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This study involves an analysis of the development and direction of secondary crack propagation 

starting from openings of different shapes located in brittle prismatic samples subjected to either 

uniaxial compression or direct shear stress conditions. The findings from the study were then used 

to understand how notches (cracks) located at the toe of slopes made of brittle materials influence 

their failure. For the first part of the study, a theoretical analysis that uses closed form solutions, 

linear elastic fracture mechanics (LEFM) and a numerical analysis that uses a finite element 

software (ABAQUS) were conducted to understand how the degree of curvature of circular and 

elliptical openings develops critical stresses that were the locations of the failure of the openings. 

The theoretical and numerical analysis established that the degree of curvature of the openings had 

a tremendous influence on where the secondary cracks developed. For the case of the elliptical 

samples, the attitude of the ellipse also had an influence on how the secondary cracks extend.  

For the case of the rock slopes with a notch (crack) at their toe, an extended finite element 

method (XFEM) based on linear elastic fracture mechanics (LEFM) theory was utilized to model 

the secondary crack propagation that takes place from the tip of the notch subjected to gravity 

induced compression and gravity induced lateral pressure. The analysis that used XFEM 

established that the ratio between the shear stress acting parallel to the axis of the toe crack, and 
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the vertical overburden compression normal to the axis of the notch had a marked influence on 

how the secondary cracks developed from the notch. If the ratio was less than one, the secondary 

crack developed at angles greater than 90° with respect to the crack axis. If the ratio was equal to 

one, the secondary crack developed exactly at 90°. If ratio was greater than one, the secondary 

crack was inclined at angles less than 90°. XEFM study also indicated that the opening of the notch 

has also an influence on the angle of secondary crack propagation from the tip of the notch.
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1.0  INTRODUCTION AND LITERATURE REVIEW 

1.1 MOTIVATION 

In coastal area, erosion usually happens at the toe of the slope in the form of notch [1]. Wave action 

is the primary reason for this phenomenon. Here are two examples of a slope with a notch at its 

toe. Under the lateral and vertical load induced by earth pressure, tensile failure happens in the 

slope, as shown in Fig. 1.1. When the wave acts on the toe region of the slope, normal and shear 

force act on the face of the bluff. Material of the slope is removed from the toe of the bluff during 

this wash out process, as shown in Fig. 1.2. What we concern is the influence of the initial notch 

opening on the direction of the secondary crack propagation. Besides, considering the different 

history of loading on the earth, the lateral earth pressure would be different. The vertical earth 

pressure should be constant since that the gravity of the earth above the crack will not change 

generally. Hence, the ratio of the shear and normal stress induced from earth pressure also differs 

in real case. The influence of the variation of this ratio on the secondary crack propagation is also 

investigated in this study.  
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Figure 1.1. Progression of toe failures from an open toe notch in a soil slope in Vicksburgh, Mississippi [2] 

 

 

Figure 1.2. A wave induced notch and a notch induced failure in a coastal slope located in Aldbrough, England [3][4] 

 

Before this, two tests are conducted on the prismatic brittle samples with different shape 

of opening. The objective of these two tests is to validate the accuracy of FEM in simulating the 

crack propagation in brittle material under mixed mode of loading. Two methods, finite element 

method (FEM) and linear elastic fracture mechanics (LEFM), are utilized in the validation tests as 

well as the notch study.  
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1.2 LINEAR ELASTIC FRACTURE MECHANICS 

Linear elastic fracture mechanics (LEFM) is the fundamental theory of fracture, which began with 

experimental work by Griffith [1] [6] regarding the strength of glass and was then expended by 

Irwin [7][8] and Rice [9]. 

LEFM is a highly simplified, yet sophisticated, theory dealing with sharp cracks in elastic 

bodies. LEFM is applicable as long as one key condition met. A basic ideal situation is analyzed 

in LEFM in which all the material is elastic except in a vanishingly small region at the inelastic 

crack tip. The stresses near the crack tip are so high that the region becomes inelastic.  

Nevertheless, if the size of this inelastic zone is small enough relative to the dimensions of the 

whole domain, the nonlinear behavior induced within this region can be limited and then LEFM 

can be verified and utilized. 

This chapter introduces certain studies in which LEFM has been applied to problems within 

geotechnical engineering. First, essential features of LEFM are discussed in order to demonstrate  

the parameters and criteria which are important in simulations. Second, the analytical solutions to 

the stress at holes and a sharp crack are summarized.  

1.2.1 Fracture mechanics approach 

Before we start introducing linear fracture mechanics as they apply to specific cases, it is useful to 

review Griffith’s experimental work on the tensile strength of glass [1]. Griffith found that specific 

characteristics of the component had a significant influence on the tensile strength of the material. 

He also noticed that the inherent material property is not the only factor that determines the 

variability in tensile strength. If the material contains certain flaws, the common design approach 
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based on the criteria of material’s strength is not applicable anymore because the stress at the stress 

at the tip of the sharp crack is infinitely high no matter how small the load is. Fracture mechanics 

approach should be utilized in this case because it takes the presence of flaw within the body into 

consideration.  

Griffith supposed that solid surfaces are characterized by surface tension, in a manner 

analogous to liquids. Based on this hypothesis, a crack propagates or the surface area is going to 

increase as soon as the energy provided by surface tension is less than that introduced as a result 

of the external loads or internal released. In other words, it is necessary that the input energy rate 

exceeds the dissipated plastic energy, an energy balance equation which can be written as  

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑈𝑈𝑠𝑠𝑒𝑒

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝑈𝑈𝑠𝑠

𝑝𝑝

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝑈𝑈Γ
𝜕𝜕𝜕𝜕

 (1.1) 

in which 𝑊𝑊 denotes the work done by the external force, 𝑈𝑈𝑠𝑠𝑒𝑒 and 𝑈𝑈𝑠𝑠
𝑝𝑝 represents the elastic and 

plastic parts of the total strain energy respectively, and 𝑈𝑈Γ denotes the surface tension energy.  

We can rewrite Eq. (1.1) with respect to the potential energy Π = 𝑈𝑈𝑠𝑠𝑒𝑒 −𝑊𝑊, that is, 

 −
𝜕𝜕Π
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑈𝑈𝑠𝑠

𝑝𝑝

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝑈𝑈Γ
𝜕𝜕𝜕𝜕

 (1.2) 

which represents a stability criterion for the crack and states that the rate at which the 

potential energy is released must equal the rate that energy is dissipated in plastic deformation and 

crack propagation. In addition, Irwin demonstrated that rate of input energy is independent of the 

load application modalities, but is related to the rate of strain energy release when the crack 

propagates in a unit length. 

In the case of brittle materials, the plastic term 𝑈𝑈𝑠𝑠
𝑝𝑝 vanishes, and the energy balance shown 

above can be rewritten as  
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 𝜕𝜕𝑈𝑈Γ
𝜕𝜕𝜕𝜕

+
𝜕𝜕Π
𝜕𝜕𝜕𝜕

= 0 (1.3) 

The crack growth stability may be assessed by simply considering the second derivative of 

(Π + 𝑈𝑈Γ); the crack propagation will be either unstable or stable, depending on whether the energy 

at equilibrium assumes its maximum or minimum value, respectively. This can be described as the 

following fracture propagation criterion defined by  

 
𝜕𝜕2(Π + 𝑈𝑈Γ)

𝜕𝜕𝑎𝑎2
=

⎩
⎪
⎨

⎪
⎧ < 0             unstable fracture

= 0                 stable fracture

     > 0            neutral equilisbium

 (1.4) 

The strain energy release rate 𝒢𝒢 can be expressed as 

 𝒢𝒢 = −
𝜕𝜕Π
𝜕𝜕𝜕𝜕

= 2𝛾𝛾𝑠𝑠 (1.5) 

where 𝛾𝛾𝑠𝑠 is the surface energy which should be doubled, given the existence of two cracked 

surfaces.  

Substituting Eq. (1.5) in Eq. (1.3), the energy balance can be rewritten with respect to the 

energy release rate 𝒢𝒢 as 

 𝒢𝒢 −
𝜕𝜕𝑈𝑈Γ
𝜕𝜕𝜕𝜕

= 0 (1.6) 

Griffith provided the theoretical solution for the strain energy in the case of an infinite plate 

subjected to uniaxial tension with a central crack of length 2𝑎𝑎, as shown in Fig. 1.3, below, which 

demonstrates that the strain energy needed for the crack to propagate is equal to the energy needed 

for the crack to close under the action of the stress, which can be described as  

 Π = 4� 𝜎𝜎𝑢𝑢𝑦𝑦(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑎𝑎

0
=
𝜋𝜋𝜎𝜎2𝑎𝑎2

2𝐸𝐸′
    ⟹    𝒢𝒢 =

𝜋𝜋𝜋𝜋𝜎𝜎2

𝐸𝐸′
 (1.7) 

where 𝐸𝐸′, an important parameter in fracture mechanics, is given by 
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 𝐸𝐸′ = �

       𝐸𝐸          Plane stress

𝐸𝐸
1 − 𝜐𝜐2

    Plane strain
 (1.8) 

in which 𝐸𝐸 denotes the Young’s modulus and 𝜐𝜐 the Poisson’s ratio. 

