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Summary. — This paper studies the collapse of the estimators for skewness and
kurtosis of concentration onto a near universal curve. This phenomenon is observed
for data taken from atmospheric dispersion experiments under a variety of different
conditions. By means of careful investigation of the high concentration tails, modelled
by means of the generalized Pareto distribution, and the fundamental physics of the
problem, a set of envelope curves encompassing the data will be established. The
implications of these results for modelling the probability density function of
concentration are discussed.

PACS 92.60.Ek – Convection, turbulence, and diffusion.
PACS 92.60.Sz – Air quality and air pollution.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

Dispersion of gas assumed to be acting as a passive scalar (i.e. its chemical
properties are unchanged on release and it has no effect on the velocity field) is
governed by the equation

¯G

¯t
1˜ Q (uG)4k˜2 G ,(1)

where G(x , t) is the concentration at position x and time t, u(x , t) is the velocity field
(given by the Navier-Stokes equations) and k the molecular diffusivity. Computing
resources are as yet insufficient to accurately estimate the statistical properties such as
the probability density function (pdf) of G by direct numerical simulation [1], and hence
the formulation of simple models (based on physics) is of great importance.

(*) Paper presented at EUROMECH Colloquium 338 “Atmospheric Turbulence and Dispersion
in Complex Terrain” and ERCOFTAC Workshop “Data on Turbulence and Dispersion in
Complex Atmospheric Flows”, Bologna, 4-7 September 1995.
(**) Currently at: Dept. of Mathematics, City University, Northampton Square, London EC1V
0HB, UK.
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One such model of Chatwin and Sullivan [2], based on a simple extension of the
hypothetical case k40, postulated the following relationship between the concen-
tration mean m(x , t) and variance s 2 (x , t), namely

s 24b 2 m(aC02m) ,(2)

where C0 is a local scale concentration for m (e.g. the plume centreline mean concentra-
tion), and a and b are constants (see also Mole [3]). The authors demonstrated the
applicability of this theory in the case of passive scalar dispersion in self-similar
turbulent shear flows, although for the general case one would expect a and b to vary
with position and time [4, 5]. They also postulated extending this theory for the higher
moments of S (skewness) and K (kurtosis)

S4
E](G2m)3(

s 3
4A3

(a22C)

]C(a2C)(1/2
,(3)

K4
E](G2m)4(

s 4
4A4

(a 223aC13C 2 )

C(a2C)
,(4)

where C4mOC0 , and A3 and A4 are constants of proportionality. It follows from (3) and
(4) that

K4A4y S 2

A 2
3

11z .(5)

In [2] it was argued that A 1/n
n is of O(1). Mole and Clarke [6] studied the approximation

A34A441, in which case

K4S 211(6)

independent of the values of a and b , and suggested (6) would provide a simple test as
to whether the theory of [2] is consistent with experimental evidence. Estimates of S
and K calculated from measurements of concentration taken during continuous
releases of contaminant over long periods of time are shown on fig. 1. These
experiments were all assumed to be statistically stationary and the estimates for the
moments shown here taken to be time-independent variables. The values collapse (to
within experimental error) onto a quadratic curve of the form K4AS 21B [6-8], close
to but clearly above K4S 211. (In fact it is easy to prove [6, 9] that KFS 211 with
equality if and only if the sample space consists of two points).

Further evidence of this phenomenon was exhibited in [6] with reference to the
potential for harm expressed as a non-dimensional dosage, namely

D(x , t ; p , T)4
1

T
� �

t2T/2

t1T/2

[G(x , t 8 )Ou S ]p dt 8 ,(7)

where u S is the uniform source concentration, T is the exposure time and p a parameter
characteristic of the gas. Dosage estimates of S and K for many different T and p
values all fell very close to a single quadratic curve (e.g. fig. 3 of [6]). Subsequent
investigation of data collected from a series of repetitions of a non-stationary,
instantaneous release of heavy gas into a wind tunnel [7, 8], (where the evolution of the
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moments with time was calculated by averaging over the repeats) has also highlighted
a similar quadratic relationship between estimates of K and S (e.g. fig. 5 and 6 of [7]).
These results demonstrate the wide applicability of this collapse and, although not
directly considered here, provide further motivation for this work.

2. – Experiments and data sets

Details of the various field experiments, which are the sources of the data shown on
fig. 1, are summarized in table I. All the data sets were pre-processed, to deal with
noise and other instrument effects, using the maximum entropy inversion
technique [10], where the performance of the ultra-violet ion collectors (UVICs) is also
discussed.

