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Abstract

Here we carry out a systematic parametric study of a uniform cylindrical

missile impacting rigid or elastic structures. We give an analytical result

for the impact force in case of rigid target. A new parameter, the damage

potential is introduced and it is shown that this single dimensionless combi-

nation of the parameters describes the course of the impact in this simplest

case. For elastic target structures, we also show numerically that the course

of the reaction force, the maximum target displacement and the duration of

the impact depend primarily on the same dimensionless parameter with a

secondary effect of the missile to target mass ratio and the relative stiffness

of the target. The rigid target assumption is not always conservative with

regard to the reaction force due to target vibration. We find a resonant ef-

fect in the maximum target displacement as the function of the missile to

target mass ratio. The motivation of our work is rooted in the investigation

of aircraft fuselage impact into robust structures like the containment of a
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nuclear power plant.

Keywords: Impact, Missile–target interaction, Riera model, Damage

potential, Force–time history analysis

1. Introduction1

Analysing the consequences of potential aircraft impact into engineering2

structures has been an issue of high importance since September 11, 2001.3

The ideal situation would be to carry out substantial experimental studies,4

but the possibilities are limited in this direction due to the excessive expenses.5

We are aware of only one full-scale experiment [1, 2, 3], where a Phantom F46

fighter was impacted into a massive concrete target. This experiment is the7

basis for many subsequent theoretical and numerical studies in this field. Due8

to scarcity of experiments of this scale, it is important to obtain theoretical9

[4, 5, 6, 7, 8, 9, 10] and numerical (see e.g. [11, 12, 13, 14]) results regarding10

the safety of important structures, like nuclear power plants, during aircraft11

collisions.12

Damage caused by impact can be either local or global [15]. Usually,13

local damage, like penetration, cracking, spalling, scabbing or perforation14

[16, 17, 18, 19] is caused by the impact of a hard missile into a relatively15

soft target. Global effects are related to the overall structural response of16

the target. In this paper we concentrate on global effects, like the influence17

of the impact of the aircraft fuselage into a relatively rigid structure, like18

the containment of a nuclear power plant. To investigate such soft impacts,19

one can follow the theoretical results obtained by Riera [5] that provide the20

instantaneous reaction force during the impact based on the assumption of a21
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perfectly rigid target and a rigid–plastic aircraft fuselage as the missile. An-22

other approach is a complex, detailed, coupled target–missile model, usually23

a finite element simulation, capable to include realistic parameters and pro-24

vide detailed information on the course of the impact. However, it is difficult25

to delineate in these complex models the set of parameters with real influence26

on the outcome of the impact. It is notable to observe that even very de-27

tailed simulations [12, 13, 20, 21] use the Riera approach as a benchmark to28

validate the results. Hence, it is very important to have reliable theoretical29

results to provide solutions to aid the validation of numerical investigations.30

Except for a few examples [4, 20], where simple geometry and mate-31

rial properties are used, theoretical approaches typically use realistic mis-32

sile profiles to derive numerically the reaction force acting on the target33

[5, 7, 11, 12, 13, 21, 22, 23]. They either include the available aicraft data,34

like mass distribution and crushing force distribution of the aircraft to com-35

pute the force acting on the target [5, 7, 11, 22, 23], or use a full-scale finite36

element analysis [12, 13, 21]. While this is practically important and moti-37

vated, these missile models can be described by a multitude of parameters,38

like the mass and crushing force distribution along the length of the missile.39

As a consequence, in many cases the effect of an individual parameter on40

the reaction force or on the structural response is not clear. Some papers41

even question whether the assumptions of the Riera model result in a conser-42

vative estimate concerning the safety of target structures like nuclear power43

plants [11, 13]. Hence, in this paper, we make a step back and investigate the44

simplest case of a uniform missile impacting either a rigid or a one-degree-of-45

freedom elastic target. This way we can shed light on the relative importance46
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of the various parameters and look for a range of parameters where the as-47