 

 

Figure 1.3. Infinite plate with central crack of length 2a, subjected to a uniaxial stress state [1] 

 

Combining Eq. 1.5 and Eq. 1.7., we can calculate the relationship between the critical stress 

and the surface energy as  

 𝜎𝜎𝑐𝑐𝑐𝑐 = �2𝐸𝐸′𝛾𝛾𝑠𝑠
𝜋𝜋𝜋𝜋

 (1.9) 

Griffith theory gives the energy balance criterion with approach of LEFM that enables us 

to identify whether the crack propagation is stable. In this way, LEFM is a useful tool for analyzing 

and predicting crack propagation and for characterizing the fracture extension rate.  

1.2.2 Stress intensity factor and energy release rate 

Griffith established the energy balance relationship which can be used to identify whether the crack 

propagation is stable or not, however, there is no general term that describes the stress state at the 
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crack tip. Irwin [7] recognized that all the stress equations contain the same expression 𝜎𝜎𝑐𝑐𝑐𝑐√𝜋𝜋𝜋𝜋, 

which can describe the severity of the crack tip comprehensively with the combination of 𝜎𝜎𝑐𝑐𝑐𝑐 and 

𝑎𝑎. Then stress intensity factor is given as 

 𝐾𝐾ΙC = 𝜎𝜎𝑐𝑐𝑐𝑐√𝜋𝜋𝜋𝜋 (1.10) 

By now combining Eq. 1.5, Eq. 1.9, and Eq. 1.10, Irwin obtained one important relationship 

in LEFM, between stress intensity factor 𝐾𝐾Ι and energy release rate 𝒢𝒢 in a more general way as 

 𝐾𝐾Ι = �𝐸𝐸′𝒢𝒢 (1.11) 

At this time, it is worthwhile to provide a concise description of the crack behavior as 

shown in Fig. 1.4. A crack may be provoke by extremely complicated load conditions, however, 

these conditions can be considered as a combination of three cases of loading conditions or crack 

openings modes: 

 

 

Figure 1.4. Sketches of crack opening modes: (a) Mode Ι or pure opening mode; (b) Mode ΙΙ or in-plane 

shear mode; (c) Mode ΙΙΙ or anti-plane shear mode [10] 

 

• Mode Ι, characterized as a symmetric crack opening happens with respect to the 

crack plane, also termed as pure opening; 

• Mode ΙΙ, denoted as an antisymmetric separation of crack surfaces due to relative 

displacement in crack propagation direction, that is, normal to the crack front; 
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• Mode ΙΙΙ, defined as a separation due to relative displacement in the direction 

tangential to the crack front. 

Stress intensity factor is one of the most fundamental and useful parameters in all of 

fracture mechanics, not only the LEFM. It describes the stress state at the crack tip and can be 

utilized to establish the fracture criterion.  

1.2.3 Stress concentration and distribution around holes 

Theoretical study for stress concentrations around excavations are originated by Kirsch [11] in his 

linear elastic solution for stresses around a circular excavation in a finite plate under uniaxial 

compression, which is corresponded to the loading condition in the first test of this study. Began 

with this initial solution, more theoretical analysis of different loading condition is further 

investigated. The solution of stress around the hole under loading condition including shear stress 

is obtained in this study. In the case of excavation with other geometry like ellipse, Jaeger and 

Cook gave the solutions for the stress distribution expressed in respect of elliptical curvilinear co-

ordinates.  

1.2.3.1 Circular excavation 

The solution for the stress at a circular excavation originally given by Kirsch [11] is for the case 

under uniaxial tension. Denoting with 𝜎𝜎∞  the remote stress, with 𝑎𝑎  the radius of the circular 

excavation, with 𝑟𝑟 the radial coordinate, with 𝜃𝜃 the angle counter clockwise from the line which 

aligns with the remote loading direction, the stress around the circular excavation in Fig. 1.5 is 

depicted as  
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(1.12) 

 

 

 

Figure 1.5. Stress analysis around the circular excavation under uniaxial stress field [13] 

 

Through superimposing the induced stresses in respect of vertical stress 𝑝𝑝 and horizontal 

stress 𝐾𝐾𝐾𝐾, the solution for the stress around the circular excavation subject to biaxial stress as 

shown in Fig. 1.6 is derived as 
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Figure 1.6. Stress analysis around the circular excavation under biaxial compression field [13] 

 

Substituting 𝑟𝑟 = 𝑎𝑎 in Eq. 1.13, we can derive the stresses on the excavation boundary as 

 

𝜎𝜎𝜃𝜃𝜃𝜃 = 𝑝𝑝[(1 + 𝐾𝐾) + 2(1 − 𝐾𝐾) cos 2𝜃𝜃] 

𝜎𝜎𝑟𝑟𝑟𝑟 = 0 

𝜎𝜎𝑟𝑟𝑟𝑟 = 0 

(1.14) 

Eq. 1.14 depicts the state of stress on the boundary of a circular excavation under biaxial 

stress field. Clearly, for the element around the excavation boundary, only tangential stress exists 

since that there is no force loading on the boundary surface. When 𝐾𝐾 < 1, i.e., the lateral stress is 

less than the vertical force, the maximum and minimum boundary stresses occur at the side wall 

(𝜃𝜃 = 0) and crown (𝜃𝜃 = 𝜋𝜋/2) of the excavation given by Brady & Brown [13] as 
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at point A: 𝜃𝜃 = 0, 𝜎𝜎𝜃𝜃𝜃𝜃,𝐴𝐴 = 𝜎𝜎𝐴𝐴 = 𝑝𝑝(3 − 𝐾𝐾) 

at point B: 𝜃𝜃 = 𝜋𝜋/2, 𝜎𝜎𝜃𝜃𝜃𝜃,𝐵𝐵 = 𝜎𝜎𝐵𝐵 = 𝑝𝑝(3𝐾𝐾 − 1) 
(1.15) 

These equations give the maximum and minimum stresses under biaxial stress field, 

however, they are also applicable for the case of the uniaxial stress field as soon as we substitute 

𝐾𝐾 = 0 in, and the maximum and minimum stresses under uniaxial stress field is depicted as 

 
𝜎𝜎𝐴𝐴 = 3𝑝𝑝 

𝜎𝜎𝐵𝐵 = −𝑝𝑝 
(1.16) 

For the case with shear around the excavation, in order to use Equations derived above, the 

stress field is transferred using Mohr’s Circle. The resulting stresses can be derived as 

 

𝑝𝑝 = 𝜎𝜎1 =
𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑥𝑥

2
+ ��

𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑥𝑥
2

�
2

+ 𝜏𝜏𝑥𝑥𝑥𝑥2 

𝐾𝐾𝐾𝐾 = 𝜎𝜎3 =
𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑥𝑥

2
−��

𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑥𝑥
2

�
2

+ 𝜏𝜏𝑥𝑥𝑥𝑥2 

(1.17) 

1.2.3.2 Elliptical excavation 

Solutions for the stress distribution in this case are referred to Poulos and Davis [14] and Jaeger 

and Cook [12]. Elliptical curvilinear coordinates are utilized to present the solutions. Heok, E., and 

J. W. Bray [15] gave a solution to simplify the calculation of stress at the elliptical opening 

boundary. The problem geometry is depicted in Fig. 1.7. The global x axis is parallel to the 

direction of lateral stress 𝐾𝐾𝐾𝐾, and the local 𝑥𝑥1 axis for the opening is defined by an axis of the 

ellipse. The width, 𝑊𝑊, of the ellipse is measured in the direction of 𝑥𝑥1 axis, and the height, 𝐻𝐻, in 

the direction of the local 𝑧𝑧1 axis. The attitude of the elliptical excavation in the biaxial stress field 
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is depicted by the angle between the local and global axes. The boundary stresses around an 

elliptical opening with axes inclined to the field stress directions are derived as  

 
σ =

𝑝𝑝
2𝑞𝑞

{(1 + 𝐾𝐾)[(1 + 𝑞𝑞2) + (1 − 𝑞𝑞2)c𝑜𝑜𝑜𝑜2(𝜃𝜃 − 𝛽𝛽)]

− (1 − 𝐾𝐾)[(1 + 𝑞𝑞)2 cos 2𝜃𝜃 + (1 − 𝑞𝑞)2 cos 2𝛽𝛽]} 

(1.18) 

where 𝑝𝑝 represents the vertical force, 𝐾𝐾 represents the ratio between the vertical and lateral 

stress, 𝑞𝑞 represents the ratio between width and height of the elliptical opening, 𝜃𝜃 represents the 

angle counter clockwise from the local 𝑥𝑥1 axis, and 𝛽𝛽 represents the angle from the global x axis 

to the local 𝑥𝑥1 axis.  