The New Mexico site was basically flat for many kilometres and covered with
intermittent scrub less than 0.4 m high. An ion source, 3 m above the ground, was
positioned 5–15 m upwind of an array of detectors at heights between 3 and 3.5 m. Two
experiments took place in the daytime (unstable conditions), and two at night (stable

TABLE I. – Layout and weather conditions of the various field trials which are the sources of the
data sets studied in this paper.

Number and
description of
field trials

Four separate
continuous
steady release

Five separate
continuous
steady releases

Three separate
continuous
steady releases

FLADIS
a single continuous
steady release

Location New Mexico Dugway, Utah Dugway, Utah Landskrona,
Sweden

Date November 89 November 92 May 93 August 93

Tracer gas Ionised air Propylene Propylene Liquefied NH3

Detector used Ion collectors UVIC UVIC UVIC

Number of
detectors

4 1 6 9

Downwind
distance

15 m over a
variety of
configurations

30 m on plume
centreline

20 m, split 2 m
across plume

5 at 140 m, split
20 m across plume.
4 at 240 m at
heights 0.5–10 m

Stability
conditions

Two unstable
Two stable

All neutral All neutral Stable

Mean windspeed 2–4 m s21 0.8–2.9 m s21 2.5 m s21 3.2 m s21

Sampling
frequency

10 Hz 200 Hz 100 Hz 100 Hz

Duration of
release

1800–3300 s 900 s 300 s 1200 s
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Fig. 1. – Plot of kurtosis vs. skewness for the various data sets described in the text. 1FLADIS
(stable) data; eDugway (neutral) Nov. 92 and May 93; * New Mexico (unstable and stable). The
solid line represents the curve K4S 211 which pertains to a two-state model.

conditions). These experiments, including performance of the ion collectors, are
discussed in more detail in [11].

During the Dugway experiments propylene was released from a height of 1.32 m at
a rate of 1 .3831024 m3 s21 (November 1992), and from 2 m at a rate of 2 .53
1024 m3 s21 (May 1993), towards the array of UVICs positioned 2 m above the ground.
The experiments were conducted by Jones [12], and further details are available from
the authors.

The Landskrona experiments formed part of the EU FLADIS project [13] and took
place over flat grassland (roughness height A 0.04 m). Ammonia was released from the
source, fixed at a height of 1.5 m, at a near constant rate of approximately 0.27 kg s21 .
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The first array of detectors (fixed 2 m high) was spread across the plume. A second
array further downwind was positioned approximately on the plume centreline at
different heights.

The general characteristics of the output recorded by the detectors during these
experiments are discussed in [14]. All exhibited positively skewed distributions to some
degree (see fig. 1), with those recorded under neutral conditions (corresponding to the
most intermittent data sets) producing the largest values.

3. – Analysis

The pdf of concentration p(u ; x , t) is defined to be

p(u ; x , t) du4PROB ]uGG(x , t)Eu1du( .(8)

In terms of the pdf the central moments about the distribution mean m(x , t)4m 1 are
given by

m n (x , t)4�
0

Q

]u2 (12d 1n ) m 1 (x , t)(n p(u ; x , t) du , nF1 ,(9)

with variance s 2 (x , t)4m 2 , skewness S4m 3 Om 3O2
2 and kurtosis K4m 4 /m 2

2 . In the
absence of molecular diffusion G can take just two values, namely zero and u S , the
uniform source concentration, and the pdf has the exact form of the weighted sum
of two delta functions [2, 14]. The skewness and kurtosis of such a distribution satisfy
K4S 211 exactly. As the higher moments in the real case kc0 lie on a similar
K4AS 21B characteristic curve, one could consider modelling the concentration pdf
as a perturbation of a two-state process, namely

p(u ; x , t)4]12e(x , t)( pL (u ; x , t)1e(x , t) pT (u ; x , t) ,(10)

where pL (u ; x , t) and pT (u ; x , t) are themselves pdfs and e(x , t)� [0 , 1 ] is a shape
parameter. For such a pdf it is possible to show [15] that

(11) m4 (12e) m L1em T ,

(12) s 24es 2
T1 (12e) s 2

L1e(12e) f 2 ,

(13) Ss 34 (122e)(12e) ef 313e(12e) f(s 2
T2s 2

L )1 (12e) SL s 3
L1eST s 3

T ,

(14) Ks 44e(12e)(123e13e 2 ) f 416e(12e)[es 2
L1 (12e) s 2

T ] f 21

14fe(12e)(ST s 3
T2SL s 3

L )1 (12e) s 4
L KL1es 4

T KT ,

where f4m T2m L and the subscripts T and L refer to the moments of pT and pL ,
respectively.