sumption of a rigid target, in the spirit of the Riera model, may lead to an48

underestimation of the reaction force during impact.49

Following this approach, we write the governing differential equations50

into a dimensionless form to acquire information on the relevant combina-51

tions of the parameters that describe either the missile or the target. We find52

that among the obtained dimensionless parameter combinations there is one53

seemingly more important than the others, which we will call the damage54

potential. Beside the impact velocity, this parameter includes the mass and55

length of the missile, and its characteristic crushing strength. For the sim-56

plest case, when a uniform missile impacts a rigid target, we find analytical57

solution for the governing differential equations and we find that only the58

dimensionless damage potential appears in the solution. For the case of a59

uniform missile impacting an elastic structure [24], using numerical results,60

we show that the same parameter is enough to characterize the essential be-61

havior during the impact. We find that the course of the reaction force, the62

maximum target displacement and the duration of the impact all depend63

mainly on the damage potential.64

We also find a resonant effect in the maximum displacement of the elastic65

target as a function of the ratio of the mass of the missile to that of the66

target. At a certain value of this ratio the displacement of the structure67

is found to be the highest. For a simple case we give an estimate for the68

resonant mass ratio. We also show that the maximum reaction force can be69

higher than that for rigid target, hence the rigid target based Riera approach70

may not always lead to conservative estimation of the highest reaction force.71
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Next, in Sec. 2 we review the Riera model [5] for elastic target [24] and72

cast the equations into a dimensionless form to find the relevant combination73

of the parameters. For a uniform missile impacting a rigid target, in Sec. 3 we74

derive an analytical formula for the reaction force as a function of time, and75

show that this only depends on the damage potential. In Sec. 4 we present76

numerical results for the case of an elastic target, and show that the details77

of the impact can be characterized by the same dimensionless combination78

of the parameters, by the damage potential. Finally, in Sec. 5 we draw our79

conclusions.80

2. Riera model with elastic target81

2.1. Governing equations82

A commonly used analytic model to determine the impact force acting83

on a sufficiently rigid structure has been developed by Riera [5]. In this84

model the missile, impacting the target in normal direction, is assumed to85

be a deformable rod of rigid–perfectly plastic material, and the structure is86

assumed to be perfectly rigid. It is also assumed that the missile crushes only87

at the cross-section adjacent to the target. Therefore, the missile consists of88

two parts: an uncrushed part of length x(t) and of mass m(t) time t after89

the start of the impact, and an infinitesimally small part of mass (−dm) > 090

that crushes in the next time instant, see Fig. 1a. Note that dm < 0 means91

there is a loss of mass concerning the missile during a short time dt. The92

instantaneous velocity of the intact part is v(t) = dz/dt with z(t) as the93

displacement of the intact part since the start of the impact. The impact94

force to be determined is F (t), while the force acting between the intact and95
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the crushing parts is the crushing force P (x) which depends on the actual96

intact length x(t) of the missile. In principle, P (x) depends on the load97

bearing capacity of the cross-section at a distance x measured from the rear98

of the missile and also on the possible dynamic buckling that occurs during99

the impact.100

Figure 1: (a) Original and (b) elastic Riera model.

This model has been extended by Wolf et al. [24] to include a one degree101

of freedom damped, elastic system modeling the flexibility of the target,102

see Fig. 1b. The mass of the target is M , the spring constant is k, the103

damping is c. The displacement and velocity of the target are y(t) and104

u(t) = dy/dt, respectively. The main goal of this paper is to evaluate the105

parameter dependence of this model to see whether the elasticity of the target106

plays an important role.107

First, we briefly recall the governing equations of this model. Since z+x =108

L+y, L being the original length of the missile, see Fig. 1, we find the velocity109

dx/dt of the crushing as the velocity difference between the target and the110
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uncrushed part of the missile:111

dx

dt
= u− v =

dy

dt
− dz

dt
. (1)

Introducing μ(x) as the mass per unit length at x, we find112

dm

dt
= μ(x)

dx

dt
= μ(x)

(
dy

dt
− dz

dt

)
. (2)