 

 

Figure 1.7. Stress analysis around the inclined elliptical excavation under biaxial compression field [13] 

 

For the elliptical opening of which the local 𝑥𝑥1 axis is parallel to the global x axis (see Fig. 

1.8), that is, 𝛽𝛽 = 0, Eq. 1.18 can be rewritten as  

 
σ =

𝑝𝑝
2𝑞𝑞

{(1 + 𝐾𝐾)[(1 + 𝑞𝑞2) + (1 − 𝑞𝑞2)𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃]

− (1 − 𝐾𝐾)[(1 + 𝑞𝑞)2 cos 2𝜃𝜃 + (1 − 𝑞𝑞)2]} 

(1.19) 
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Substituting 𝜃𝜃 = 0 and 𝜃𝜃 = 𝜋𝜋/2 into Eq. 1.19 respectively, sidewall and crown boundary 

stresses can be derived as 

 
𝜎𝜎𝐴𝐴 = 𝑝𝑝(1 − 𝐾𝐾 + 2𝑞𝑞) 

𝜎𝜎𝐵𝐵 = 𝑝𝑝(𝐾𝐾 − 1 + 2𝐾𝐾/𝑞𝑞) 
(1.20) 

 

 

 

Figure 1.8. Stress analysis around the horizontal elliptical excavation under biaxial compression field [13] 

 

1.2.4 Stress field at a crack tip 

The maximum tangential stress criterion is originally developed by Erdogan and Sih [16], giving 

solutions to depict the stress field around a crack tip. It is applied by Luis E. Vallejo [17] to identify 

when the crack propagates as well as the direction of the secondary crack propagation  

Denoted with 𝑟𝑟 the distance from the crack tip, 𝜃𝜃 the angle that radius 𝑟𝑟 makes with the  

𝜎𝜎𝜃𝜃𝜃𝜃 the tangential stress, 𝜎𝜎𝑟𝑟𝑟𝑟 the radial stress, and 𝜏𝜏𝑟𝑟𝑟𝑟 the shear stress, stresses around a crack tip 

[18] shown in Fig. 1.9 can be obtained as  

 𝜎𝜎𝜃𝜃𝜃𝜃 =
1

√2𝜋𝜋𝜋𝜋
𝑐𝑐𝑐𝑐𝑐𝑐

𝜃𝜃
2
�𝐾𝐾Ι𝑐𝑐𝑐𝑐𝑐𝑐2

𝜃𝜃
2
−

3
2
𝐾𝐾ΙΙ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (1.21) 
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𝜎𝜎𝑟𝑟𝑟𝑟 =
1

√2𝜋𝜋𝜋𝜋
𝑐𝑐𝑐𝑐𝑐𝑐

𝜃𝜃
2
�𝐾𝐾Ι(1 + 𝑠𝑠𝑠𝑠𝑠𝑠2

𝜃𝜃
2

) +
3
2
𝐾𝐾ΙΙ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝐾𝐾ΙΙ𝑡𝑡𝑡𝑡𝑡𝑡

𝜃𝜃
2
� 

𝜏𝜏𝑟𝑟𝑟𝑟 =
1

√2𝜋𝜋𝜋𝜋
𝑐𝑐𝑐𝑐𝑐𝑐

𝜃𝜃
2

[𝐾𝐾Ι𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐾𝐾ΙΙ(3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1)] 

where 𝐾𝐾Ι and 𝐾𝐾ΙΙ are stress intensity factors under loading of Mode Ι and Mode ΙΙ shown 

in Fig. 1.4 are given as 

 
𝐾𝐾Ι = 1.1215 𝜎𝜎𝑛𝑛(𝜋𝜋𝜋𝜋)1/2 

𝐾𝐾ΙΙ = 1.1215 𝜏𝜏 (𝜋𝜋𝜋𝜋)1/2 
(1.22) 

where  𝜎𝜎𝑛𝑛 is the normal stress on the plane of opening crack, 𝜏𝜏 is the shear stress on the 

plane of opening crack, and 𝑐𝑐 is half of the length of a whole crack, in this case, is just the length 

of the opening crack in Fig. 1.9, which is considered as one half of a whole crack.  

 

 

 

Figure 1.9. Crack tip stresses and system of reference [18] 

 

Erdrogan and Sih [16] have proposed the hypothesis that crack extension happens in the 

direction in which tangential stress 𝜎𝜎𝜃𝜃𝜃𝜃 reaches its maximum value. Furthermore, the direction of 
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the propagation is aligned to a radius direction from the crack tip and this radius direction is 

perpendicular to the maximum tangential stress. Hence, the angle of direction of crack 

propagation, α is obtained as  

 𝑑𝑑𝜎𝜎𝜃𝜃𝜃𝜃
𝑑𝑑𝑑𝑑

= 0      𝑎𝑎𝑎𝑎     𝜃𝜃 = 𝛼𝛼 (1.23) 

Substituting Eq. 1.21 and 1.22 into Eq. 1.23,  

 𝐾𝐾Ι𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐾𝐾ΙΙ(3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1) = 0 (1.24) 

This method is for the case in which the crack is open. For the case of closed crack, the 

stress intensity factor for Mode Ι is zero, Eq. 1.24  can be rewritten as 

 3 cos𝛼𝛼 − 1 = 0 (1.25) 

The theoretical value of the angle of crack propagation, 𝛼𝛼 can be derived in the equation 

above and is equal to 70.5 degrees.  

LEFM has been proved to deal with stress analysis around a crack tip in brittle material. In 

addition, the direction of secondary crack propagation can be derived through the maximum 

tangential fracture criterion based on LEFM. 

1.2.5 Fracture criterion in LEFM 

In the last chapter, we derived the stress intensity factor which allowed us to discuss fracture 

criterion. For Mode Ι, the crack will propagate when this stress intensity factor reaches a certain 

critical value 𝐾𝐾ΙC, denoted with fracture toughness. According to Eq. 1.11, 𝐾𝐾ΙC is related to the 

energy release rate at the critical state as 

 𝐾𝐾ΙC = �𝐸𝐸′𝒢𝒢𝑐𝑐𝑐𝑐 (1.26) 
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with this definition, the local fracture criterion based on the stress intensity factor can be 

defined as 

 𝐾𝐾Ι = �𝐸𝐸′𝒢𝒢

⎩
⎪
⎨

⎪
⎧

< 𝐾𝐾ΙC             No Crack Growth

      = 𝐾𝐾ΙC           Quasi − static growth 

> 𝐾𝐾ΙC              Dynamic growth

 (1.27) 

For loading that are not only in Mode Ι (pure mode), identification of crack growth will be 

more complicated, the criterion must give not only the loading combination that provokes the 

fracture, but also the direction of the crack propagation.  

Experiments show that under mixed mode loading, the crack will not propagate along a 

path which is align to the crack plane, but with an angle with respect to the crack plane. In this 

case, the direction of propagation is determined using the maximum tangential fracture criterion 

given by Erdogan and Sih [16] which has been illustrated in the last section.  

1.3 EXTENDED FINITE ELEMENT METHOD 

1.3.1 Finite Element Method 

Here provided a brief introduction to the finite element method theory. Finite element method 

discretizes the region into a finite number of elements. For each element, approximate function is 

proposed based on the nodal variables. For a boundary value problem, only variables on the node 

of the boundaries are known, FEM is utilized to find the unknown variables on the other nodes. 

There are certain variation methods, one of which is weak form Galerkin method.  One key 

point in weak form Galerkin method is to obtain the weak form equations from the strong form 
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equations. In order to accomplish this, a strong form of governing equation, 𝑔𝑔(𝑥𝑥) should be 

expressed as a weighted integral, i.e., 

 � 𝑤𝑤(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 = 0 (1.28) 

In Galerkin method, shape functions, 𝑁𝑁𝑖𝑖(𝑥𝑥) are utilized to construct weight functions, 

𝑤𝑤(𝑥𝑥). In addition, shape functions are also utilized to construct approximation 𝑢𝑢(x) as  

 𝑢𝑢(x) = �𝑁𝑁𝑖𝑖(𝑥𝑥)𝑢𝑢𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (1.29) 

where 𝑢𝑢𝑖𝑖 is the displacement at node 𝑖𝑖. We can derive a final equation through integrating 

Eq. 1.28 and obtain the unknowns. 