Just such a model pdf has been used successfully to fit statistically stationary
atmospheric dispersion data sets [14], with

pL (u ; x)4
e 2u/l

l(12H(Q) e 2n/lQ )
(15)
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a simple exponential distribution to model the low concentration peak, and a
generalized Pareto distribution (GPD)

pT (u ; x)4
1

n
g12 Qu

n
h1/Q21

(16)

to model the high concentration tails [16, 17]. l(x)D0 and n(x)D0 represent
appropriate concentration scales, H(Q) a Heaviside step function and Q(x) is a shape
parameter determining the range of u . For QD0, then 0EuEn/Q , in which case all the
moments exist, whilst for QG0, 0EuEQ and the m n exist only when QD21/n . (The
case Q40 is interpreted as the limit QK0. ) The parameters l , e and Q were chosen
using a maximum likelihood procedure, and the scale parameter n was simultaneously
chosen to minimize the discrepancies among the first four sample and fitted central
moments [14]. This ensures that QD21/4 ; otherwise K is not defined. In practice, the
likelihood function was relatively insensitive to changes in n and adopting this
procedure reduced its value by less than 1 per cent. The pdf must terminate at some
maximum value Gu S , so the case QG0 is unphysical. However, as better fits to the data
were obtained by adopting the procedure described above with QD21/4 , and given
that it is difficult to make a robust estimate of the maximum concentration, the
restriction that QD0 was not imposed. In practice Q� (21/5 , 1 /2) with QD0 for the
Landskrona and New Mexico [18] data, whilst for the Dugway data QE0.

Using distributions (15) and (16) and noting that the normalizing factor e 2n/lQ is
sufficiently small to be redundant (e 2n/lQE10210 for all the data sets), one has

m L4l , s L4l , SL42 , KL49 .(17)

.
`
/
`
´

m T4
n

(11Q)
, s T4

n

(11Q)(112Q)1/2
,

ST4
2(12Q)(112Q)1/2

(113Q)
, KT4

3(2Q 22Q13)(112Q)

(113Q)(114Q)
.

(18)

Assuming that the values of the scale parameters are such that the condition
m Tcm L is satisfied, then eqs. (12), (13) and (14) for the variance, skewness and kurtosis
become

(19) s 24
2n 2 e

(11Q)(112Q)
y12 e(112Q)

2(11Q)
z ,

(20) Ss 34
6n 3 e

(11Q)(112Q)(113Q)
y12 e(113Q)

(11Q)
1

e 2 (112Q)(113Q)

3(11Q)2
z ,

(21) Ks 44
24n 4 e

(11Q)(112Q)(113Q)(114Q)
3

3y12 e(114Q)

(11Q)
1

e 2 (113Q)(114Q)

2(11Q)2
2

e 3 (112Q)(113Q)(114Q)

8(11Q)3
z .
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A relationship of the form KBAS 21B can be derived from (19), (20) and (21)
by defining A and B correct for O(e21 ) and O(e 0 ). The size of the error term
D4K2AS 22B introduced when adopting this procedure can also be investigated.
Following the routine algebra discussed in the appendix, one can show that

K4AS 21B1D ,(22)

where

A4
4(113Q)

3(114Q)
,(23)

B4
3(112Q)2

(113Q)(114Q)
,(24)

and

(25) D4K2AS 22B4

4
(112Q)2 e

2(11Q)(113Q)(114Q)

y12 (213Q) e

2(11Q)
1

(112Q)(213Q) e 2

12(11Q)2
z

y12 (112Q) e

2(11Q)
z3

,

for Q� (21/4 , Q). Differentiating (25) with respect to e , one can show that, for each
fixed Q , D takes its maximum value

DMAX4
(21Q)(112Q)2

3(113Q)(114Q)
(26)

as eK1 from below. Notice that DMAXE2/3 for Q� (0 , 3 /21k7/2). Furthermore,
DK0 as QKQ , provided eE1.