At time t, crushing force P (x) acts on the intact part of the missile and113

breaks mass (−dm) > 0 off the missile, cf. Fig. 1. The balance of momentum114

right before and after the break off of (−dm) is115

−P (x(t))dt+m(t)v(t) = [m(t) + dm][v(t) + dv]− dm[v(t) + dv], (3)

or, after simplifying it:116

−P (x(t)) = m(t)
dv

dt
= m(t)

d2z(t)

dt2
. (4)

Force P (x) and reaction force F (t) act on mass (−dm) that slows from117

velocity v(t) to u(t) during time dt, see Fig. 1b. The balance of momentum118

gives119

[P (x(t))− F (t)]dt− dm · v(t) = −dm · u(t), (5)

leading to120

P (x(t))− F (t) = −dm

dt
· dx
dt

= −μ(x)
(
dx

dt

)2

. (6)

Reaction force F acts on the target, which is a linear vibrating system:121

F (t)− ky(t)− c
dy

dt
= M

d2y

dt2
. (7)

From Eqs. (1), (4), (6) and (7) we obtain the differential equations122

d2x

dt2
=

P (x(t))

m(t)
+

P (x(t))

M
+

μ(x(t))

M

(
dx

dt

)2

− c

M
· dy
dt
− k

M
y(t), (8)
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d2y

dt2
=

P (x(t))

M
+

μ(x(t))

M

(
dx

dt

)2

− c

M
· dy
dt
− k

M
· y(t) (9)

with initial conditions124

x(0) = L,
dx

dt
(0) = −v0, y(0) = 0,

dy

dt
(0) = 0, (10)

where v0 is the impact velocity, that is, the velocity of the missile at the125

start of the collision. It is set of nonlinear ordinary differential equations.126

Reaction force F (t) can be expressed from (6) as127

F (t) = P (x(t)) + μ(x(t))

(
dx

dt

)2

, (11)

which can directly be computed once x(t) is obtained.128

2.2. Dimensionless form129

It is worth casting the governing equations into dimensionless form. This130

way we expect to find the essential combinations of the parameters that131

determine the course and the final outcome of the impact.132

Using the original length L of the missile as the unit for distances, we can133

define the dimensionless actual length x̃ and target displacement ỹ as134

x̃ = x/L, ỹ = y/L. (12)

We use P0, the characteristic crushing force, as the force unit so that135

P (x) = P0ϑ(x̃), (13)

with ϑ(x̃) characterizing the shape of P (x). Then we can define the dimen-136

sionless time variable t̃ using
√

Lm0/P0 as the time unit so that137

t̃ =
t√
Lm0

P0

, (14)

8



where m0 = m(0) is the total original mass of the missile. The distributed138

mass μ(x(t)) can also be transformed to dimensionless form as139

μ̃(x̃) =
L

m0

μ(x). (15)

Using these new, dimensionless variables, Eqs. (8) and (9) can be rewrit-140

ten as141

d2x̃

dt̃2
=

ϑ(x̃)

m̃(x̃)
+ ε

[
ϑ(x̃) + μ̃(x̃)

(
dx̃

dt̃

)2

− γ
dỹ

dt̃
− κỹ

]
, (16)

142

d2ỹ

dt̃2
= ε

[
ϑ(x̃) + μ̃(x̃)

(
dx̃

dt̃

)2

− γ
dỹ

dt̃
− κỹ

]
, (17)

where the dimensionless actual and initial mass of the uncrushed part of143

plane are, respectively,144

m̃(x̃) =

∫ x̃

0

μ̃(x̂)dx̂, (18)

145

m̃0 = m̃(0) =

∫ 1

0

μ̃(x̂)dx̂ = 1. (19)

In case of a uniform missile, ϑ(x̃) ≡ 1 and μ̃(x̃) ≡ 1, we find that m̃(x̃) = x̃.146

The following dimensionless parameters have been introduced:147

ε =
m0

M
, γ =

√
c2L

m0P0

, κ =
kL

P0

. (20)