1.3.2 Extended Finite Element Method 

Finite element method has been utilized in industry, however, simulating the crack propagation is 

still difficult due to the following reasons: 

• The need to remesh the domain due to the modification of the mesh topology 

• The difficulty of conforming the discretization corresponding to the evolving 

discontinuities where mesh must to be regenerated at each step 

• The singularity must to be represented by an approximation 

Over the last few decades, several approaches have been investigated to model crack 

problems. For example, quarter-point finite element[19] and enriched finite element [20] [21] have 

been combined with the high order isoparametric elements to represent the singularity at the crack 

tip. In addition, the dislocation method is investigated in order to model the branched crack 

problems [22] [23] [24]. An improved boundary collocation method is investigated to analyze the 



 18 

stress around boundary of various geometry [25]. Element-free Galerkin method has been used to 

eliminate the part of the model constructed by approximation based on node, making it possible to 

simulate the crack propagation with arbitrary and complex path [26] [27] [28]. On the basis of all 

of these efforts to improve the finite element method, XFEM was created through use of  

enrichment technique. The motivation behind the extended finite element method was to find a 

method to simulate the discontinuity without remeshing the whole geometry. The essential idea of 

XFEM is to add an enrichment function, which is discontinuous, to the finite element 

approximation based on the unity of partition properties of the finite element method, thereby 

incorporating the discontinuous field and asymptotic field near the crack tip. This technique 

approximates the crack independent on the mesh so that there is no need to do the remesh.  

XFEM was originated by enriching the finite element approximation created by Belytschko 

and Black [29]. They derived a discontinuous enrichment function and combined it with finite 

element approximation to represent the crack and allow the crack to propagate in an arbitrary 

direction. This method was completed by Dolbow et al. [30][31][32], who adapted an enrichment 

that includes the asymptotic near-tip field and a Heaviside function. The Heaviside function is a 

discontinuous jump function across the crack surface and is constant on each side of the crack (+1 

on one side and -1 on the other). In addition, the mapping algorithm [28] is utilized to improve the 

enrichment technique.  

Sukumar et al. [33][34] implemented XFEM to produce three-dimensional crack modeling, 

utilizing a discontinuous function to model the interior of the crack surface and the function from 

the two-dimensional asymptotic crack tip displacement field for the crack front enrichment. 

Belytschko et al. [35] unified the methodology for representing the discontinuities that are 

independent of mesh. They improved the method of constructing approximations for discontinuous 
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functions originally proposed by Belytschko and Black [29], Dolbow et al. [32], and Sukumar et 

al. [33][34]. 

1.3.2.1 Partition of unity enriched finite element method 

 

XFEM is based on a partition of unity (PU) concept where a domain Ω is divided into over lapping 

sub-domains ΩΙ, each of which is associated with a function 𝜙𝜙Ι(𝑥𝑥) which is non-zero in ΩΙ. Thus, 

PU in a domain can be represented as a set of functions which obey the following property 

 �𝜙𝜙Ι(𝑥𝑥)
𝑁𝑁

Ι=1

= 1       in       𝛺𝛺 (1.30) 

The partition of unity finite element method provides a theoretical framework which is 

utilized in the XFEM. This property of a partition of unity can be utilized in XFEM and GFEM 

with any arbitrary function 𝜓𝜓(𝑥𝑥) represented as a product of the partition of unity functions with 

𝜓𝜓(𝑥𝑥), that is, if we extend the methodology for any arbitrary function 𝜓𝜓(𝑥𝑥), but not for unity, Eq. 

1.30 can be rewritten as 

 �𝜙𝜙Ι(𝑥𝑥)𝜓𝜓(𝑥𝑥)
𝑁𝑁

Ι=1

= 𝜓𝜓(𝑥𝑥)       in       𝛺𝛺 (1.31) 

This is also the basic idea of constructing the approximation functions in Galerkin method 

of FEM: 

 �𝑁𝑁Ι(𝑥𝑥)𝜓𝜓(𝑥𝑥)
𝑁𝑁

Ι=1

= 𝜓𝜓(𝑥𝑥)      in       𝛺𝛺 (1.32) 

where 𝑁𝑁Ι(𝑥𝑥) also obeys the following property  
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 �𝑁𝑁Ι(𝑥𝑥)
𝑁𝑁

Ι=1

= 1       in       𝛺𝛺 (1.33) 

Furthermore, this approach can be utilized in the enrichment procedure, which can increase 

the order of a finite element approximation. In other words, the accuracy of the approximation can 

be improved by including a partition of unity framework in the framework of the isoparametric 

finite element discretization. This process is called enrichment. And the approximation including 

the enrichment function using partition of unity is then expressed as 

 𝑢𝑢ℎ(𝑥𝑥) = �𝑁𝑁Ι(𝑥𝑥) 𝑢𝑢𝐼𝐼

𝑁𝑁

Ι=1

+ ��𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥) 𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥) 𝑡𝑡𝐼𝐼𝐼𝐼

𝑀𝑀

𝐽𝐽=1

𝑁𝑁

𝐼𝐼=1

 (1.34) 

where  𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥) are called the enrichment functions, 𝑡𝑡𝐼𝐼𝐼𝐼  are the induced unknown nodal 

values resulting from enrichment, 𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥) are the shape functions corresponding to node 𝐼𝐼𝐼𝐼. As can 

be seen on the right side of the Equation, the functions in the first term approximate the general 

finite elements, and those in the second term approximate the enriched finite elements. Generally, 

𝑁𝑁𝐼𝐼𝐼𝐼(𝑥𝑥) is equal to 𝑁𝑁Ι(𝑥𝑥) [36], so Eq. 1.34 can be combined and rewritten as 

 𝑢𝑢ℎ(𝑥𝑥) = �𝑁𝑁Ι(𝑥𝑥)
𝑁𝑁

Ι=1

�𝑢𝑢𝐼𝐼 + �𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥) 𝑡𝑡𝐼𝐼𝐼𝐼

𝑀𝑀

𝐽𝐽=1

� (1.35) 

At an enriched node I, considering the partition of unity property,  

 𝑢𝑢ℎ(𝑥𝑥𝐼𝐼) = �𝑁𝑁Ι(𝑥𝑥𝐼𝐼)
𝑁𝑁

Ι=1

�𝑢𝑢𝐼𝐼 + �𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥𝐼𝐼) 𝑡𝑡𝐼𝐼𝐼𝐼

𝑀𝑀

𝐽𝐽=1

� = 𝑢𝑢𝐼𝐼 + �𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥𝐼𝐼) 𝑡𝑡𝐼𝐼𝐽𝐽

𝑀𝑀

𝐽𝐽=1

 (1.36) 

However, according to the interpolation at nodal point,  

 𝑢𝑢ℎ(𝑥𝑥𝐼𝐼) = 𝑢𝑢𝐼𝐼 (1.37) 

Comparing Eq. 1.36 and Eq. 1.37, Eq. 1.35 can be modified as 
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 𝑢𝑢ℎ(𝑥𝑥) = �𝑁𝑁Ι(𝑥𝑥)
𝑁𝑁

Ι=1

�𝑢𝑢𝐼𝐼 + ��𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥) − 𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥𝐼𝐼)� 𝑡𝑡𝐼𝐼𝐼𝐼

𝑀𝑀

𝐽𝐽=1

� (1.38) 

An increase of the order of finite element discretization is achieved in the Generalized 

Finite Element Method (GFEM). In this method, the shape functions for the standard element and 

enriched element are different, then the equation above can be rewritten as  

 𝑢𝑢ℎ(𝑥𝑥) = �𝑁𝑁𝐼𝐼(𝑥𝑥)
𝑁𝑁

𝐼𝐼=1

𝑢𝑢𝐼𝐼 + ��𝑁𝑁′𝐽𝐽(𝑥𝑥)�𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥) −𝜙𝜙𝐼𝐼𝐼𝐼(𝑥𝑥𝐼𝐼)� 𝑡𝑡𝐼𝐼𝐼𝐼

𝑀𝑀

𝐽𝐽=1

𝑁𝑁

𝐼𝐼=1

 (1.39) 

1.3.2.2 Enrichment functions for crack tip 

The basic approach of XFEM is that the approximation can be enriched by adding 

enrichment functions and it is accomplished by using partition of unity, we will now apply this 

basic approach to modelling the domain with a crack.  

Two-dimensional plane strain asymptotic crack tip field function 

Before we start, it is necessary to introduce the crack-tip enrichment functions within the 

two-dimensional plane strain asymptotic near-tip field given by Belytschko and Black [29]. These 

four functions are originated from displacement field in LEFM theory and have been proved to be 

included within the span of the local crack tip radial coordinate system (r, θ): 

 

𝜙𝜙 (x) = {𝐹𝐹𝑙𝑙(𝑟𝑟,𝜃𝜃)}𝑙𝑙=14

= �√𝑟𝑟 cos �
𝜃𝜃
2
� ,√𝑟𝑟 sin �

𝜃𝜃
2
� ,√𝑟𝑟 sin �

𝜃𝜃
2
� sin 𝜃𝜃 ,√𝑟𝑟 cos �

𝜃𝜃
2
�� 

(1.40) 

Four different degrees of freedom for each direction corresponding to each direction of  

each node are added to the initial degrees of freedom associated with the standard finite element 

discretization. Among these four functions, only the second term √𝑟𝑟 sin �𝜃𝜃
2
� is a discontinuous 
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function with respect to the crack surface. Thus, the second function simulates the discontinuity 

property and the other three improve the simulation of the intact elements near the crack tip as 

shown in Fig. 1.10. 

