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CD4+ T cells are a critical component of the adaptive immune system as they generate large 

amounts of cytokines that help shape the immune milieu.   Additionally, they are the primary 

contributors to the immunopathology exhibited in Type 1 Diabetes.  The field of 

immunometabolism has elucidated that the cellular metabolic profile of immune cells has a 

significant impact on their function, and ultimately the fate of the overall response.  Naïve CD4+ 

T cells rely primarily on mitochondrial oxidative phosphorylation, but upon antigen encounter, 

reprogram their metabolism to aerobic glycolysis.  Understanding the mechanisms that govern 

these programs could be critical in developing new therapies for limiting aberrant T cell 

responses in autoimmunity.  Here we examined the contributions of two different molecules, 

Lymphocyte Activation Gene 3 (LAG-3) and reactive oxygen species (ROS) in controlling T cell 

metabolism.  LAG-3 is an inhibitory receptor expressed on the surface of CD4+ T cells, and 

deficiency in naïve T cells leads to enhanced homeostatic expansion.  Our results indicate that 

LAG-3 expression on naïve CD4+ T cells serves to restrain cellular metabolism and 

mitochondrial biogenesis as a means of maintaining quiescence.  These results are compelling as 

loss of LAG-3 expression in a model of Type 1 Diabetes results in accelerated disease 

progression, potentially due to T cell metabolic enhancements, as our data would suggest.  Single 

nucleotide polymorphisms in the LAG-3 gene have also been linked to autoimmune disease 
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susceptibility.  With regards to ROS, Type 1 Diabetes is known to be highly driven by oxidative 

stress, and CD4+ T cells require acute doses of ROS to drive optimal activation.  Therefore, we 

sought to understand if ROS signaling contributes to the metabolic transition that occurs during 

T cell activation.  Indeed, ROS inhibition resulted in reduced mTOR signaling and aerobic 

glycolysis.  Altering metabolism in this manner also delayed Type 1 Diabetes progression in an 

adoptive transfer model of disease.  Collectively, this work demonstrates that both LAG-3 and 

ROS regulate CD4+ T cell metabolism, which, in turn, greatly impacts T cell activation potential 

and ability to drive disease.   
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PREFACE 

 

“Don’t give up, don’t ever give up.” 
 

- Coach James “Jimmy V” Valvano 

 

Growing up in the Previte household, sports were always a constant, whether it was cheering on 

a Pittsburgh sports team or watching the sheer excitement of March Madness.  This quote by 

Coach Valvano has always been one that resonated with me, as it was so poignant given his 

unwavering optimism and courage in the face of cancer.  Graduate school has been quite the 

rollercoaster ride, and there were many times where giving up would have been easier than 

staying the course.  However, along with this quote, some very special people helped me to 

persevere and finally reach my goal. 

 First I would like to thank Dr. Jon Piganelli for taking a chance on me, and allowing me 

to join his laboratory.  You have allowed me to learn and think on my own and gave me the 

reigns to drive this work myself.  For that I am truly grateful.  I hope you feel that the gamble 

paid off.  To the Piganelli lab members, both past and present, thank you for all the help and 

laughter along the way, especially when things were not working scientifically.  Specifically, I 

would to thank Drs. Gina Coudriet and Meghan Marre.  You ladies have helped me so much in 

navigating my way through graduate school with your wisdom and experience.  Also, you have 
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been excellent examples of women scientists and mothers.  I am so proud to not only call you my 

colleagues, but also my friends. 

 To my wonderful grandparents, Martin and Margaret Sholtis, and Peter and Imogene 

Previte, for instilling in me that a strong work ethic can help you achieve your goals.  They 

worked hard to provide better lives for their children and grandchildren, and it is through their 

drive and determination that I have been blessed with the opportunities I have had.  Moreover, 

they taught me the importance of education, and were always a source of unconditional love.  

Sadly, I lost two of my grandparents during this process, and my only regret is that they are not 

here today to see this dream come to fruition.   

 To my sister, Marissa Previte, thank you for being my roommate, running partner, and 

fellow Housewives lover.  It has been great growing into adulthood with you over the past five 

years, and you have been a great source of levity, love, and fun.  I am proud of how close we 

have become.   

 Next, I would like to thank my parents, Mark and Laverne Previte.  Thank you, Mom, for 

being the glue that holds this family together.  Your strength and love are unmatched by anyone I 

know.  Growing up, you showed me that a woman can be a successful professional, mother, and 

wife, and I could not have asked for a better female role model.  I hope I can be at least half as 

successful as you have been.  To my dad, the first Dr. Previte – thank you for paving the way for 

me in academia, but also allowing me to blaze my own trail into science.  I can honestly say that 

you were the first person to teach me how to think critically, whether that was discussing 

politics, curriculum, or zone versus man-to-man defense.  I cannot thank both of you enough for 

being constant sources of love and support. 



 

 xviii 

 To my wonderful husband, Dr. Matthew Brown.  I do not think any of this would have 

been possible without you.  You have seen me at my best and my worst, and have loved and 

supported me regardless.  You are one of the most driven and intelligent people I have ever met, 

and I am so lucky to have you.  Thinking back, I am so thankful for that first BGSA happy hour 

where we met, and I look forward to what the future holds for us.  I love you so much.   

 Lastly, I would like to end with this: 

“…And to all the little girls who are watching this, never doubt that you are valuable and 
powerful and deserving of every chance and opportunity in the world to pursue and 
achieve your own dreams." 
  

--Hillary Rodham Clinton 
 
This is for those girls, as I was once one of them. 
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 1 

1.0  INTRODUCTION 

1.1 TYPE 1 DIABETES 

The immune system protects against pathogens, in part by distinguishing self from non-self.  

While this self/non-self recognition is usually maintained, in some instances the immune system 

can mount a response against self-antigens, leading to organ-specific autoimmunity.  Tolerogenic 

mechanisms, including T regulatory cells, are in place to combat ensuing autoimmunity; 

however, these mechanisms can fail due to inherent dysfunction or unrestrainable inflammation.  

This subsequent autoimmune attack is responsible for numerous diseases including rheumatoid 

arthritis, multiple sclerosis, and type 1 diabetes, to name a few.   

Specifically, type 1 diabetes (T1D) occurs when autoreactive T cells target pancreatic β 

cells for destruction.  The loss of β cell mass and function results in reduced insulin secretion and 

diminished blood glucose regulation, culminating in hyperglycemia.  By the time T1D patients 

present with hyperglycemia, 80-90% of the β cell mass has already been lost [1, 2].  Therefore, 

in order to maintain blood glucose levels, patients must administer exogenous insulin for the 

remainder of their lives.  If poorly controlled, hyperglycemia can lead to multiple complications 

including cardiovascular issues, nephropathy, and retinopathy, to name a few. While insulin 

therapy is efficacious for most, there are a percentage of patients who cannot manage blood 

glucose with insulin alone, and islet transplantation has become a potential therapy for these 
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patients [3].  However, with transplantation, patients must be placed on rigorous 

immunosuppressive regimens to minimize islet graft rejection, and several of these therapies 

have been shown to have direct negative effects on β cells [4, 5].  

CD4+ and CD8+ T cells contribute to the immunopathology exhibited in T1D and 

demonstrate islet infiltration [6-8].  Additionally, activated T cells mediate auto-autoantibody 

secretion by B cells [9, 10], further targeting islet β cells.  While the initiating events that trigger 

immune activation against the β cell are not fully elucidated, it is well accepted that genetic and 

environmental factors may be responsible for promoting the initial break in tolerance.  These 

factors include: viral infection [11], family history [12], ER stress [13, 14], chemical exposure 

[15], and pancreatic inflammation and ROS [16].  

The most widely used animal model of T1D is the non-obese diabetic or NOD mouse, 

that spontaneously develops the disease, closely mimicking human progression [17-20]. With 

regards to T cell biology, the NOD.BDC-2.5 T cell receptor (TCR) transgenic animal has been 

most critical in further dissecting antigen-specific T cell responses relevant to T1D [21-23].  

Here, all CD4+ T cells recognize a peptide formed by covalent cross-linking of two β cell 

peptides:  proinsulin and Chromogranin A (CHgA) [24].  Adoptive transfer of isolated BDC-2.5 

T cells into NOD.scid recipients is sufficient for T1D induction; yet, very rarely do BDC-2.5 

mice demonstrate T1D incidence themselves, owed to an inherent regulatory T cell population 

[25, 26].   
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1.2 METABOLIC PATHWAYS UTILIZED IN T CELLS 

With the recent interest in immune cell metabolism, it has become better appreciated that cellular 

metabolic pathways are a contributing factor in dictating T cell function and fate.  As the 

functions of naïve, effector, and memory T cells differ, so do their nutrient requirements, 

resulting in differential bioenergetic profiles.  Two predominant metabolic pathways utilized by 

T cells are glycolysis and oxidative phosphorylation (OXPHOS) (Figure 1).  Glycolysis is the 

breakdown of glucose to generate ATP and reducing equivalents that maintain cellular redox 

balance.  Once glucose is transported into the cell, it undergoes multiple enzymatic reactions that 

ultimately result in the formation of two pyruvate molecules for each molecule of glucose [27].  

At that point, the presence of oxygen dictates the fate of pyruvate.  If oxygen is present, pyruvate 

will move into the mitochondria to support oxidative metabolism.  Alternatively, in the absence 

of oxygen, pyruvate is converted to lactate that is secreted by the cell in a process known as 

anaerobic glycolysis [27, 28].  However, there are instances in which glucose is converted to 

lactate even in the presence of oxygen [27, 29-31].  This process, known as aerobic glycolysis, or 

the Warburg effect, is demonstrated by activated T cells [32-34].   

If pyruvate is transported into the mitochondria, it is converted to acetyl-CoA and enters 

the tricarboxylic acid (TCA) cycle [28, 35].  Here, a series of chemical reactions occur that result 

in the production of more energy (ATP), reduction of NAD+ to NADH, and release of carbon 

dioxide [36].  Glucose is not the only carbon source that can be utilized for acetyl-CoA 

generation and metabolism, as fatty acids and glutamine can also be shuttled into the TCA cycle.   

The NADH produced by the TCA cycle is used to support the electron transport chain 

(ETC), also located in the mitochondria, thus coupling respiration with ATP synthesis [37].  The 

ETC is comprised of five mitochondrial proteins, complexes I-V, that drive electron movement 
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via redox reactions [35, 38, 39].  In addition, protons (H+) are translocated from the 

mitochondrial matrix to the intermembrane space, creating a concentration gradient.  Complex 

V, or ATP synthase, serves as a proton pump, moving protons down the concentration gradient 

back into the matrix, driving phosphorylation of ADP to ATP [40-42].  Oxygen serves as the 

final electron acceptor in the ETC generating superoxide (O2
-), and is thus consumed by the 

process.  Superoxide cannot easily cross membrane barriers; therefore, mitochondrial-expressed 

manganese superoxide dismutase (MnSOD) acts to dissipate superoxide to hydrogen peroxide 

(H2O2) as a means of eliminating the species [43, 44].  Alternatively, hydrogen peroxide is easily 

diffusible across membranes, and mitochondrial glutathione peroxidase and cytoplasmic catalase 

facilitate the decomposition of hydrogen peroxide to water and oxygen (O2) [45].  These 

enzymes together serve as a means of protecting the cell against free radical damage.   

Work in tumor and T cell biology have elucidated that aerobic glycolysis is the preferred 

pathway for highly proliferative cells [30, 31, 46].  This is in part due to glycolysis shuttling 

carbon molecules towards biosynthetic pathways that enable lipid membrane and nucleotide 

formation.  Phosphorylated glucose (Glucose-6-phosphate) can either be shuttled through 

glycolysis or into the Pentose Phosphate Pathway (PPP), which aids in nucleotide synthesis 

(Figure 1) [47].  Additionally, citrate can be shuttled out of the TCA cycle to build lipids [27, 

28].  Both metabolic shunts are upregulated in activated T cells to support daughter cell 

formation [34, 48, 49].    
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Figure 1.  Metabolic Pathways in T cells. 
T cells have been shown to utilize various metabolic pathways to generate ATP, drive proliferation, balance cellular 
redox or maintain longevity.  Glycolysis and the Pentose Phosphate Pathway (PPP) take place in the cytosol, while β 
oxidation (Fatty Acid Oxidation) and glutaminolysis feed directly into the Tricarboxylic Acid Cycle (TCA) that 
occurs in the mitochondria.  The Electron Transport Chain (ETC) also occurs in the mitochondria, resulting in ATP 
formation and oxygen consumption.     
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1.3 NAÏVE T CELLS 

1.3.1 Actively maintained quiescence 

Following development in the thymus, naïve T cells constantly traffic through the lymphatics as 

a means of immune surveillance.  Therefore, naïve T cells must generate enough ATP to power 

cytoskeletal rearrangement for migration.  To do so, they rely on oxidative metabolism, which 

provides maximal ATP production from nutrients such as glucose, glutamine, and fatty acids 

[48-50].  Naïve T cells are considered relatively quiescent as they demonstrate very low levels of 

homeostatic proliferation [51, 52].  With this, their biosynthetic needs are greatly reduced 

compared to actively proliferating cells, which is reflected in their considerably lower levels of 

glycolysis [48-50].   

Studies examining naïve T cell quiescence have elucidated that it is a much more active 

process, rather than simply a default state [53].  Quiescence is dynamically preserved by a 

transcriptional program that not only upregulates quiescence-associated genes, but 

simultaneously inhibits activation genes. The FOXO (Forkhead box O) family of transcription 

factors are highly active in naïve T cells and other quiescent cell types, and regulate pathways 

associated with proliferation, apoptosis, and metabolism [54, 55].  With regard to proliferation, 

FOXOs stabilize expression of cell cycle inhibitors, including p27 and p21 [54, 55].  FOXO1 

specifically enhances expression of Kruppel-Like Factors (KLFs), another family of quiescence 

regulators.  In particular, LKLF is known to suppress Myc expression in T cells to control 

metabolism and cell cycle entry [56].  KLFs also promote expression of multiple homing 

molecules, including CD62L, which are necessary for T cell lymphatic trafficking [57].  More 

recently, Tsc1 (Tuberous sclerosis 1), a known tumor suppressor, was shown to actively suppress 
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mammalian target of rapamycin (mTOR) signaling in naïve T cells as a means of preserving 

quiescence [58].  Interestingly, loss of Tsc1 resulted in increased apoptosis of peripheral naïve T 

cells and defective antigen-specific responses in vivo [58].  This work highlights that alterations 

in T cell homeostasis can have dramatic effects on activation potential and antigen clearance.    

 Low-level T cell receptor (TCR) stimulation by self-peptides presented by major 

histocompatibility complex (MHC), or tonic signaling, is necessary for protection against 

apoptosis as TCR blockade during this process results in holes in the T cell repertoire [59-61]. T 

cells deficient in TCR signaling components like Fyn and Lck, demonstrated reduced survival 

[62-64], suggesting that the signals required by naïve T cells mimic those used to promote 

activation.  Microarray studies comparing tonic signals to those from foreign antigens revealed 

similar gene expression profiles induced by both self and antigenic peptides [65]; however, the 

degree of induction was much lower in self-stimulated T cells.  These results suggest that 

signaling to maintain homeostasis versus induce activation are the same, but it is the strength of 

signal that ultimately determines T cell fate. 

 

1.3.2 Interleukin-7  

As with all immune cells, growth factors and signaling are necessary for maintaining the immune 

system.  For naïve T cells, Interleukin-7 (IL-7) plays a significant role in sustaining homeostasis 

and cellular metabolism [66-68].  IL-7 is produced by various non-hematopoietic cells including 

thymic epithelial cells, lymphatic endothelial cells [69], and fibroblastic reticular cells [70, 71].  

IL-7 signals via the IL-7 receptor which is composed of the common γ chain subunit CD132 and 

the unique IL-7Rα (CD127) subunit.  Global deletion of the IL-7R results in a severe combined 
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immunodeficiency (SCID) phenotype, further highlighting its requirement in T cell survival [72-

74].  IL-7 promotes naïve T cell survival and population maintenance by mediating expression of 

the anti-apoptotic proteins, Bcl-2 [73, 75] and Mcl-1 [76], while simultaneously reducing 

expression of pro-apoptotic proteins Bid, Bim, and Bad [52, 77, 78].  IL-7 has been shown to be 

a critical growth factor for developing thymoctyes [79] and memory T cells [80-82] as well.  

IL-7/IL-7R signaling is mediated by downstream activation of the JAK3/STAT5 and 

PI3K/Akt signaling pathways [68, 79].  Activation of STAT5 and Akt by phosphorylation leads 

to increased survival and glucose metabolism in naïve T cells [83, 84].  In several instances 

increased IL-7 signaling results in downregulation of surface and mRNA expression of IL-7R, 

suggesting a negative feedback loop to protect against over stimulation and breaks in quiescence 

[85].  This downregulation has also been suggested as a mechanism to prevent overutilization by 

specific T cell clones, resulting in atrophy of others, and thus creating a less diverse T cell 

population.   

The PI3/Akt pathway regulates FOXO transcription factors via phosphorylation, resulting 

in translocation from the nucleus to the cytoplasm.  Nuclear localization of FOXOs drives 

expression of the cell cycle inhibitors like p27 Kip1.  Thus, inhibition of FOXOs by Akt via IL-7 

signaling can lead to cell cycle entry and proliferation.  The phosphatase PTEN regulates Akt 

activation [86] and is highly expressed in quiescent cells, including hematopoietic stem cells [87, 

88] and naïve T cells [89].  PTEN-deficient T cells demonstrate extensive hyperproliferation and 

do not require IL-7 to maintain either proliferation or survival, due to constitutively active Akt 

[89, 90].     

Expression and surface trafficking of the passive glucose transporter 1 (Glut1), which is 

essential for glucose uptake in T cells, increases upon IL-7 signaling, and knockdown of either 
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STAT5 or Akt reduces this response [68].  Interestingly, in vitro experiments where T cells were 

cultured in high or low glucose demonstrated that glucose concentration correlated with the 

degree of responsiveness to IL-7, indicating that glucose uptake aids in perpetuating IL-7 

signaling [68].  The development of conditional deletion of the IL-7R in T cells allowed for 

further understanding of how IL-7 regulates naïve T cell metabolism and survival in vivo [91].  

These studies indicated that loss of IL-7 signaling led to decreased cell size and frequency of 

both CD4+ and CD8+ T cells, which was due to reduced pSTAT5 signaling, glucose uptake, and 

cellular glycolysis [91].  While the main role of IL-7 is to maintain glycolysis in naïve T cells, 

there is some evidence that it also supports amino acid transport in CD8+ T cells, which is 

necessary for T cell growth [92].  

 

1.3.3 Homeostatic proliferation of naïve T cells 

Naïve T cells are successful at maintaining steady numbers in the periphery.  This sense of space 

is controlled by competition for survival signals from self-peptide/MHC and IL-7.  Yet, low 

levels of homeostatic proliferation of naïve T cells do occur.  Due to the utilization of IL-7 in the 

periphery, levels of this cytokine in lymphoreplete animals remain quite low [93].  During 

instances of lymphopenia, serum IL-7 levels increase due to lack of utilization, and can therefore 

trigger homeostatic expansion of the remaining T cells.  This is exemplified by robust 

proliferative responses of naïve T cells adoptively transferred into Rag-deficient animals, 

whereas transfer into wildtype syngeneic animals results in very low, if any, proliferation.  

Several surface markers have been reported to alter homeostatic expansion such as CD24, which 

is necessary for proliferation [94] and B and T lymphocyte attenuator (BTLA) which inhibits 
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proliferative potential [95].  CD5 has also been identified as a marker of increased tonic 

signaling and proliferation on naïve T cells [96, 97] 

Work by Min et al. further identified two different types of proliferative responses that 

occur upon T cell transfer into lymphopenic hosts. The slower, more limited proliferation was 

termed homeostatic, which was shown to be highly dependent upon IL-7 [98].  Alternatively, 

some T cells underwent more vigorous, IL-7-independent expansion, termed spontaneous [98].  

These spontaneously proliferative T cells, while naïve in the sense that they have not 

experienced foreign antigen, demonstrated memory-like characteristics, including increased 

CD44 expression and a lowered activation threshold [99, 100].    

1.4 T CELL ACTIVATION AND METABOLIC REPROGRAMMING 

Upon TCR:peptide/MHC (Major histocompatibility) engagement, naïve T cells become 

activated, and with activation different functions ensue, including clonal expansion and effector 

function acquisition.  With these new functions, the cellular metabolic profile of T cells also 

drastically changes [48, 49, 101].  Cellular division is an energetically demanding process, as the 

cell must replicate DNA and build new plasma membranes.  To support the heightened level of 

macromolecule synthesis and ATP demand, T cells must transition from a slower, oxidative 

metabolism, to a faster program heavily dependent upon aerobic glycolysis (Figure 2).  This 

metabolic transformation has been extensively characterized in tumor cells, and is often referred 

to as the “Warburg effect,” as it was first observed/described by Dr. Otto Warburg [31].  
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Figure 2.  T cell metabolic reprogramming during the transition from naïve to effector and effector to 
memory.   
Naive T cells are predominantly oxidative, breaking down glucose, fatty acids, and amino acids via the TCA cycle 
and electron transport chain.  Antigenic stimulation results in a transition to aerobic glycolysis, where glucose is 
metabolized to lactate or shuttled into biosynthetic pathways.  Contraction to a memory T cell population results in 
transition back to a more oxidative phenotype. 

 

 

The metabolic reprogramming of activated T cells can be broken down into two stages:  

1. cell growth and preparation for division, and 2. clonal expansion.  During the early stages of T 

cell activation, mitochondrial metabolism is critical for supporting cellular growth in preparation 

for division.  Specifically, calcium (Ca2+) signaling mediated by TCR engagement drives 

increased activation of the energy sensor AMP-activated protein kinase (AMPK) [102].  Once 

the requirements for cellular division have been met and division begins, aerobic glycolysis 

dominates.  It seems counterintuitive that aerobic glycolysis would be preferred as it only 

generates two net ATP, in comparison to the thirty-eight generated via OXPHOS.  However, as 

explained earlier, aerobic glycolysis results in increased carbon shuttling into the pentose 

phosphate pathway, which is responsible for lipid and nucleotide synthesis, along with 

production of reducing equivalents to maintain cellular redox balance.   
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1.4.1 T cell “Myc-tabolism” 

To support the new requirement for aerobic glycolysis, activated T cells undergo a major 

alteration in their transcriptome.  The transcription factor Myc has been well-characterized as an 

important mediator of this process.  Naïve T cells express little to no Myc; however, 24 hours 

post-stimulation, Myc expression levels are highly upregulated [103].  Signaling via the PI3/Akt 

and mTOR pathways enable this increased expression.  Myc induces expression of various 

glycolysis-supporting genes, including the glucose transporter Glut1, hexokinase 2 (HK2), and 

lactate dehydrogenase (LDHA) (Figure 3).  With this new metabolic machinery in place, 

activated T cells are poised to utilize glucose via glycolysis to support their rapid proliferation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Myc-dependent genes of glycolysis. 
The transcription factor Myc has been shown to upregulate expression of various glycolysis-associated genes 
(indicated in red) during T cell metabolic reprogramming. 
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Myc is a key oncogene, and similar to its role in T cells, is able to drive high levels of 

glycolysis in tumors [30, 104].  In some instances, it has even been shown to result in glucose 

addiction [29].  Also in tumors, Myc has also been shown to support cell cycle progression, thus 

making it a key linchpin in coordinating rapid proliferation with the metabolic programming 

necessary to support it.  This is also true for T cells during activation.  Unlike tumors, activated T 

cells do not demonstrate sustained Myc expression.  As stated previously, levels of Myc reach a 

peak at 24 hours post-stimulation in T cells; however, T cells are able to maintain glycolysis well 

past this point.  A recent study by Chou et al. indicated that another transcription factor AP4, is 

upregulated during CD8+ T cell activation and maintains expression of glycolysis-associated 

genes following downregulation of Myc expression [105].  In their model, CD8+ T cells that 

lacked AP4 were unable to sustain expression of Myc-driven genes and glycolysis, resulting in 

reduced immunity against West Nile Virus [105].   

 Aerobic glycolysis is not the only metabolic pathway powered by Myc.  Myc has also 

been shown to increase expression of genes associated with the pentose phosphate pathway and 

glutaminolysis, both of which aid in increased macromolecule synthesis during T cell activation 

[103, 106, 107].  Interestingly, Myc has also been shown to drive increased OXPHOS and 

mitochondrial biogenesis in some cell types [108-110]; yet, it remains to be determined if this is 

true in T cells.    

 

1.4.2 Glutamine – a key amino acid during activation  

While aerobic glycolysis is the predominant pathway utilized in effector T cells, oxidation via 

the mitochondria is not completely terminated.  Some pyruvate generated via glycolysis does 
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translocate into the mitochondria for oxidation via the TCA cycle and electron transport chain, 

resulting in ATP production and ROS generation.  In addition, uptake and oxidation of the amino 

acid glutamine via glutaminolysis is highly upregulated in activated T cells, indicating that 

glucose is not the only energy source required by activated T cells [46, 50]. Glutamine 

metabolism supports ATP generation, redox regulation, and TCA cycle intermediate restoration 

[46, 49].  Transport of glutamine into the T cell occurs in large part via the Alanine-Serine-

Cysteine transporter 2 (ASCT2) [111], but use of the sodium-coupled neutral amino acid 

transporters (SNAT) 1 and 2 can also facilitate glutamine uptake [112, 113].  Upregulation of 

ASCT2 and thus increased glutamine uptake is highly dependent upon CD28 signaling [111, 

112].  Once in the cell, glutamine is rapidly converted to glutamate by the enzyme glutaminase.  