Parameter γ gives the strength of damping, in this paper we take γ = 0148

meaning no structural damping during the short duration of the impact.149

Parameter κ gives the stiffness of the target relative to the crushing force of150

the missile. Parameter ε is the ratio of the mass of the missile to that of the151

target. In case of the original Riera model, when the target is rigid, we have152

ε = 0 simplifying governing Eqs. (16) and (17) to d2x̃/dt̃2 = ϑ(x̃)/m̃(x̃) and153

d2ỹ/dt̃2 = 0.154
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The initial conditions in dimensionless form are:155

x̃(0) = 1, ỹ(0) = 0,
156

dx̃

dt̃
(0) = −v0

√
m0

LP0

,
dỹ

dt̃
(0) = 0. (21)

We define the damage potential as157

D =
1
2
m0v

2
0

LP0

(22)

This dimensionless parameter is the ratio of the initial kinetic energy of158

the missile to the work required to crush it. With this new parameter, the159

dimensionless initial condition for dx̃/dt can be written as dx̃/dt(0) = −√2D.160

The total length of the impact is determined by either one of the following161

conditions. Either the whole missile crumbles (that is, x̃ = 0 is reached) or162

the crushing stops (that is, dx̃/dt̃ = 0 occurs). In either case we consider the163

impact finished.164

The dimensionless form of the reaction force is165

f(t̃) =
F (t)

P0

= ϑ(x̃(t̃)) + μ̃(x̃(t̃))

(
dx̃

dt̃

)2

. (23)

Once x̃(t̃) is computed, f(t̃) is readily obtained from this equation.166

3. Simplest case: Uniform missile impacting a rigid target167

The simplest special case of (16) and (17) is a rigid target ε = 0 hit by a168

uniform missile ϑ ≡ 1, μ̃ ≡ 1. In this case the equations simplify to169

d2x̃

dt̃2
=

1

x̃
, ỹ ≡ 0, (24)

10



with initial conditions170

x̃(0) = 1,
dx̃

dt̃
(0) = −

√
2D. (25)

Even this simplest case forms a nonlinear ordinary differential equation for171

x̃(t̃). Note that Eq. (24) contains no parameter, its solution does not depend172

on any parameter, e.g., properties of the missile. Only the damage potential173

enters the solution, and even that only through the initial conditions. Note174

also that the dimensionless damage potential depends on the properties of175

the missile, see (22), but only this special combination of the impact velocity176

v0, the missile massm0, length L and crushing force P0 determines the overall177

behavior of a uniform missile hitting a rigid wall. The fact that parameters of178

the missile do not enter (24) means that solution curves x̃(t̃) are the same for179

such impacts, it is only the initial point along the curve that is determined180

by the damage potential. We also note that our dimensionless parameter D181

is very similar to Johnson’s damage number (see, e.g., Ref. [25]), but in our182

case the parameters of the missile appear instead of the properties of the183

target.184

In fact, Eq. (24) can be solved analytically. Integrating it once results in185

dx̃

dt̃
= ±

√
2 ln x̃+ C1, (26)

where C1 = 2D is fixed from the initial conditions (25). In the right-hand186

side of (26), the negative sign is physically relevant, because the actual length187

of the missile decreases hence dx̃/dt̃ ≤ 0. This leads to [20]:188

dx̃

dt̃
= −√2 ln x̃+ 2D. (27)

This equation, apart from the factor 2 under the square root, is very similar to189

the equation derived by Tate [4] using a hydrodynamical approximation. In190
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our case, however, the target is rigid, hence the hydrodynamic approximation191

does not hold.192

Integrating (27) again, we find193

t̃+ C2 =

√
π

2
ie−D erf

(
i
√
ln x̃+D

)
, (28)

where i is the imaginary unit, and erf(z) is the Gauss error function [26]194

erf(z) =
2√
π

∫ z

0

e−ξ
2

dξ.