4. – Discussion

4.1. Using a GPD model with QF0. – The previous analysis shows that using a GPD
to model the high concentration tails implies a relationship between the skewness and
kurtosis of the form (22)-(24), provided the error term (25) is sufficiently small. With no
molecular diffusion e4g(x , t)E1, where g is the intermittency factor [19], pL (u)4
d(u) and pT (u)4d(u S2u). This case is recovered from (15) and (16) by taking the
limits lK0 and QKQ , with lim

QKQ
(n/Q)4u S . (In [20] a simplified three-parameter

EGPD pdf model is described in which l and n are defined in terms of e , Q and m the
mean concentration, in such a way that pL (u)Kd(u) and pT (u)Kd(u S2u) as QKQ . )
These limits give AK1, BK1 and DK0 and one recovers from (22) the K4S 211
behaviour associated with two delta functions.

In practice the effects of molecular diffusion are to reduce concentration scales and
smooth out associated concentration fluctuations [2, 19], introducing a continuum of
observed concentration values. Generally for the experiments considered here the
concentration data consists mainly of small measurements close to zero, interspersed
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TABLE II. – Typical values of the parameters characterising the model pdf discussed in this
paper for data collected under different atmospheric conditions.

Experiment e m L /m T (12e) s 2
L /es 2

T

FLADIS stable data 0.55
0.88
0.36

0.011
0.074
0.033

1.23 1024

1.43 1023

2.33 1023

New Mexico unstable data 0.12
0.22
0.13

0.018
9.33 1023

0.018

2.93 1023

3.53 1024

2.03 1023

Dugway 93 neutral data 0.05
0.12
0.20

3.43 1023

8.33 1023

7.83 1023

1.63 1024

3.23 1024

1.63 1024

Dugway 92 neutral data 0.29
0.27
0.27

0.040
0.053
0.064

7.63 1023

4.83 1023

6.13 1023

with intermittent high value peaks [14]. After fitting the proposed model pdf to the
data sets, all the scale parameters satisfied the m Tcm L criterion (see table II) and,
hence, the analysis of the previous section is applicable. Except possibly very close to
the source, one would expect the gradient of a real pdf to be finite at the maximum
observed concentration. For this model this condition is satisfied only when QG1/2 ,
and hence one can postulate that Q41/2 should provide an upper bound on the shape
parameter. For the higher moments this would imply that the skewness and kurtosis
satisfy

KF
10

9
S 21

8

5
.(27)

(This lower bound on K is not invalidated by the error term, since DD0 for QD0. ) The
curve K410/9S 218/5 is the lowest of the three shown on fig. 2 and, as anticipated, all
the data points lie above it.

A number of special cases can be considered. When QK0 the GPD deforms to an
exponential distribution and the central moments of all orders exist. In this case
DMAX42/3 and the skewness and kurtosis lie approximately on the curve

K4
4

3
S 213 ,(28)

(see the middle curve shown on fig. 2). The best least squares fit of the moments
generally lies close to this curve [6]. Notice how for the data collected under stable
conditions the moments tend to lie below this curve, whilst under more convective
conditions the moments are much larger (this is a consequence or the more
intermittent structure of the data, which for this model manifests itself in smaller
values of the parameter e) and lie above it. Further special cases such as the gamma
and lognormal [6] and beta [21] distributions have also been considered.
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Fig. 2. – Plot of kurtosis vs. skewness for the various data sets described in the text. 1FLADIS
(stable data); eDugway (neutral) Nov. 92 and May 93; * New Mexico (unstable and stable).
The solid lines represent the theoretical curves K45S 2 /3127/5 (upper), K44S 2 /313 (middle)
and K410S 2 /918/5 (lower). Little confidence can be placed in the data points lying above
K45S 2 /3127/5 .

4.2. Using a GPD model with QE0. – As can be seen from fig. 2, a number of points
lie above K44S 2 /313, implying negative Q values. As was pointed out in sect. 3 such a
pdf does not terminate, at odds with the fundamental physical property that G must be
less than the source concentration. However, much better fits for the Dugway data
based on the likelihood criterion are obtained by allowing QE0. The fitting procedure
gives Q� (21/5 , 0 ), whilst the associated standard errors of Q range from 1.5 to 3 .43
1024 . However, these errors assume independent time series, whilst the estimated
autocorrelation time scale for these data sets is about 0.5 s. Block averaging the data
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over intervals of 1 s to produce a series of independent data points resulted in fitted
values of QD20.1 with much larger standard errors of order 3-531022 , although
these are still too small to be consistent with a QD0 distribution.