Glutamate can then be utilized for lipid, purine, and pyrimidine synthesis, enabling cell 

membrane formation and DNA replication.  Additionally, in conjunction with cysteine and 

glycine, glutathione is produced, which is critical for maintaining cellular redox balance, 

especially with increased ROS being generated via increased OXPHOS [114].   

Studies have indicated that the requirement for glutamine occurs in the later stages of T 

cell activation, primarily to support proliferation and cytokine production.  Depriving T cells of 

glutamine during activation resulted in reduced Interferon-γ (IFNγ) and Interleukin-2 (IL-2) 

production [112, 115, 116].  Also, the concentration of glutamine present during T cell activation 

in vitro was directly proportional to the degree of proliferation observed [112, 115].  Glutamine 

concentration had no effect on CD69 expression on T cells following stimulation with αCD3, but 

did modulate CD25 upregulation in the same cells, again highlighting its requirement for 

proliferation and not for activation [115].     
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Further studies have demonstrated that the upregulation of these metabolic pathways 

during T cell activation is a highly-coordinated event.  For example, not only is Myc critical for 

driving expression of glycolytic genes, but it also mediates transcription of glutamine 

transporters and glutaminolytic enzymes [103, 117].  Moreover, the inhibition of the anaphase-

promoting complex-cyclosome (APC/C)-Cdh1 during T cell activation allows for upregulation 

of both 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3 (PFKFB3) and glutaminase, 

each rate limiting enzymes of glycolysis and glutaminolysis, respectively [118].  This 

upregulation correlated with increased T cell movement into S phase of the cell cycle, further 

delineated the interplay between cellular proliferation and metabolism.        

  

1.4.3 T cell asymmetric division and metabolism 

Asymmetric division is a process whereby two phenotypically different daughter cells result 

from a single mitotic event.  This process has been demonstrated not only by mammalian cells, 

but also those from Drosophila and C. elegans [119].  In particular, stem cells are the most well 

studied cells that demonstrate these properties.  With stem cells, this mechanism is in place to 

ensure self-renewal of a pluripotent progenitor while also providing a cell for terminal 

differentiation [120].  During activation, T cells have shown similar asymmetric division [121-

124].  Following APC encounter, the T cell divides for the first time, with the proximal daughter 

demonstrating a more effector-like phenotype (CD62Llo, CD25hi, CD44hi, CD69hi, IFNγhi), while 

the distal daughter exhibits memory T cell characteristics (CD62Lhi, CD25lo, CD44lo, CD69lo) 

[123].  Adoptive transfer experiments indicated that both proximal and distal daughters provided 

protection against an acute infection directly after transfer.  However, distal daughters provided 
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more robust protection during a secondary challenge 30 days post-transfer, further solidifying 

their memory potential [123].  TCR affinity has been shown to influence asymmetry as T cell 

stimulation with more antigenic peptides results in more distinct asymmetric populations [125].  

With regards to disease potential, CD8hi proximal daughters showed increased diabetogenicity 

and immunopathology in a Rip-mOVA model of Type 1 diabetes (T1D) [125].    

More recently metabolism and mTOR signaling were shown to be segregated 

asymmetrically during T cell division [126, 127].  Verbist et al. reported that APC proximal T 

cells expressed higher levels of Myc and were more glycolytic in comparison to distal daughters 

[127].  These results corroborated studies performed by Pollizzi et al., which indicated that 

mTOR and its signaling are inherited asymmetrically as well, with CD8hi mTORhi T cells 

demonstrating greater size and glycolytic capacity [126].  Interestingly, both studies indicated 

that CD8hi T effectors and CD8lo memory precursors showed no difference in mitochondrial 

respiration, suggesting that the enhanced oxidative potential memory cells exhibit [128-130] may 

require further shaping by extrinsic factors, like Interleukin-15 (IL-15) [131].  It is important to 

note that this is certainly not the only way in which memory T cells are formed, but may explain 

differences between central memory (those from asymmetric division) versus effector memory 

(those generated during effector contraction).   

1.5 MEMORY T CELLS AND FATTY ACID OXIDATION 

Following antigen clearance, T effector cells undergo one of two fates – apoptosis or transition to 

a long-lived memory T cell (Tmem) [132-134].  Cellular metabolism has been shown to be a 

crucial factor in mediating the transition from effector to memory, in that T cells must transition 
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from aerobic glycolysis back to a more oxidative phenotype [50, 107, 130, 135, 136].  

Specifically, fatty acid oxidation via the mitochondria is the predominant pathway utilized by 

Tmem cells, and inhibition of this pathway drastically reduces the Tmem cell pools [129, 130, 136].  

To understand why fatty acid oxidation would be advantageous, one must consider the 

characteristics of a Tmem cell.  First, memory T cells must be long-lived, as their primary function 

is to protect against potential secondary antigen challenge [137].  With this comes the 

responsibility of maintaining basal processes that require ATP.  Fatty acid oxidation, in contrast 

to aerobic glycolysis, generates more ATP per molecule of substrate, thus providing the cell with 

more energy to power basal processes.  As stated earlier, aerobic glycolysis is important for 

shuttling carbons towards macromolecule synthesis, but as memory T cells do not rapidly 

proliferate, biosynthesis is less of a concern.  With secondary challenge, memory T cells mount a 

faster and more robust response in comparison to naïve T cells.  Since the propensity for 

activation is tightly coupled to cellular metabolism, memory T cells require a bioenergetic 

advantage over naïve T cells to support this functionality [128, 129].  

The bioenergetic advantage exhibited by memory T cells has been well characterized 

over the last several years.  This advantage includes increased mitochondrial biogenesis and 

mitochondrial mass, allowing for greater ATP production.  Additionally, Tmem possess a greater 

mitochondrial spare respiratory capacity (SRC) [128].  Most cell types only respire at a basal 

rate, which is considered only a fraction of their actual metabolic potential.  The SRC is the 

difference between the maximal, or the highest possible rate of oxygen consumption during 

cellular stress, and its basal rate.  CD8+ memory T cells have demonstrated enhanced SRC in 

comparison to both naïve and effector T cells, and this characteristic is highly dependent on fatty 

acid oxidation as treatment with the fatty acid oxidation inhibitor etomoxir results in decreased 
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SRC magnitude [128].  As IL-7 is necessary for survival and metabolism of naïve T cells, 

memory T cells rely heavily upon IL-15, another member of the common γ chain cytokine 

family.  Through in vitro and in vivo analyses, IL-15 is necessary for driving increased fatty acid 

oxidation, SRC, and mitochondrial biogenesis in memory T cells. 

 

1.6 LYMPHOCYE ACTIVATION GENE-3 

1.6.1 LAG-3 as a CD4 homolog 

Lymphocyte activation gene 3 (LAG-3; CD223), is a 70kDa type I transmembrane protein 

expressed by various immune cells, including CD8+ and CD4+ T cells [138, 139], T regulatory 

cells [140, 141], B cells [142], NK cells [138], and dendritic cells [143].  Structurally, LAG-3 

consists of four extracellular Ig domains, a connecting peptide region, a transmembrane domain, 

and a cytosolic tail [144, 145].  LAG-3 is considered a CD4 homolog, as they both share four Ig 

domains, yet there is only about 20% amino acid homology between the two proteins.  CD4 and 

LAG-3 share the common ligand, MHC class II, which is predominantly expressed on antigen 

presenting cells (i.e. macrophages, dendritic cells).  While their ligand is shared, CD4 or LAG-3 

ligand engagement results in opposing positive or negative signaling, respectively.  LAG-3 binds 

to MHC class II with a much higher affinity as compared to CD4 and at a different site, 

suggesting ligand competition as one regulatory role for LAG-3 [146].  

 The genes encoding LAG-3 and CD4 are located adjacently on the human chromosome 

12 [139].  Both genes share similar intron positioning, including an intron located in the first 
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immunoglobulin superfamily domain.  This, coupled with the homologous structure suggests 

they were derived from a common ancestor [139, 147].  Whole organ genetic studies indicated 

that LAG-3 expression was limited to lymphoid organs in humans, with similar results in mice 

[147, 148].  Yet, in mice detectable levels of LAG-3 mRNA were also found in the brain [148] 

Low levels of LAG-3 are expressed on the surface of naïve T cells in comparison to the 

high surface expression of CD4 on T cells [149].  LAG-3 is mainly located in large intracellular 

stores located near the microtubule-organizing center, poising LAG-3 to be quickly trafficked to 

the T cell surface upon activation [149].  This trafficking has been shown to be dependent upon 

protein kinase C signaling [149, 150].  At the T cell surface, LAG-3 is localized to the 

immunological synapse, co-localizing in lipid rafts with the TCR and CD4 [149, 151].  

 

1.6.2 Inhibitory receptor role of LAG-3 in T cell activation 

CD4 and LAG-3 play opposing roles by mediating or dampening activation, respectively, during 

T cell activation.  In order for LAG-3 to inhibit T cell activation, it requires downstream 

signaling via its cytoplasmic tail, as ectopic expression of tailless LAG-3 in T cell hybridomas 

did not inhibit cellular proliferation as effectively as wildtype LAG-3 [145].  Located in the 

cytoplasmic tail is the KIEELE motif, which studies using site-directed mutagenesis determined 

was required for LAG-3’s inhibitory function [144, 145].  Interestingly, the exact downstream 

signaling has yet to be elucidated; however, some studies have indicated that cross-linkage of 

surface LAG-3 resulted in calcium flux inhibition during T cell activation [152].  

 Numerous studies have helped to elucidate the inhibitory role LAG-3 plays during T cell 

activation.  In these studies, LAG-3:MHC class II engagement during activation resulted in 
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decreased CD69 expression, clonal expansion, and IFNγ and IL-2 production in vitro using 

antigen specific and nonspecific models, including SEB and OVA.  Similar results were 

observed in vivo using infection and nominal antigen models.  Alternatively, blockade of LAG-3 

using monoclonal antibodies in vivo and in vitro reversed its inhibitory effects [151].  These 

studies were the first steps towards understanding the potential for targeting LAG-3 in human 

diseases like chronic viral infections and cancer, to restore functional T cell responses. While 

another inhibitory receptor, CTLA-4 was shown to modulate T cell signaling by blocking 

localization of signaling proteins to TCR-associated lipid rafts [153, 154], LAG-3 did not 

demonstrate similar effects [151].          

 While it might be inferred that the inhibitory effects of LAG-3 would only be 

demonstrated in CD4+ T cells, as they directly interact with its ligand MHC class II, studies have 

shown that LAG-3 expression does inhibit CD8+ T cell responses as well [151, 155, 156].  This 

begs the question as to whether LAG-3 ligation is absolutely required for T cell inhibition.  The 

fact that LAG-3 is only upregulated to the T cell surface during activation highlights its role in 

fine-tuning the immune response.  Furthermore, as LAG-3 inhibits clonal expansion and effector 

function, two processes that require T cell metabolic reprogramming, we postulate that LAG-3 

plays an important role in tempering this response to protect against apoptosis and preserve the 

Tmem pool.  

To more fully understand the role of LAG-3 in disease models and immune cell function, 

animal global and conditional knockouts have been developed.  Not only has LAG-3 been shown 

to inhibit activated T cell responses, but it also regulates naïve T cell homeostatic expansion.  

Workman et al. showed that LAG-3-/- animals demonstrate enhanced expansion of both naïve 

CD4+ and CD8+ T cells, as compared to their wildtype counterparts [157].  Additionally, LAG-3-
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deficient OT.II CD4+ T cells repopulated lymphopenic hosts to a greater extent following 

adoptive transfer [157].  LAG-3 has also been implicated as a negative regulator in several 

autoimmune disease models.  For example, global knockout of LAG-3 in non-obese diabetic 

(NOD) animals resulted in accelerated progression to T1D [155, 158]. 

 

1.6.3 LAG-3 cleavage and soluble LAG-3 

For optimal CD4+ T cell activation to ensue, LAG-3 must undergo proteolytic cleavage from the 

cell surface, thus allowing CD4’s activation signal to proceed.  The disintegrin/matrix 

metalloproteases ADAM10 and ADAM17 have been shown to mediate LAG-3 cleavage in its 

connecting peptide region [144, 159]. ADAM10 and ADAM17 have also been shown to mediate 

membrane shedding of TNFα [160], Notch [161, 162], CD62L (L-Selectin) [163, 164], and 

CD44 [165], to name a few.  Specifically, ADAM17 activity is redox-dependent, as it requires 

alterations by ROS to mediate conformational changes [166, 167].  Maintenance of LAG-3 on 

the surface of CD4+ T cells either by metalloprotease inhibition via chemical inhibitor [159] or 

redox modulation [168], or mutating the cleavage site within LAG-3 [144], resulted in dampened 

T cell proliferation and effector function. 

The resulting cleaved portion of LAG-3, or soluble LAG-3 (sLAG-3), can be detected in 

both human and murine serum during immune responses.  sLAG-3 has been shown to be a 

robust measure of T cell activation in vivo, as high serum levels correlated with positive 

prognosis and survival in progesterone or estrogen receptor positive breast cancer patients [169].  

In a study examining Th1 and Th2 responses in Mycobacterium tuberculosis patients, those who 

received antimycobacterial treatment and had better prognostic outcome, exhibited higher levels 
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of serum sLAG-3 as compared to untreated patients [170]. Previous work from our laboratory 

demonstrated that sLAG-3 may also serve as an early stage biomarker for Type I Diabetes (T1D) 

onset in animal studies [168], and work examining sLAG-3 levels in samples from T1D patients 

and first degree relatives have been promising (Delmastro-Greenwood et al.; unpublished work).   

 

1.6.4 LAG-3 as a marker of T cell exhaustion 

One of the main areas of research that has further elucidated the inhibitory role of LAG-3 is 

through the study of T cell exhaustion.  T cell exhaustion is a phenomenon that occurs in cancer 

and chronic viral infection, where due to the constant bombardment with antigen and persistent 

inflammation, T cell responses wane.  Not only do exhausted T cells demonstrate a unique 

transcriptional program, but overexpression of specific surface markers is one of the key 

determinants in exhaustion [171].   These surface markers include not only LAG-3, but also 

programmed cell death-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), and T-cell 

immunoglobulin domain and mucin domain (TIM-3), to name a few [171, 172].  Expression of 

these receptors in various combinations has been observed, depending on the disease.  For 

example, in models of murine B16 melanoma, MC38 colon adenocarcinoma, and Sa1N 

fibrosarcoma, dual expression of LAG-3 and PD-1 was observed on exhausted CD8+ and CD4+ 

tumor-infiltrating lymphocytes (TIL) [173]. LAG-3 has also been observed on exhausted CD8+ T 

cells in a murine model of lymphocytic choriomeningitis virus (LCMV) [156] and in human HIV 

patients [174].  While exhaustion has been studied predominantly in CD8+ T cells, there is 

evidence of CD4+ T cells experiencing a similar fate.  In models of Plasmodium malaria [175] 
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and B16 melanoma [176] dual expression of LAG-3 and PD-1 identified hyporesponsive CD4+ T 

cells, and targeting both molecules via antibody blockade restored CD4+ T cell responses.  

 

1.6.5 Regulatory T cell function via LAG-3-mediated inhibition 

As activated T cells have been shown to be high expressers of LAG-3, so have some CD4+ 

CD25+ Foxp3+ T regulatory (Treg) cells.  Naturally occurring Tregs make up 5-10% of the human 

CD4+ T cell repertoire and are required for maintaining immune homeostasis, protecting against 

autoimmunity, and controlling chronic inflammation [177].  Tregs utilize several mechanisms for 

suppressing immune responses, including secretion of inhibitory cytokines like IL-10 and TGFβ, 

sequestration of IL-2 and adenosine, two necessary factors for optimal T cell activation, and 

direct cytolysis of Teff by granzyme B/perforin release [177].  Increased frequencies of Tregs have 

been demonstrated in several solid tumor models and correlate with negative prognostic 

outcomes [178, 179].  Alternatively, defects in Treg populations correlate with increased 

autoimmune disease [180, 181]. 

Subsets of Tregs in both murine and human studies have been shown to express LAG-3 on 

their surface, supporting LAG-3 as a marker for these cells [182, 183].  Also, LAG-3 has been 

implicated as a mechanism utilized by Tregs to mediate immunosuppression, either by targeting 

dendritic cells (DCs) or Teff directly.  LAG-3+ Tregs can engage immature DCs via LAG-3 

binding to MHC class II on the DC, thereby suppressing DC maturation and altering DC 

differentiation toward a tolerogenic phenotype [184].  Studies by Camisaschi et al. identified a 

LAG-3+ CD4+ CD25hi Foxp3+ Treg population in both healthy donors and melanoma and 

colorectal cancer patients [140].  The frequency of this Treg population was increased in the 
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peripheral blood, lymph nodes, and tumor microenvironment of the cancer patients.  These LAG-

3+ Tregs produced higher levels of IL-10 and TGFβ, as compared to LAG-3- Tregs, and their 

suppressive capacity was dependent upon cell-to-cell contact.  Additionally, in an in vitro 

suppression assay, LAG-3+ Tregs induced greater Teff suppression as compared to LAG-3-

deficient Tregs, further implicating LAG-3 as a marker for potent Tregs [140]. 

 

1.7 AUTOIMMUNITY AND IMMUNOMETABOLISM 

1.7.1 Immunometabolism and insight into autoreactivity 

As with T1D and other autoimmune diseases, there is still a gap in our understanding regarding 

autoreactive T cells.  However, understanding how cellular bioenergetics and biosynthesis shape 

both immune cell differentiation and function provide an avenue for expanding our knowledge 

regarding what is inherently different about autoreactive T cells, and how to exploit these 

differences to control autoimmunity.  Work reported thus far has revealed that metabolic 

differences do exist between autoreactive T cells and their non-autoreactive counterparts [185-

187].  For instance, studies from Yin et al. have shown that autoreactive T cells from patients 

with systemic lupus erythematosus (SLE) demonstrate enhanced aerobic glycolysis and 

OXPHOS during activation, enabling increased IFNγ production [188].  By targeting these 

pathways with the chemicals 2-DG and metformin, respectively, T cell bioenergetics were reset 

to the levels of T cells from healthy controls.  This metabolic-based treatment also normalized T 

cell metabolic dysfunction in animal models of SLE, resulting in significant reductions in disease 
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pathology [188].  Nevertheless, treatment cessation led to flare ups in animals, suggesting that 

while metabolism-targeted treatment ameliorated disease, it did not generate durable tolerance 

[189]. 

 Patients with multiple sclerosis (MS) exhibit increased concentrations of glutamine and 

glutamate in their cerebrospinal fluid and brain biopsies[190, 191].  As increases in glutamine 

and glutamate are associated with disease severity, concentrations of these metabolites have been 

suggested as potential biomarkers for MS [190, 191].  Earlier, it was discussed that glutamine 

metabolism via glutaminolysis is crucial for CD4+ T cell differentiation and cytokine production 

(see section 1.3.2).  Studies in experimental autoimmune encephalomyelitis (EAE), the murine 

model of MS, have shown that knockout of the glutamine transporter ASCT2 resulted in reduced 

Th17 cytokine production, diminished lymphocyte infiltration into the central nervous system, 

and lessened disease severity [111].  Together, these results suggest that glutamine is a critical 

metabolite for pathogenic T cells in MS, and targeting this pathway in patients could be 

efficacious.   

 As described earlier, mitochondria are at the center of metabolic function in T cells, and 

mitochondrial dysfunction is known to contribute to autoreactivity [185-187].  SLE T cells 

demonstrate elevated mitochondrial membrane potential and increased ROS production [192, 

193].  This is in part due to an increased reliance on glucose oxidation, which occurs in the 

mitochondria, rather than aerobic glycolysis [189].  In Rheumatoid Arthritis (RA), hypoxia and 

increased pro-inflammatory cytokine production in synovial joints are associated with increased 

mitochondrial DNA mutations [194, 195].  Of note, hypoxia led to reduced expression of 

respiratory chain subunits, thereby contributing to mitochondrial dysfunction [195].  
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 Overall, autoreactive T cells do not play by the same metabolic rules as other T cells.  

These metabolic differences do contribute to pathogenicity, and metabolic-based therapies could 

be the next frontier in treatment for autoimmunity. 

 

1.7.2 Immunometabolism and T1D  

While work in other autoimmune diseases has furthered our understanding of 

immunometabolism, there remains a gap in knowledge concerning T cell metabolism in T1D.  

Studies in the NOD mouse have shown that T regulatory cells are present in the pancreas in the 

early stages of disease, and they can suppress early effector T cell responses [196].  However, 

there is a tipping point where effector T cells become refractory to Treg-mediated suppression.  

This is not simply a numbers game because at low Treg to effector T cell ratios, effector 

activation and function prevails, and it is not due to defects in the Tregs themselves as they can 

suppress non-diabetogenic T cells [196].  These studies beg the question of what is inherently 

different about these autoreactive T cells, and examining T cell bioenergetics could provide 

crucial insight.  The body of work presented here was developed to further explore the 

mechanisms that govern metabolic pathways in CD4+ T cells as a means of potentially 

controlling autoimmunity in T1D.      

LAG-3 has been shown to have a critical role in modulating autoreactive T cell responses 

in T1D.  Studies by Bettini et al. indicated that LAG-3-deficient NOD animals exhibited 

accelerated T1D progression compared to wildtype controls, and LAG-3 inhibition by antibody 

blockade yielded similar results [155].  Studies from our laboratory corroborated these findings 

by indicating that inhibition of LAG-3 cleavage from NOD T cells delayed T1D onset [168].  
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Moreover, in non-autoimmune strains, LAG-3 is a negative regulator of naïve T cell homeostatic 

expansion [157]. As described earlier, the ability for any cell to proliferate is controlled by 

nutrient availability, and converting those nutrients to energy and macromolecules.  Other 

inhibitory receptors have also shown to modulate T cell metabolism [197, 198].  Therefore, we 

hypothesized that LAG-3 regulates T cell responses by modulating their bioenergetic profile.     

Furthermore, previous reports from our laboratory and others demonstrated that 

inhibiting ROS production during T cell activation resulted in reduced effector function 

transition, clonal expansion, and T1D progression, in conjunction with maintenance of LAG-3 

surface expression [168, 199-202].  Additionally, ROS have been implicated as critical signaling 

molecules in mediating metabolic changes in other disease models [43, 185, 203, 204].  With 

this, and that IFNγ production and proliferation are dependent upon T cells transitioning to 

aerobic glycolysis, we hypothesized that ROS are critical for enabling metabolic reprogramming 

in T cells during T1D induction. 

  

1.8 REACTIVE OXYGEN SPECIES MEDIATE T1D IMMUNOPATHOLOGY 

Decades of research have demonstrated that T1D pathology and inflammation is highly mediated 

by ROS and oxidative stress [16, 205-207].  This includes ROS being necessary for activating 

both the innate and adaptive immune responses.  In particular, it has been reported that T cells 

require acute doses of ROS to facilitate proliferation and differentiation [208-210].  The doses of 

ROS present during T cell activation have a dramatic effect on the outcome of the immune 

response generated, as too little ROS results in antigen hyporesponsiveness, and high doses lead 
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to oxidative stress-induced apoptosis [211-213].  Therefore, controlling cellular redox is of 

utmost importance in controlling T cell responses.   

T1D progression, and autoimmunity in general, occurs when central and peripheral 

tolerance mechanisms break down.  Central tolerance refers to elimination of autoreactive T cells 

in the thymus during development; whereas, peripheral tolerance refers to mechanisms outside of 

the thymus, like suppression by regulatory T cells.  While the predominant focus has been on the 

influence of ROS during T cell activation, redox has also been shown to play a significant role 

during thymocyte development and in T regulatory cell formation and function.  Therefore, to 

fully understand the broad influence of cellular redox on T cell function in the context of T1D, a 

systematic approach must be conducted to fully dissect the direct and indirect effect these signals 

have on modulating T cell responses.    

Although the etiology of T1D is still not completely understood, it is well accepted that 

T1D is driven, in part, by oxidative stress [16, 205-207].  In fact, murine β cells are highly 

susceptible to oxidative stress since they demonstrate low antioxidant enzyme expression [214], 

yet generate high levels of mitochondrial-derived ROS via glucose oxidation  [215-217].  These 

ROS are necessary for activating both the innate and adaptive immune responses.  In the context 

of T1D, β cell ROS production and antigen release can activate islet-resident macrophages and 

dendritic cells (DCs) (Figure 4).  These innate cells, also known as antigen presenting cells 

(APC), phagocytose β cell antigens and ferry them to the pancreatic draining lymph nodes [16].  

In the draining lymph node, activated APCs present β cell antigens to self-reactive CD4+ and 

CD8+ T cells, in the context of co-stimulation, along with pro-inflammatory cytokines and ROS.  

