation. First, we used the statistical formulation to generate empirically 

testable predictions relating confidence to choice correctness and evidence discriminability. We show that 

in two different decision tasks, human confidence reports satisfy these predictions. We further show that 

human confidence can be quantitatively accounted for with a single noise parameter added to model the 

confidence reporting stage of the statistical formulation. This striking similarity between human and 

statistical confidence suggests that a mental computation functionally equivalent to statistical decision 

confidence is performed by the brain, and manifests to humans as a subjective feeling. 

Results 

Decisions are commitments to a specific option among a set of possible alternatives. In statistical terms, 

this commitment can be viewed as a selection of a hypothesis (H1, the alternative hypothesis) against all 

possible alternative choices (H0, the null hypothesis). Thus the choice can be evaluated in terms of a 

hypothesis testing problem:  the null-hypothesis, H0, is that the choice is incorrect, while the alternative 

hypothesis, H1, is that the choice is correct. This formalization immediately suggests a statistical 

definition for decision confidence as the Bayesian posterior probability, which quantifies the degree of 

belief in the chosen hypothesis. Thus we defined confidence, c, as the probability of the alternative 

hypothesis being true given the perceived evidence, referred to as the percept, ̂, and the choice, �: = � �1| ̂, �  

According to this definition, decisions are based on the internal percept, ̂, which is the decision maker’s 
estimate of the corresponding external evidence, d. Hence, both choice and confidence depend on the 

quality of evidence informing the particular decision. However, since the choice can be a stochastic 

function (�) of the percept: � = �( ̂), confidence may depend on the combination of the percept and the 

choice. This way the definition generalizes over any theory of perception, relating the external evidence 

to the percept �( ̂, | , and decision making, relating the percept to the choice � = �( ̂). This definition 

of decision confidence is natural from a statistical perspective (Drugowitsch et al., 2014; Kahneman and 

Tversky, 1972) but difficult to apply to experimentally observed confidence because it is based on the 

percept, a variable internal to the decision maker (as illustrated in Figure 1A). Nevertheless, we show that 

this definition yields several strong, qualitative predictions about statistical decision confidence that can 

be empirically tested.  
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We first sought to generate testable, qualitative predictions about statistical decision confidence in terms 

of empirically measureable quantities. Therefore, we created a Monte Carlo simulation of the statistical 

confidence formulation (see methods). We used a deterministic decision rule such that choices were 

correct if the sign of the external evidence and percept matched. For the simulations we assumed 

Gaussian noise for perception, �( ̂|  to generate an internal percept from an external stimulus on each 

simulation trial. First, we examined how accuracy was related to statistical confidence. We found that all 

levels of statistical confidence predicted the mean choice accuracy (Figure 1B). 

Next, we examined how confidence varies with evidence of differing discriminability. We found that the 

mean statistical confidence for a given level of discriminability increases for correct and decreases for 

incorrect choices (Figure 1C). Interestingly, we found that the average confidence for trials with zero 

evidence discriminability is much higher than 0.5 (chance accuracy) - in this case, our model predicts 

confidence to be precisely mid-level at 0.75.  The prediction of mid-range confidence holds when the 

noise model �( ̂|  produces percepts symmetric about  , and when two other conditions are true, 

common in psychometric testing: first, the range of  yields decision accuracies spanning 0.5 (chance) to 

~1 (perfect), and second, each trial’s  is drawn from the range of  with equal probability. 

 

We next asked whether confidence levels can be used to infer accuracy beyond the psychometric 

function, the proportion of correct choices as a function of evidence discriminability We divided choices 

into low and high confidence (based on a mean split) and found that for each level of evidence 

discriminability, accuracy for high confidence choices is greater than for low confidence choices (Figure 

1D). Taken together these Monte-Carlo simulations illustrate four signatures of decision confidence in 

terms of externally quantifiable variables that can be experimentally examined.  