 

 

                        (a) √𝑟𝑟 cos �𝜃𝜃
2
�                                                (b) √𝑟𝑟 sin �𝜃𝜃

2
� 

 

                     (c) √𝑟𝑟 sin �𝜃𝜃
2
� sin𝜃𝜃                                      (d) √𝑟𝑟 cos �𝜃𝜃

2
� 

Figure 1.10. Enrichment functions around a crack tip 
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Heaviside function 

For the enrich elements that are cut completely by a crack, we adapt a jump function, 

Heaviside function. It provides a method of Mathematics to model the behavior of the jump 

discontinuity in the displacement field when the splitting of the domain happens as a crack.  

Denoted Γ with the crack within the domain Ω which is represented by a continuous curve,  

x (𝑥𝑥,𝑦𝑦) with the coordinate of the point in the domain, and x′ (𝑥𝑥′,𝑦𝑦′) with the coordinate of the 

closest point on the crack curve, and n�⃑  with the outward normal vector of curve Γ at point x′, the 

Heaviside function is defined as  

 𝐻𝐻(𝑥𝑥, 𝑦𝑦) = �
   1         if     (x − x′) ∙ n�⃑ > 0
−1         if     (x − x′) ∙ n�⃑ < 0 (1.41) 

H(x) will be positive if the vector (x − x′) is on the con side of the n�⃑  and negative on the 

pro side of the n�⃑ .  

Now we are ready to derive the complete enrichment approximation around a crack tip. 

Consider a finite element model of a domain with a crack shown in Fig. 1.11. 𝐷𝐷 represents all the 

nodes in the domain, 𝑆𝑆𝐶𝐶 denotes the set of nodes of elements around the crack tip, and 𝑆𝑆𝐻𝐻 is the 

set of nodes of element along the crack.  

Introducing the Heaviside function into Eq. 1.38, and substituting the basic enrichment 

function Eq. 1.40 into Eq. 1.38, the complete approximation in XFEM is presented as 

 𝑢𝑢ℎ(x) = 𝑢𝑢ℎ(x)𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑢𝑢ℎ(x)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (1.42) 
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= �𝑁𝑁𝐼𝐼(x)
𝑁𝑁

𝐼𝐼=1

𝑢𝑢𝐼𝐼 + � � 𝑁𝑁𝐽𝐽�𝐻𝐻(x) − 𝐻𝐻(x𝐼𝐼)�
𝐽𝐽∈𝑆𝑆𝐻𝐻

𝑡𝑡𝐽𝐽

𝑁𝑁

𝐼𝐼

+ � � �𝑁𝑁′𝐽𝐽(x)[𝐹𝐹𝑙𝑙𝐶𝐶1(x) − 𝐹𝐹𝑙𝑙𝐶𝐶1(x𝐼𝐼)] 𝑡𝑡𝐽𝐽

4

𝑙𝑙=1𝐽𝐽∈𝑆𝑆𝐶𝐶1

𝑁𝑁

𝐼𝐼=1

+ � � �𝑁𝑁′𝐽𝐽(x)[𝐹𝐹𝑙𝑙𝐶𝐶2(x) − 𝐹𝐹𝑙𝑙𝐶𝐶2(x𝐼𝐼)] 𝑡𝑡𝐽𝐽

4

𝑙𝑙=1𝐽𝐽∈𝑆𝑆𝐶𝐶2

𝑁𝑁

𝐼𝐼=1

 

where 𝐹𝐹𝑙𝑙𝐶𝐶1(x) are defined as the enrichment functions around crack A and 𝐹𝐹𝑙𝑙𝐶𝐶2(x) are 

defined around crack B, and 𝑆𝑆𝐶𝐶1  and 𝑆𝑆𝐶𝐶2 as the set of nodes of elements around Crack A and B, 

respectively.  

 

 

Figure 1.11. An enriched modeling of a crack with step enriched and tip enriched elements [36] 

 

1.3.3 XFEM implementation in ABAQUS 

ABAQUS provides the XFEM approach for modelling crack initiation and propagation.  
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In terms of the initiation, you can define the exact location for the crack. Alternatively, you can 

allow the system to determine where the crack initiates based on the fracture criterion you defined, 

for instance, the maximum principal stress or maximum or maximum principal strain calculated 

in the crack domain.  

More importantly, ABAQUS is capable to determine the crack propagation in an arbitrary 

direction, that is, the system can identify in which direction the crack extends after the initiation. 

This is accomplished based on the XFEM and two methods are provided: cohesive segments 

method and LEFM segments method. For elastic material, LEFM approach is utilized and 

competent especially under loading of mixed mode. Generally, the two methods induce the similar 

result according to the manual of ABAQUS 2016 for brittle material. The theory utilized in the 

LEFM approach in ABAQUS is originated from Erdogan and Sih (1963), same as the fracture 

criterion introduced in Chapter 1, the direction of the crack propagation is given by  

 𝜃𝜃� = 𝑐𝑐𝑐𝑐𝑐𝑐−1

⎝

⎛
3𝐾𝐾ΙΙ2 + �𝐾𝐾Ι4 + 8𝐾𝐾Ι2𝐾𝐾ΙΙ2

𝐾𝐾Ι2 + 9𝐾𝐾ΙΙ2
⎠

⎞ (1.43) 

where 𝜃𝜃� is denoted with crack propagation angle and is measured with respect to the crack 

plane. Under pure Mode ΙΙ loading, the equation above gives the angle of propagation as 70.5° 

while XFEM based LEFM approach in ABAQUS predicts the angle as 66.5°. 
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2.0  UNIAXIAL COMPRESSION TEST ON PRISMATIC BRITTLE SAMPLES 

WITH EXCAVATION OF DIFFERENT GEOMETRIES 

Tunnels are widely utilized in underground constructions. Different shapes of the excavations are 

presumed to influence the distribution and magnitude of stress on the boundaries. Finite element 

analysis is utilized to simulate the compression test and direct shear test on brittle prismatic 

samples with openings of different geometries. Those openings with smaller degree of curvature 

are expected to develop greater stresses at their boundaries. Consistently, those with higher degree 

of curvatures at their boundaries are expected to develop less boundary stresses. In the following 

sections, a finite element analysis will be used to show that whether the above statements are 

correct. 

2.1 FINITE ELEMENT METHOD 

Finite element method (FEM) was initially utilized in the 1960s and has been applied widely to 

the engineering realm since then. Much work has been done to combine the finite element method 

with rock mechanics [38]. Material heterogeneity, linear and non-linear deformability, complex 

boundary conditions, in situ stresses and gravity can all be derived by using this method. 
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2.1.1 Test formulation 

Five types of tunnels with different geometries of excavations are simulated in ABAQUS as shown 

in Fig. 2.1. The material characteristics are shown in Table 2.1. The Poisson ratio is taken as 0.3. 

Considering the water content is around 3% at test, the young’s modulus of the clay is determined 

to be 0.56 𝑀𝑀𝑀𝑀𝑀𝑀 (see Fig. 2.2). The Poisson ratio is taken to be 0.3.  

 

 

Figure 2.1. Five different geometries 
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Table 2.1. Material properties of stiff clay in simulations 

Young's Modulus, 𝑀𝑀𝑀𝑀𝑀𝑀 0.56 

Poisson's ratio 0.30 

Density, 𝑘𝑘𝑘𝑘/𝑚𝑚3 2.00 

 

 

 

Figure 2.2. Stress – strain relationships of stiff clay at water content of 3% [40] 

 
 
An explicit finite element method is utilized in the simulation, and the step time is set as 1 

sec. 

A pair of load and boundary is tested with the implicit method; however, the boundary 

cannot respond with the force in equilibrium. Instead, velocity of 0.1mm/s [41] is added on the top 

and the bottom sides, as shown in Fig. 2.3. 
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Figure 2.3. Boundary conditions and load conditions for uniaxial compression test 

 
 
Considering the real test is conducted on the plane stress direct shear apparatus (PSDSA), 

the plane stress element is selected, CPS4R, a 3-node bilinear plane stress quadrilateral, reduced 

integration, hourglass control element is selected as the element for this study. There is one 

integration point in the center of the element. The mesh contribution is shown in Fig. 5. As seen 

in the figure, concentration is located at the significant area around the excavation. This is 

accomplished with the tool of partition, with which the area is divided into two parts, the inner 

circular area around the excavation and the remainder of the sample. The mesh size is 0.3mm in 

the inner boundary, 0.6 mm on the partition circle and 2.5mm on the external boundary. This 

method reduces the number of elements and is calculation economized. The determination of the 

mesh size is based on the convergence test until the difference between the two trial size is less 

than 2%. 
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                                               Figure 2.4. Mesh strategy in ABAQUS 

 
 

2.1.2 Result analysis 

The stress contour of each case is shown in Fig. 2.5- 2.9.  