Together, these signals result in T cell activation and trafficking to the pancreas. Both CD4+ and 

CD8+ T cells are present in pancreatic islet infiltrates during T1D progression [7, 8, 218].  T cells 
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induce β cell destruction by either direct killing (CD8+ T cells) or production of inflammatory 

cytokines like Interferon γ (IFNγ) and tumor necrosis factor α (TNFα) (CD4+ T cells) [16, 219].  

This induced killing results in more β cell antigen and ROS release, thereby activating more 

APCs and continually driving this vicious cycle.  With respect to CD4+ T cells, their importance 

in T1D pathogenesis was exemplified by studies demonstrating that CD4+ T cell depletion 

completely prevented disease progression [218, 220].  In particular, T cells have been shown to 

require acute doses of ROS to facilitate activation and effector function [208-210].  These ROS 

can come from multiple sources and are further explored below. 
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Figure 4.  The role of ROS in driving the immunopathology of Type 1 Diabetes (T1D). 
Reactive oxygen species (ROS) have been shown to be critical mediators of β cell destruction in Type 1 Diabetes.  
Not only do β cells themselves produce high levels of ROS that can induce cell death, but these ROS can also prime 
activation of infiltrating antigen presenting cells (APCs) like macrophages.  APC-derived ROS can also contribute 
to β cell loss directly.  Once activated, APCs then traffic to the pancreatic lymph node, where ROS serve as third 
signal during T cell activation.  Activated T cells then traffic to the pancreas and drive β cell apoptosis via 
inflammatory cytokines, direct β cell lysis, and ROS production via NADPH oxidase expression.  
 
 

1.9 SOURCES OF ROS THAT INFLUENCE T CELL FUNCTION 

Once naïve T cells receive all three signals to become activated (antigen presentation, co-

stimulation, and cytokines/ROS), undergo two major processes -- clonal expansion and 

differentiation .  ROS are known to modulate both processes, and there are multiple sources, both 

intrinsic and extrinsic, of ROS that T cells can encounter.    
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1.9.1 NOX-derived ROS 

NADPH oxidases (NOX) are intermembrane enzymes, which are the primary source of 

respiratory burst across many cell types.  NOXs are multimeric enzymes that consist of different 

combinations of subunits, depending on the specific isoform expressed. Of all immune cells, 

expression of a functional NOX is most highly associated with innate immune cells, including 

macrophages, neutrophils, and eosinophils [221, 222].  These cells express a phagocyte NOX, or 

NOX-2 isoform, comprised of the subunits cytochrome b558 (complex formed by p22phox and 

gp91phox), p40phox, p47phox, and p67phox (encoded by the genes Cyba, Cybb, Ncf4, Ncf1, and Ncf2, 

respectively) [223].  Of the NOX-2 subunits, the cytochrome b558 complex is membrane bound, 

while a complex of the remaining subunits exists in the cytosol.  Upon activation via 

phosphorylation of p47phox, the cytosolic complex translocates to the membrane, enabling a fully 

functional enzyme. Cytochrome b558 is then able to facilitate electron transfer from NADPH to 

oxygen, forming superoxide.  The factors flavin and heme associate with NOX-2 to enable 

electron transfer as well [223, 224].  

Further studies in T cells have demonstrated that they too express a phagocyte-type NOX 

(Figure 5).  Specifically, mRNA studies comparing murine primary T cells and T cell lines to 

macrophages indicated similar expression levels of the NOX genes Cyba, Cybb, Ncf1, and Ncf2, 

[225], and TCR-mediated activation of purified T cells resulted in generation of both superoxide 

and hydrogen peroxide [213, 225].  Of note, these studies were completed using APC-

independent mechanisms of T cell stimulation, indicating that ROS generated by T cells 

themselves are sufficient for mediating activation [213].  Upon knockout of p47phox, generation 

of hydrogen peroxide by T cells was severely blunted; yet, superoxide production remained 

intact.  Further manipulation using the flavin-dependent inhibitor diphenylene iodonium (DPI), 
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yielded similar results [213], suggesting that T cells may express other NOX isoforms that are 

non-flavin dependent.  Indeed, later studies confirmed T cell expression of DUOX-1, a calcium-

dependent NOX isoform that functions independently of p47phox [226].  Studies from Kwon et al. 

further demonstrated that DUOX-1 expression in T cells was responsible for very early hydrogen 

peroxide generation upon TCR engagement [226].  Examination of NOXs and DUOXs in other 

cell types have shown that the magnitude of ROS generation greatly differs, with NOXs 

providing more robust ROS production.  Therefore, the signals propagated by NOX and DUOX 

may result in different phenotypic outcomes in T cells, and further dissection in disease states, 

like T1D, is necessary.  

As both macrophages and T cells express functional NOXs, animals on the NOD 

background have been generated to study the contribution of these ROS to T1D pathogenesis.  

Specifically, the NOD.Ncf1mlJ contain a point mutation in the Ncf1 gene encoding for the p47phox 

subunit of NOX-2; thus, quenching global NOX-2 function and ROS production [200, 202].  

These animals demonstrate delayed T1D incidence as compared to their wildtype counterparts, 

which was attributed to reduced activation of both macrophages and T cells [200, 202].  

However, some CD4+ T cell responses do develop, yet rather than being Th1 (i.e. IFNγ), like that 

elicited in T1D, they are skewed to a Th17 phenotype, characterized by secretion of the cytokine 

IL-17 [202].  Consistent with these changes, the animals develop experimental autoimmune 

encephalomyelitis (EAE), the animal model of multiple sclerosis (MS).  Together, these results 

suggest that NOX-derived ROS enable autoreactive T cell activation in T1D.  However, 

lowering the oxidative threshold via NOX-2 inhibition allows for the activation of other 

autoreactive T cell clones, further solidifying that genetic predisposition to autoimmunity is 

ultimately paramount.        
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1.9.2 Macrophages  

One of the most well-characterized sources of ROS encountered by T cells is the macrophage.  

Under homeostatic conditions, low levels of tissue-resident macrophages are present in the 

pancreas, and upon an environmental trigger can become activated by β cell-derived ROS 

(discussed below) and peptides [16, 207].  Macrophages represent the predominant infiltrate 

during the very early stages of insulitis in T1D, as their increased ROS and pro-inflammatory 

cytokine production mobilizes and activates more macrophages [8, 227].  As stated earlier, 

macrophages are known to express NOX, which transport electrons across membranes, resulting 

in superoxide formation [221, 223, 224].  As superoxide itself cannot freely move across cellular 

membranes, dismutation to hydrogen peroxide allows for a potent ROS that can diffuse across 

the T cell membrane.  During macrophage-mediated activation of T cells, a tight immunological 

synapse is formed.  ROS are known to be very proximal signaling molecules; therefore, the tight 

synapse formed between the macrophage and T cell creates a spatial arrangement that fosters 

ROS signaling between the two cells.  Concentrations of hydrogen peroxide ranging from 10-100 

uM produced by macrophages are capable of initiating signaling cascades, including the 

mitogen-activated protein kinase (MAPK) [213], PI3/Akt [228, 229], and NF-κB [230] pathways 

in T cells.  These ROS can also perpetuate downstream TCR signaling [231], and together, result 

in T cell-mediated pro-inflammatory cytokine production [232, 233].  

In T1D, macrophages are the early islet infiltrators, and their activation is required for 

generating T cell responses and ensuing disease [234-236].  Not only can these ROS signal to T 

cells during MHC:TCR engagement, but they also activate the MAPK and NF-κB pathways in 

macrophages [237].  Both MAPK and NF-κB activation result in increased production of pro-

inflammatory cytokines like TNFα and Interleukin-1beta (IL-1β), which shape the T cell 
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response in addition to ROS signaling [238, 239].  Studies using chemical NOX inhibitors or 

NOX-deficient macrophages have demonstrated that inhibition of ROS in the macrophage can 

alter CD4+ T cell activation, resulting in delayed T1D progression [200, 202, 240].  Yet, 

reconstituting ROS production by either the T cell or macrophage is sufficient for restoring 

optimal crosstalk and activation, indicating that the source of ROS is not as crucial as the 

presence of ROS.      

 

1.9.3 Mitochondrial-derived ROS 

Mitochondria are also cellular sources of ROS, including in T cells.  Mitochondria are necessary 

for generating ATP via oxidative phosphorylation to power cellular processes.  Substrates such 

as glucose, fatty acids, and glutamine, can be oxidized via the Tricarboxylic acid (TCA) cycle 

and electron transport chain (ETC) in the mitochondria [35, 39].  The ETC consists of five 

mitochondrial complexes (I-V) which are important for coupling the transport of electrons with 

the transport of protons from the mitochondrial matrix into the intermembrane space [35, 39].  

NADH dehydrogenase (Complex I), succinate dehydrogenase (Complex II), and cytochrome c 

reductase (Complex III) are all capable of generating superoxide due to electron leak [38, 44].  

Superoxide produced by Complexes I and III is released into the mitochondrial matrix, where 

superoxide dismutase-2 (MnSOD) converts it to hydrogen peroxide [43].  Superoxide formation 

by complex III is released into both the mitochondrial matrix and intermembrane space and has 

been shown to be a potent signaling intermediate [241, 242].  Mitochondria have also been 

shown to migrate towards the immunological synapse (the TCR:MHC junction) within the T cell 

during activation.  This migration is dependent upon TCR-mediated calcium signaling and 
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results in increased mROS production [243].  While it has been shown that mitochondrial 

migration is important for maintaining calcium signaling during activation, it remains to be 

understood what role this juxtaposition plays for mROS signaling on T cell activation.   

During T cell activation, mitochondrial oxidation increases dramatically within the first 

24 hours of TCR engagement [244].  This increase, driven by calcium and adenosine 

monophosphate-activated protein kinase (AMPK) signaling, is necessary for cellular growth in 

preparation for cell division [102].  With increased oxidation, increased mitochondrial-derived 

ROS (mROS) also increases.  Work by Sena et al. demonstrated that mitochondria-derived ROS 

are essential for mediating the transition from naïve to effector in CD4+ T cells [244].  

Specifically, Complex III-deficient T cells demonstrated reduced activation marker expression 

(CD69 and CD25) and growth factor production (IL-2), in comparison to wildtype T cells [244].  

In vivo experiments utilizing T cell-specific Complex III knockout animals demonstrated similar 

results in both CD4+ and CD8+ T cells.  However, results from Tse et al. indicated that 

compensatory superoxide production from the APC should be sufficient for facilitating T cell 

activation in the instance that the T cell itself is deficient [202].  These conflicting results 

highlight that further delineation of superoxide production and signaling is necessary, and there 

may be strain-specific differences as Tse et al. utilized the NOD model whereas Sena et al. used 

C57Bl/6 animals.  Additionally, the source of ROS in these instances, the APC versus the T 

cell’s mitochondria, could mediate differential signaling. 

Mitochondrial dysfunction has been characterized in T cells from other autoimmune 

diseases [185-187]; however, similar studies remain to be performed using T1D-specific T cells.  

For example, T cells from Systemic Lupus Erythematosus (SLE) patients demonstrate elevated 

mitochondrial membrane potential and increased ROS production [192, 193].  This is in part due 
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to increased reliance on glucose oxidation, which occurs in the mitochondria, rather than aerobic 

glycolysis (which occurs in the cytosol), during activation [189].  Moreover, in rheumatoid 

arthritis (RA), hypoxia and increased pro-inflammatory cytokine production in synovial joints 

are associated with increased mitochondrial DNA mutations [194, 195].  Of note, hypoxia led to 

reduced expression of respiratory chain subunits, thereby contributing to mitochondrial 

dysfunction [195].  These studies set a precedence for mitochondrial dysfunction in enabling 

autoreactive T cells, and studies in T1D could provide further insight into inherent differences 

between autoreactive and non-pathogenic T cells.   

 

1.9.4 β cells 

Pancreatic β cells are responsible for dynamic glucose sensing and insulin secretion to maintain 

blood glucose homeostasis.  Acute doses of ROS are required for supporting insulin secretion 

[215-217]; therefore, β cells have mechanisms in place to provide the necessary oxidative 

signals.  First, β cells, like macrophages and T cells, express multiple NOX isoforms (NOX 1, 2, 

4, NOXA1, and NOXO1) [245-248].  Moreover, β cells demonstrate high levels of glucose 

oxidation in the mitochondria, thus resulting in increased mitochondrial-derived ROS [249-251].  

Interestingly, murine β cells demonstrate low antioxidant enzyme expression, making it difficult 

to maintain redox balance [214].  

 In T1D, β cell-derived ROS, coupled with antigen release, are responsible for activating 

and mobilizing APCs [16].  A positive feedback loop exists in that pro-inflammatory cytokine 

and ROS release by tissue resident APCs can induce more β cell ROS production.  T cell 
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activation in T1D occurs in the pancreatic draining lymph node; therefore, β cell derived ROS 

would not have a direct impact on this process.  However, an indirect effect does exist as APC 

activation is dependent upon β cell interactions, and how the APC is activated can then influence 

T cell mobilization.  Activated T cells that traffic to the pancreas can encounter β cell generated 

ROS, which can promote increased T cell NF-κB activation and pro-inflammatory cytokine 

secretion.   

 
 

 
Figure 5.  T cell intrinsic and extrinsic sources of ROS. 
A.  T cells express functional NADPH oxidases (NOX), which can generate ROS.  Additionally, oxidative 
phosphorylation in the mitochondria can result in ROS leak.  B.  During T cell – APC interaction, activated APCs, 
like macrophages, generate NOX-derived ROS that coupled with inflammatory cytokines, enable optimal T cell 
activation. 
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1.10 ROS AND THYMOCYTE DEVELOPMENT 

T cell development is an intricate process whereby thymocyte precursors move through various 

stages of differentiation in the thymus.  All early thymocytes start as CD4-CD8- double negative 

precursors [252].  The double negative stage is where TCR-β receptor rearrangement occurs and 

cells express a pre-TCR comprised of a β chain and a pre-Tα chain.  From there, double negative 

cells differentiate to double positive (DP) CD4+CD8+ thymoctyes.  At this time, TCR α chain 

rearrangement occurs and a mature αβ TCR is expressed.  DP thymocytes then undergo two 

critical developmental processes – repertoire selection and lineage commitment.  T cell 

repertoire selection includes both positive and negative selection where thymocytes interact with 

MHC loaded with self-peptides [252-254].  Low affinity for self-peptide/MHC results in 

maturation to a single positive T lymphocyte.  Interestingly, 90% of thymocytes die by neglect at 

this stage, as their TCR is inert [253].  Alternatively, high affinity for self-peptide/MHC results 

in apoptosis as a way of protecting against potentially autoreactive T cells escaping into the 

periphery [253, 254].  This is known as central tolerance.  It is here, during negative selection, 

that disease progression initiates in autoimmune-prone individuals, although the mechanisms by 

which self-reactive T cells escape deletion are not fully understood.    Lineage commitment, or 

commitment to either a CD8+ or CD4+ single positive T cell occurs based on successful 

engagement of either MHC class I or II, respectively.  Once matured, T lymphocytes then exit 

the thymus and begin to seed the periphery.   

Cellular redox is critical for thymocyte development and selection.  Specifically, 

thymocytes express a family of proteins, known as the uncoupling proteins (UCP) 1-3 [255-258].  

This group of proteins reside in the mitochondria and serve as proton transporters, thereby 
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dissipating the proton gradient created in the mitochondrial matrix.  Thus, oxidative 

phosphorylation is uncoupled from ATP production, and uncoupling can lead to increased 

electron leak and ROS production.  Several groups have shown that expression levels of UCP 1-

3 in the thymus fluctuate with age, and murine studies using individual UCP knockouts have 

shown alterations in percentages of double and single positive populations [259, 260], further 

indicating their requirement at different stages of thymocyte development.  Loss of UCP-1 

expression specifically, results in increased mitochondrial oxygen consumption, ROS and ATP 

production, and lowered apoptotic potential [259, 261].   

Another way in which redox regulates thymocyte development is through the control of 

the redox-sensitive transcription factor NF-κB, as activation in the cytoplasm can be initiated by 

ROS.  This upstream activation can result in phosphorylation of either IκB or IκBα, allowing for 

release of p50/p65 and its translocation to the nucleus [262, 263].  Alternatively, in the nucleus, 

reduction of the cysteine 62 residue of the p50 subunit is required for optimal DNA binding 

[264].  Antioxidant treatment [265] and Cu/Zn SOD overexpression [266] have both been shown 

to result in dysfunctional thymocyte development, due to defective NF-κB signaling.  This is 

explained by the fact that NF-κB can also serve as a survival signal, and as demonstrated in 

developing T lymphocytes [267].  These studies underscore that there is a fine balance between 

ROS generation and antioxidant capacity, and alterations could set the stage for the formation of 

autoreactive T cells and autoimmunity.   

It has been well-established that breakdowns in central tolerance in the thymus do occur 

and lead to T1D progression [268].  Some studies have demonstrated that reduced insulin 

transcript levels in the thymus correlated with increased susceptibility to T1D [269, 270]; 

thereby, providing direct evidence that alterations in thymic selection influences autoimmune 
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progression.  Further studies in the NOD model have indicated that self-reactive T cells and 

thymocytes are genetically programmed to be more resistant to apoptosis [271-273], exemplified 

by studies showing NOD thymocytes were more resistant to apoptosis induced by 

dexamethasone (Dex) treatment [274, 275].  Thymocytes protected from Dex-induced apoptosis 

demonstrated increased SOD expression, indicating that increased antioxidant enzyme 

expression is beneficial in this context [276].  The NOD mouse has also been shown to 

demonstrate increased NF-kB signaling in various cell types in comparison to non-autoimmune 

strains [277, 278].  While this has not been shown specifically in thymocytes, we would 

postulate that thymocytes from these animals demonstrate a similar phenotype.  This increase 

could also contribute to thymocyte resistance to apoptosis, reduced negative selection, and 

increased pro-inflammatory cytokine production in the periphery, contributing to disease 

progression.   

1.11 REDOX REGULATION OF T CELL ACTIVATION 

Balancing cellular redox has a critical impact on T cell activation and longevity.  Acute doses of 

ROS, either generated by the T cell itself or from an extrinsic source (i.e., macrophages) are 

necessary for driving the transition from naïve to effector (Figure 6) [213, 226, 244, 279].  

However, like other cell types, suboptimal or excessive concentrations of ROS can result in 

hyporesponsiveness [168, 199, 200] or oxidative stress, respectively, which can have profound 

implications on T cell functionality and immunity.  Studies have shown that resistance to 

oxidative stress increases with differentiation from naïve to effector [209, 280, 281].  This is 

likely due to effector T cells traveling to highly inflamed and hypoxic tissues; whereas naïve T 
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cells remain in the normoxic lymph nodes and lymphatics.  Therefore, the influence of ROS on T 

cells is highly dependent upon the concentration of ROS and the context in which these signals 

are presented. 

 
 
 

 
 
 
Figure 6.  The influence of ROS on T cell outcome during activation. 
The dose of ROS present during T cell priming and activation can have a dramatic effect on effector T cell outcome.  
High levels of ROS can induce oxidative stress and DNA damage, resulting in T cell death, while low levels will be 
inefficient at driving optimal activation.  Moderate levels, either produced by APCs or T cells themselves, ensure 
proper TCR signaling, clonal expansion, and effector differentiation.  

 

  

1.11.1 Redox modulation of TCR signaling 

Downstream signaling initiated by the TCR upon MHC-peptide recognition is essential for 

antigen-specific T cell activation.  This signaling is propagated by numerous adaptor proteins, 

kinases, and calcium signaling [282].  In addition, protein tyrosine phosphatase (PTP) inhibition 
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aids in signal maintenance [283].  With respect to TCR signaling, several adaptor proteins and 

downstream signaling cascades have been shown to be redox sensitive (Figure 7).  For instance, 

lymphocyte-specific protein tyrosine kinase (Lck), a member of the Src family of kinases,  which 

interacts with the cytoplasmic tail of both CD4 and CD8, is required for potentiating intracellular 

TCR signaling [280, 284].  Low doses of hydrogen peroxide are capable of inducing Lck 

phosphorylation (Try394), resulting in increased catalytic activity [285, 286].  Activation of Lck 

results in phosphorylation of both the CD3 ζ chains and another kinase Zap70.  Micromolar 

concentrations of hydrogen peroxide also stimulate Zap70 activation [287].  Furthermore, 

increased protein kinase C (PKC) and MAPK signaling and intracellular calcium levels have all 

been shown to be stimulated by hydrogen peroxide [288, 289].  

LAT, or linker for activation of T cells, is an adaptor protein associated with the TCR 

[282].  With TCR engagement, LAT serves as an anchor for formation of multiprotein signaling 

complexes, aiding in amplifying TCR signaling.  Work by Gringhuis et al. demonstrated that 

LAT’s localization to the plasma membrane is highly redox sensitive.  Specifically, LAT 

contains a cysteine residue that upon oxidative modification, results in a conformational change 

that inhibits interaction with glycolipid-enriched microdomains of the plasma membrane [290].  

This modification increases during times of oxidative stress and results in reduced Interleukin-2 

(IL-2) production by T cells [291].  This specific modification was demonstrated by T cells 

isolated from RA patients, due to high levels of inflammation [291].  Like RA, T1D is also 

highly driven by ROS and inflammation, and inflamed islets demonstrate high levels of oxidative 

stress [16, 206, 292].  It is interesting that with this highly oxidative environment, T cell 

responses are still occur, resulting in T1D progression.  These results highlight that while both 

RA T cells and T1D T cells share autoreactivity, their resistance to oxidative stress may greatly 
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differ. Side-by-side comparison studies may help elucidate potential differences.  A reducing 

environment between the APC and T cell is also critical for facilitating TCR signaling as T cells 

increase reduced thiols at the plasma membrane [293], and APCs support this milieu by secreting 

cysteine into immunologic synapse [294].  Together, these studies exemplify that while ROS 

drive optimal TCR signaling, there are also mechanisms in place to protect redox balance.    

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 7.  TCR signaling is highly redox dependent.  
Many components downstream of the TCR have been shown to be redox dependent, and alterations in redox status 
can result in suboptimal or completely inhibited TCR signaling.  Calcium channel signaling that occurs during TCR 
stimulation has also been shown to be redox dependent.  Red stars indicate those proteins/channels that are known to 
be influenced by redox.  Protein tyrosine phosphatases (PTPs), Protein lipase C (PLC), Linker for activation of T 
cells (LAT). 
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1.11.2 Redox cycle within the cell cycle 

As naïve T cells are relatively quiescent, they primarily reside in G0 phase of the cell cycle [52, 

59].  ROS are potent cell cycle entry signals in T cells and other cell types alike [295].  To enter 

the cell cycle during activation an oxidative event, like hydrogen peroxide or superoxide 

signaling, must occur [296, 297].  Additionally, ROS are required for S phase entry and DNA 

replication, as without ROS, cells arrest at the G1/S checkpoint [298].    

Mitochondrial metabolism, a major producer of ROS, increases in the early stages prior 

to cell cycle entry potentially ensuring that the signals for progression are present, and enabling 

necessary cell growth prior to division [43].  Mitochondrial ROS can activate the protein Romo1, 

which in turn impairs the cell cycle inhibitor p27 Kip1, allowing proliferation to progress [299]. 

This increase occurs simultaneously with reduced manganese superoxide dismutase (MnSOD) 

expression during the later stages of the cell cycle (S, G2, and M), to allow for oxidative signals 

to prevail [43].  

With balancing ROS to drive proliferation, the antioxidant glutathione is also balanced 

within the cell.  The positioning of glutathione is a direct indicator of cell cycle phase in that a 

more cytoplasmic location is indicative of G0/G1 phase [300-302].  Movement of glutathione into 

the nucleus is indicative of S phase and mitosis initiation [300].  T cell proliferation is also 

highly dependent upon glutathione in that treatment with a gamma-glutamylcysteine synthase 

inhibitor, L-buthionine-(S,R)-sulfoximine (BSO), inhibited DNA synthesis and thus T cell clonal 

expansion [303].  

Work by our laboratory and others have suggested the beneficial effects of a manganese 

metalloporphyrin as a means of modulating immune responses in T1D, due to its highly 

oxidative nature [199, 201, 292]  These studies have demonstrated that modulating the redox 
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balance of T cells results in reduced proliferation and cell cycle progression [168, 304].  As T 

cell effector function (IFNγ production) is tightly coupled to proliferation [305], inhibition of 

ROS also resulted in reduced cytokine production. 

1.12 ROS AND T REGULATORY CELLS 

As their name suggests, the role of T regulatory cells (Tregs) is to temper active immune 

responses and protect against unwanted responses, like those demonstrated in autoimmunity.  