Confidence reports about auditory perceptual decisions  

Starting from these predictions we sought to examine whether the subjective feeling of confidence 

experienced by humans can be accounted for by the statistical definition of confidence. Under many 

circumstances, self-reported confidence can be modulated by personality traits and contextual factors that 

are difficult to account for. Therefore we used a perceptual decision task that provided precise 

experimental control over the discriminability of evidence sampled by our subjects on each trial, allowing 

us to compare the relationships among observable variables to the predictions shown in Figure 1. We 

designed a two-alternative forced choice perceptual decision task in which we varied auditory sensory 

evidence in a graded manner (Brunton et al., 2013; Sanders and Kepecs, 2012). Subjects listened to 

separate Poisson click streams delivered independently to each ear, and indicated the faster clicking 

stream within 3 seconds with a button press (Figure 2A). To construct trials with graded evidence 

discriminability, we varied the balance of left and right click rates from neutral evidence (50Hz/50Hz) to 

strong (65Hz/35Hz), resulting in subject accuracy ranging from chance to nearly perfect (Figure S1). 

After entering each choice, the click stream shut off and the subject was prompted to indicate their feeling 

of confidence in their choice on a 5-division scale between a random guess (1) and high confidence (5). 

Following each trial we indicated choice correctness. To achieve ~100µs click train offset with respect to 

the choice, we delivered clicks and captured responses with a modified (see supplemental methods) Pulse 

Pal device (Sanders and Kepecs, 2014). In total, we acquired responses from five human subjects 

(n=22,427 trials). Subjects were trained for two 1-hour sessions prior to testing, and performance was 
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used to adjust stimulus difficulty for the remaining sessions such that mean performance of each subject 

was ~80% (Figure S1; see methods). Trained subjects did not significantly improve or fatigue over time 

in the study; subject accuracy and confidence were consistent for the duration of the experiment, and 

within sessions (Figure S1).  

Using these psychometric data we tested our key predictions. First, we observed that confidence strongly 

predicted choice accuracy (Figure 2B,E, S3), as had been shown previously (Jastrow and Peirce, 1884; 

Lichtenstein et al., 1981). Second, we found that self-reported confidence increased with evidence 

discriminability for correct trials, but decreased with discriminability on errors, in accordance with a 

counterintuitive prediction of statistical confidence (Figure 2C,F). Third, trials with zero evidence 

discriminability, where subjects performed at chance level, reliably elicited average confidence around 3 

on the 5-division scale (Figure 2C,F), in agreement with the model prediction of mid-range confidence 

(0.75). Finally, low or high confidence reports predicted low or high choice accuracy respectively, at all 

levels of discriminability (Fig 2D,G). These confidence patterns were robust in each of our subjects 

(Figure S3), demonstrating a strong and consistent qualitative agreement between the human feeling of 

confidence and the properties of statistical decision confidence. 

We also considered whether a heuristic model that derived confidence reports directly from reaction times 

could account for our data. Reaction time was inversely correlated with confidence reports (Figure S2). 

Confidence also varied with discriminability, when conditioned on reaction time, consistent with previous 

findings (Kiani et al., 2014). In contrast to confidence reports, which always decreased with 

discriminability on error trials, error trial reaction time showed an inconsistent pattern between subjects 

(Figure S2). These observations show that a reaction time heuristic cannot fully account for confidence 

reports (Audley, 1960).  

Quantitative prediction of human confidence reports  

Next we asked whether our framework could be used to quantitatively account for the confidence 

reporting data. First, we assumed that the noise corrupting the evidence presented to human decision 

makers was Gaussian. Thus, fitting the psychometric function with a cumulative normal distribution 

function yielded an estimate for each subject’s average noise level (Figure S1). The best-fit noise 

parameter was then used to generate percepts for Monte-Carlo simulations (Figure 1 B-C), yielding 

simulated choices and confidence reports (see Experimental Procedures). The resulting confidence value 

distribution was mapped to the 5-division scale by dividing the cumulative distribution by percentile, to 

match the subjects’ own cumulative distribution of confidence reports. This parameter-free model 

predicted the qualitative trends in human data remarkably well (Figures 2 and S3, thick lines). Next, to 

capture imperfect reporting of the internal sense, we introduced one free parameter � , confidence 

reporting efficacy (see Experimental Procedures), which modeled noise corrupting the statistical 

confidence value. Adding this parameter to the statistical model and fitting to human confidence reports 

with the maximum likelihood method further improved the model’s approximation of human confidence 

(Figures 2, and S3 thin lines). The optimal parameter for human confidence reporting efficacy ranged 

from α = 0.49 to 0.72 with an average of 0.57 (Figure S3).  Thus the normative statistical model not only 

captures the qualitative patterns in human confidence reports but provides a quantitative account that is 

mostly within behavioral variability using a single free parameter. This free parameter provides a measure 

of the degree to which a subject’s confidence reports reflect the noise-free statistical computation of 
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confidence. This new metric is a measure of confidence fitness; however we caution that its interpretation 

is not a correctness percentage, because resampling exploits the subject’s distribution of reports.  