Stress in the x direction and y direction is noted in order to obtain both the maximum 

tension at point B, which is in x direction and the maximum compression at point A, which is in y 

direction. The location of point A and point B is indicated in Fig. 2.1. 
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(a) 

 

(b) 

Figure 2.5. Stress contour for circular excavation: (a) stress in x direction, s11; (b) stress in y direction, s22 
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(a) 

 

(b) 

Figure 2.6. Stress contour for horizontal elliptical excavation 1: (a) stress in x direction, s11; (b) stress in y 

direction, s22 
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(a) 

 

(b) 

Figure 2.7. Stress contour for horizontal elliptical excavation 2: (a) stress in x direction, s11; (b) stress in y 

direction, s22 
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(a) 

 

(b) 

Figure 2.8. Stress contour for vertical elliptical excavation 1: (a) stress in x direction, s11; (b) stress in y 

direction, s22 
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(a) 

 

 

(b) 

Figure 2.9. Stress contour for vertical elliptical excavation 2: (a) stress in x direction, s11; (b) stress in y 

direction, s22 
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As shown in the contour, maximum tension in x direction, 𝜎𝜎𝑥𝑥𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚, is induced at point B. 

Maximum compression in y direction, 𝜎𝜎𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 , is induced at point A as shown in the stress 

contours. These results are consistent with what is expected. The maximum critical stresses of each 

case are shown in Table 2.2. 

 
 

Table 2.2. Maximum critical stresses of each case 

 Vertical 2 Vertical 1 Circle Horizontal 1 Horizontal 2 

W/H 0.25 0.5 1 2 4 

𝜎𝜎𝑥𝑥𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚 at 

point B 
0.88E-03 1.20E-03 1.10E-03 1.20E-03 0.80E-3 

H/W 4 2 1 0.5 0.25 

𝜎𝜎𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 at 

point A 
2.15E-03 2.76E-03 3.75E-03 5.99E-03 8.77E-03 

 
 
 
The magnitude of openings at point B can be depicted by the values of 𝑊𝑊/𝐻𝐻 , and 

magnitude of openings at point A can be depicted by the values of 𝐻𝐻/𝑊𝑊 , where 𝐻𝐻 =

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑊𝑊 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. In addition, the variations of maximum 

stresses when the degree of openings increases are shown in Fig. 2.10. (a) and (b). It is indicated 

that the maximum compression 𝜎𝜎𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚   at point A decreases as the degree of opening at the 

concentration grows - that is to say, the excavation with the larger opening at the compression 

concentration presents lower 𝜎𝜎𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 than that with narrow opening. However, the theory doesn’t 

apply to the analysis of tension. The maximum tension 𝜎𝜎𝑥𝑥𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚, which is located at point B exhibits 

the fluctuating magnitude as the degree of opening increases. The results present the conversed 

law with respect to the expected principal, that is, the minimum value happens at the acutest 
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opening. In another word, the elliptical excavation with the most acute crown exhibits the lowest 

tension. In conclusion, the influence of the degree of the opening on the magnitude of compression 

is reasonable and consistent with the expected principle - that is, the concentration with a larger 

opening (the positive direction of x axis in both two plots) produces lower compression. 

Conversely, the concentration with a smaller opening produces lower tension. 

 
 

 

(a) 

 

 

(b) 

Figure 2.10. Variations of (a) 𝜎𝜎𝑦𝑦𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚  at point A and (b) 𝜎𝜎𝑥𝑥𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚  at point B 
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2.2 LINEAR ELASTIC FRACTURE MECHANICS 

2.2.1 Circular excavation 

The tangential stress around the opening is obtained through LEFM by Kirsch [11] as 

 𝜎𝜎𝜃𝜃𝜃𝜃 =
𝑃𝑃
2
�(1 + 𝐾𝐾)�1 +

𝑎𝑎2

𝑟𝑟2
� + (1 − 𝐾𝐾)�1 +

3𝑎𝑎4

𝑟𝑟4
� 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃� (2.1) 

In this case,  

 

K = 0 

a = r 

θ = 90° for point B 

θ = 0° for point A 

(2.2) 

Substituting these conditions into the equation above, we have 

At point A: 

 𝜎𝜎𝐵𝐵 = 3𝑃𝑃 = 3 × 0.001148 = 0.003444 MPa, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 (2.3) 

At point B: 

 𝜎𝜎𝐴𝐴 = −𝑃𝑃 = −0.001148 MPa,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (2.4) 

Comparison between the stresses from FEM and that from LEFM is shown in Table 2.3. 

 

Table 2.3. Stress results from FEM and LEFM for circle 

 FEM Method, a LEFM Method, b Differences, (a-b)/b 

𝜎𝜎𝐴𝐴, MPa 3.75E-03 3.44E-03 9.01% 

𝜎𝜎𝐵𝐵, MPa 1.10E-03 1.14E-03 3.51% 
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2.2.2 Elliptical excavation 

The cross section for the Ellipse excavation is shown in Fig. 2.11. 𝜎𝜎𝐵𝐵 and 𝜎𝜎𝐴𝐴 are derived by B. H. 

G. Brady & E. T. Brown. as 

  𝜎𝜎𝐴𝐴 = 𝑝𝑝(1 − 𝐾𝐾 + 2𝑞𝑞) (2.5) 

 𝜎𝜎𝐵𝐵 = 𝑝𝑝 �𝐾𝐾 − 1 +
2𝐾𝐾
𝑞𝑞
� (2.6) 

 

 

Figure 2.11. Geometry for the elliptical excavations specifying the stresses at point A and B under uniaxial 

stress field [13] 

 
 
 
In this case, 𝐾𝐾 = 0. Hence, the equations are reduced to  

 
 𝜎𝜎𝐴𝐴 = 𝑝𝑝(1 + 2𝑞𝑞) 

𝜎𝜎𝐵𝐵 = −𝑝𝑝 
(2.7) 

where 
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𝑝𝑝 = 0.001193 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑞𝑞 =
𝑊𝑊
𝐻𝐻

= 2 𝑓𝑓𝑜𝑜𝑟𝑟 𝐻𝐻1 

𝑝𝑝 = 0.001219 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑞𝑞 =
𝑊𝑊
𝐻𝐻

= 4 𝑓𝑓𝑓𝑓𝑓𝑓 𝐻𝐻2 

𝑝𝑝 = 0.001351 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑞𝑞 =
𝑊𝑊
𝐻𝐻

= 0.5 𝑓𝑓𝑓𝑓𝑓𝑓 𝑉𝑉1 

𝑝𝑝 = 0.001424 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑞𝑞 =
𝑊𝑊
𝐻𝐻

= 0.25 𝑓𝑓𝑓𝑓𝑓𝑓 𝑉𝑉2 

(2.8) 

The theoretical results, compared with the FEM results, are shown in Table 2.4 

Table 2.4. Stress results from FEM and LEFM for ellipse 

FEM Method LEFM Method 

H1 
𝜎𝜎𝐴𝐴 , MPa 5.99E-03 5.97E-03 

𝜎𝜎𝐵𝐵, MPa 1.20E-03 1.19E-03 

H2 
𝜎𝜎𝐴𝐴 , MPa 8.77E-03 10.97E-03 

𝜎𝜎𝐵𝐵, MPa 0.80E-03 1.22E-03 

V1 
𝜎𝜎𝐴𝐴 , MPa 2.76E-03 2.70E-03 

𝜎𝜎𝐵𝐵, MPa 1.20E-03 1.35E-03 

V2 
𝜎𝜎𝐴𝐴 , MPa 2.15E-03 2.14E-03 

𝜎𝜎𝐵𝐵, MPa 0.88E-03 1.42E-03 

2.3 COMPARISON BETWEEN XFEM AND LEFM APPROACH 

The results from numerical analysis and theoretical analysis of the maximum tension and 

compression are shown in Fig. 2.12. (a) and (b) respectively. These results indicate that these two 

methods produce more precise results at the concentrations with larger opening. With the openings 

with smaller magnitudes, the results from FEM are much lower than that from LEFM for both 

tension and compression. Furthermore, the difference between the two methods becomes 

increasingly larger when the opening of the concentration becomes smaller. Generally, the 
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compression or tension modeled by FEM is closer to the theoretical solution when the opening at 

the concentration point is larger. Both results show that at point A, the compression decreases as 

the magnitude of openings grows, whereas, at point B, the magnitude of tension does not vary that 

much. 