Tregs are capable of inhibiting both innate and adaptive responses by modulating APCs or T cells 

through numerous mechanisms, including:  immunosuppressive cytokine secretion (i.e. TGFβ 

and IL-10), inhibitory receptor engagement (i.e. PD-L1 and CTLA-4), and amino acid 

scavenging (i.e. tryptophan and cysteine) [177, 306].  The importance of Tregs in suppressing 

autoimmune responses was highlighted by studies demonstrating that reconstitution of athymic 

mice with Teff resulted in systemic autoimmunity [307].  This ensuing autoimmunity was only 

suppressed upon adoptive transfer of CD4+CD25+ T regulatory cells [307].  While Tregs have 

been shown to be derived from both CD4+ and CD8+ T cell lineages, the most well-studied are 

the naturally occurring CD4+ Tregs that demonstrate surface expression of the high affinity IL-2 

receptor, CD25 [306, 308].  Other surface markers have been used to delineate different subsets 

of Tregs including, CTLA-4, LAG-3, and PD-L1 [177] Most importantly of all Treg markers, 

expression of the transcription factor Forkhead box P3 (FoxP3), is essential for driving necessary 

genes for Treg function and development [309]. 

As in Teff, expression of a functional NOX in Tregs has been shown to have a dramatic 

effect on their development and suppressive capabilities.  In models of inducible Tregs, studies 
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demonstrated that macrophage-derived ROS via NOX were necessary for supporting optimal Treg 

differentiation [310].  In vitro co-cultures of naturally occurring Tregs and Teff indicated that Tregs 

deficient in NOX (Ncf-1-/-) were less capable of suppressing Teff proliferation via TGF-β 

production, as compared to WT Tregs [311].  TGF-β production in other cell types has been 

shown to be redox sensitive, as antioxidant treatment with N-acetylcysteine (NAC) resulted in 

reduced expression of the cytokine [312].  Additionally, TGF-β can induce NOX expression and 

activity [313, 314].  Taken together, these studies highlight the necessity for Tregs to produce 

ROS to maintain suppressive functionality.  While suppression was measured by inhibition of 

Teff proliferation, the effector cytokine response was not examined.  As the presence and absence 

of ROS during Teff activation have been shown to skew towards distinct T helper subsets, 

characterization of the cytokine profile may have elucidated if NOX expression by Tregs 

influences this as well.  Also of note, not all Tregs mediate suppression via TGF-β; therefore, the 

requirement for NOX may differ, depending upon the mode of suppression.            

Tregs demonstrate an enhanced ability to circumvent oxidative environments.  Polarization 

of CD4+ T cells to Tregs under hypoxic conditions increased Treg yields in vitro [315].  Not only 

were more Tregs generated, but they also demonstrated enhanced FoxP3 expression as compared 

to those cultured under normoxic conditions.  Although, the enhanced FoxP3 expression had no 

apparent effect on suppressive capacity [315].  Tregs also demonstrate high levels of cell surface 

thiols, which aid in counteracting oxidative stress [316].  Studies using human Tregs have shown 

they possess increased expression of the antioxidant enzyme thioredoxin, compared to 

conventional T cells, also enabling improved ROS scavenging [317].  These reducing 

mechanisms protect Tregs from oxidative stress-induced cell death, while maintaining their 

immunosuppressive function [316, 317]. 
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Based on these studies, presumably Tregs would be better equipped to thrive in the highly 

oxidative environment of the pancreatic islet, resulting in greater immune regulation.  Tregs are 

present in the pancreas preceding diabetes onset; however, they are accompanied by activated 

effector T cells as well [318].  Adoptive transfer studies of Teff with Tregs from non-diabetic NOD 

donors revealed a significant delay in T1D progression as compared to transfer of these subtypes 

isolated from diabetic animals [196].  Interestingly, Tregs from diabetic animals successfully 

suppressed effectors from non-diabetic donors, indicating that Treg functionality is maintained 

during overt disease.  However, Tregs from non-diabetic donors were unable to suppress Teff from 

diabetic donors in vivo [196]. This underscores that while Treg functionality may be intact in 

T1D, Teff surpass a pathogenic threshold that enables them to escape suppression.  

In work by Padgett et al., NOD.BDC.2.5.Ncf-1m1J mice were generated to study the 

influence of NOX-derived ROS on an antigen-specific model of T1D.  Results demonstrated that 

these NOX-deficient CD4+ T cells were more reactive to antigen as compared to their wildtype 

counterparts [319], and adoptive transfer experiments further elucidated that this enhanced 

diabetogenicity was due to defective regulatory T cell suppression.  While there have been 

human studies that also showed defective regulatory T cell responses in T1D patients and at-risk 

relatives [320-322], there is a lack of evidence linking this to redox-related mechanisms or 

specifically, NOX machinery.  Alternatively, effector T cells from T1D patients have also shown 

enhanced resistance to Treg-mediated suppression [323].  Therefore, aiming to amplify Treg 

suppressive capacity may prove ineffective.  A more suitable approach could be to make Teff 

more vulnerable to mechanisms of Treg suppression; thereby, allowing the immune system to 

remedy the situation itself. 
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1.13 ROS AS A THERAPEUTIC TARGET IN T1D 

As mentioned previously, the NOD mouse model is used to recapitulate T1D as these mice 

develop spontaneous autoimmune diabetes.  In addition, the adoptive transfer of BDC-2.5.TCR 

transgenic splenocytes into NOD.scid mice leads to rapid immune-mediated β cell destruction 

and diabetes onset within 7-14 days.  To understand the role that ROS play in the NOD 

spontaneous T1D model, the NOD.NCF-1mlJ model was developed [202].  These mice contain a 

point mutation that results in truncation of the p47phox subunit and prevents functional NOX 

assembly and ROS production [200, 202].  NOD.NCF-1mlJ mice experienced a delay in 

spontaneous diabetes progression, in large part due to suboptimal immune activation [200, 202, 

240].  These results further supported targeting NOX and ROS as a potential therapeutic in T1D. 

To combat the chronic inflammation and oxidative stress displayed in diabetes, 

manganese metalloporphyrin antioxidants (MnTE-2-PyP5+, MnP) are seemingly a viable 

therapeutic.  Not only can these agents scavenge free radicals, but they also possess a high 

bioavailability and are catalytic, displaying oxidoreductase properties [292, 324].  These 

characteristics allow for preservation of β cell integrity [325-327] and dampening of anti-islet 

immune responses in T1D [168, 199, 201]. 

 

1.13.1 MnP treatment delays Type 1 Diabetes onset in murine models 

Early studies investigating redox modulation via MnP treatment in T1D were performed using an 

adoptive transfer model of the diabetogenic BDC2.5 T cell clone into NOD.scid animals [199].  

MnP intraperitoneal injections were continued several days during the experiment, and then 
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ceased.  Of the mice treated with MnP, 50% developed diabetes by 28 days post-transfer, while 

100% of the untreated animals progressed to fulminant disease [199].  Most notably, histology 

results showed decreased pancreatic immune cell infiltrate with MnP treatment.  Additional in 

vitro studies indicated that MnP treatment reduced IFNγ production by BDC-2.5 T cells, and 

inhibited respiratory burst of peritoneal macrophages upon LPS stimulation [199].  Together 

these results demonstrated the immunomodulatory capacity of MnP treatment in T1D and its 

potential therapeutic use in autoimmunity. 

More recent studies in T1D with MnP have included the use of 14-day sustain release 

MnP pellets implanted subcutaneously at the nape of the neck in NOD mice [168].  This 

administration allows for systemic MnP treatment, and drastically decreases the number of 

administrations.  In this study, all untreated NOD mice developed T1D by 20 weeks of age 

[168].  By 30 weeks of age, only 50% of animals treated with MnP developed diabetes.  These 

data, together with the data from the adoptive transfer models, further support targeting ROS for 

preventing T1D.  Nevertheless, the protective effects of MnP cease when treatment ends, as 25% 

more animals progressed to diabetes following MnP treatment conclusion [168].  Overall, MnP 

treatment does delay diabetes onset; yet, it does not provide durable tolerance.  Therefore, the 

need for other therapies in conjunction with MnP treatment is apparent. 

 

1.13.2 Manganese Metalloporphyrins and T cell inhibition 

As both CD8+ and CD4+ T cells play important roles in mediating T1D, our laboratory has 

performed extensive in vitro and in vivo work, including various T1D and transplantation 

models, in order to understand how MnP treatment modulates responses by both T cell subsets 
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[168, 199, 304, 328].  Each of these models serves as a potential mimic for delaying T1D onset 

and preserving transplanted allogenic β cell grafts in human T1D patients.  Specifically in CD8+ 

T cells, Sklavos et al. showed that proliferation and IFN-γ and TNF-α production were 

significantly inhibited by MnP treatment in a mixed lymphocyte reaction (MLR) [304].  

Cytotoxicity of MnP-treated and untreated CD8+ T cells was tested in an antigen-specific 

cytotoxicity assay, where MnP treatment resulted in a 50% reduction in targeted killing by CTLs 

[304].  MnP treated OT-I CD8+ T cells during in vitro stimulation with SIINFEKL peptide also 

exhibited similar reductions in IFN-γ and TNF-α production, proliferation, and targeted killing.  

In both models, the reduced cytotoxicity by MnP treatment was in part due to reduced expression 

of both perforin and granzyme B [304].  Taken together, the results from both the MLR and OT-I 

models indicated that MnP’s ability to inhibit CD8+ T cell activation and effector function was 

not specific to any one model, supporting its applicability to suppress diabetogenic and anti-graft 

T cell responses.  Here, MnP’s effects are relevant to islet transplantation in autoimmune prone 

individuals, as it would suppress both anti-graft and autoimmune responses. 

Delmastro et al. investigated the effects of MnP on activation and effector function of 

CD4+ diabetogenic T cells.  These studies used the NOD.BDC-2.5.TCR.Tg mouse expressing 

the rearranged TCR of the diabetogenic BDC-2.5 T cell clone that respond to the β cell antigen, 

chromogranin [329].  Splenocytes isolated from these mice were stimulated in vitro with their 

cognate peptide, mimotope, with or without MnP treatment.  In vitro results indicated that MnP 

treatment inhibited CD4+ T cell activation and effector function by reducing IFNγ production, 

proliferation, and CD69 (marker of activation) and Tbet expression [168].  These results 

correlated with MnP treatment inhibiting the cleavage of LAG-3.  As described previously, in 

order for optimal T cell activation, LAG-3 must be cleaved from the T cell surface by the 
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metalloproteases ADAM10 and ADAM17 [159].  ADAM17, like many metalloproteases, is a 

redox-dependent enzyme in that oxidation of specific cysteine residues must occur to change its 

confirmation from its latent to its activated form [330-332].  As MnP has been shown to 

scavenge ROS during immune cell activation, Delmastro et al. determined that MnP treatment 

inhibited ADAM17 activation, thereby maintaining LAG-3 expression on the T cell surface, 

leading to CD4+ T cell inhibition and delayed T1D onset [168]. 

In vivo studies by Delmastro et al. further showed that MnP treatment of diabetogenic 

splenocytes diminished their potential for inducing T1D in a murine adoptive transfer model.  

Severe combined immunodeficiency mice on the NOD background (NOD.scid), lacking 

endogenous adaptive immunity, received diabetogenic BDC-2.5.TCR.Tg splenocytes.  

Throughout the course of the study, serum was taken from the MnP treated and control animals, 

to measure levels of sLAG-3.  Results indicated that elevated levels of sLAG-3 (suggesting 

CD4+ T cell activation) correlated with progression to diabetes in untreated animals [168].  

Alternatively, sLAG-3 levels in MnP treated mice remained steady and all animals were 

euglycemic.  Collectively, these results not only demonstrate that MnP treatment in vivo inhibits 

T1D onset, but also that sLAG-3 may serve as an early biomarker of T1D progression. 

Recent work from our laboratory has demonstrated that MnP treatment can modulate the 

metabolic profile of diabetogenic T cells in vivo [328].  During in vivo studies, NOD.BDC-

2.5.TCR.Tg mice were either treated with or without MnP for 7 days, and then various metabolic 

pathways of bulk splenocytes were assessed.  Not only did MnP treatment inhibit diabetogenic 

potential of splenocytes in an adoptive transfer model, but it also resulted in reduced utilization 

of glucose via aerobic glycolysis [328].  While aerobic glycolysis was decreased, indicated by 

reduced lactate production, splenocytes demonstrated more efficient glucose oxidation.  These 



 

 52 

effects were attributed to enhanced activation of the tricarboxylic acid cycle (TCA) enzyme, 

aconitase, which is responsible for catalyzing the reaction of citrate to isocitrate in the 

mitochondria.   

1.14 SUMMARY 

The goal of this body of work was to more fully elucidate mechanisms that govern the 

bioenergetics of CD4+ T cells, as a means of understanding potential therapeutic targets for 

ameliorating autoimmunity.  The focus on T cell metabolism was driven by the more recent 

insight that T cell differentiation and bioenergetics are greatly intertwined – T cell phenotype can 

dictate the metabolic pathways required for function and metabolism reinforces characteristics 

attributed to specific T cell subsets.  Moreover, studies in diseases like RA, SLE, and MS have 

indicated that autoreactive T cells are bioenergetically distinct from non-pathogenic T cells, 

suggesting these alterations contribute to disease.  Here, we utilized murine models of T cell 

homeostasis and T1D to elucidate how LAG-3 (Chapter 2) and ROS (Chapter 3) modulate T cell 

metabolism during these processes, respectively.     
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2.0  LYMPHOCYTE ACTIVATION GENE-3 MAINTAINS METABOLIC AND 

MITOCHONDRIAL QUIESCENCE IN NAÏVE CD4+ T CELLS 

 “Lymphocyte activation gene-3 maintains metabolic and mitochondrial quiescence 
in naïve CD4+ T cells” 
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2.1 SUMMARY 

Lymphocyte Activation Gene-3 (LAG-3) is an inhibitory receptor expressed on the surface of 

various immune cells, including CD4+ T cells.  While LAG-3 is more frequently associated with 

exhausted effector and regulatory T cells, it is also a negative regulator of T cell homeostatic 

expansion.  Recent studies exploring how cellular metabolism dictates immune cell function and 

fate have elucidated that CD4+ T cell function is tightly coupled to bioenergetics. Therefore, 

given that LAG-3 is a regulator of CD4+ T cell homeostatic expansion, and the ability to 

proliferate is highly dependent upon metabolism, we hypothesized that LAG-3 regulates the 

metabolic profile of naïve CD4+ T cells.  Naive OT.II T cells were isolated from wildtype and 

LAG-3-/- animals, and analyzed by Seahorse Flux Analyzer. LAG-3-/- OT.II T cells demonstrated 

significantly increased basal respiration, spare respiratory capacity, and aerobic glycolysis, as 

compared to wildtype OT.II T cells, indicating an enhanced bioenergetic profile.  Further 

analysis indicated that LAG-3-deficient OT.II T cells displayed increased mitochondrial 

biogenesis, via increased signaling through the AMPK/Sirt-1 pathway.  In an adoptive transfer 

model of homeostatic expansion, LAG-3-/- OT.II cells expanded to a greater extent and continued 

to demonstrate an enhanced oxygen consumption and glycolysis as compared to WT OT.IIs.  

This proved to be extrinsically regulated, as LAG-3 blockade in WT recipients recapitulated 

similar results to LAG-3-/- T cells.  These results demonstrate that LAG-3 is critical for actively 

maintaining metabolic quiescence in naïve CD4+ T cells, and future directions include 

investigating this mechanism and its implications in autoimmunity.   
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2.2 INTRODUCTION 

CD4+ T cells are a critical component of the adaptive immune system, thereby regulating their 

development, activation, and survival is of the utmost importance.  Homeostasis is an essential 

period of the T cell lifespan, during which T cells require low-level TCR stimulation and gamma 

chain cytokines (i.e. IL-7 and IL-15) to ensure their survival [59, 333].  In immunocompetent 

environments, naïve T cells actively maintain quiescence as a means of avoiding over population 

and loss due to neglect [52].  Alternatively, in lymphopenic hosts, naïve T cells exhibit increased 

proliferative capacity as a means of reconstituting the host’s immune system.  At various times 

during homeostatic expansion, naïve T cells can adopt a more memory-like phenotype, including 

increased CD44 and CD25 expression and faster transition to effector function upon antigen 

encounter [99, 100, 334].  Regulatory mechanisms are in place to maintain naïve T cell 

homeostasis and quiescence to protect against aberrant T cell activation and hyperproliferation, 

like that demonstrated in autoimmunity and cancer. 

In particular, lymphocyte activation gene-3 (LAG-3; CD223) has gained prominence as a 

key inhibitory receptor in various disease models [168, 173, 335].  Structurally, LAG-3 and CD4 

are considered homologs, with the former demonstrating a higher affinity for their shared ligand, 

MHC class II [139, 146, 148].  While the various inhibitory effects mediated by LAG-3, 

including dampening proliferation and inhibiting IFNγ production [336, 337], have been 

characterized, its downstream signaling remains to be fully defined.  Naïve CD4+ T cells express 

low levels of LAG-3 in comparison to other T cell subsets [141]; nevertheless, LAG-3 
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engagement can still negatively regulate these cells.  Studies examining global knockout [157] 

and antibody blockade [338] indicated that homeostatic expansion is tightly regulated by LAG-3 

in immunocompetent and lymphopenic animals.  In addition, these studies suggested that LAG-3 

mediated this effect by tempering STAT5 signaling [338]. 

It is becoming more evident that cellular metabolic programs are essential for driving the 

identity and functionality of T cells during their various life stages.  Unlike activated T cells, 

which demonstrate robust aerobic glycolysis to maximize macromolecule synthesis and energy, 

naïve CD4+ T cells are considered metabolically quiescent [48, 49].  Naïve T cells rely 

predominantly on oxidative phosphorylation (OXPHOS) via the mitochondria for generating 

ATP [53, 339].  Signaling via the cytokine IL-7 in naïve T cells is essential for maintaining not 

only their survival via Bcl-2 expression, but also their bioenergetic profile [68, 91].  IL-7 has 

been shown to increase glucose uptake via increased glucose transporter expression, in an 

Akt/STAT5-dependent manner [68, 75, 91].  Alternatively, loss of CD127 (IL-7Rα) expression 

or antibody blockade disrupts naïve T cell homeostasis, resulting in decreased proliferation and 

viability [72, 340].      

Considering that loss of LAG-3 expression results in increased CD4+ T cell homeostatic 

expansion, and that the ability of a cell to proliferate is tightly coupled to its metabolic profile, 

we hypothesized that LAG-3 expression regulates naïve CD4+ T cell metabolism.  Our results 

indicate that indeed, LAG-3-deficient naïve T cells exhibited enhanced oxidative and glycolytic 

metabolisms, with this being attributed to increased mitochondrial content.  Also, this heightened 

bioenergetic profile allowed for greater homeostatic proliferation upon adoptive transfer.    

Moreover, LAG-3 antibody blockade of wildtype OT.IIs enhanced their metabolic capacity to 

levels similar to LAG-3 knockout T cells, suggesting that LAG-3 mediates regulation through 
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extrinsic signaling.  LAG-3-deficient T cells were also more resistant to IL-7 deprivation as 

compared to their wildtype counterparts, which was attributed to increased STAT5 activation 

concomitant with reduced expression of the inhibitory phosphatase PTEN.  Upon activation, 

LAG-3-/- T cells outperformed wildtype cells by demonstrating enhanced metabolic 

reprogramming and effector function.  These findings suggest that LAG-3 expression on naïve T 

cells acts as a metabolic regulator to protect against hyperproliferation and maintain naïve T cell 

homeostasis to ensure controlled T cell activation. 

2.3 MATERIALS AND METHODS 

2.3.1 Animals 

C57BL/6.Lag3-/- mice were bred and housed under pathogen-free conditions in the Animal 

Facility of Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh 

Medical Center (UPMC).  Female and male mice aged 8-12 weeks were used in all experiments.  

All animal experiments were approved by the Institutional Animal Care and Use Committee 

(IACUC) of Children’s Hospital.  C57BL/6 WT controls were purchased from Jackson 

Laboratories and housed with the Lag3-/- animals.  For Lag3-/-.OT-II transgenics, B6.Lag3-/- 

animals were crossed with B6.OT-II animals (JAX) to homozygosity for the Lag3 gene and 

heterozygosity for the OT-II transgene.  C57BL/6.Rag1-/- breeder pairs were a gift from the 

laboratory of Dr. Jay Kolls, MD, and animals were maintained in immunocompromised housing. 
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2.3.2 CD4+ T cell isolation 

Whole spleens from B6.Lag3-/-, B6.WT, WT.OT-II and Lag3-/-.OT-II animals were homogenized 

and red blood cells were lysed using RBC lysis buffer (Sigma).  CD4+ T cells were isolated by 

negative selection from splenocytes using EasySep Mouse CD4+ T cell Isolation kits (StemCell 

Technologies).  Purity was determined by flow cytometry. 

 

2.3.3 Metabolic Seahorse Flux Analyzer assays 

T cells were plated in Cell-Tak (Corning) coated Seahorse culture plates (Agilent) at 1 x 105 or 3 

x 105 per well in assay medium (unbuffered DMEM, 1% BSA, 1 mM pyruvate, 25 mM glucose, 

2 mM glutamine), and analyzed using the Seahorse XFe96 instrument (Agilent).  For 

mitochondrial stress tests, basal oxygen consumption (OCR) and extracellular acidification rates 

(ECAR) were measured for 30 minutes, and then cells were stimulated with oligomycin (Oligo; 

2 mM), Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP; 0.5 µM), 2-

deoxyglucose (2-DG; 100 mM) and rotenone/antimycin A (Rot/AntA; 100 µM each) (all 

inhibitors from Sigma).  Spare respiratory capacity (SRC) was determined by the difference 

between maximal OCR (following FCCP addition) and basal OCR.   

 



 

 59 

2.3.4 Mitochondrial to nuclear DNA PCR 

DNA was isolated from 5.0 x 106 isolated CD4+ T cells from indicated animal strains using the 

DNeasy isolation kit (QIAGEN).  DNA was quantified using a Nanodrop 2000c (Thermo 

Scientific).  qPCR was performed on 1 ng total DNA as previously described [341].  ∆∆Ct values 

for the mitochondrial gene cytochrome C oxidase subunit 1 (CO1) were normalized to the 

nuclear gene NDUFV1.  The CO1 primers were 5- TGCTAGCCGCAGGCATTAC-3 (fwd) and 

5-GGGTGCCCAAAGAATCAGAAC-3 (rev).  The primers for NDUFV1 were 5-

CTTCCCCACTGGCCTCAAG-3 (fwd) and 5-CCAAAACCCAGTGATCCAGC-3 (rev).   

 

2.3.5 RNA isolation and qRT-PCR 

Isolated CD4+ T cells were lysed for RNA in RLT buffer (Qiagen).  RNA was isolated using the 

RNeasy mini kit (Qiagen) and cDNA was synthesized using the RT2 First Strand kit (Qiagen).  

RNA was quantified using a Nanodrop 2000c (Thermo Scientific).  qRT-PCR was performed for 

indicated genes using iQ SYBR Green Supermix and iCycler according to manufacturer’s 

instructions (BioRad).  Cycling parameters were as follows:  5 min at 95°C, 30 s at 95°C, 30 s at 

60°C, 30 s at 72°C (40 cycles of steps 2-4), 1 min at 95°C, and then samples were held at 4°C.  

In order to calculate relative expression, ∆∆Ct values were normalized to expression of the 

control gene Rplo (FWD 5’-GGCGACCTGGAAGTCCAACT-3’; REV 5’- 

CCATCAGCACCACAGCCTTC-3’) [342].  Values were normalized to wildtype controls.  The 

primers for TFAM were 5-AAGTCTTGGGAAGAGCAGATGGCT-3 (fwd) and 5-

AGACCTAACTGGTTTCTTGGGCCT-3 (rev).  The primers for mitochondrial complex I were 
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5-CTTCGGCTTTGTGGCTTTCATGGT-3 (fwd) and 5-

AAAGCCCATCAAGCCTCCTCAGAT-3 (rev).  The primers for the glycolysis associated 

genes were taken from Wang et al. [103].   

 

2.3.6 Cell lysates and Western blotting 

Whole-cell lysates were made by lysing cells in anti-pY lysis buffer (50 mM Tris pH 8.0, 137 

mM NaCl, 10% glycerol, 1% NP-40, 1 mM NaF, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 2 mM 

Na3VO4, and 1 mM PMSF), followed by sonication.  Protein concentration was quantified by 

Bicinchoninic acid protein assay (Thermo Fisher Scientific).  25 µg of protein lysates were 

separated by gel electrophoresis on 8% SDS-PAGE gels.  Western blots were performed as 

previously described [168]  Blots were probed overnight at 4°C with primary antibodies to the 

following targets diluted 1:1000 in 5% BSA in Tris-buffered saline with Tween (TBST): 

pAMPK-α (Thr170) and AMPK (both from Cell Signaling). Secondary anti-rabbit antibody was 

used for detection of primary antibodies (1:2000; Cell Signaling).  Chemiluminescence was 

detected in real time using ECL plus reagent (Amersham Pharmacia Biotech) and the Fujifilm 

LAS-3000 imager.  Blots were analyzed using Multi Gauge software (Fujifilm Life Science).  β-

actin expression served as the loading control (Sigma).      
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2.3.7 Extracellular and intracellular flow cytometry staining 

Cells were harvested and first incubated in FACS buffer (1% BSA in PBS) with Fc Block 

(CD16/CD32; BD Biosciences).  Surface staining was performed at 4°C in FACS buffer with the 

following antibodies:  CD4, CD127, CD44, CD62L, LAG-3 (all from BD Bioscience).  For 

experiments examining thymocyte populations the following antibodies were used:  CD45, CD4, 

CD8, CD25 and CD44 (all from BD Bioscience).  For intracellular staining of PTEN (clone 

A2B1; BD Phosflow) and pAkt (Ser473; clone D9E, Cell Signaling), cells were 

fixed/permeabilized as previously described [343].  For pSTAT5 intracellular staining, cells were 

fixed using the Foxp3/Transcription Factor Fixation/Permeabilization Kit (eBioscience) and 

stained using the pSTAT5-PE Cy7 antibody (Tyr694; clone 47/Stat5(pY694); BD Phosflow).  