Confidence reports about general knowledge in untrained subjects  

Thus far, statistical confidence described subjects who were asked to perform a well-learned sensory 

decision task with feedback. Therefore we wondered whether the model could also describe confidence in 

more typical human decisions. To assess this we tested 27 additional subjects in a single-session decision 

making task. Unlike the sensory task, decisions and confidence here were informed by prior knowledge of 

generally known quantities – national populations (Pleskac and Busemeyer, 2010). On each trial, subjects 

were shown the names of two countries, and indicated with a key press which one they believed to have a 

larger population (Figure 3A). After responding, subjects were prompted to enter decision confidence on 

a 5 division scale. To avoid any influence of learning, we omitted feedback about choice correctness. An 

important feature of this task was that choice accuracy varied with the log ratio of country population 

pairs, providing a quantitative measure of evidence discriminability (Figure 3A, inset). Again as predicted 

by the model, (i) accuracy monotonically increased as a function of subject confidence (Figure 3B,E); (ii) 

confidence increased with evidence discriminability on correct trials but decreased on errors, (iii) mid-

range confidence characterized neutral-evidence trials (Figure 3C,F) and (iv) confidence provided 

information about trial outcome at fixed levels of evidence discriminability (Figure 3D,G). We found that 

qualitative patterns in general knowledge confidence were well captured by the parameter-free model 

(thick lines in Figure 3B-G), while adding a noise parameter only marginally improved the quality of the 

fit (thin lines, Fig 3).   

Discussion  

Here we compared self-reported confidence in humans with the properties of a statistical confidence 

computation. Our main result is that the relationship between human confidence, evidence 

discriminability and choice correctness reveals robust patterns, which can be quantitatively predicted by 

statistical decision confidence. Intriguingly, our statistical framework predicts that in a regime with 

uniformly varying discriminability eliciting performance levels from chance to near-perfect, the average 

confidence in chance-accuracy decisions driven by uninformative evidence is much higher than chance at 

0.75. This property of statistical confidence was confirmed in our human data for two behavioral tasks, 

and carries implications for interpreting studies that demonstrate over-confidence in low discriminability 

and under-confidence in high discriminability conditions - a controversial phenomenon termed the "hard-

easy effect" (Merkle, 2009). Previous interpretations of this apparent miscalibration had pointed to 

differences in experimental design and interpretation of data (Juslin et al., 2000; Moore and Healy, 2008) 

and more recently, to the effect of examining confidence reports with respect to evidence discriminability 

(Drugowitsch et al., 2014). By relating statistical confidence to human reports, we have shown that 

human mid-range confidence in completely uninformative evidence does not imply an imperfectly 

calibrated sense of confidence. 

Our results identify an important link that had previously been absent from the literature on computational 

modeling of confidence. Different algorithms for determining confidence had been proposed as 

extensions to accumulator (Kepecs et al., 2008; Vickers, 1979), drift diffusion (Kiani et al., 2014; Pleskac 

and Busemeyer, 2010; Zylberberg et al., 2012), and attractor models (Insabato et al., 2010; Wei and 

Wang, 2015). The confidence metrics proposed ranged from the simple difference between decision 
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variables, to post-decision evidence sampling and reaction time combined with evidence. Each model has 

successfully accounted for numerous aspects of choice and confidence. In fact, when these models are 

tuned to make similar predictions, they may algorithmically approximate Bayes-optimal computations. 

However, with different parameter settings these algorithmic accounts can also make different predictions 

(Kiani et al., 2014; Pleskac and Busemeyer, 2010; Zylberberg et al., 2012) and the link between the 

proposed confidence metrics and the statistical definition of confidence has not been clear (but see 

(Drugowitsch et al., 2014). Here, we provide a framework for using signatures of decision confidence 

based on first principles to understand how these metrics relate to statistical confidence.  