In Eq. (28), C2 = i
√

π/2 exp(−D) erf(i
√
D) can be fixed from the initial195

conditions. After rearrangement, we find196

x̃(t̃) = e−De−
{
inverf

[
−i
√

2
π
eDt+erf(i

√
D)

]}2

, (29)

where inverf(z) is the inverse function of erf(z). Despite i appearing in these197

formulae, the result is real at all physical values of t̃.198

Differentiating (29) with respect to time, one obtains the velocity of crush-199

ing as a function of time:200

dx̃

dt̃
= i
√
2 inverf

[
−i

√
2

π
eDt+ erf

(
i
√
D
)]

. (30)

Substituting it into (23) we find the dimensionless reaction force as a function201

of time:202

f(t̃) = 1− 2

{
inverf

[
−i

√
2

π
eDt+ erf

(
i
√
D
)]}2

. (31)

We note again that the solution only depends on the dimensionless damage203

potential D, a specific combination of the parameters of the missile, as given204

by (22). The dimensionless reaction force as a function of time for various205

different impact velocities is shown in Fig. 2.206
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Figure 2: Dimensionless reaction force functions f(t̃) for various values of the dimensionless

damage potential D in case of rigid target.

In fact, in this model, for a uniform missile impacting a rigid target, the207

maximum reaction force (23) arises at the beginning of the impact, when208

the speed of the missile is the highest, see Fig. 2. The values obtained for209

the maximum reaction force look contradicting to the statement in Ref. [27]210

that the maximum force would depend exponentially on the impact velocity.211

Rather, Eq. (23) suggests that the maximum force depends on the square of212

the impact velocity.213

We found these results for a uniform missile impacting a rigid target.214

However, we show in the next section that the important parameter char-215

acterizing the properties of the impact of a uniform missile is the same216

dimensionless combination of the parameters, the damage potential D =217

v20m0/2LP0, independently of the properties of the target.218
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4. Uniform missile impacting an elastic target219

4.1. The role of the damage potential220

The solutions of (16) and (17) in case of an elastic target, that is, with221

ε > 0, are obtained numerically. We use the 4th order explicit Runge-Kutta222

method with absolute error tolerance 10−8. We neglect damping (γ = 0)223

since damping is expected to play a minor role during the short duration of224

the impact. We survey the behavior during the impact as a function of the225

remaining three independent dimensionless parameters D, κ and ε.226

Figure 3 shows some representative reaction force curves for a wide variety227

of parameter values. Initially, the reaction force vs. time curves oscillate228

around a roughly horizontal plateau due to the elasticity of the target.229

Figure 3: Dimensionless reaction force function f(t̃) for various parameter values. (a)

κ = 2000, D and ε are as indicated; (b) ε = 0.5, κ and D are as indicated.

In the later part of the impact, as time passes, the reaction force starts230

to decline rapidly, see Fig: 3. The shape of the reaction force curve depends231

quite strongly on the damage potential D. However, we can see in Fig. 3232

that the overall shape of the f(t̃) curves is very similar, independent of the233

stiffness κ of the structure and the mass ratio ε for the same, fixed values234
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of D. Comparing the results with those presented in Fig. 2 we see that the235

damage potential D has a major effect on the impact. That is, mainly the236

combination D = v20m0/2LP0 of the parameters determines how the impact237

affects the structure.238

It is important to observe, however, that the elasticity of the target can239

also play a role in the maximum reaction force during the impact. As shown240

in Fig. 3, as the flexibility of the missile increases (ε becomes larger or κ241

decreases) oscillations of the reaction force increase, which results in higher242

peaks of f(t̃) than the maximum reaction force for a rigid target occurring at243

the start of the impact. This means that the target can only be assumed rigid244

if its mass is more than twice the mass of the missile (ε < 0.5). Otherwise the245

Riera model, based on the rigid target assumption, may not be conservative.246

Note that ε < 0.5 typically holds for robust structures like containment247

buildings of nuclear power plants even in case of large aicraft fuselages as248

missiles.249

We also investigate how the duration of the impact depends on the pa-250

rameters κ, ε and D. In Fig. 4, with color coding, the duration of the impact251

is visualized as a function of ε and D (Fig. 4a) and κ and D (Fig. 4b). We252

see that the impact time essentially does not depend on ε and κ, however,253

it does depend on D, the damage potential. This is further illustrated in254

Fig. 6a, where the dimensionless impact time is shown as a function of the255

damage potential for various values of the other parameters. We see that256

the impact time is determined by D, the elasticity of the target plays only a257

very minor role. We also see that the impact time has a maximum around258

D close to 1, independent of the values of ε and κ.259
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Figure 4: Colour coding of the dimensionless impact time as a function of (a) ε and D

(κ = 2000 fixed), and (b) κ and D (ε = 0.5 fixed).