Cells were analyzed using a BD LSRII and data were analyzed using FlowJo Software (v10.1).       

 

2.3.8 Adoptive transfers and in vivo antibody blockade 

CD4+ T cells were enriched from spleens of WT.OT-II or Lag3-/-.OT-II animals as described 

above.  Cells were labeled with Violet Proliferation Dye 450 (BD Bioscience) according to 

manufacturer’s instructions and 5.0 x 106 T cells were transferred i.v. into B6.Rag1-/- recipients.  

Recipient animals were sacrificed 10 days post-transfer and transferred cells were recovered 

from spleens using CD4+ T cell enrichment kits (Stem Cell) and analyzed by flow cytometry and 

Seahorse Flux Analyzer.  Cohorts of Rag1-/- recipients were treated with 200µg of either αLAG-

3 (clone C9B7W; BioXCell) or αIL-7Rα (clone A7R34; BioXCell) i.p. every-other day starting 
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the day prior to adoptive transfer.  Control animals received either Rat IgG1 (LAG-3) or Rat 

IgG2a (IL-7Rα) isotype controls.  

 

2.3.9 IL-7 treatment in vitro 

Whole splenocytes were plated and treated with 100 ng/mL rmIL-7 (R&D Systems) or media 

alone for 18 hours as previously described [68].  Glucose uptake was measured as described 

below.  IL-7-induced glucose uptake of CD4+ T cells due to IL-7 treatment was calculated as 

follows: 

recovered glucose uptake = (MFI IL-7 treated) – (MFI Media treated). 

Viability was assessed by flow cytometry by staining for CD4 and 7AAD.  Recovered 

viability due to IL-7 treatment was calculated as follows: 

recovered viability = (% 7AAD+ Media treated) – (% 7AAD+ IL-7 treated). 

 

2.3.10 Plate-bound antibody stimulation 

Isolated B6.WT and B6.Lag3-/-- CD4+ T cells were stimulated with plate-bound αCD3 (0.5 

ug/mL; BD Pharmingen) and αCD28 (1.0 ug/mL; BD Pharmingen) for indicated periods of time 

at 37°C in a 5% CO2 incubator.  Cells were cultured in complete splenocyte medium (4.5 mg/dL 

glucose DMEM (Gibco) supplemented with 10% heat-inactivated fetal bovine serum, 1 mM 

sodium pyruvate (Gibco), 10 mM HEPES buffer (Gibco), 2× non-essential amino acids (Gibco), 



 

 63 

100 µg/mL gentamicin (Invitrogen Life Technologies), 4 mM L-glutamine (Gibco), and 61.5 µM 

2-ME). 

 

2.3.11 Lactate and IFNγ measurements 

Lactate from in vitro culture supernatants was measured using the Accutrend Plus meter and 

lactate strips (Roche) as previously described [344].  IFNγ was measured by ELISA as 

previously described [168].  ELISAs were read using a SpectraMax M2 microplate reader 

(Molecular Devices), and data were analyzed using SoftMax Pro version 5.4.2 software 

(Molecular Devices). 

 

2.3.12 Glucose uptake assay 

CD4+ T cells were stimulated with plate-bound antibodies for 24-72 hours.  Prior to harvest, 

cultures were incubated with the fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-

4-yl)Amino)-2-Deoxyglucose (2-NBDG; Invitrogen Life Technologies) at 100 µM for 10 

minutes, and uptake was quenched with PBS as previously described [136].  Cells were stained 

for surface markers CD4 and LAG-3 and analyzed live by flow cytometry using a BD LSR II 

instrument (BD Biosciences).  Samples were analyzed using FlowJo software (v10.1; TreeStar).  
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2.3.13 Statistical analysis 

Data are given as mean values ± SEM, with n indicating the number of independent experiments 

or animals, unless otherwise indicated.  Student’s t-test or One-way ANOVA with Bonferroni 

post-hoc analysis was used where appropriate. A p-value of p<0.05 was considered significant 

for all statistical analyses. 

 

2.4 RESULTS 

2.4.1 LAG-3 regulates the homeostatic expansion of naïve polyclonal and monoclonal 

CD4+ T cells  

Previous reports have shown that global knockout of LAG-3 results in increased proliferation of 

naïve CD4+ T cells in both monoclonal (OT.II) and polyclonal (B6) mouse models [157, 338].  

Both C57Bl/6 and B6.OT.II TCR transgenic animals that lack LAG-3 expression in our colony 

similarly demonstrated increased total number of splenocytes and CD4+ T cells in comparison to 

their wildtype counterparts (Figure 8A and B; p<0.05).  Closer examination of T cell subsets 

(naïve, effector, memory) based on CD62L and CD44 expression indicated that absolute 

numbers of naïve CD4+ T cells differed between knockout and wildtype animals (Figure 8C), 

suggesting that the naïve compartment is the most dependent upon LAG-3-mediated regulation. 
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Figure 8.  LAG-3 negatively regulates homeostatic expansion of naive CD4+ T cells. 
A.  Total cells per spleen from C57Bl/6 WT and Lag3-/- animals (left panel) and B6. OT.II WT and Lag3-/- animals 
(8-12 weeks of age).  B.  Total CD4+ T cells per spleen.  C.  Absolute numbers of CD4+ T cell subsets from wildtype 
and Lag3-/-spleens based on CD62L and CD44 expression.  Data are presented as means ± SEM of n = 6-9 animals.  
*=p<0.05, **=p<0.01. 
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2.4.2 Naïve CD4+ T cell bioenergetics are regulated by LAG-3 

Recent work has revealed that T cell function and proliferation are tightly coupled to cellular 

metabolic programs.  Specifically, naïve CD4+ T cells rely on a more oxidative metabolic 

program thereby maximizing ATP production for driving basal processes like chemotaxis [49].  

As LAG-3-deficient T cells demonstrated increased homeostatic expansion, and the ability to 

proliferate is highly dependent upon metabolism, we hypothesized that LAG-3 regulates the 

bioenergetic profile of these cells.   

 To assess metabolic differences, naïve wildtype and Lag3-/- OT.II T cells were isolated 

from spleens and analyzed using a Seahorse Flux analyzer.  Results from a mitochondrial stress 

test indicated that Lag3-/- OT-IIs displayed significantly higher oxidative (measured by oxygen 

consumption (OCR)) and glycolytic (measured by extracellular acidification rate (ECAR)) 

metabolisms (Figure 9A-C; p<0.0001).  Additionally, Lag3-/- deficient OT-II T cells presented 

with an increased spare respiratory capacity (SRC), a measure of mitochondrial reserve and 

fitness (Figure 9D; p<0.0001).   

 As naïve CD4+ T cells are known to be more oxidative than glycolytic, compared to 

effector T cells, we calculated the ratio of OCR to ECAR as an indicator of whether these naïve 

T cells were behaving more like effector T cells.  As anticipated, both wildtype and Lag3-/-

deficient OT.II T cells had OCR to ECAR ratios over one, indicative of a more oxidative profile 

(Figure 9E); however, this ratio was significantly higher in the knockout OT.IIs (p<0.01).  These 

results denote that the loss of LAG-3 leads to in enhanced oxidative and glycolytic metabolisms, 

but that these T cells still appear “naïve” from a metabolic standpoint. 

Similar experiments were performed using isolated naïve T cells from C57Bl/6 animals, 

and results indicated that indeed, Lag3-/- polyclonal T cells demonstrated enhanced OCR, ECAR, 
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and SRC as compared to those from wildtype animals (Figure 10A-C; p<0.0001).  OCR to 

ECAR ratios for both sets of T cells were greater than one, consistent with OT.II T cells, 

indicating a propensity for OXPHOS (Figure 10D; p<0.0001).  Together, these findings show 

that metabolic regulation elicited by LAG-3 expression is not unique to TCR transgenic T cells.  

Additionally, they suggest that the augmented metabolic phenotype in Lag3-/- T cells likely 

supports their increased homeostatic proliferation (Figure 8).     
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Figure 9. Loss of LAG-3 expression in naïve OT.II cells results in enhanced bioenergetics. 
CD4+ T cells were isolated from whole splenocytes, and immediately assayed in a mitochondrial stress test using a 
Seahorse Flux analyzer.  A.  Representative Seahorse run tracings comparing WT and Lag3-/- OT.IIs.  Basal oxygen 
consumption (OCR; B) and extracellular acidification rate (ECAR; C) were measured prior to oligomycin injection 
(****p<0.0001).  D.  Spare respiratory capacity (SRC) was determined as basal OCR subtracted from maximal 
OCR (****p<0.0001).  E. Basal OCR to ECAR ratio (**p<0.01).  Graphs are of n = 5 independent experiments 
unless otherwise indicated. 
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Figure 10.  LAG-3 regulates the metabolic profile of naïve polyclonal CD4+ T cells. 
CD4+ T cells were isolated from B6.WT and B6.Lag3-/- splenocytes, and assayed as described in Figure 4. Basal 
oxygen consumption (OCR; A.) and extracellular acidification rate (ECAR; B) were measured prior to oligomycin 
injection (****p<0.0001).  C.  Spare respiratory capacity (SRC) was determined as basal OCR subtracted from 
maximal OCR (****p<0.0001).  D. Basal OCR to ECAR ratio (****p<0.0001).  Graphs are of n>3. 
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2.4.3 LAG-3 expression negatively regulates mitochondrial biogenesis in naïve CD4+ T 

cells  

Memory CD8+ T cells demonstrate increased SRC, largely due to their increased mitochondrial 

mass and biogenesis, compared to effector T cells [128, 129].  As Lag3-/- OT-IIs displayed a 

similar phenotype (Figure 9), we sought to determine if the enhanced mitochondrial oxygen 

consumption was in part, due to overall increased mitochondrial mass.  PCR analysis revealed 

that Lag3-/- OT.IIs exhibited a 1.5-fold increase in their mitochondrial to nuclear DNA ratio, 

compared to wildtype T cells, indicative of increased mitochondrial mass (Figure 11A; p<0.01).  

qRT-PCR analysis also indicated increased expression of mitochondrial complex I, further 

corroborating the DNA results (Figure 11B; p<0.05).  While DNA and RNA analysis revealed 

increased mitochondrial mass in Lag3-deficient T cells, measurement of forward scatter, as a 

readout of cell size, indicated no difference due to LAG-3 expression (Figure 11C).   

Mitochondrial Transcription Factor A, or TFAM, is a key activator of mitochondrial 

biogenesis, and mRNA analysis revealed a 1.8-fold increase in TFAM expression in Lag3-/- 

OT.IIs compared to wildtype T cells (Figure 11D; p<0.01).  The adenosine monophosphate 

activated protein kinase/Sirtuin-1 (AMPK/Sirt-1) pathway drives activation of the transcription 

factor Peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), which in 

turn controls TFAM expression [345, 346].  Therefore, it was important to determine whether if 

this pathway was mediating the increased mitochondrial mass observed in Lag3-/- OT.II T cells.  

Protein analysis showed increased activated AMPK, as measured by phosphorylation (Thr172) 

(Figure 11E), concurrent with a two-fold increase in Sirt-1 expression (Figure 11F), suggesting 

that LAG-3-mediated suppression of this pathway likely dampens mitochondrial biogenesis.  
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Similar differences in mitochondrial biogenesis and signaling were observed in 

polyclonal naïve CD4+ T cells (Figure 12A-F).  Yet, while there were observed differences due 

to LAG-3 expression in mitochondrial oxygen consumption (Figure 10) and biogenesis (Figure 

12), there was no significant difference in total ATP production between the two cell types 

(Figure 12G). These studies reveal that LAG-3 expression negatively regulates mitochondrial 

biogenesis by tempering the AMPK/Sirt-1 pathway, thereby also controlling mitochondrial 

oxygen consumption, and that these results are independent of TCR specificity. 
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Figure 11.  LAG-3 expression negatively regulates mitochondrial biogenesis in naive CD4+ T cells.  
Naïve CD4+ T cells were isolated from whole splenocytes and used for downstream analysis.  A.  qPCR for 
measuring mitochondrial (mDNA) to nuclear (nDNA) DNA ratio.  B.  qRT-PCR analysis of mitochondrial Complex 
I expression.  C.  Representative histogram measuring forward scatter (cell size).  D.  qRT-PCR analysis of TFAM 
expression.  E.  Representative Western blots of pAMPK (Thr172), total AMPK, and β actin (loading control).  F.  
qRT-PCR analysis of Sirt-1 expression.  Data are displayed as means ± SEM of n=5-9 independent experiments.  
*=p<0.05; **=p<0.01.   
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Figure 12.  LAG-3 regulates mitochondrial biogenesis in naive polyclonal CD4+ T cells. 
Polyclonal CD4+ T cells were isolated from C57Bl/6 wildtype and Lag3-/- animals and analyzed for mitochondrial 
differences.  A.  qPCR for measuring mitochondrial (mDNA) to nuclear (nDNA) DNA ratio.  mRNA expression of 
B. TFAM and C. mitochondrial complex I.  D.  Measure of cell size by forward scatter (FSC).  E.  Protein analysis 
of activated (phosphorylated; Thr172) and total AMPK.  F.  mRNA expression of Sirt-1.  G.  Measure of 
intracellular ATP per ug of protein.  Data are displayed as means ± SEM of n=7-9 independent experiments.  
*=p<0.05; **=p<0.01.   
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2.4.4 Loss of LAG-3 expression does not alter the frequency of thymocyte populations 

Following the observations that LAG-3 deficiency resulted in enhanced mitochondrial mass 

(Figures 11-12) and metabolism (Figure 9-10), we wanted to further delineate if this phenotype 

was due to alterations in thymic development or extrinsic signaling in the periphery. To examine 

thymic subsets, thymuses were harvested from 4-6-week-old animals, and cells were stained for 

flow cytometry.  Identification of immune cells was based first on CD45 expression and then 

CD8 versus CD4 expression to distinguish double negative (DN), double positive (DP), and 

single positive (SP) populations (Figure 13A).  Additionally, DN populations were further 

dissected into DN subsets 1-4 based on CD44 and CD25 expression.  Overall, Lag3-/- OT.II 

thymuses had greater cellularity compared to those from wildtype animals (Figure 13B; 

p=0.082), suggesting increased proliferation in the thymus.  However, thymic cellularity 

remained relatively unchanged in B6 animals (Figure 13C).  Following flow cytometric analysis, 

there were no differences in frequencies of DN, DP, and SP populations between wildtype and 

LAG-3-/- animals, regardless of strain (Figure 13D).  These results held true for DN 1-4 

populations as well (Figure 13E).  Based on these data, we concluded that it was unlikely LAG-3 

was influencing thymocyte development.  
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Figure 13.  Loss of LAG-3 expression does not alter the frequency of T cell precursors in the thymus. 
A.  Flow cytometry gating for examining single and double positive thymocytes from OT.II wildtype and LAG-3-/- 
animals (4-6 weeks old).  Total number of cells per thymus comparing B. WT and LAG-3-/- OT.II and C. B6.WT 
and LAG-3-/- animals.  D.  Frequencies of double negative (DN), double positive (DP), CD4 single positive (CD4 
SP) and CD8 single positive (CD8 SP) populations from indicated strains.  E.  Frequencies of double negative 1-4 
populations based on CD44 and CD25 expression.  F.  LAG-3 surface expression of wildtype OT.II and B6 double 
negative populations. n = 4-5 mice per strain.       
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2.4.5 LAG-3 signaling is necessary for regulating mitochondrial metabolism in the 

periphery 

As data from thymic populations did not yield significant differences, we next assessed the role 

of LAG-3 extrinsic signaling in the periphery.  To do so, we utilized a model of spontaneous 

homeostatic proliferation, whereby naïve T cells were adoptively transferred into lymphopenic 

animals (Figure. 14A).  To directly assess if LAG-3 mediated an effect, a cohort of animals that 

received wildtype OT.II T cells were treated with a LAG-3 blocking antibody.  After ten days, 

splenic CD4+ T cells were analyzed by flow cytometry and results showed a higher percentage of 

CD4+ T cells per spleen in animals that received Lag3-/- OT.II T cells (Figure 14B; p<0.05).  

Additionally, Lag3-/- OT.II T cells proliferated to a greater extent, as measured by Cell Trace 

Violet dilution (Figure 14C; p<0.05).  Treatment of WT T cells with a LAG-3 blocking antibody 

fully restored the total percentage and proliferation of transferred T cells to levels demonstrated 

by LAG-3-deficient cells (Figure 14B-C).  Thus, LAG-3 signaling directly regulates homeostatic 

expansion of naïve CD4+ T cells. 
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Figure 14.  LAG-3 loss and blockade result in increased homeostatic expansion following adoptive transfer.   
A.  Schematic of adoptive transfer model to assess homeostatic expansion.  A cohort of WT OT.II recipients also 
received 200µg of αLAG-3 i.p. every-other-day.  B.  Percentage of CD4+ T cells per spleen and C. percent 
proliferation normalized to WT OT.II assessed by flow cytometry.  Proliferation was determined by Cell Trace 
Violet dilution as compared to non-transferred controls.  Data are presented as means ± SEM of 3 independent 
experiments with n=3-5 mice per experiment.  *=p<0.05 

 

 

Splenic OT.II T cells from recipient animals were also isolated and analyzed for 

mitochondrial fitness by Seahorse assay.  Similar to what was demonstrated in ex vivo analysis 

(Figure 9-10), OT.II T cells deficient in LAG-3 displayed significantly higher basal OCR and 

ECAR as compared to their wildtype counterparts (Figure 15A-D).  LAG-3 blockade by 

monoclonal antibody administration augmented both OCR and ECAR of WT cells to levels 

comparable to Lag3-/- CD4+ T cells, demonstrating an extrinsic inhibitory effect of LAG-3 on 

mitochondrial and glycolytic metabolism (Figure 15A-D).  Interestingly, SRC was completely 

absent in T cells from all three cohorts (Figure 15E) in comparison to values obtained during ex 

vivo analysis (Figure 9D, 10C).  When we compared basal OCR and SRC levels pre-transfer 
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with basal OCR rates post-transfer, we observed an additive effect – the post-transfer basal OCR 

was equal to the sum of the pre-transfer basal OCR and SRC (Figure 15F).  These results suggest 

that SRC was not lost, but was in fact being utilized to support spontaneous proliferation.   These 

data reveal that LAG-3 engagement and signaling act to limit naïve CD4+ T cell proliferation by 

regulating mitochondrial and glycolytic metabolism. 
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Figure 15.  LAG-3 tempers T cell bioenergetic pathways during homeostatic expansion. 
OT.II WT and Lag3-deficient T cells were adoptively transferred into B6.Rag1-/- recipients as a model of 
homeostatic expansion.  A cohort of WT recipients were treated with 200ug of a LAG-3 blocking antibody. A-B.  
Representative Seahorse analysis of isolated OT.II T cells 10 days post-adoptive transfer.  Calculated C. basal OCR, 
D. ECAR, and E. SRC of OT.II T cells post-transfer (****p<0.0001).  F.  Comparison of post-transfer basal OCR to 
sum of pre-transfer OCR and SRC.  Values are indicative of combined n>5 animals per group and displayed as 
mean ± SEM.    
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2.4.6 LAG-3 expression increases the dependence of naïve CD4+ T cells on Interleukin-7 

The common gamma chain (γc) family of cytokines (IL-7, IL-15, IL-2, IL-9 and IL-4) play 

important roles in the homeostasis and proliferation of naïve, effector and memory T cells [74, 

79, 347, 348].  In the context of naïve T cell homeostasis and survival, IL-7 is essential for 

mediating both glucose uptake and oxidation, and survival via Bcl-2 expression [66-68, 91].  

Moreover, IL-7 mediates its signaling via Akt and STAT5 phosphorylation.  Following the 

findings that LAG-3 loss resulted in increased mitochondrial oxidation, homeostatic proliferation 

(Figure 14-15), and STAT5 phosphorylation, all responses that are IL-7 dependent [66-68, 91], 

we wanted to assess if this enhancement was due to increased IL-7 signaling.   

Examination of CD127 (IL-7Rα) expression in adoptive transfer experiments revealed 

that LAG-3-deficient OT.IIs exhibited an approximate 25% decrease in CD127 surface 

expression compared to WT T cells both pre- and post-transfer (Figure 16A-B; p<0.05).  Work 

by Park et al. showed that increased IL-7/IL-7R signaling is indirectly related to IL-7 mRNA 

and surface expression [85].  Our results, coupled with the studies from Park et al., suggested 

that LAG-3-deficient T cells experience increased IL-7R signaling, resulting in reduced surface 

expression.  To directly test the influence of IL-7 on naïve T cell responses, wildtype and Lag3-/- 

OT.II splenocytes were treated with either media alone or media containing IL-7 for 18 hours 

and assessed for glucose uptake and viability.  Alternatively, to what was anticipated, wildtype 

OT.II T cells exhibited a significantly higher change in glucose uptake (Figure 16C-D; p<0.05) 

and viability (Figure 16E-F) due to the presence of IL-7 as compared to Lag3-/- T cells, thus 

suggesting wildtype T cells have a greater dependence on the cytokine.  Additionally, the 

increased CD127 expression by these T cells also suggests an increased IL-7 dependence. 
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Figure 16.  Loss of LAG-3 expression reduces sensitivity to IL-7 in vitro. 
Relative IL-7Rα surface expression on naïve CD4+ wildtype and LAG-3-/- T cells A. pre- and B. post- adoptive 
transfer.  C-E.  Naïve splenocytes were treated with or without IL-7 in vitro for 18 hours.  C.  Representative 
histograms of glucose uptake (2-NBDG) of naïve CD4+ T cells treated with IL-7 or media alone (control).  D.  
Change in glucose uptake due to the presence of IL-7.  E.  Representative dot plots of 7AAD staining of CD4+ T 
cells to measure viability.  F.  Percent recovered viability due to the presence of IL-7 in cell cultures.  Data were 
normalized to WT values within experiments and are displayed as mean ± SEM of n = 5-6 independent experiments.  
*=p<0.05.    
  
 
 

2.4.7 LAG-3-deficient T cells are refractory to IL-7 deprivation during homeostatic 

proliferation 

Following the in vitro studies, we sought to verify our findings in our in vivo adoptive transfer 

model.  To do so, Rag1-/- recipients were treated i.p. with either a CD127 blocking antibody or an 

isotype control every other day throughout the course of the experiment.  Ten days post-transfer 

wildtype and Lag3-/- OT.II cells were recovered from spleens and analyzed by flow cytometry 
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and Seahorse as described above.  Metabolic analysis revealed that even with IL-7 blockade, 

Lag3-/- OT.II T cells outperformed treated wildtype cells during a mitochondrial stress test 

(Figure 17A).  In comparison to isotype treated controls, IL-7 blockade resulted in a 60% 

reduction in basal OCR of wildtype cells (Figure 17B; p=0.0544); however, Lag3-/- T cells 

experienced no change in basal OCR (Figure 17C), indicating an IL-7 dependence for OCR in 

wildtype T cells.  Similar to previous experiments, all transferred T cells, regardless of treatment, 

used the entirety of their SRC to drive homeostatic expansion (Figure 17D).  Unlike oxygen 

consumption, there was no dependence on IL-7 for glycolysis in either cell type, yet there was a 

trend that IL-7 blockade increased glycolysis in wildtype T cells (Figure 17E,F).  This could 

indicate that without the use of oxidative phosphorylation, wildtype T cells may try to 

compensate by increasing their dependence on glycolysis.  These metabolic differences also 

directly correlated with overall percentages of T cells per spleen of recipient animals (Figure 

17G; p<0.05).  Lastly, IL-7 is known to regulate naïve T cell size, and cell size analysis by 

forward scatter indicated that WT T cells demonstrated a greater reduction in cell size between 

those deprived of IL-7 and those treated with IgG control (Figure 17H-I).  Lag-3 deficient T cells 

exhibited little to no change in forward scatter due to IL-7R blockade (Figure 17H-I).   
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Figure 17. LAG-3-deficient CD4+ T cells are refractory to IL-7 deprivation in vivo. 
A. OCR (left panel) and ECAR (right panel) of OT.II T cells following adoptive transfer and treatment with 
αCD127 or isotype control antibody.  Basal relative OCR of B. WT T cells and C. LAG-3-/- OT.II T cells ± antibody 
treatment.  D.  Spare respiratory capacity of T cells following adoptive transfer.  Relative ECAR of E. WT and F. 
Lag3-/- OT.II T cells ± antibody treatment.  G.  Percent CD4+ T cells per spleen 10 days post adoptive transfer.  H.  
Representative histograms of forward scatter (FSC) of adoptively transferred CD4+ T cells.  I.  Quantification of 
forward scatter of CD4+ T cells as calculated by FlowJo software.  *=p<0.05; ***=p<0.001.    
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2.4.8 Inhibition of STAT5 by LAG-3 stabilization of PTEN restrains homeostatic 

expansion  

Previous studies have indicated that LAG-3 engagement results in inhibitory downstream 

signaling, with implications on proliferation and cytokine production [156, 337, 349, 350].  