To establish how objective and subjective confidence are related, we sought to isolate how confident 

subjects felt as directly as possible by instructing subjects to select their confidence on a 1 to 5 scale with 

a dedicated motor response, instead of asking them to explicitly estimate a probability or to cast a wager 

(Persaud et al., 2007). This way we sought to sidestep complex calibration issues related to explicit 

estimation of a probability (Juslin et al., 2000; Lichtenstein et al., 1981) and risk-sensitivity (Fleming and 

Dolan, 2010). Our confidence report method contrasts with other assays where choice and confidence are 

reported with the same motor response (Bahrami et al., 2012; Kiani et al., 2014; Zylberberg et al., 2012). 

For instance, a recent study considered the relationship between confidence and discriminability, where 

the direction of a ballistic eye movement reported choice, terminating the decision evidence stream, and 

its magnitude indicated confidence (Kiani et al., 2014). In their results, the relationship between 

confidence and discriminability for error trials varied among subjects from negative slopes to neutral and 

in some cases, positive This variability may be due to subjects constructing their confidence reports while 

new decision evidence was being delivered, rather than while reflecting on a terminated stream of 

evidence available to the experimenter when computing the trial’s discriminability. 

Often people seem to provide systematically miscalibrated confidence reports, leading to the view that 

human confidence is generated by an error-prone mental heuristic (Björkman et al., 1993; Griffin and 

Tversky, 1992; Kvidera and Koutstaal, 2008; Olsson and Winman, 1996; Tversky and Kahneman, 1974). 

By using a psychophysical approach, we could examine confidence reports quantitatively as a function of 

the degree of evidence provided before the choice on each trial. This enabled us to show for two different 

tasks, that evidence processing is consistent with normative statistical principles and does not require 

error-prone heuristic computations (Gigerenzer and Goldstein, 1996; Koriat, 2012; Tversky and 

Kahneman, 1974). Although we established a quantitative match between human confidence and 

statistical decision confidence, we suspect that the statistical computation provides only an initial 

confidence estimate for human decision makers. In some circumstances, this internal estimate may be 

further modified by context (Jönsson et al., 2005), social factors (Bahrami et al., 2012) or other 

conditions, accounting for a range of reported assays where confidence can be divorced from choice 

accuracy (De Lange et al., 2011; Metcalfe and Shimamura, 1994). To account for these effects, the 

Bayesian confidence formula now provides an experimentally validated starting point from which to 

construct computational models of distortions in ideal human confidence.  

In summary, the striking similarity of patterns in confidence feelings to the predictions of statistical 

decision confidence suggests that these two constructs can share functional equivalence for the decision 

maker. In decision making with imperfect evidence, the brain faces the same computational challenge as a 

statistician evaluating noisy data. The fact that this important value is experienced as a feeling supports 



 8 

the idea that subjective feelings provide an interface to ethologically beneficial mental computations – in 

our case, a statistical estimation tool for judgments.   
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Experimental Procedures 

Model simulations  

We created a Monte Carlo simulation of the statistical definition of decision confidence (main text figure 

1 b-d). For each of 1 billion simulation trials, we chose a uniform distribution for evidence 

discriminability, from the range -1 to 1. Next, we computed percepts by adding Gaussian noise to each 

trial’s discriminability (µ=0, σ=0.18). To compute outcomes, we scored each trial “correct” if both the 
trial’s discriminability and percept had the same sign, and “incorrect” if not. Next, we computed the 

probability of a correct response for each percept. We grouped percepts into 200 equally sized bins 

spanning the range of percepts, and computed confidence in each percept as the fraction of trials in each 

bin that were scored “correct”. We then assigned a confidence to each simulation trial, by matching the 

trial’s percept to the percept’s corresponding confidence value. The confidence values produced by the 

model thus represent explicit probabilities, and range from 0.5 – 1.0. 

Model fitting 

The statistical model simulation has one free parameter modeling the decision maker: the variance of 

Gaussian noise, and two parameters of the evidence stream: the range and frequency of evidence 

discriminability. We sought to produce a parameter-free model fit, by determining each of these 

parameters from the subjects’ trial and behavior data. Perceptual noise level σ was estimated as the 

variance of a cumulative Gaussian function fitted to each subject’s psychometric function using 

maximum likelihood method. Next, we generated a ~10 million trial dataset starting with replicates of 

discriminability for all completed trials in each subject’s dataset. We used the best-fit variance (Figure 

S1) as the model’s noise parameter, and computed percepts, choice and confidence for each simulation 

trial. We partitioned the model’s confidence into five categories based on the subject’s frequency of scale 
division use.  