The length of the part of the missile crushed during the impact can also be260

used to characterize the impact. In Fig. 5, with colour coding, we show how261

the crushed length of the missile depends on parameters ε and D (Fig. 5a),262

and κ and D (Fig. 5b). We see that there is a quite sharp transition between263

the regime where the full length of the missile is crushed during the impact264

and the regime where a part of the missile remains intact after the impact.265

The transition seems to depend only on the value of the damage potential266

D, it is in the range of D between 0.5 and 2. This is also visible in Fig. 6b,267

where the dimensionless crushed length is shown as a function of the damage268

potential for various values of the other parameters. We see that the crushed269

length is determined by D, the elasticity of the target plays only a very minor270

role.271

Comparing Fig. 4 to Fig. 5, or Fig. 6a to Fig. 6b, we see that the value272

of the damage potential D is the same at the maximum of the impact time273

and at the transition between cases of fully crushed (crushed length is 1) and274

partially crushed missiles at the end of the impact.275
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Figure 5: Colour coding of the dimensionless crushed length as a function of (a) ε and D

(κ = 2000 fixed), and (b) κ and D (ε = 0.5 fixed).

Figure 6: Dimensionless (a) impact time and (b) crushed length as a function of the

damage parameter D for various values of parameters ε and κ.

We note that this critical D value between 0.5 and 2 seems to be close to276

the limit set by Rambach et al. [20] for an impact to be hard. They state that277

impacts are hard when β = 2P0/μv
2
0 > 1. Since from (22) we find D = 1/β,278

the limit for hard impacts in terms of the damage potential becomes D < 1.279

The limit value D = 1 is precisely in the range where the impact time has280

its maximum and where the crossover between partially and fully crushed281

missile regimes is found. Indeed, if the damage potential is below this limit,282

17



for example, if the crushing strength P0 of the missile is large, the impact283

can be considered hard, hence only a part of the missile is crushed. In case of284

such hard impacts, when a relatively rigid missile collides with the structure,285

local damage effects might need to be considered, and the target cannot be286

modelled as rigid or elastic.287

4.2. Resonant behavior of the target288

Figure 7 shows the maximum displacement of the target as a function289

of the mass ratio ε for fixed values of the dimensionless target stiffness κ290

and impact velocity D. We see that there is a peak in the maximum target291

displacement ymax at a finite mass ratio ε. This is not very surprising. On292

the one hand, for small values of ε the mass of the target is large, hence its293

displacement is small as a consequence of the impact by a missile of relatively294

small mass. On the other hand, for large values of ε the mass of the target295

is small, hence its natural frequency is high. This has the consequence that296

the target starts to move backwards, towards the missile, during the impact,297

hence the crushing becomes faster, more intense. This implies that the loss298

of energy increases due to crushing, and hence less kinetic energy remains299

for target displacement. In the intermediate range, there is a value for ε300

where the maximum displacement ymax of the target is largest. This can be301

considered as a resonant effect, at this mass ratio ε the natural frequency of302

the target is such that it results in maximum displacement.303

One can give an estimation for the resonant mass ratio ε as follows. The304

natural circular frequency of the target is ω =
√
k/M . We find that the305

duration of the impact is τ = π/ω = π
√

M/k assuming that the maximum306

displacement occurs when the whole impact takes place during half of the307
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Figure 7: Maximum displacement ymax as a function of the mass ratio ε for various values

of (a) the damage potential D (κ = 2000 fixed) and (b) the dimensionless target stiffness

κ (D = 4.5).