 
 

 

(a) 

 

(b) 

Figure 2.12. Comparisons between Numerical Analysis Using FEM and Theoretical Analysis Using LEFM 

on the stress at (a) Point A; and (b) Point B
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3.0  DIRECT SHEAR TEST ON PRISMATICS BRITTLE SAMPLES WITH 

OPENINGS OF DIFFERENT SHAPES 

3.1 FINITE ELEMENT METHOD 

3.1.1 Test formulation 

The geometry, mesh strategy, and material properties in the simulation of the direct shear test are 

same as those in uniaxial test.  The system of stresses acting on the soil element located in the 

shear zone during direct shear test are shown in Fig. 3.1. Based on this framework, the loading 

system applied in the direct shear test is transformed to the equivalent stress field on the soil 

element, as shown in Fig. 3.2. Normal stresses applied on four external boundaries are taken as 

7.81e-4 𝑀𝑀𝑀𝑀𝑀𝑀, and the shear stresses are taken as 3.35 × 10−4 𝑀𝑀𝑀𝑀𝑀𝑀. 
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Figure 3.1. Stresses acting on a soil element on the failure surface in the direct shear test 

 

 

 

Figure 3.2. Load condition in the direct shear test utilizing the equivalent stress field of a soil element on 

the failure surface 
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3.1.2 Result analysis 

The stress contour of each geometry is shown in Fig. 3.3 to 3.7.  

 

(a) 

 

(b) 

Figure 3.3. Stress contour for circular excavation: (a) maximum principal stress; (b) minimum principal 

stress 
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(a) 

 

(b) 

Figure 3.4. Stress contour for horizontal elliptical excavation 1: (a) maximum principal stress; (b) 

minimum principal stress 
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(a) 

 

(b) 

Figure 3.5. Stress contour for horizontal elliptical excavation 2: (a) maximum principal stress; (b) 

minimum principal stress 
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(a) 

 

(b) 

Figure 3.6. Stress contour for vertical elliptical excavation 1: (a) maximum principal stress; (b) minimum 

principal stress 
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(a) 

 

(b) 

Figure 3.7. Stress contour for vertical elliptical excavation 2: (a) maximum principal stress; (b) minimum 

principal stress 
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It is worth noting that the compression and tension in ABAQUS is defined as negative and 

positive, respectively. Also, according to the boundary stress equation in LEFM, only tangential 

stress exists around the excavation. Hence, the maximum principal stress as well as the maximum 

tangential stress is associated with the maximum tension around the boundary excavation, and the 

minimum principal stress as well as the minimum tangential stress is associated with the maximum 

compression. This illustrates why the maximum principal stress and the minimum principal stress 

are exported in this case. As shown in the contour, the maximum compression and tension are no 

longer induced at point A nor point B. The maximum tension 𝜎𝜎𝑡𝑡 and compression 𝜎𝜎𝑐𝑐 are shown in 

Table 3.1.  

 

Table 3.1. Maximum critical stresses with FEM method in direct shear test 

 Vertical 2 Vertical 1 circle Horizontal 1 Horizontal 2 

W/H 0.25 0.5 1 2 4 

𝜎𝜎𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚, 

MPa 
5.02E-04 2.16E-04 1.25E-04 2.15E-04 4.82E-04 

H/W 4 2 1 0.5 0.25 

𝜎𝜎𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 

MPa 
7.50E-03 4.61E-03 3.69E-03 4.56E-03 7.56E-03 
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(a) 

 

(b) 

Figure 3.8. Variation of (a) 𝜎𝜎𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚  and (b) 𝜎𝜎𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 when degree of opening at the corresponding 

concentration increases 

 

Furthermore, variations in maximum tension and compression that are found as the degree 

of opening increases are plotted in Fig. 3.8. (a) and (b). As shown in Fig. 3.8.a, 𝜎𝜎𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 declined as 

the magnitudes of openings grows when H/W is smaller than one. In this case, the rule is consistent 

with that of the uniaxial test. After H/W exceeds one, the maximum stresses increase as the 
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magnitudes of openings grows. In other words, the geometry with H/W equals to 1 presents the 

lowest 𝜎𝜎𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚.  

In Fig. 3.8. (b), it can be seen that before W/H reaches one, 𝜎𝜎𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 decreases as the degree 

of the opening increases. After W/H exceeds one, 𝜎𝜎𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚  increases as the degree of opening 

increases. The geometry with W/H equals to one, i.e., the circular excavation exhibits the lowest 

𝜎𝜎𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 as well as the lowest 𝜎𝜎𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 on the direct shear test.  

3.2 LINEAR ELASTIC FRACTURE MECHANCIS 

Given 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦, the angle, 𝛽𝛽 between the transformed principle plane and the positive direction of 

𝑋𝑋 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 can be obtained by  

tan 2𝛽𝛽 =
2𝜏𝜏𝑥𝑥𝑥𝑥

𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑥𝑥
(3.1) 

Hence, 

𝛽𝛽 = 45°, 

indicating that the principle plane is 45° counter-clockwise to the horizontal plane (see Fig. 

3.9). 



52 

      (a)                                                                                 (b) 

Figure 3.9. Transformation of load conditions in direct shear test (a) original stress field; (b) transformed 

stress field 

Next, the transformed stresses can be obtained using 

𝜎𝜎1 =
𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑥𝑥

2
+ ��

𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑥𝑥
2

�
2

+ 𝜏𝜏𝑥𝑥𝑥𝑥2

𝜎𝜎3 =
𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑥𝑥

2
−��

𝜎𝜎𝑦𝑦 − 𝜎𝜎𝑥𝑥
2

�
2

+ 𝜏𝜏𝑥𝑥𝑥𝑥2

(3.2) 

The resulting principal stresses are shown in Table 3.2. 

Table 3.2. Principal stresses transformed from the original stress field 

𝜎𝜎𝑥𝑥𝑥𝑥,𝑀𝑀𝑀𝑀𝑀𝑀 𝜎𝜎𝑦𝑦𝑦𝑦,𝑀𝑀𝑀𝑀𝑀𝑀 𝜏𝜏𝑥𝑥𝑥𝑥,𝑀𝑀𝑀𝑀𝑀𝑀 𝜎𝜎1,𝑀𝑀𝑀𝑀𝑀𝑀 𝜎𝜎3,𝑀𝑀𝑀𝑀𝑀𝑀 𝛽𝛽,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

7.81E-04 7.81E-04 3.35E-04 1.12E-03 4.46E-04 4.50E+01 
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𝜎𝜎𝑡𝑡 =
2𝑎𝑎𝑎𝑎(𝜎𝜎3 + 𝜎𝜎1) + (𝜎𝜎3 − 𝜎𝜎1)[(𝑎𝑎 + 𝑏𝑏)2 cos 2(𝛽𝛽 − 𝜂𝜂) − (𝑎𝑎2 − 𝑏𝑏2) cos 2𝛽𝛽]

𝑎𝑎2 + 𝑏𝑏2 − (𝑎𝑎2 − 𝑏𝑏2) cos 2𝜂𝜂
(3.3) 

where 𝑎𝑎 is the length of the elliptical axis on the x direction, b is the length of the elliptical 

axis on the y direction (a=b for circular excavation), 𝛽𝛽 is the angle between 𝜎𝜎1 and x-axis, and 𝜂𝜂 

is defined as 

tan 𝜂𝜂 =
𝑏𝑏
𝑎𝑎

tan𝜃𝜃 (3.4) 

where 𝜃𝜃 is the angle of certain point with respect to positive x-axis. For different geometry, 

coordinates of concentration with maximum compression or tension stress are found based on the 

FEM results in order to find 𝜃𝜃. The maximum critical compression and tension stresses can be 

calculated using Eq. 3.3, as shown in Table 3.3. 

Table 3.3. Maximum compressions and tensions in FEM and LEFM for direct shear test 

Vertical 2 Vertical 1 circle Horizontal 1 Horizontal 2 

W/H 0.25 0.5 1 2 4 

𝜎𝜎𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 LEFM, MPa 2.86E-04 -4.33E-05 -2.4E-04 -4.04E-05 2.81E-04 

𝜎𝜎𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚 FEM, MPa 5.02E-04 2.16E-04 1.25E-04 2.15E-04 4.82E-04 

H/W 4 2 1 0.5 0.25 

𝜎𝜎𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 LEFM, MPa 6.29E-03 3.86E-03 2.91e-03 3.82e-03 6.66e-03 

𝜎𝜎𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 FEM, MPa 7.50E-03 4.61E-03 3.69E-03 4.56E-03 7.56E-03 

The tangential stress at any point of the excavation boundary can be obtained as 
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3.3 COMPARISON BETWEEN XFEM AND LEFM APPROACH 

In order to check the accuracy of FEM, comparison between FEM and LEFM is plotted in Fig. 