 We added a single free noise parameter to our model (�), which was implemented as a mixing 

parameter between the confidence value of the noise-free model and a randomly sampled confidence 

value from the same distribution:  c� = � ∗ + 1 − � ∗ η (1) 

 

Here c� is confidence with added noise, c is the raw confidence value produced by the model, η is a 
confidence value randomly resampled from the 10 million trial simulation, and α is the noise parameter. 

Note that the noise parameter provides a convenient index of the degree to which confidence reporting 

matches statistical confidence: at 1, confidence is the value defined by the model and at 0, confidence is 

random for each trial. We fitted this one-parameter model to human data using a maximum likelihood 

procedure (see supplemental methods).  

 

Measure for evidence discriminability of presented click train stimulus 

We determined a post-hoc measure of discriminability based on the portion of the click train experienced 

before responding. This measure is ∆, the ratio of differential clicks to total clicks that occurred prior to 

choice reaction time (Equation 2) where nL is the number of left clicks experienced, and nR is the number 

of right clicks. 
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 ∆ = |�� −  ���� +  ��|  (2) 

 

 

   

Subjects 

For the sensory task, we recruited five adult human subjects (2 male, 3 female). For the general 

knowledge task, we recruited 20 males and 7 females. Subjects ranged from ages 20 to 50. All subjects 

reported normal hearing and normal or corrected-to-normal vision. All experimental procedures were 

approved by the Cold Spring Harbor Laboratory institutional review board.  
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Figure Legends 

Figure 1. Statistical decision confidence predicts specific interrelationships between evidence 
discriminability, choice outcome and confidence. (A) Illustration of the statistical framework for 

decision confidence. The dashed box delineates variables internal to the decision maker. A presented 

stimulus  is corrupted in perception, producing percept ̂, which informs the decision, �. Confidence is 

computed based on the statistical definition. In humans, confidence is then explicitly mapped to a rating 

scale, producing the measured report. An external evaluation determines decision correctness. B-D: 
Monte Carlo simulation of the statistical definition of decision confidence. For all panels, evidence 

discriminability (see Methods) is the absolute distance of the stimulus from zero. (B) Confidence equals 

accuracy. (C) Average confidence increases with evidence discriminability from 0.75 for correct choices, 

and decreases for errors. (D) Conditioning psychometric performance on high or low confidence changes 

its slope.  

 

Figure 2. The human feeling of confidence follows statistical predictions in a perceptual decision 

task. For all panels, evidence discriminability is the absolute difference to sum ratio of number of left and 

right clicks in the experienced click train |((L-R)/(L+R))|.  (A) Schematic of task events. (B-D) 

Confidence patterns of a single subject. Thick lines show parameter-free normative statistical model 

simulations. Thin lines show one-parameter model fits with a confidence efficacy parameter. Each 

individual subject is shown in Figure S3. (E-G) Combined data of all subjects (n = 5). Error bars show 

95% confidence interval of the mean. 

 

Figure 3. The human feeling of confidence follows statistical predictions in on general knowledge 

decision task. For all panels, evidence discriminability is the log ratio of the national populations 

compared.  (A) Schematic of the general knowledge task. After initiating each trial and following a 

random delay, subjects were shown the names of two countries and asked to indicate which had a larger 

population within 3 seconds by pressing a response key. On 90% of trials, subjects then entered their 

decision confidence. On sensory probe trials (10%), subjects typed the names of the countries they had 

just compared. Inset panel: general knowledge task psychometric function for 27 pooled subjects (3,450 

trials) showing that choice varied as a function of population log ratio. Errors show binomial 95% 

confidence intervals. (B-D) Confidence patterns of a single subject who completed 1200 trials. Thick 

lines show the parameter-free model simulation. Thin lines show a single-parameter model fit with a 

confidence noise parameter (mostly obscured by the thick lines). (E-G) Combined data of 27 subjects, 

each completing 100-150 trials. Notably, subjects were only 78.6% correct for trials where confidence 

was 5/5, consistent with 82.3% accuracy on the strongest fifth of the range of presented evidence (panel 

E). Error bars show 95% confidence interval of the mean.  
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