While the particular domain in the LAG-3 cytoplasmic tail that elicits this inhibitory effect has 

been identified [145], the exact downstream signaling of the molecule remains elusive.  Work by 

Durham et al. indicated that LAG-3 engagement can inhibit phosphorylation of STAT5, 

resulting in dampened T cell homeostatic expansion [338].  Moreover, activated STAT5 is 

critical for homeostatic expansion [83, 84], and upon activation, can translocate to the 

mitochondria and bind mitochondrial DNA, potentially modulating mitochondrial gene 

transcription [351, 352].  These findings suggest a link between STAT5 and regulation of 

mitochondrial respiration and biogenesis.  Studies in our adoptive transfer model further 

confirmed that LAG-3 inhibition via knockout or antibody blockade resulted in increased STAT5 

phosphorylation in CD4+ T cells (Figure 18A; p<0.05).   

The PI3/Akt pathway has also been shown to be critical for driving naïve and memory T 

cell homeostatic proliferation and increased mitochondrial respiration [353, 354]; therefore, we 

next examined Akt activation in our model.  Intracellular staining for phosphorylated Akt in 

naïve CD4+ T cells showed very modest increases in both WT + anti-LAG-3 Ab. and LAG-3-/- T 

cells compared to WT OT.IIs; however, these differences were not significant (Figure 18B).  

These results were not entirely surprising as Akt is critical for mediating homeostatic 

proliferation, which WT OT.II T cells do exhibit, and could also be activated to serve as a 

survival signal in these T cells.  
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 Next, we investigated if elevated STAT5 phosphorylation in Lag3-/- T cells could be due 

to decreased expression of inhibitory phosphatases.  Specifically, we targeted PTEN, as it is 

stabilized by another inhibitory receptor, Programmed Cell Death-1 (PD-1), and its stabilization 

can alter T cell metabolic programming [355, 356].  Additionally, PTEN knockout cells 

demonstrate hyperproliferation [86, 89], reminiscent of the enhanced proliferation exhibited by 

LAG-3-deficient CD4+ T cells (Figures 8, 14).  As anticipated, WT OT.II T cells showed 

increased PTEN expression as measured by flow cytometry, and LAG-3 knockout resulted in 

approximately a 20% reduction in PTEN levels (Figure 18C; p<0.01).  Overall, these results 

suggest a potential role for LAG-3 in containing STAT5 activation by supporting PTEN 

expression. 

 

 

 
Figure 18. Signaling via LAG-3 stabilizes PTEN expression. 
Intracellular Phospho-flow staining of adoptively transferred CD4+ T cells for A. pSTAT5 (Tyr964), B. pAkt 
(Ser497) and C. PTEN.  Mean fluorescence intensity (MFI) of CD4+ T cells was calculated using FlowJo software, 
and numbers were normalized to WT values to measure relative expression. Data are presented as means ± SEM of 
n=5-7 animals. *=p<0.05, **=p<0.01.     
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2.4.9 Loss of LAG-3 expression results in enhanced aerobic glycolysis and effector 

function during activation 

One of the key characteristics of memory T cells is their rapid activation upon secondary 

challenge [137], which is due, in part, to their increased SRC and mitochondrial content [128, 

129].  As our data indicated that LAG-3-/- CD4+ T cells demonstrated a more memory-like 

phenotype metabolically (Figures 9 and 11), we hypothesized that this bioenergetic advantage 

would enable a faster transition to effector function.  LAG-3 is known to be upregulated to the T 

cell surface during activation [149, 150], and ligation by MHC class II, results in diminished 

proliferation and effector function [337, 349].  Therefore, we utilized an APC-free system to 

circumvent any regulation in the wildtype cells due to LAG-3 engagement.   

During activation, T cells undergo robust metabolic preprogramming, transitioning from 

OXPHOS (naïve) to aerobic glycolysis (effector) [48].  This transition is critical for supporting 

increased macromolecule synthesis during both clonal expansion and effector function.  Work 

from Wang et al. demonstrated that within 24 hours post-activation, CD4+ T cells upregulate the 

necessary genes required for the metabolic transition to aerobic glycolysis [103].  At 24 hours 

post-stimulation in our model, Lag3-/- CD4+ T cells exhibited significantly greater upregulation 

of the transcription factors Myc and Hif1α (Figure 19A, p<0.05), which orchestrate upregulation 

of the glycolytic pathway [49].  Lag3-/- T cells also more highly upregulated the passive glucose 

transporter Glut1, which is necessary for importing glucose into CD4+ T cells (Figure 19A; 

p<0.05) [357].  With increased Glut1 upregulation by LAG-3-deficient T cells, we next 

examined glucose uptake by these cells.  Indeed, Lag3-/- T cell cultures had a higher percentage 

of glucosehi (2-NBDGhi) T cells at both 48 and 72 hours post-stimulation (Figure 19B-C), 

indicative of more T cells transitioning to aerobic glycolysis.  Lastly, lactate secretion, the 
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byproduct of aerobic glycolysis was greater in Lag3-/- T cell supernatants (Figure 19D; p<0.01), 

signifying enhanced usage of this pathway.   

Lag3-/- CD4+ T cells also showed greater cell growth during activation, as measured by 

forward scatter (Figure 19E), a process that is necessary for supporting cell division.  IFNγ 

production is directly regulated by transition to aerobic glycolysis [358], and based on these data 

we hypothesized that due to their enhanced aerobic glycolysis, Lag3-/- T cells would produce 

more IFNγ as compared to their wildtype counterparts.  Indeed, IFNγ ELISA results from culture 

supernatants revealed that LAG-3-deficient T cells produced three times as much IFNγ as 

wildtype T cells at both 24 and 48 hours post-stimulation (Figure 19F; p<0.05).  Lastly, LAG-3 

is highly upregulated to the T cell surface upon activation, and can therefore, serve as a marker 

of activation.  Further examination of wildtype cells indicated that LAG-3 expression correlated 

with glucose uptake, as LAG-3hi T cells demonstrated higher 2-NBDG fluorescence (Figure 

19G), suggesting that LAG-3 may serve as a marker for more glycolytic effector T cells.     

Overall, these data suggest that the enhanced mitochondrial bioenergetics due to loss of 

LAG-3 expression support heightened upregulation of aerobic glycolysis during activation, 

similarly to that observed in memory T cells.        
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Figure 19.  LAG-3-deficient CD4+ T cells demonstrate enhanced aerobic glycolysis and effector function 
upon activation. 
A.  qRT-PCR measuring expression of glycolysis-associated genes.  B-C.  Glucose uptake of CD4+ T cells 
measured by 2-NBDG fluorescence.  D.  Lactate secretion in culture supernatants.  E.  Forward scatter of CD4+ T 
cells 48 hours post-stimulation.  F.  IFNγ secretion in culture supernatants.  G.  Representative dot plot of LAG-3 by 
2-NBDG uptake of CD4+ T cells during activation.  Data are presented as means ± SEM of combined n=5-9 
independent experiments.  *=p<0.05, **=p<0.01, ***=p<0.001.  
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2.5 DISCUSSION 

Our results here indicate that expression of LAG-3 on naïve CD4+ T cells regulates 

mitochondrial biogenesis and metabolism, as a means of controlling homeostatic expansion and 

quiescence.  While LAG-3 expression on naïve CD4+ T cells is known to be rather low as 

compared to activated or exhausted T cells, it is clear that the expression levels are sufficient for 

mediating phenotypic alterations [157, 338].  The enhancement of mitochondrial metabolism and 

mass due to lack of LAG-3 expression is consistent with the recent study published by Scharping 

et al [343].  Their results showed that increased expression of inhibitory receptors (PD-1, LAG-3 

and Tim-3) on exhausted intratumoral CD8+ T cells correlated with reduced mitochondrial mass, 

further supporting a link between these receptors and the mitochondria.   

The fact that antibody blockade of LAG-3 on wildtype CD4+ T cells during adoptive 

transfer experiments yielded similar proliferation and metabolic responses as LAG-3-/- cells 

(Figures 10-11), suggests that this phenotype is not solely due to an intrinsic mechanism.  Rather, 

that extrinsic signals, potentially via MHC class II:LAG-3 interactions, drive inhibitory signaling 

pathways that dampen AMPK-driven mitochondrial biogenesis.  This is also supported by 

finding that there were no differences in frequency of double negative (DN1-4), double positive 

and single positive populations in the thymus (Figure 13), again suggesting that this phenotype is 

not a product of thymic developmental alterations, but rather alterations due to T cell interactions 

in the periphery.     

We had initially hypothesized that LAG-3 may inhibit tonic TCR signaling that occurs in 

the periphery to maintain survival of naïve CD4+ T cells.  During tonic signaling, naïve T cells 

are engaged by MHC-presented self-peptides by antigen presenting cells as a means of initiating 

low-level TCR signaling.  This tonic signal can be sufficient to increase anti-apoptotic Bcl-2 
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expression and allow T cells to enter the cell cycle to facilitate homeostatic expansion.  Fine 

tuning of this signal is critical for preventing overt T cell activation; therefore, inhibitory 

mechanisms, like CD5 expression, are in place to modulate TCR signaling [96, 359].  Thus, we 

hypothesized that LAG-3-/- CD4+ T cells would express more CD5, indicative of more tonic TCR 

signaling; however, our data showed no appreciable differences in CD5 expression between 

naïve wildtype and LAG-3-deficient T cells, even after adoptive transfer (data not shown).  This 

result does not completely rule out the hypothesis that LAG-3 regulates tonic signaling; however, 

further experiments would be necessary. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Mechanism for LAG-3's regulation of mitochondrial respiration and homeostatic expansion. 
We propose that LAG-3 expression on naïve CD4+ T cells stabilizes PTEN expression, thereby resulting in 
dephosphorylation of STAT5 and Akt, resulting in basal proliferation and mitochondrial respiration.  In order to 
overcome this inhibition, strong IL-7 signaling is required to then drive sufficient Akt and STAT5 activation to 
mediate homeostatic proliferation and mitochondrial oxidation. 
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Figure 21. Absence of LAG-3 results in destabilization of PTEN and its inhibitory function. 
In the absence of LAG-3, PTEN expression is destabilized thereby allowing greater downstream TCR signaling.  
This enhancement allows for more robust Akt and STAT5 activation, resulting in greater homeostatic proliferation 
and enhanced mitochondrial respiration.  This increased signaling reduces the requirement for IL-7 signaling to 
mediate these processes. 

 

Activated Lag3-/- CD4+ T cells demonstrated enhanced aerobic glycolysis and effector 

function (Figure 19).  Interestingly, memory T cells demonstrate similar enhanced activation in 

comparison to naïve T cells, in part, due to their enhanced mitochondrial mass and SRC [128, 

129].  We propose that the bioenergetic advantage exhibited by Lag3-/- CD4+ T cells supports 

their enhanced activation and glycolytic potential, similarly.  Following activation, it is necessary 

for a subset of activated effector T cells to survive as long-lived memory T cells.  Metabolically, 

this transition is dependent upon the ability of the cell to downregulate aerobic glycolysis and 

transition back to a more oxidative phenotype.  Enhancement of OXPHOS via treatment with 

Metformin, an AMPK activator, resulted in an increased frequency of memory T cells following 

activation [136].  As LAG-3-deficient T cells are much more glycolytic than wildtype cells, we 

might suspect that they would have a more difficult time converting back to oxidative 
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phosphorylation; thus, limiting the potential for generating memory T cells.  Studies by 

Workman et al. indicated increased numbers of virus-specific memory CD4+ and CD8+ T cells 

30 days post-infection in Lag3-/- animals [336].  However, re-challenge experiments to assess 

memory T cell functionality were not performed; therefore, while numbers may indicate an 

advantage, there may be functional deficiencies due to LAG-3 loss.  Further studies would be 

necessary to more fully assess memory T cell generation.    

In the context of autoimmunity, LAG-3 has been shown to play a critical role in 

suppressing CD4+ T cell function.  Global knockout and antibody blockade of LAG-3 in non-

obese diabetic (NOD) animals accelerated autoimmune Type 1 Diabetes progression [155, 158].  

Moreover, animals with genetic LAG-3 alterations that resulted in accelerated T1D had equally 

functional regulatory T cell populations, indicating that this disease progression was not due to 

dysfunctional peripheral tolerance [158].  Our data imply that the increased T1D progression in 

NOD.LAG-3-/- animals was due, in part, to metabolic enhancement of naïve CD4+ T cells, 

conferring greater activation and disease-inducing potential.  Human studies have been 

conducted to identify single nucleotide polymorphisms (SNPs) in genes that are associated with 

susceptibility to autoimmune diseases.  A study by Zhang et al. identified SNPs in both the genes 

encoding LAG-3 and IL-7R that are more highly associated with progression to multiple 

sclerosis [360].  This work strengthens our conclusion that there is an inherent link between 

LAG-3 and IL-7R expression and signaling, which could contribute to autoimmunity.  Based on 

these studies and our work, future studies of human autoimmune-associated T cells with LAG-3 

mutations may indicate metabolic alterations that could contribute to pathogenicity. 
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3.1 SUMMARY 

The immune system is necessary for protecting against various pathogens.  However, under 

certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in 

type 1 diabetes (T1D).  CD4+ T cells are major contributors to the immunopathology in T1D, and 

in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be 

present.  However, the role ROS play in mediating this process remains to be further understood.  

Recently, cellular metabolic programs have been shown to dictate the function and fate of 

immune cells, including CD4+ T cells.  During activation, CD4+ T cells must transition 

metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and 

effector function.  As ROS are capable of modulating cellular metabolism in other models, we 

sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function 

by modulating T cell metabolism.  To do so, we utilized an ROS scavenging and potent 

antioxidant manganese metalloporphyrin (MnP).  Our results demonstrate that redox modulation 

during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in 

diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic 

splenocytes.  These results correlated with decreased Myc and Glut1 upregulation, reduced 

glucose uptake, and diminished lactate production.  In an adoptive transfer model of T1D, 

animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced 

CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining 

T cell activation-induced metabolic reprogramming, and further support ROS as a target to 

minimize aberrant immune responses in autoimmunity. 
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3.2 INTRODUCTION 

Type 1 diabetes (T1D) is an autoimmune disease where self-reactive T cells escape into the 

periphery and target pancreatic β cells for destruction. While T1D progression results from the 

interplay between various immune cell types, CD4+ T cells are considered the principal 

contributor to disease pathology [12, 361].  We and others have demonstrated that reactive 

oxygen species (ROS) play an important role in driving the immunopathology exhibited in T1D 

[16, 206].  Antigen presenting cells (APCs), like macrophages [223], and CD4+ T cells [225] 

express functional NADPH oxidases (NOX) which generate ROS upon APC-induced T cell 

activation.  Both NOX [202] and mitochondrial-derived ROS from the T cell itself [244] are 

necessary for optimal CD4+ T cell activation. These ROS, with cytokines, serve as the third 

signal, during T cell activation.  In combination with T cell receptor (TCR; signal 1) and co-

stimulatory molecule (signal 2) engagement, these three signals enable cell cycle entry [212] and 

effector function acquisition [202].  

Recently, interest has grown in understanding the role of cellular metabolism in fulfilling 

the objectives of T cell activation and effector function.  Under homeostatic conditions, naïve 

CD4+ T cells remain relatively quiescent and rely predominantly on oxidative phosphorylation 

(OXPHOS) to meet basal metabolic needs [362].  Upon antigen (e.g. β cell-derived antigens in 

T1D) encounter, naïve CD4+ T cells become activated and have two main goals – to clonally 

expand and to differentiate into effector T cells. To meet these goals during activation, CD4+ T 

cells undergo dynamic metabolic reprogramming by transitioning to aerobic glycolysis [49, 50, 
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362], also known as the Warburg Effect, which was first characterized in tumors [29, 50]. The 

utilization of aerobic glycolysis by activated CD4+ T cells supports increased macromolecule 

biosynthesis, aiding in daughter cell formation and effector molecule production, along with 

more rapid production of ATP as compared to OXPHOS [49, 50, 362].   

In both tumors and T cells, Myc is a predominant player in coordinating increased 

glycolysis and cell proliferation [29, 46, 103, 363]. Upstream, activation of mammalian target of 

rapamycin (mTOR) signaling is critical for Myc expression and thus aerobic glycolysis, as 

treatment with the mTOR inhibitor rapamycin results in dampened lactate production, 

proliferation, and cytokine production in CD4+ T cells [364, 365].  In contrast, AMP-activated 

protein kinase (AMPK) is a known inhibitor of mTOR and is responsible for enhancing oxidative 

metabolism to restore the ATP to AMP ratio [366, 367].  Overexpression of AMPK in tumors 

inhibits the Warburg Effect, whereby tumors demonstrate reduced size and lactate production 

[368].  Similarly, AMPK activation in T cells results in reduced mTOR activation, diminished 

effector differentiation, and hyporesponsiveness [369].  These results highlight that the interplay 

between mTOR and AMPK strongly dictates T cell metabolic and functional outcome.      

Highly proliferative cells in various models demonstrate enhanced aerobic glycolysis, 

indicating its requirement for sustaining rapid division.  Targeting tumor metabolism via the use 

of glycolytic inhibitors like 2-deoxyglucose, have proven to be effective in reducing tumor 

burden and metastasis [370]. The efficacy of metabolic modulation in cancer, and the metabolic 

similarities between proliferating tumor cells and effector CD4+ T cells, indicate a potential 

avenue for controlling aberrant T cell responses (like those in autoimmunity) by targeting T cell 

metabolism.  Indeed, others have demonstrated potential for ameliorating autoimmunity by 
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metabolic manipulation [188]; however, there remains a large gap in understanding the 

mechanisms by which specifically T cell metabolism is controlled. 

Additionally, many metabolic regulators demonstrate redox sensitivity, including the 

transcription factors HIF-1α [370] and NF-κB [371], and AMPK [372], to name a few, 

underscoring the potential for redox regulation in modulating metabolism.  We and others have 

shown that a manganese metalloporphyrin, Mn(III) meso tetrakis (N -alkylpyiridinium-2-yl) 

porphyrin, or MnP, is capable of scavenging ROS (i.e. hydrogen peroxide and superoxide) [373, 

374], inhibiting lipid peroxidation [375], and performing redox reactions in cellular systems 

[324, 376].  As T1D is known to be driven by increased oxidative stress [16, 207], our laboratory 

has demonstrated that inhibition of ROS during immune activation results in dampened CD4+ T 

cell responses, thus inhibiting T1D progression [168, 199, 304, 326].  Specifically, work by 

Delmastro-Greenwood et al. showed that treating NOD.BDC.2.5.TCR-Tg mice with MnP in 

vivo for 7 days resulted in increased glucose oxidation and aconitase activity in naïve 

splenocytes, indicative of enhanced OXPHOS, the predominant pathway used by naïve immune 

cells [328].  While these studies did demonstrate metabolic alterations due to MnP treatment, 

they were conducted using naïve immune cells that had no prior exposure to their cognate 

antigen.  As previously stated, T cell metabolic reprogramming occurs only during antigen-

mediated activation; therefore, we sought to expand our understanding of the role of ROS and 

metabolism during such activation events. 

Based on these previous studies, we hypothesized that redox modulation by MnP during 

CD4+ T cell activation would inhibit the transition to aerobic glycolysis, and thus, minimize 

proliferation and effector function.  Our data demonstrate that MnP treatment resulted in reduced 

Myc upregulation, glycolytic enzyme expression, and lactate production, collectively indicating 
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inhibition of aerobic glycolysis.  These results were in part due to diminished mTOR signaling.  

Interestingly, redox modulation enhanced activation of the mTOR inhibitor, AMPK, due to 

MnP’s high antioxidant activity.  These data show that redox modulation inhibits the metabolic 

transition of CD4+ T cells by maintaining active AMPK and thus resulting in reduced mTOR 

signaling and Myc expression.  These findings support that ROS are required during the 

transition from OXPHOS to aerobic glycolysis during T cell activation, and that disruption of 

ROS may serve as a viable target for modulating immune cell bioenergetics in autoimmune 

diseases like T1D. 

 

3.3 MATERIALS AND METHODS 

3.3.1 Animal models 

Non-obese diabetic (NOD) BDC2.5.TCR.Tg and NOD.scid mice were maintained in the Rangos 

Research Center animal facility of the Children’s Hospital of Pittsburgh.  Animal experiments 

were approved by the Institutional Animal Care and Use Committee (IACUC) of Children’s 

Hospital of Pittsburgh (Assurance Number A3187-01) and were in compliance with the laws of 

the United States of America.  NOD.BDC2.5.TCR.Tg mice were sacrificed at 8-10 weeks of age 

for in vitro experiments.  In this animal, all CD4+ T cells recognize epitopes formed by covalent 

cross-linking of proinsulin peptides and Chromogranin A (CHgA) in beta cell secretory granules.  

These T cells can be stimulated with a known peptide mimotope HRPI-RM that has been 

previously described [377], thus allowing us to examine the effects of MnP on an antigen-
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specific immune response physiologically relevant to T1D.  NOD.scid animals, 6-8 weeks of 

age, were used for adoptive transfer experiments. 

 

3.3.2 Mn(III) meso tetrakis (N-alkylpyiridinium-2-yl) porphyrin 

Mn(III) meso tetrakis (N -alkylpyiridinium-2-yl) porphyrin (MnP) was a generous gift from Dr. 

James Crapo, MD at National Jewish Health (Denver, CO).  MnP was used at a concentration of 

68 µM for in vitro experiments and a 10 mg/kg dose in all animal experiments. 

 

3.3.3 Splenocyte homogenization 

NOD.BDC.2.5.TCR-Tg spleens were harvested and homogenized into single cell suspensions as 

previously described [168], and red blood cells were lysed using red blood cell lysis buffer 

(Sigma). CD4+ T cells were stimulated with their cognate peptide, mimotope 

(EKAHRPIWARMDAKK), at 0.05 uM, with or without MnP in complete splenocyte medium 

[202].  Splenocytes plated with media alone served as negative controls.  Cells were collected for 

downstream analysis at 24-72 hours post-stimulation.  Supernatants were collected for ELISA 

and lactate measurements. 

 



 

 100 

3.3.4 CD4+ T cell isolation and antibody stimulation 

CD4+ T cells were isolated from whole NOD splenocytes by magnetic bead separation using 

mouse CD4 MicroBeads (Miltenyi) as per manufacturer’s instructions.  Purity was assessed by 

flow cytometric staining pre- and post-isolation.  For antibody stimulation, tissue culture plates 

were coated with αCD3 (0.5 µg/mL) and αCD28 (1.0 µg/mL) in phosphate buffered saline for 2 

hours at 37°C, 5% CO2.  The antibody solution was decanted and CD4+ T cells were plated at 

5.0x105 cells per well of a 96 well, flat-bottom plate, with or without 68 µM MnP.  Unstimulated 

T cells served as negative controls.       

 

3.3.5 ROS and viability assays 

NOD or NOD.BDC.2.5 splenocytes were incubated in media alone or media with 68 µM MnP 

for 2 hours at 37°C.  Cells were washed extensively in cold Hank’s Balanced Salt Solution 

(HBSS) and added to flow tubes at 1.0x106 per tube.  Dihydroethidium (DHE; Molecular Probes) 

or MitoSOX Red (Molecular probes) was diluted per manufacturer’s instructions, and cells were 

treated with a final concentration of 50 µM for 20 minutes (DHE) or 5 µM for 15 minutes 

(MitoSOX) at 37°C.  PMA (500 ng/mL) and ionomycin (500 µg/mL) were added to the tubes 

and incubated at 37°C for indicated periods of time.  Cells were read on an LSRII (BD 

Bioscience).  DHE was read in the AmCyan channel using a 585/42 detector and 545LP filter, 

and MitoSox Red was detected in the PE channel.  Mean Fluorescence Intensity (MFI) was 

determined using FlowJo Software (v10.1). Dye loaded, unstimulated control cells were used to 
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determine background fluorescence, which was subtracted from stimulated values and graphed 

as change in MFI due to stimulation (delta MFI).  Viability was assessed by 7AAD staining (BD 

Biosciences) as per manufacturer’s instructions.  Surface staining for CD4 was performed prior 

to 7AAD staining.  Viability was determined as the percentage of 7AAD negative cells.     

   

3.3.6 Protein lysates and Western blotting 

Following stimulation, cells were harvested, washed with phosphate buffered saline (PBS), and 

sonicated in anti-pY lysis buffer (50 mM Tris pH 8.0, 137 mM NaCl, 10% glycerol, 1% NP-40, 

1 mM NaF, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 2 mM Na3VO4, and 1 mM PMSF). Protein 

concentration was determined by Bicinchoninic acid protein assay (Thermo Fisher Scientific).  