period 2π/ω of natural vibration of the target.308

Casting the impact time into dimensionless form τ̃ = τ
√

P0/Lm0 we end309

up with310

ε =
π2

τ̃ 2κ
. (32)

We find that this estimation indeed gives highest displacement when the311

missile is completely crushed during the half period of the target’s natural312

vibration. This is the case when the total length L of the missile is crushed313

during a time period π/ω = π/
√

M/k. Assuming that the missile still travels314

at its initial speed v0 during this short time, we find that the whole missile315

is crushed if πv0
√
M/k > L, or, in dimensionless form, if

√
εκ < π

√
2D. We316

verified numerically that this is indeed the case: if
√
εκ < π

√
2D holds, the317

largest target displacement occurs for ε = π2/τ̃ 2κ.318

This resonant behavior is not desirable, we intend to keep the displace-319

ments of the target minimal. Hence the value of the mass ratio should be320

chosen not to fall close to the critical value resulting in maximum target321
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displacement. However, it is to be noted in Fig. 7 that for higher values of322

ε the maximum displacement does not decrease dramatically, hence smaller323

values of ε are better. Smaller values of ε imply larger target mass, which is324

usually the case for robust structures.325

5. Conclusions326

The main goal of this paper is to find the important parameters that327

govern the response of structures during an impact. Therefore, we carry328

out a systematic parametric study of a uniform, cylindrical, rigid–plastic rod329

impacting a rigid or elastic target. The modeling assumptions for the missile330

are similar to those of Riera’s model [5]. We believe that using dimensionless331

governing equations and simplified models containing only a few parameters332

is the approach to discover which parameters are relevant to determine the333

main features of the response of the impacted structure.334

We indeed find that the only relevant combination of the parameters is335

the dimensionless damage potential defined as336

D =
1
2
m0v

2
0

LP0

, (33)

where v0 is the velocity of the missile before the impact, m0 is the initial total337

mass of the missile, L is its length, and P0 is its characteristic crushing force.338

The damage potential is essentially the ratio of the initial kinetic energy of339

the missile to the work required to crush the missile. The fact that the course340

of the impact and the reaction force acting on the structure depend uniquely341

on this single parameter is a rigorous result for a uniform missile impacting342

a rigid target. For elastic targets, the importance of the damage potential is343
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found using numerical simulations in a wide range of the parameter values.344

We find that the ratio of the missile mass to that of the target structure or345

the ratio of the target’s stiffness to the crushing force of the missile have only346

secondary effect on the course of the impact. However, if the mass of the347

missile is more than half of that of the target, the peak reaction force can348

exceed the peak reaction force in case of a rigid target, which implies that349

the Riera model may not provide conservative results. For robust buildings350

similar to containments of nuclear power plants hit by an aircraft fuselage351

this is not an issue, but for less massive structures this effect might need to352

be considered.353

For the simplest case of a uniform missile impacting a rigid target, we354

derive explicit formulae both for the course of the impact and for the reaction355

force acting on the target. While these are quite complicated for practical356

purposes, they can serve as benchmarks to validate numerical codes.357

Our numerical findings are specific to the model we investigated. It is to358

be verified with more complex missile and target models how other parame-359

ters that appear in those models affect the behavior. We conjecture, however,360

that the dimensionless damage potential remains an important parameter,361

and other parameters only refine the details of the impact process. This362

conjecture is supported by the similarity of this parameter (33) to Johnson’s363

damage number [25].364

A dimensionless number, similar to our damage potential, was found to365

play an important role in fragmentation processes [28]. This number de-366

pends on the ratio of the initial kinetic energy of colliding solid bodies to367

the total energy required to disintegrate them. It has been shown that the368
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fragmentation process of colliding solid bodies depends on this ratio [28] or369

on parameters that appear in this ratio [29]. A similar dimensionless number370

was found to characterize the dynamic response of box-shaped structures371

under internal blast investigated experimentally [30]. This number is the372

ratio of the total explosive energy to the energy required to yield one side373

of the container. In spirit, this number is similar to our damage potential,374

characterizing both the cause of the blast and the properties of the target.375
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