Further insight into the behaviour of the normalized moments in such
circumstances can be gained by examining the theoretical standard error estimates of
S and especially K, assuming that G is taken from a distribution with QE0. Using
standard statistical results [7], it is possible to obtain (see appendix) an approximate
expression (A.14) for variance of the estimator K× , when Q is slightly greater than 21/8 .
Notice that when e is small, corresponding to large values of K (see eqs. (19) and (21))
as is the case for the Dugway data (table II), large standard errors can be expected.
This is consistent with the bootstrap estimates of Clarke [22] for the confidence
intervals of S and K, which show greatest uncertainty for large K. Calculations of the
error (A.14) for the block-averaged Dugway data with N4900 independent data points
showed that [ Var (K×) ]1/2 /K×A2, too large to draw firm conclusions. The possibility that
all of the points lying above K44/3S 213 on fig. 2 were drawn from a QD0 GPD
distribution (consistent with physical arguments) cannot be ruled out, although this is
at odds with the error estimates on Q from the likelihood fitting procedure. The
resolution of this contradiction must await further data, in which there is more
confidence in the estimates of the larger concentrations.

4.3. General case. – For general pL (u) and pT (u) then, provided m Tcm L and
es 2

Tc (12e)s 2
L (in which case s 2

Tcs 2
L and it is reasonable to assume ST s 3

TcSL s 3
L

and KT s 4
TcKL s 4

L from (9)) one can show from (12)-(14) that

S 2B
[ST13(12e) v1 (122e)(12e) v 3 ]

e[11 (12e) v 2 ]3
,(29)

KB
[KT14(12e) ST v16(12e)2 v 21 (12e)(123e13e 2 ) v 4 ]

e[11 (12e) v 2 ]2
,(30)

where v4m T /s T . (The constraint es 2
Tc (12e)s 2

L appears characteristic of this data
on the evidence of the GPD fits displayed in table II.) The analysis outlined in the
appendix will hold and K4AS 21B1D , with constants A and B given by equations
(A.3) and (A.4), respectively. However, it is not clear that the resultant error term, D, is
sufficiently small to be neglected, as was the case for the GPD pdf discussed earlier.
Further investigation is being undertaken. It is also difficult to make progress by
letting eK0 and expanding, without introducing further constraints on the behaviour
of v , ST and KT . Ye [23] has proposed a model pdf for wind tunnel data consisting of a
weighted sum of two Gaussian distributions, but with s T4s L , in which case (29), (30)
do not apply. One can show that for such a pdf the normalized moments satisfy the
relationship K4S 21B , but this is too restrictive to account for all the data discussed
here.

5. – Conclusions

The collapse of the normalized moments, skewness and kurtosis, for concentration
and dosage onto a characteristic quadratic curve, irrespective of the experimental or
atmospheric conditions, must imply certain common features shared by the pdfs.
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Appeals to the basic physics of the problem of atmospheric dispersion in the light of
these results support the proposition that the pdf of concentration can be modelled as a
perturbation of a two-state process. Examination of the results of specific experiments
investigating the continuous release of contaminant (under statistically stationary
conditions) shows that such a pdf, consisting of an exponential distribution and GPD,
can be used succesfully to model the data. Furthermore, it has been shown (to a good
approximation) that it is the characteristics of the GPD alone that govern the behaviour
of the higher moments, leading to K4A(Q)S 21B(Q) consistent with the observed
collapse. The resultant error term D introduced has the elegant property of taking its
maximum value as eK1 from below, for each fixed Q , and DE2/3 for
Q� (0 , 3/21k7/2). Physical arguments suggest that Q should be limited to positive
values; although some of the data does support the idea of negative values. However, in
these instances the data in the high concentration tail is too sparse to make robust
estimates of S and K.

Following on from this work, it is possible to postulate further improvements to the
model pdf. Whilst Q is dependent on atmospheric conditions (QE0 for data collected in
neutral conditions, 0EQE1/2 for stableOunstable conditions), it shows little variation
(except very close to the source) with respect to x, the relative position of the detectors
to the source, i.e. the estimated values of skewness and kurtosis, from data recorded at
different positions during a single experiment, lie (approximately) on a single curve.
This would imply the use of a model pdf defined by eqs. (10), (15), (16) with Q constant
for continuous releases under fixed atmospheric conditions. Furthermore, by applying
the arguments deployed here concerning the relative size of the concentration scale
parameters, i.e. m Tcm L , one can postulate a simple relationship between the mean
and variance which reduces to three only the number of independent parameters
governing the pdf [20], simplifying the model still further. Given that the (S× , K×)
collapse is also characteristic of data taken from non-stationary instantaneous release
experiments [8, 9], the GPD should be considered as a starting point for a simple model
pdf evolving with time.
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AP P E N D I X