25 µg of protein per sample were boiled in 6x Lammaeli buffer (BIORAD) for 5 minutes and 

separated SDS-PAGE gels.  Samples were then transferred to PVDF membranes for 1-3 hours in 

3% MeOH Tris-Glycine Transfer buffer (BIORAD).  Western blots were blocked in 5% non-fat 

dry milk in Tris-buffered Saline with 1% Tween-20 (TBST).  Blots were probed with the 

following antibodies in 5% BSA/TBST overnight at 4°C:  Myc, pmTOR (Ser2448), total mTOR, 

p4E-BP1 (Thr70), pAMPK-α (Thr170), total AMPK, PFKFB3, p27 Kip1, and Cyclin D3 at 

1:1000 (Cell Signaling), and Glut-1 (1:2000; Abcam).  Blots were either probed with anti-rabbit 

secondary antibody (Cell Signaling; 1:2000) or goat anti-rabbit secondary antibody (Jackson 

Laboratories; 1:10,000) in 5% non-fat dry milk/TBST at RT for 1 hour.  β-actin (Sigma) 

expression was used as a loading control.  Protein expression was detected by 

chemilumenescence using ECL Plus reagent (Amersham Pharmacia Biotech) and the Fujifilm 
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LAS-3000 Imaging system (FujiFilm Technologies).  Multi Gauge software was used to process 

images (Fujifilm Life Science).  Beta-actin expression served as a loading control.       

 

3.3.7 Flow cytometric analysis        

Cells were harvested following stimulation and incubated with Fc block (CD16/CD32; BD 

Biosciences) prior to staining for flow cytometry.  Extracellular staining was performed at 4°C 

using CD4-APC or CD4-FITC (BD Biosciences) in FACS buffer (1% BSA in PBS).  For cellular 

proliferation measurements, splenocytes were stained with 1 µM carboxyfluorescein 

succinimidyl ester (CFSE; Invitrogen) in PBS at 37°C for 15 minutes and isolated CD4+ T cells 

were labeled with Cell Proliferation Dye Violet (BD Bioscience) as per manufacturer’s 

instructions.  Cells were extensively washed with PBS, plated for stimulation, and surface 

stained after harvest.  

For cell cycle analysis, cells were fixed and permeabilized in 70% cold EtOH for 20 

minutes on ice following stimulation and stored at 4°C until staining for flow analysis.  Cells 

were washed with ice cold PBS two times to remove residual EtOH, and surfaced stained for 

CD4 as described above.  After RNase treatment for 1 hour at 37°C, cells were incubated with 

propidium iodide (0.4 mg/mL; Invitrogen), and analyzed immediately.  Media-treated 

splenocytes served as controls to set gates for no proliferation (CFSE) and cell cycle stages (PI). 

To measure glucose uptake, stimulated cells were incubated with 100 µM 2-(N-(7-

Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG; Molecular Probes), a 

fluorescent glucose analog (Life Technologies), for 10 minutes at 37°C prior to harvest [136].  

Uptake was quenched with PBS.  Cells were stained for surface CD4 expression and analyzed by 
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flow cytometry live.  Fluorescence was measured using a FACS Calibur or LSR II flow 

cytometer (BD Biosciences).  All data were analyzed using FlowJo software (v10.1) and samples 

were gated on CD4+ cells.   

 

3.3.8 Cytokine and lactate measurements 

Supernatants from cell cultures were analyzed for IFNγ and IL-2 by ELISA according to 

manufacturer’s instructions (BD Biosciences).  ELISAs were read on a SpectraMax M2 

microplate reader (Molecular Devices), and data were analyzed using SoftMax Pro version 5.4.2 

software (Molecular Devices).  Lactate, a byproduct of aerobic glycolysis, was measured in 

culture supernatants using the Accutrend Plus meter and lactate strips (Roche).  Samples with 

high concentrations of lactate were diluted 1:2 in dI H20 in order to obtain a reading within the 

meter’s range. 

 

3.3.9 Quantitative real-time PCR (qRT-PCR) 

At 24 hours post-stimulation in vitro, cells were harvested and washed extensively with PBS.  

5.0 x 106 cells were lysed using RLT buffer (Qiagen) and 25 gauge needles with 1 mL syringes.  

mRNA was isolated using the RNeasy kit (Qiagen) and concentration was determined using a 

NanoDrop 2000c spectrophotometer (Thermo Scientific).  cDNA was synthesized from 0.5 µg 

mRNA using the RT2 First Strand Kit (Qiagen).  Gene expression was quantified by qRT-PCR 

using the iQ SYBR Green Supermix (BIORAD) and iCycler (BIORAD).  Murine glycolytic 
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primer pair sequences were taken from Wang et al. [103].  Ifnγ primers were FWD 5’-

AGGCCATCAGCAACAACATAAGCG-3’ and REV 5’- 

TGGGTTGTTGACCTCAAACTTGGC-3’.  Cycling parameters were as follows:  5 min at 

95°C, 30 s at 95°C, 30 s at 60°C, 30 s at 72°C (40 cycles of steps 2-4), 1 min at 95°C, and then 

samples were held at 4°C.  Delta delta Ct values were normalized to expression of the control 

gene rplo (FWD 5’-GGCGACCTGGAAGTCCAACT-3’; REV 5’-

CCATCAGCACCACAGCCTTC-3’) [342], in order to calculate relative expression.  Mimotope 

and M + MnP expression values were normalized to those of unstimulated, media controls. 

 

3.3.10 Adoptive transfer model of T1D 

Spleens from NOD.BDC.2.5.TCR.Tg animals were homogenized and processed as described 

above.  Whole splenocytes were labeled with Cell Proliferation Violet (BD Biosciences) 

according to manufacturer’s instructions, and 1.0x107 splenocytes were adoptively transferred 

into NOD.scid recipients i.v.  One cohort of recipients was treated with 10 mg/kg MnP i.p. every 

day or s.c. every other day, starting the day prior to transfer.  Serum was collected on days -1, 3, 

7, 11, and 15 post-transfer to measure sLAG-3 by ELISA as an indication of T cell activation, as 

previously described [168].  T1D incidence was monitored by blood glucose post-transfer, and 

two consecutive readings of > 350 mg/dL was deemed diabetic.  At indicated time points, 

animals were sacrificed and peripheral blood and spleens were taken for downstream analysis by 

flow cytometry.  1.0x106 splenocytes were stained with surface antibodies for CD4, CD25, and 

LAG-3 following Fc receptor blockade with anti-CD16/CD32 (all from BD Bioscience). For 

intracellular pS6 staining of peripheral blood, red blood cells were lysed and then lymphocytes 



 

 105 

were surface stained.  Following fixation and permeabilization using Cytofix/Cytoperm (BD 

Bioscience), cells were then stained using the pS6 Alexa 488 antibody (Cell Signaling). Cells 

were then analyzed by flow cytometry using a BD LSRII (BD Bioscience) and FlowJo software 

(v10.1). 

 

3.3.11 Statistical analysis 

Data are given as mean values ± SEM, with n indicating the number of independent experiments 

or animals, unless otherwise indicated.  Student’s t-test and Two-way ANOVA with Bonferroni 

post-hoc analysis were used where appropriate. Kaplan-Meier analysis was used to measure 

significance of diabetes incidence. A p-value of p < 0.05 was considered significant for all 

statistical analyses. 

3.4 RESULTS 

3.4.1 Treatment of T cells with MnP effectively scavenges NADPH oxidase and 

mitochondrial-derived ROS and without toxicity 

T cells generate ROS via two sources – a phagocyte-like NADPH oxidase [213, 225] and 

mitochondrial electron leak [244].  As blockade of each of these sources have differential effects 

on T cell activation and differentiation, we wanted to further delineate if MnP treatment 

successfully scavenges ROS from both sources.  To do so, the fluorescent indicators 
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dyhidoethidium (DHE) and MitoSOX were utilized as both dyes only fluoresce upon 

modification by superoxide.  DHE measures total superoxide generation, whereas MitoSOX 

specifically measures that from the mitochondria.  Following pre-treatment with either media 

alone or media with MnP, splenocytes were stimulated with PMA and ionomycin which are 

known to induce ROS production by T cells [201, 213, 244].  As anticipated, MnP treatment 

successfully reduced total superoxide generation as measured by DHE (Figure 22A).  

Additionally, mitochondrial-derived superoxide generation was also diminished by MnP 

treatment (Figure 22B), indicating that MnP is capable of entering the mitochondria.  Together 

these data reveal that MnP effectively dissipates ROS from both NADPH oxidase and the 

mitochondria, resulting in reduced total cellular ROS production. 

 Viability of splenocyte cultures was also assessed to confirm that effects on T cell 

activation and metabolism were not simply due to MnP toxicity.  7AAD staining results 

demonstrated no significant difference in viability of either whole splenocytes (Figure 22C) or 

CD4+ T cells (Figure 22D), supporting that the subsequent impact of MnP treatment on T cell 

metabolic reprogramming is not simply due to agent-associated toxicity. 
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Figure 22. MnP treatment effectively scavenges NADPH oxidase and mitochondrial derived superoxide, while 
demonstrating no toxicity. 
NOD splenocytes were pre-treated with or without MnP and then loaded with either A. Dihydroethidium (DHE) or 
B. MitoSOX red.  Splenocytes were stimulated with PMA and ionomycin and read for fluorescence by flow 
cytometry at the indicated time points.  Data are displayed as delta mean fluorescence intensity (∆ MFI) ± SEM 
calculated as MFIstimulated – MFIunstimulated.  C-D. BDC2.5.TCR.Tg splenocyte cultures were stained for 7AAD and 
CD4 to assess viability of cultures due to MnP treatment.  Data are displayed as percent 7AAD- of C. whole 
splenocytes and D. CD4+ T cells.  Significance was determined by Two-way ANOVA with Bonferroni post-hoc 
analysis of a combined n = 3-5 mice (****=p<0.0001; ***=p<0.001; **=p<0.01; *p<0.05). 
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3.4.2 Scavenging of ROS during activation halts CD4+ T cells at the G0/G1 checkpoint and 

inhibits clonal expansion 

Acute doses of ROS are required for cell cycle progression and proliferation of CD4+ T cells 

[209, 295]. Therefore, we wanted to examine if scavenging of ROS via MnP treatment inhibited 

this process during activation. Here, we utilized the NOD.BDC.2.5.TCR.Tg (BDC.2.5) mouse 

model, in which the CD4+ T cells of this animal have been shown to demonstrate diabetogenic 

potential [7]. CD4+ T cells from BDC.2.5 animals stimulated with their specific antigen 

mimotope (M), demonstrated high proliferative capacity as demonstrated by CFSE dilution 

(Figure 23A).  ROS inhibition via MnP treatment during antigen-dependent stimulation resulted 

in CD4+ T cells undergoing fewer rounds of proliferation at both 48 and 72 hrs post-stimulation 

as compared to stimulation alone (Figure 23A).  CD4+ T cells treated with MnP did show low 

levels of proliferation, which was not surprising as MnP does not fully block all ROS production 

(Figure 22A and B). 

Since overall proliferation was reduced due to MnP treatment, we wanted to examine if 

CD4+ T cells were being arrested at a specific cell cycle checkpoint.  Consequently, propidium 

iodide staining was used to examine the distribution of CD4+ T cells in the various phases of the 

cell cycle – G0/G1, S, and G2/M.  By 48 hours post-stimulation, significantly fewer CD4+ T cells 

had progressed to the later stages of the cell cycle (S phase and G2/M phase) following MnP 

treatment, as compared to stimulated controls (Figure 23B-C; p<0.05).  These results correlated 

with increased expression of the cell cycle inhibitor p27 Kip1 (Figure 23D), which is responsible 

for restricting progression from G1 to S phase [378].  Additionally, protein analysis demonstrated 

reduced expression of Cyclin D3, a promoter of S phase transition, due to MnP treatment, again 

indicating limited cell cycle progression (Figure 23D).  p27 Kip1 is also a potent Cyclin D3 
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inhibitor [379], and therefore, its maintained expression results in cell cycle arrest.  Together, 

these results indicate that dissipating ROS during activation halts CD4+ T cells at the G1/S 

checkpoint in the cell cycle via maintaining p27 Kip1 expression. 
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Figure 23. Redox modulation during activation inhibits cell cycle progression of CD4+ T cells. 
NOD.BDC.2.5.TCR.Tg splenocytes were plated in complete splenocyte media and stimulated with 0.05 µM 
mimotope with or without 68 µM MnP (M + MnP) for 48-72 hours.  A.  Prior to stimulation cells were loaded with 
1 µM CFSE.  Cells were stained with CD4 following harvest and analyzed by flow cytometry for CFSE dilution, 
indicating proliferation.  Unstimulated cells (grey shaded curve) served as negative controls to set proliferation 
gates.  CFSE tracings are representative of n > 3 independent experiments.  B.  Cells were fixed, permeabilized, and 
stained with propidium iodide and CD4-FITC.  Cells were analyzed by flow cytometry to determine cell cycle 
status.  CD4+ T cells were gated on and cell cycle phases were set based upon unstimulated controls (left panel). C.  
Percentages of n > 3 experiments were combined and graphed as mean ± SEM (*=p<0.05).  D. 48 hrs. post-
stimulation, cells were harvested and analyzed by Western blot for p27 Kip1 and Cyclin D3 expression.  β actin 
expression served as the loading control.  
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3.4.3 Transition to aerobic glycolysis during CD4+ T cell activation is dependent upon 

cellular redox status 

CD4+ T cells undergo massive metabolic reprogramming during the transition from naïve to 

effector states [103, 380], and in order to support this metabolic reprogramming, CD4+ T cells 

must upregulate various glycolytic enzymes, transcriptional regulators, and glucose transporters 

[103].  Impeding this process results in reduced clonal expansion [46], effector function [358], 

and overall T cell responses in disease models [49].  Proliferation and metabolism are two tightly 

coupled cellular processes, and inhibition of glycolysis has been shown to result in diminished 

proliferation [362].  Therefore, we hypothesized that as ROS scavenging diminished CD4+ T cell 

proliferation (Figure 23), it may be doing so by modulating metabolic reprogramming.     

The transcription factor Myc is critical for promoting aerobic glycolysis in both CD4+ T 

cells and tumors alike, by initiating expression of various glycolytic enzymes and glucose 

transporters [103, 363], along with driving cell cycle progression [363].  Protein and quantitative 

RT-PCR analysis of in vitro stimulated BDC2.5.TCR.Tg splenocytes confirmed increased Myc 

expression at 24 and 48 hours post-stimulation (Figure 24A,C).  In contrast, MnP treatment 

resulted in contracted Myc upregulation at both time points (Figure 24A,C).  These results 

correlated with reduced mRNA expression of several Myc-dependent genes necessary for 

aerobic glycolysis including glut1, hexokinase 2 (HK2), lactate dehydrogenase A (LDH A), and 

pyruvate kinase M2 (PKM2) (Figure 24B,C; p<0.05). 

Following gene expression analysis, we sought to investigate protein expression of two 

key Myc-dependent targets – Glut1, the glucose transporter expressed by activated T cells that 

has the greatest impact on differentiation [357, 381]; and, PFKFB3, a rate limiting enzyme that 

aids in committing glucose to being metabolized via glycolysis [382].  Also, modulation of 
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activity and expression of PFKFB3 in autoreactive T cells has been shown to ameliorate disease, 

suggesting PFKFB3 as a potential therapeutic target for autoimmunity [382, 383].  As 

anticipated, protein expression of Glut1 was reduced in MnP-treated splenocytes, further 

corroborating qRT-PCR results (Figure 24C).  However, while qRT-PCR results did not show 

differences in mRNA expression of the enzyme PFKFB3 (Figure 24D), protein analysis did 

show reduced upregulation due to MnP scavenging ROS (Figure 24D).  These results underscore 

the importance ROS play in enabling the transcriptional alterations necessary for aerobic 

glycolysis.    

As glucose is the primary substrate for aerobic glycolysis, and our data indicated that MnP 

treatment inhibited Glut1 expression, we wanted to measure the effect of MnP treatment on 

glucose uptake.  To do so, splenocyte cultures were incubated with the fluorescent glucose 

analog 2-NBDG, and uptake was measured by flow cytometry.  As with diminished Glut1 

expression, MnP treatment resulted in reduced glucose uptake by CD4+ T cells (Figure 24E).  

These results correlated with reduced lactate production, the byproduct of aerobic glycolysis, as 

measured in culture supernatants, further indicating a significant reduction in the utilization of 

aerobic glycolysis due to redox modulation (Figure 24F; p<0.01).  Overall, these data reveal that 

alterations in CD4+ T cell redox status limits upregulation and utilization of the glycolytic 

pathway necessary for driving effector differentiation and clonal expansion. 
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Figure 24. Transition to aerobic glycolysis during CD4+ T cell activation is dependent upon cellular redox 
status. 
A.  Protein lysates were probed for Myc expression.   β actin expression served as the loading control. B.  Glycolytic 
pathway with assayed Myc-dependent genes indicated in red.  C.  24 hours post-stimulation, mRNA expression of 
various glycolysis-associated genes was assessed by qRT-PCR.  Relative values were normalized to unstimulated, 
naïve controls (Media).  Data displayed are means of n = 5-7 independent experiments ± SEM. D. Western blot 
analysis of specific Myc targets, PFKFB3 and Glut1.  E.  48 hours post-stimulation, cells were treated with 100 µM 
2-NBDG and stained for CD4 following incubation.  Glucose uptake was measured as 2-NBDG fluorescence of the 
CD4+ population.  Histograms are representative of n > 3 experiments.  F.  Lactate was measured in culture 
supernatants using the Accutrend Plus meter (Roche).  Data are graphed as means of n > 3 experiments ± SEM.  
Statistical significance between mimotope and M + MnP groups was calculated using a Student’s t test (*=p<0.05, 
**=p<0.01). 
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3.4.4 mTOR signaling is reduced upon treatment with MnP 

The mammalian target of rapamycin (mTOR) pathway has been shown to be pivotal in driving 

metabolic changes during T cell activation and regulating CD4+ T cell lineage commitment [384, 

385]. Studies examining the effects of rapamycin on T cell metabolism have indicated that 

inhibition of mTOR activation and signaling during T cell activation resulted in diminished 

proliferation, effector function, and glycolytic capacity [365].  Given the fact that MnP treatment 

inhibited cell cycle progression (Figure 23) and aerobic glycolysis (Figure 24), and that the 

mTOR pathway is critical in mediating both of these processes, we sought to measure mTOR 

activation and its downstream signaling. 

Protein analysis of in vitro stimulations indicated that MnP treatment during mimotope 

stimulation resulted in reduced total mTOR expression and also activation, as measured by 

phosphorylation at Ser2448 at 48 and 72 hours post-stimulation (Figure 25A).  We also 

examined phosphorylation of mTOR’s downstream target 4E-BP1, a translational repressor that 

is inhibited upon hyperphosphorylation [364].  Reduced phosphorylation of 4E-BP1 (Thr70) was 

exhibited in MnP treated CD4+ T cells, as compared to stimulated controls (Figure 25A), 

indicating reduced mTOR signaling.  

In addition to driving activation, mTOR signaling is also necessary for mediating the 

growth phase of mammalian cells in preparation for expansion [386] and driving effector 

differentiation in T cells [364]. As anticipated, with reduced mTOR signaling, MnP-treated 

CD4+ T cells demonstrated reduced growth at 48 hours as measured by forward scatter (Figure 

25B), and reduced IFNγ secretion (Figure 25C; p<0.05).  Additionally, we assessed IFNγ mRNA 

expression by splenocytes 24 hours following stimulation.  qRT-PCR results indicated that MnP 

treatment during stimulation hindered upregulation of IFNγ mRNA as compared to mimotope 
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stimulation alone (Figure 25D; p<0.05), suggesting that the reduced secreted levels due to ROS 

scavenging was not simply due to reduced proliferation and the presence of fewer T cells.  

Overall, these results indicate that ROS signaling is required for amplifying mTOR signaling 

upon activation, which then enables optimal T cell proliferation (Figures 23) and glycolysis 

(Figures 24).   

We also examined Interleukin-2 (IL-2) levels in our in vitro cultures, as IL-2 is essential 

for aiding T cell clonal expansion.  Interestingly, we saw no defect in IL-2 production due to 

MnP treatment as compared to stimulation alone at all time points examined (Figure 25E).  

Additionally, there was no difference in expression of the high-affinity IL-2 receptor subunit, 

CD25 (Figure 25F).  These results suggest that while redox modulation has no effect on the 

production of IL-2 or receptor expression, it does alter downstream signaling as mTOR signaling 

is, in part, IL-2 driven. 
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Figure 25. mTOR signaling is inhibited upon MnP treatment. 
A. Western blot analysis for phosphorylated mTOR (Ser4998; active), total mTOR, and the downstream mTOR 
target, phosphorylated 4E-BP1 (Thr70).  β actin expression served as the loading control.  B.  Forward scatter (FSC) 
of CD4+ T cells was measured by flow cytometry as an indication of cell blasting.  Histogram is representative of n 
> 3 experiments.  Supernatants from in vitro stimulations were analyzed for C. IFNγ and E. IL-2 production by 
ELISA.  D. qRT-PCR to measure IFNγ expression at 24 hrs. post-stimulation.  F. Frequency of CD4+ T cells 
expressing CD25 following activation.  Data displayed are combined means ± SEM of n > 5 experiments.  Statistical 
significance was calculated using a two-way ANOVA with Bonferroni post-hoc analysis. (*=p<0.05).  Media alone 
treated splenocytes served as negative controls.    
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3.4.5 Inhibition of T cell generated ROS reduces proliferation, growth, and glucose 

uptake  

Third signal ROS are necessary for driving T cell activation, and our data here indicate they are 

also critical for facilitating metabolic reprogramming (Figure 24-25).  Previous work has 

revealed that both APCs and T cells express functional NOX enzymes that are activated during 

MHC-TCR engagement, resulting in ROS production from both the APC and T cell [201, 213, 

226].  Therefore, we sought to further delineate if T cell-derived ROS were alone sufficient for 

mediating the transition to aerobic glycolysis during activation, and if MnP treatment would 

inhibit this process.   

To do so, CD4+ T cells were isolated from whole splenocytes and stimulated in vitro with 

plate-bound αCD3/αCD28, with or without MnP.  Flow cytometric analysis of stimulated T cells 

indicated that ROS inhibition by MnP resulted in reduced proliferation at both 48 and 72 hours 

post-stimulation as compared to activated T cells not treated with MnP (Figure 26A).  ROS 

scavenging also resulted in reduced cell growth during activation as measured by forward scatter 

(Figure 26B) and glucose uptake at 72 hours post-stimulation (Figure 26C-D; p<0.01).  These 

results are in accordance with data presented in Figures 23-25, and further elucidate that the role 

of ROS in T cell transition to aerobic glycolysis is not specific to APC-derived ROS. 
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Figure 26. T cell-derived ROS are sufficient for enabling aerobic glycolysis during activation. 
Isolated CD4+ T cells were stimulated with plate-bound αCD3/αCD28 with or without MnP treatment.  A.  
Proliferation as measured by dilution of Cell Trace Violet.  B.  Forward scatter as measure of size following 
activation.  C-D.  Glucose (2-NBDG) uptake by CD4+ T cells measured by flow cytometry and normalized to 
unstimulated control T cells.  **=p<0.01; ****=p<0.0001.  Data are combined or representative of n = 5 
independent experiments.   
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3.4.6 MnP treatment enhances activation of AMPK 

AMPK, or adenosine monophosphate activated protein kinase, is a nutrient sensor shown to be 

responsible for driving oxidative metabolism due to ATP depletion, and it becomes active 

following phosphorylation of its catalytic α subunit [203, 367, 387].  The antioxidant resveratrol 

has been shown to activate AMPK [366], and AMPK is an established negative regulator of the 

Warburg effect (aerobic glycolysis) [368] and mTOR signaling [203, 369]. Since our data 

indicated that MnP treatment inhibits mTOR-driven aerobic glycolysis in CD4+ T cells, and MnP 

is a potent antioxidant [324, 376], we hypothesized that MnP treatment would result in AMPK 

activation, thereby inhibiting mTOR signaling and aerobic glycolysis.   

AMPK is highly activated in naïve T cells, and protein analysis demonstrated that the 

levels of AMPK phosphorylation (Thr172) due to MnP treatment were comparable to those of 

media-treated, naïve cells, as indicated by a relative expression value of 1 (Figure 27).  

Mimotope stimulation alone resulted in reduced AMPK phosphorylation at 48 hours as 

compared to both media and MnP-treated splenocytes (Figure 27).  These results reveal that MnP 

treatment may not enhance AMPK activation, but rather maintain active levels even in the 

presence of antigenic stimulation, thus impeding mTOR signaling and aerobic glycolysis. 
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Figure 27. Alteration in redox status of CD4+ T cells maintains AMPK activation. 
Protein lysates were probed with antibodies for phosphorylated AMPK-1α (Thr172; activated), total AMPK, and β 
actin (loading control). Data are a representative of n = 5 independent experiments. 
 
 
 

3.4.7 Inhibition of aerobic glycolysis due to redox modulation limits the diabetogenic 

potential of autoreactive CD4+ T cells 

In order to test if inhibiting progression to aerobic glycolysis in CD4+ T cells delayed diabetes 

incidence, an adoptive transfer model was used (Figure 28A).  Here, BDC.2.5.TCR.Tg 

splenocytes were isolated and transferred i.v. into non-diabetic NOD.scid recipients.  A cohort of 

the recipient animals was treated with 10 mg/kg MnP starting the day prior to adoptive transfer 

as described in the methods.  80% of untreated controls exhibited fulminant diabetes by 12 days 

post-transfer (Figure 28B); however, MnP treatment inhibited diabetes progression, with only 

20% of treated animals becoming diabetic throughout the duration of the experiment (Figure 

28B; p=0.0233).   
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We and others have reported that increased serum levels of the inhibitory receptor 

Lymphocyte Activation Gene-3 (LAG-3) due to its redox-dependent cleavage from the surface 

of T cells, serves as a viable marker of T cell activation [169, 170] and conceivable predictor of 

T1D [168].  Therefore, we measured soluble LAG-3 (sLAG-3) in the serum of recipient animals 

at various time points post-transfer, as a means of measuring T cell activation.  At day 7 post-

transfer, while all animals were euglycemic, control animals presented with elevated serum 

levels of sLAG-3 as compared to those treated with MnP (Figure 28C).  Those controls went on 

to become diabetic by day 11 post-transfer, while animals treated with MnP did not (p<0.01).  

Together, these data demonstrate that sLAG-3 serum levels, as a measure of T cell activation, 

predicts diabetes onset, and MnP treatment controls this redox-dependent process.   

Splenocytes from recipient animals were analyzed by flow cytometry to assess T cell 

activation in vivo.  Two markers of activation were measured: CD25, the IL-2 high affinity 

receptor, and LAG-3 (Figure 28D), as both markers are more highly expressed on the surface of 

activated CD4+ T cells than on naïve T cells [139, 347].  CD4+ T cells from diabetic controls 

displayed increased frequency of CD25+LAG-3+ double positive T cells, indicative of an 

activated phenotype, in comparison to CD4+ T cells from MnP treated non-diabetic animals 

(Figure 28D; p = 0.0761). 

 As in vitro results indicated reduced mTOR signaling (Figure 26), we also wanted to 

confirm these results in vivo.  Peripheral blood samples were taken at day 4 post-adoptive 

transfer and levels of phosphorylated S6 ribosomal protein (S6), an mTOR target, were measured 

by flow cytometry.  Results indicated two populations of CD4+ T cells with respect to pS6 

expression, CD4+pS6hi T cells and CD4+pS6lo T cells (Figure 28E).  CD4+ T cells from MnP 

treated animals exhibited a lower frequency of pS6hi cells (Figure 28E-F), as compared to T cells 
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from control animals, indicating reduced T cell activation due to MnP treatment.  Moreover, pS6 

expression (as measured by mean fluorescence intensity) was increased in CD4+pS6hi T cells 

from control animals compared to the MnP-treated cohort (Figure 28G).  These results suggest 

that those T cells that do receive some activation signal despite the presence of MnP, are still 

unable to induce mTOR signaling to the extent of stimulated controls.  Lastly, studies from 

Pollizzi et al. demonstrated that T cells with high levels of mTOR signaling during activation, 

were larger than those with lower mTOR activation [126].  In accordance with these and other 

studies, CD4+pS6hi T cells were larger than the CD4+pS6lo T cells, regardless of treatment 

(Figure 28H). Yet, as with higher mTOR signaling induction in control T cells (Figure 28G), 

pS6hi T cells from these animals were also larger than those treated with MnP (Figure 28H), 

supporting their finding that T cell size is directly related to mTOR activity and activation [124].  

These results demonstrate that MnP treatment in vivo alters mTOR signaling during T cell 

activation, resulting in reduced CD4+ T cell diabetogenicity.  
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Figure 28. Reducing glycolytic capacity by redox modulation inhibits diabetogenic potential of CD4+ T cells. 
A.  Schematic of adoptive transfer model of T1D.  B.  Survival curve of diabetes free animals following adoptive 
transfer.  Animals were deemed diabetic following 2 consecutive blood glucose readings of >350 mg/dL.  Statistical 
significance of disease progression was calculated using a Kaplan-Meier test (*=p<0.05).  C.  T cell activation and 
prediction of diabetes was measured by serum levels of sLAG-3 by ELISA.  Statistical significance was calculated 
using a Two-way ANOVA with Bonferroni post-hoc analysis. (**=p<0.01).   D. Normalized percent of LAG-
3+CD25+CD4+ T cells from spleens of control diabetic and MnP-treated non-diabetic animals (n = 6-8 animals per 
group; p = 0.0761).  E. Mean fluorescence intensity of pS6 in peripheral blood CD4+ T cells from animals at day 4 
post-transfer.  F. Representative histograms of S6 phosphorylation from peripheral blood CD4+ T cells at day 4 post-
transfer from control and MnP treated animals. G-H. Quantification of frequency of pS6hi and pS6lo CD4+ T cells.  I. 
Forward scatter analysis of pS6lo and pS6hi CD4+ T cells.   
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3.5 DISCUSSION 

Work from our laboratory and others has demonstrated that acute doses of ROS are required for 

mediating T cell activation, and that ROS inhibition results in dampened T cell responses [168, 

202, 225, 244, 304].  Treatment with a manganese metalloporphyrn (MnP) successfully 

scavenges a significant amount of the ROS produced, with no toxicity to the T cells themselves 

(Figure 23).  Cell cycle entry and proliferation have been shown to be highly dependent upon 

ROS signaling, as many cyclin-dependent kinases that mediate cell cycle progression, and cell 

cycle inhibitors are known to be redox sensitive [295].  Indeed, our results indicated that 

dissipating ROS by MnP resulted in reduced cell cycle entry via maintenance of the cell cycle 

inhibitor p27 Kip1 (Figure 23).  Interestingly, T cell proliferation and effector function were not 

completed ablated upon MnP treatment, potentially since MnP treatment did not completely 

dissipate all superoxide generated upon T cell activation (Figure 22A-B).  Additionally, 

completely depleting the cell of all ROS would result in toxicity.  These results highlight that 

fine-tuning of ROS signaling has dramatic effects on T cell outcome. 

In order to transition to an effector after activation, naïve CD4+ T cells must undergo 

massive reprogramming at the metabolic level, transitioning from oxidative phosphorylation to 

aerobic glycolysis [49, 50, 362].  Aerobic glycolysis, or the Warburg effect, is required for 

supporting optimal T cell clonal expansion and macromolecule synthesis, yet how ROS affect 

metabolic reprogramming during T cell activation remains poorly understood.  Here, our data 

indicate that ROS are necessary for driving optimal mTOR signaling (Figure 26A) and 

upregulation of the transcription factor Myc (Figure 25A), two key players that have roles in 

coordinating both aerobic glycolysis and cell cycle entry [104, 363, 364].  It has been reported 

that T cell effector function is tightly regulated by both aerobic glycolysis and cell cycle.  In fact, 
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proliferation and IFNγ production have a direct relationship – as rounds of proliferation increase 

so does IFNγ production [305]  Our results reiterate these findings in that redox modulation 

inhibits aerobic glycolysis (Figure 24) and proliferation (Figure 24), concomitant with IFNγ 

secretion (Figure 26C).  Also, these findings suggest that redox reactions in fact supersede these 

pathways. 

A well described characteristic of T cells is that they divide asymmetrically, generating 

two distinctly different daughter cells.  These daughter cells exhibit differential mTOR 

activation, cellular metabolism, and eventual differentiation [123, 126, 127].  Specifically, the 

larger, mTORhi, glycolytic daughters demonstrate a more T effector phenotype, whereas the 

smaller, mTORlo, oxidative daughters are more memory-like [124, 126, 127].  Interestingly, 

redox modulation skewed T cells towards a higher percentage of mTORlo T cells as compared to 

untreated controls (Figure 28E-H), which may suggest a role for redox in asymmetric division.  

It is also plausible that scavenging of ROS is simply inhibiting activation and the pS6lo T cells 

are those that remain naïve.  Also in this report, Pollizzi et al. indicated that there was no 

difference in CD25 surface expression between mTORhi and mTORlo T cells [124].   Even with 

CD25 expression and the presence of IL-2, mTORlo T cells failed to proliferate as robustly [386], 

which is in accordance with the in vitro results demonstrated (Figure 25D-E), suggesting some 

additional regulatory mechanism(s) at play.  It seems plausible that ROS could be a contributing 

factor in mediating T cell asymmetry; however, further studies would be necessary. 

As mentioned, one of the downstream targets of mTOR is 4E-BP1, a translational 

repressor [386].  For translation to ensue, hyperphosphorylation of 4E-BP1 by mTOR is critical 

for inhibition of the repressor.  Since our data indicate a decrease in phosphorylation or 

inhibition of 4E-BP1, it is likely that maintenance of the repressor contributed to the reduced 
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protein expression of Glut1 and PFKFB3 (Figure 24E).  This, coupled with reduced Myc 

expression, may synergistically impede metabolic reprogramming.  With regards to cell cycle 

progression, inhibition of 4E-BP1 by mTOR is required for promoting expression of Cyclin D3 

[365].  Additionally, mTOR signaling has been shown to lead to increased p27 Kip1 degradation 

as a means of supporting cell cycle progression [365].  Therefore, MnP-mediated decreased 4E-

BP1 hyperphosphorylation likely contributed to decreased Cyclin D3 expression and decreased 

p27 Kip1 degradation (Figure 23D), promoting cell cycle arrest.      

 CD4+ T cells are a primary mediator of immunopathology in T1D; therefore, we wanted 

to determine if inhibiting metabolic reprogramming by MnP treatment reduced their 

diabetogenic potential.  As anticipated, modulating the CD4+ T cell glycolytic rate via MnP 

delayed T1D onset in an adoptive transfer model (Figure 28B).  T1D is known to be highly 

driven by free radicals.  Not only does oxidative stress result in islet beta cell death, but it also 

serves to activate and mobilize inflammatory macrophages and T cells, driving even more 

immunopathology.  Therefore, further outlining the mechanisms in which these molecules 

influence immune cells is vital.  More recent studies in other autoimmune diseases like systemic 

lupus and rheumatoid arthritis have helped to delineate potential for metabolic-based therapies in 

ameliorating disease [188, 189, 383], further supporting the need to more fully understand 

mechanisms governing immune cell metabolism.  It is worth noting that in rheumatoid arthritis, 

pathogenic T cells were shown to produce increased levels of ROS that resulted in glycolysis 

inhibition and increased apoptosis [388].  Consequently, ROS may play different roles depending 

on the disease context, making it even more imperative to further understand their influence.   

In summary, we have demonstrated that ROS inhibition by a manganese 

metalloporphyrin during diabetogenic CD4+ T cell activation is capable of impeding the 



 

 127 

metabolic transition from oxidative phosphorylation to aerobic glycolysis necessary for optimal 

T cell responses.  We propose a model in which ROS and cellular redox balance is critical for 

amplification of the mTOR/Myc pathway, and thus aerobic glycolysis (Figure 29).  These 

findings present potential implications in tempering T cell responses in autoimmunity, and also 

controlling tumor metabolism and cell growth in cancer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. Mechanism for the effect of ROS inhibition on CD4+ T cells during activation-induced metabolic 
reprogramming. 
Upon T cell receptor – MHC interaction, ROS are generated by a functional NOX expressed by T cells.  These ROS 
serve as signaling molecules to help propagate mTOR signaling resulting in Myc upregulation and progression to 
aerobic glycolysis.  Treatment with the ROS-scavenging and potent antioxidant results in inhibition of ROS and 
maintains potent AMPK activation; thereby, inhibiting mTOR via a two-pronged approach, stabilizing OXPHOS, 
and limiting T cell proliferation 
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4.0  FUTURE DIRECTIONS 

4.1 LAG-3 AND T CELL METABOLISM 

4.1.1 Metabolite oxidation and mitochondrial phenotype  

While the data presented in chapter 2 demonstrate that LAG-3 negatively regulates 

mitochondrial biogenesis and metabolism, one question that remains is which metabolite is 

responsible for supporting this function.  Fatty acids, glucose and glutamine can all be oxidized 

by the mitochondria, making them each a potential candidate in our model.  Seahorse 

experiments were performed using specific pathway inhibitors during mitochondrial stress tests 

to see which resulted in reduced basal OCR and/or SRC.  However, they proved inconclusive.  

These experiments are still ongoing and our working hypothesis is that fatty acids will be the 

critical metabolite.  This hypothesis is based upon the fact that our studies concluded LAG-3-/- T 

cells are metabolically similar to memory T cells, and fatty acid metabolism is necessary for 

supporting enhanced spare respiratory capacity and rapid recall in memory T cells [129, 135, 

389]. 
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4.1.2 T cell metabolism in Type 1 Diabetes 

As discussed in Chapter 1, there is mounting evidence that autoreactive T cells are metabolically 

different from other T cells.  These differences include increased mitochondrial membrane 

potential and mutations, enhanced glycolysis and OXPHOS, and a greater dependence on 

glutamine metabolism.  The majority of the work investigating metabolic differences have been 

done in diseases like MS, Lupus, and RA, with very little investigating T cell metabolism in 

T1D.  With the knowledge we have gained from studies in these other autoimmune diseases, its 

highly plausible that there are metabolic abnormalities in diabetogenic T cells.  Future 

experiments comparing glycolytic and oxidative capacities during naïve and effector states of 

diabetogenic (NOD) and non-autoimmune (B6) T cells may reveal differences, which in turn 

could suggest the use of metabolic-based therapies in the disease, as these types of therapies have 

proven efficacious in other autoimmune diseases.  For example, in the animal model of Lupus, 

inhibition of utilization of the chemicals 2-deoxyglucose and metformin reversed metabolic 

dysfunction, thus ameliorating disease [188].  Additionally, targeting glutamine metabolism in 

EAE reduced Th17 differentiation and pathogenicity [111].  There is some evidence that effector 

T cells in T1D are refractory to T regulatory cell mediated suppression [323].  It is highly 

plausible that underlying metabolic advantages protect effector T cells from being suppressed, 

and weakening this advantage via targeted therapy could lower this metabolic threshold, thereby 

leaving effector T cells vulnerable to T regulatory cell-mediated suppression.   

As mentioned previously, LAG-3 knockout in the NOD model leads to accelerated T1D 

progression, due to heightened CD4+ T effector cell responses [155, 158].  Our data would 

suggest that LAG-3 deficiency in these T cells results in enhanced bioenergetics thus driving 

greater activation potential, resulting in disease acceleration.  These data provide the basis for 



 

  130 

future studies examining what effect this metabolic phenotype has in the context of 

autoimmunity.  Based on the data presented in chapter 2, we would hypothesize that increased 

mitochondrial mass and metabolism in naïve T cells, coupled with an autoreactive TCR, could 

make for an even more pathogenic T cell.  Future studies could examine if metabolic differences 

exist during activation by comparing mitochondrial characteristics and metabolic profile of 

NOD.LAG-3 sufficient and deficient T cells during T1D induction.   

While these proposed studies would further our understanding of metabolic differences 

during activation, they would not elucidate what advantage alterations during T cell homeostasis 

provide for activation.  The difficulty lies in that NOD T cells exhibit characteristics of activation 

even in young animals, since they develop in the presence of their antigen, the β cell.  Currently, 

we are working on experiments utilizing a novel NOD TCR transgenic animal, the NOD.BDC-

6.6.9 strain.  Here, all CD4+ T cells recognize an autoantigen that is unique to NOD islets [390].  

The region of the genome encoding this peptide was mapped and replaced with a Balb/c 

sequence that does not encode the antigenic peptide [390].  Therefore, these CD4+ T cells, that 

are capable of inducing T1D following adoptive transfer into NOD.scid animals, are educated 

and develop in an environment devoid of their cognate antigen.  Thus, they are autoreactive, yet 

entirely naïve.  We plan to recapitulate adoptive transfer experiments into NOD.scid animals 

with and without LAG-3 antibody blockade (as LAG-3 knockout animals on this background do 

not exist) to assess metabolic differences as described in chapter 2.  These experiments would 

expand our understanding of the role of LAG-3 in autoreactive T cell homeostatic expansion and 

metabolism and its relevance in T1D.   

One caveat is that we will need to deplete the endogenous β cells in the NOD.scid 

animals via streptozotocin treatment as to eliminate the source of antigen, and therefore, blood 
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glucose in these animals will need to be maintained by insulin pellets.  If similar differences do 

arise due to LAG-3 blockade, we could then transplant NOD islets back into the recipient 

animals to assess if the differences in T metabolism augment activation and disease progression.     

Translating our studies into humans would also be a future direction for this project.  As 

with studies performed using samples from SLE patients, it would be interesting to receive 

peripheral blood samples from patients and first degree relatives to investigate the metabolic 

profile of T cells.  Taking this one step further, DNA sequencing could be used to identify SNPs 

in the LAG-3 gene or any others that may have implications on metabolism.  We currently have 

a collaboration with Dr. Eddie James, PhD., who has isolated autoreactive T cell clones from 

Type 1 diabetics.  Preliminary DNA sequencing studies using these T cells and those from health 

controls could be performed to then provide a basis for further investigation. 

 

4.1.3 LAG-3 expression and memory T cell formation 

One mechanism of memory T cell formation is by the contraction of activated effectors 

following resolution of the immune attack.  With this contraction, glycolytic effectors must 

transition back to relying on OXPHOS to support memory T cell longevity.  Lowering the 

glycolytic threshold of T effectors has been shown to improve memory T cell formation [135, 

136].  The data presented in Figure 15 indicate that LAG-3-deficient T cells exhibit enhanced 

aerobic glycolysis upon activation.  Together, these studies suggest that LAG-3-/- T cells, due to 

their highly glycolytic nature, may not transition to memory T cells as effectively as wildtype T 

cells.  Moreover, LAG-3 expression may serve as a metabolic regulatory mechanism to dampen 

glycolytic potential thereby ensuring efficient T effector contraction. 
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Preliminary in vivo studies were performed to address this question, where animals were 

immunized with ovalbumin and memory T cell function was assessed 30 days later (Appendix 

A).  Results indicated trends in reduced cellularity of draining lymph nodes in LAG-3-/- animals 

(Figure 30A), along with a lower frequency of memory T cells (CD62Lhi CD44hi) as compared to 

wildtype animals (Figure 30B; p<0.05).  Upon restimulation in vitro, wildtype memory T cells 

produced greater levels of IFNγ, suggesting a more robust memory response (Figure 30C).  

Repeating these experiments with animals receiving adoptive transfers of OT.II T cells may 

prove beneficial in that it would provide a more distinct population that could also be isolated by 

tetramer staining.  Future experiments would be necessary to further understand potential 

differences, and to also assess metabolic differences.  Van der Windt et al. has developed an in 

vitro method of generating both effector and memory T cells [128, 129], which could be used 

with wildtype and LAG-3-/- OT.II cells for Seahorse analysis.      

      

 

4.1.4 LAG-3 and its effect on T regulatory cell metabolism 

Some naturally occurring CD4+CD25+ T regulatory cells demonstrate increased LAG-3 

expression as compared to naïve, effector, and memory subsets [141].  Moreover, they have been 

shown to utilize LAG-3 as a mode of suppressing effector T cell responses [141, 177].  Studies 

examining the metabolic profile of T regulatory cells have indicated that like naïve and memory 

subsets, they rely predominantly on OXPHOS.  Specifically, they utilize fatty acid metabolism, 

driven by high levels of AMPK expression [391].  Both mTOR inhibition (by knockout or 
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rapamycin treatment) or AMPK activation (via metformin treatment) enhanced T regulatory cell 

differentiation as well [384, 392], further supporting a role for this pathway.   

Work from Huang et al. indicated that LAG-3-/- regulatory T cells proliferated to a 

greater extent than wildtypes, which is in line with our work and other previous work that LAG-

3 expression inhibits T cell proliferation [157].  Our studies would further suggest that LAG-3-

deficient T regulatory cells may demonstrate increased mitochondrial mass and metabolism, as a 

means of supporting increased proliferation.  This could prove beneficial in autoimmune settings 

where T regulatory cell numbers wane.  However, it would be important to also verify that 

bioenergetic differences due to LAG-3 loss do not interfere with suppressive capabilities.  In 

some instances, where LAG-3 is utilized to mediate suppression, LAG-3 blockade would not be 

advantageous as the ability to restrain T cell responses is likely more important than increasing 

Treg numbers.  Unless this can be done temporally to boost numbers, and then remove treatment 

to enable suppression.  Future studies would be necessary to further elucidate potential metabolic 

implications on T regulatory cells.   

4.2 REDOX MODULATION IN TYPE 1 DIABETES 

4.2.1 MnP as a mono-therapy in T1D 

Data from our laboratory have demonstrated that use of MnP as a mono-therapy appears 

insufficient for maintaining durable tolerance, as once treatment ceases, NOD females succumb 

to T1D [168].  Therefore, understanding its deficiencies is critical for adjunct therapy 

development.  From a metabolic standpoint, the AMPK/mTOR axis is one pathway by which T 
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cell anergy is achieved.  Zheng et al. showed that anergic T cells are also metabolically anergic 

and express high levels of active AMPK which maintain OXPHOS and quiescence [369].  

AMPK also results in mTOR inhibition, again inhibiting activation potential.  We have shown 

here that redox modulation via MnP results in dampening mTOR and enhancing AMPK 

activation (Figures 25,28).  It is possible that the degree of these events is insufficient for 

permanent modification of the T cell phenotype.  Since MnP-treated T cells are still capable of 

full activation following MnP cessation and do not undergo apoptosis, AMPK activation in this 

context may serve as a survival mechanism for treated CD4+ T cells by maintaining efficient 

OXPHOS. 

 Our data here also indicated that MnP-treated T cells still produced sufficient levels of 

IL-2; but, downstream signaling was interrupted (Figure 25).  IL-2 is known to be effective in 

reversing T cell anergy, and this may provide a mechanism for reversal of hyporesponsiveness 

during MnP termination.  Specifically, IL-2 signaling results in inhibition of the protein 

deacetylase Sirtuin-1 (Sirt-1), reversing T cell induced anergy [393].  As anergic T cells express 

higher levels of Sirt-1 as compared to activated effector T cells, we tried to examine Sirt-1 

expression in our model, but were unable to see any appreciable differences with and without 

MnP treatment.  It is also interesting in that Sirt-1 is a downstream target of AMPK [394], 

begging the question that while MnP enhances AMPK activation, it might not result in enhanced 

Sirt-1 activity; thereby, not inducing T cell anergy.  Further experiments involving an IL-2 

depletion antibody or further examining Sirt-1 expression and activity may help to clarify the 

limitations of MnP treatment.     
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4.2.2 Metformin and Rapamycin as combinatorial therapies with MnP 

Combinatorial therapies with MnP and other agents may aid in providing long-term T cell 

hyporesponsiveness.  For example, metformin, an AMPK activator, may be a viable option as it 

has been shown to maintain AMPK activation in autoreactive T cells, resulting in reduced 

disease.  Additionally, T regulatory cells, which are highly oxidative, rely on AMPK activation 

for maintenance of the population and enabling their suppressive capabilities.  Driving reduced T 

effector responses while also potentially enhancing T regulatory function, may provide greater 

protection from disease onset.  Metformin has also been shown to protect islet β cells and 

preserve their glucose sensitivity and insulin secretion, providing even greater therapeutic 

potential.  Rapamycin, an mTOR inhibitor, might also be considered a viable option.  While 

rapamycin has shown potential for modulating T cell responses and metabolism in various 

models, including T1D, it is well documented that it is toxic to β cells [361].  Unpublished work 

from our laboratory has indicated that MnP administration in combination with rapamycin, 

protects β cells from these toxic effects.  Consequently, as both MnP and rapamycin provide 

immune suppressive functions, this could be a viable dual therapy in T1D.  Further studies would 

be necessary for examining this potential.    
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APPENDIX A 

INVESTIGATING THE ROLE OF LAG-3 IN MEMORY T CELL FORMATION 

Preliminary studies were performed to investigate if LAG-3 deficient CD4+ T cells capable of 

forming functional memory responses.  Studies were performed using wildtype and LAG-3-/- B6 

animals, where animals were immunized with whole ovalbumin in Complete Freund’s Adjuvant 

(OVA; 100ug per mouse) at the base of the tail.  30 days post-immunization, animals were 

sacrificed, and draining inguinal lymph nodes (dLN) were harvested and re-stimulated with 

whole OVA in vitro (25 ug).  IFNγ production was used to measure activation.  Cells were also 

stained for flow cytometry to distinguish naïve, effector, and memory T cell subsets.  Vβ5 

expression was used to further gate on OVA-specific T cells.  dLN from non-immunized mice 

served as negative controls for flow cytometry staining.     
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Figure 30. LAG-3 deficient CD4+ T cells demonstrate impaired memory T cell formation and functionality. 
A.  Absolute number of cells from draining inguinal lymph nodes (dLN) 30 days post-immunization with OVA.  B.  
Frequency of naïve, effector, and memory CD4+ T cells following immunization.  CD4+Vβ5+ T cells were gated on, 
and expression of CD62L and CD44 were used to delineate naïve, effector, and memory subsets.  C.  IFNγ ELISA 
results from in vitro recall assay.  Data points are indicative of individual animals, and significance was determined 
using a Student’s t test.  *=p<0.05.  
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