Derivation of A, B and D

Using eqs. (29) and (30), which represent a general form of eqs. (19)-(21), as a
starting point, and assuming that to a first approximation the skewness and kurtosis
satisfy K4AS 21B , one has

(A.1) e21 [KT14(12e) ST v16(12e)2 v 21(12e)(113e13e 2 ) v 4 ][11(12e) v 2 ]4

4Ae21 [ST13(12e) v1 (122e)(12e) v 3 ]21B[11 (12e) v 2 ]3 .
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Rearranging (A.1) gives

(A.2) [(KT14ST v16v 21v 4 ) e212

24v(ST13v1v 3 )16ev 2 (11v 2 )23e 2 v 4 ][ (11v 2 )2ev 2 ]4

4Ae21 [ (ST13v1v 3 )23ev(11v 2 )12e 2 v 3 ]21B[ (11v 2 )2ev 2 ]3 .

If pT (u) follows a GPD, then v4 (112Q)1/2 and the results given by eq. (18) for ST and
KT apply. As the moments of pT (u) are independent of e , it is possible to determine
expressions for A and B by assuming K4AS 21B is correct for O(e21 ) and O(e 0 ).
Equating terms of O(e21 ) in (A.2) ¨

A4
[KT14ST v16v 21v 4 ](11v 2 )

[ST13v1v 3 ]2
,(A.3)

whilst equating terms of O(e 0 ) ¨

B4
v[ST13v1v 3 ](6A24)

(11v 2 )2
2

v 2 [KT14ST v16v 21v 4 ]

(11v 2 )3
.(A.4)

For a GPD (A.3) and (A.4) reduce to

A4
4(113Q)

3(114Q)
,(A.5)

B4
3(112Q)2

(113Q)(114Q)
,(A.6)

and hence one obtains eqs. (22)-(24).
The error term introduced by adopting this strategy can be examined by evaluating

D4K2AS 22B , with A and B as given by equations (A.3) and (A.4). Equation (A.2)
represents [(11v 2 )2ev 2 ]3 K4 [ (11v 2 )2ev 2 ]3 (AS 21B) and so taking all the
terms onto the LHS of this equation and noting the terms O(e21 ) and O(e 0 ) are zero by
(A.3) and (A.4), one has

(A.7) [(11v 2 )2ev 2 ]3 D4e[4v 3 (ST13v1v 3 )(12A)13v 2 (11v 2 )2 (21B23A) ]1

1e 2 [3v 4 (11v 2 )(4A2B23) ]1e 3 [v 6 (31B24A) ] .

For a GPD the LHS of (A.7) gives

[ (11v 2 )2ev 2 ]3 D48(11Q)3y12 e(112Q)

2(11Q)
z3

D ,(A.8)

whilst using (18), (A.5) and (A.6), the terms on the RHS of (A.7) in e , e 2 and e 3 reduce
to

e
4[ (11Q)(112Q) ]2

(113Q)(114Q)
,(A.9)

2e 2 2(11Q)(112Q)2 (213Q)

(113Q)(114Q)
,(A.10)



INVESTIGATION OF THE COLLAPSE OF THE SKEWNESS AND KURTOSIS ETC. 397

and

e 3 (112Q)3 (213Q)

3(113Q)(114Q)
,(A.11)

respectively. Substituting results (A.8)-(A.11) into (A.7) and rearranging gives the
equation for the error term (25).

Variance of K×

For large samples of N independent data points, the variance of the kurtosis
measure K×4m4 /m 2

2 , where

mr4
1

N
!

j41

N

(Gj2G)r ,(A.12)

is given by (see exercise 10.27 of [9])

(A.13) Var (K×)4
1

Nm 3
2

y m 8

m 2

24
m 6 m 4

m 2
2

14
m 3

4

m 3
2

2
m 2

4

m 2

116
m 4 m 2

3

m 2
2

28
m 3 m 5

m 2

116m 2
3z .

Given the relative size of the concentration scales (ncl) for the pdf described here,
the central moments appearing in (A.13) will be dominated by the contribution of the
GPD. In this case all moments exist only when QD21/8 . As QK21/8 from above, only
the first term in (A.13) is significant and it reduces to

Var (K×)A
2520 [ (11Q)(112Q) ]3

e 3 (113Q)(114Q) R (118Q) N
y12 e(112Q)

2(11Q)
z24

.(A.14)

(Note that Var (K×) is not defined for QG21/8 . The curve K45/3S 2127/5
corresponding to Q421/8 in (22)-(24) is the upper curve shown in fig. 2.)
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