3.10. As shown in the Figure, in simulating the compression, the result from FEM is close to the 

LEFM for different geometries. With regard to compression, the two methods have larger 

difference in the geometry for openings of smaller curvature. That is to say, when the curvature of 

the opening is smaller, the difference between the results of the two methods is greater. However, 

the two methods have a large difference in the results of tension stress. The magnitude of stress in 

LEFM results is lower than that in FEM results.  

The difference is so greater since that the location in the FEM method for maximum tension 

is not accurate as the location in the LEFM approach. And the location from FEM is utilized to 

calculate the maximum tension in LEFM which accounts for the difference. 
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(a) 

b) 

Figure 3.10. Comparison between FEM and LEFM in conditions of maximum (a) compression and (b) 

tension stress with respect to the different degree of opening

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

8.00E-03

0 1 2 3 4 5

𝜎𝜎c
,m

ax
, M

Pa

H/W

FEM

LEFM

-3.00E-04

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

0 1 2 3 4 5

𝜎𝜎t
,m

ax
, M

Pa

W/H

FEM

LEFM



56 

4.0  DIRECT SHEAR TEST ON A SLOPE WITH A NOTCH AT ITS TOE 

The influence of the fissures on the strength and failure characteristics of clay has been investigated 

by Vallejo [37]. Fracture criterion in LEFM theory has been applied to such problems and has been 

proved to be effective in predicting the crack propagation under mixed mode [39]. Furthermore, 

certain experiments have been conducted on the formation of a notch (a cut induced by so called 

wave action) in soil and clay coastal slopes [1]. The objective of this study is to investigate the 

influence of a different loading field and different initial opening on the propagation of secondary 

cracks, using an XFEM based LEFM approach in ABAQUS and compare the results with those 

derived by theoretical method, LEFM.  

4.1 INFLUENCE OF DIFFERENT LOADING FIELD ON THE DIRECTION OF 

THE SECONDARY CRACK PROPAGATION 

As introduced in the motivation, the ratio of lateral pressure and vertical pressure differs when the 

loading history of the earth is different. It is supposed that direction of the secondary crack 

propagation is related to the ratio of stress intensity factors in different mode. Under mixed mode 

of I and II, the angle α with respect to the crack plane of the initial notch is proved to be affected 

by the ratio of 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼⁄ . 
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4.1.1 Extended Finite Element Method 

4.1.1.1 Test formulation in ABAQUS 

Three tests are conducted in this section, of which the ratios of normal and shear stress are 

more than one, equal to one, and less than one, respectively. The geometry of the slope (see Fig. 

4.1.) is referred to the previous experimental study conducted by Luis E. Vallejo [39]. The 

thickness of the slope is 25.4 mm. The load condition in each test is identical and consists of 

vertical pressure on the top of the slope and horizontal displacement ∆𝑢𝑢 on the right, shown in Fig. 

4.2. Movement is restrained in all directions on the left, right and bottom face.  

 

 

Figure 4.1. Dimension of slope with an open notch at its toe 
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Figure 4.2. Load conditions comprising a normal force and a lateral force 

 

The material properties, Young’s Modulus and Poisson’s ratio of slope are defined as same 

as in the uniaxial and biaxial test.  

Only static analysis is allowed in XFEM in ABAQUS, hence, a general static step is 

selected. In addition, the step time is set to be 0.2 second with the minimum time increment as 

small as 10e-17 second so that the system is able to keep running. More importantly, because of 

enrichment of the approximation, the maximum number of attempts allowed for each iteration is 

larger than that in the standard finite element method. Consequently, the number of attempts, 𝐼𝐼𝐴𝐴  

increases to 30 instead of the default value 5.  

In order to prevent the volume locking of the element, a CPS4R (free four-node bilinear) 

element is selected. Because that the real test is conducted on the so called plane stress direct shear 

apparatus (PSDSA), the plane stress element is selected.  
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4.1.1.2 Fracture criterion utilized in ABAQUS 

The maximum principal stress fracture criterion is selected to identify the crack initiation, 

and the maximum principal stress is set to be the tensile strength of the normal clay. A proper 

damage distance is selected in order to terminate the test. The crack propagation is identified using 

LEFM based on the extended finite element method in ABAQUS. The direction of the crack is set 

to be normal to the maximum tangential stress around a crack tip.  

4.1.1.3 Result analysis 

The process of the crack initiation and propagation in each condition simulated in 

ABAQUS are shown in Fig. 4.1- 4.3.  

The comparisons of the final crack are shown in Fig. 4.6. In order to clearly observe the 

direction of the final crack propagation, another drawing was created based on the export result of 

ABAUQS, shown in Fig. 4.7. 

It is supposed that the lateral force 𝐹𝐹𝐿𝐿 induced from the horizontal displacement is also 

identical for each test considering  

 𝐹𝐹𝐿𝐿 = 𝐸𝐸𝐸𝐸
∆𝑢𝑢
𝐿𝐿

 (4.1) 

where the magnitude of each term on the right of the equation is identical in each test, 

denoting 𝐸𝐸 with the Young’s modulus of the material, 𝐴𝐴 the area of the loading area on the right 

face, 𝐿𝐿 the vertical length of the loading area. In order to derive the lateral force, the reaction force 

of each node on the segment of the lateral load is exported and summed in the final stress contour 

of each test. 
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(a) in the beginning 

 

(b) when the crack initiates 

 

(c) after the crack propagates 

Figure 4.3. Maximum principal stress contour (a) in the beginning (b) when the crack initiates (c) after the 

crack propagates for the case in which 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ > 1 
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(a) in the beginning 

 

(b) when the crack initiates 

 

(c) after the crack propagates 

Figure 4.4. Maximum principal stress contour (a) in the beginning (b) when the crack initiates (c) after the 

crack propagates for the case in which 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ ≈ 1 
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(a) in the beginning 

 

(b) when the crack initiates 

 

(c) after the crack propagates 

Figure 4.5. Maximum principal stress contour (a) in the beginning (b) when the crack initiates (c) after the 

crack propagates for the case in which 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ < 1 



 63 

 

(a) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ > 1 

 

(b) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ ≈ 1 

 

(c) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ < 1 

Figure 4.6. Final step with the angle of crack propagation in three tests (a) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ < 1; (b) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ ≈ 1; (c) 

𝜏𝜏 𝜎𝜎𝑛𝑛⁄ < 1 
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(a) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ > 1 

 

(b) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ ≈ 1 

 

 

(c) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ < 1 and the slope of real case in Mississipi [1] 

Figure 4.7. Final step with the angle of crack propagation in three tests (a) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ < 1; (b) 𝜏𝜏 𝜎𝜎𝑛𝑛⁄ ≈ 1; (c) 

𝜏𝜏 𝜎𝜎𝑛𝑛⁄ < 1 



 65 

4.1.2 Linear elastic fracture mechanics approach 

Given 𝑃𝑃𝑁𝑁  the vertical pressure on the top, 𝑃𝑃𝐿𝐿  the lateral pressure resulted from the uniform 

displacement on the right, and A1, A2 the area of the total and half of the top and the right face of 

the slope, respectively, the induced normal stress, 𝜎𝜎𝑛𝑛 and shear stress, 𝜏𝜏 acting on the initial crack 

planes is derived as 

 

𝜎𝜎𝑛𝑛 = 𝑃𝑃𝑁𝑁 

τ =
𝐹𝐹𝐿𝐿
𝐴𝐴2

= 𝑃𝑃𝐿𝐿 
(4.2) 

The vertical pressure and the exported lateral pressure in each condition are shown in 

Table. 4.1. 

Theoretical analysis was carried out on the basis of the same load condition in XFEM 

analysis in order to compare the results of the two methodologies.  

 

 

Table 4.1. Vertical pressure and lateral pressure acting on the slope 

 open0-1 open0-2 open0-3 

𝐹𝐹𝐿𝐿, N 12.63 7.59 5.10 

Loading Area,mm2 990.60 990.60 990.60 

τ, MPa 0.01 0.01 0.01 

σ, MPa 0.01 0.01 0.02 

𝜎𝜎 𝜏𝜏⁄  1.82 1.09 0.34 

 
 
 
According to the maximum tangential stress criterion in LEFM theory given by Erogan 

and Sih [16], the angle of the secondary crack is determined by  
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 sin𝛼𝛼 +
𝐾𝐾𝐼𝐼𝐼𝐼
𝐾𝐾𝐼𝐼

(3 cos𝛼𝛼 − 1) = 0 (4.3) 

where  

 
𝐾𝐾Ι = 1.1215 𝜎𝜎𝑛𝑛(𝜋𝜋𝜋𝜋)1/2 

𝐾𝐾ΙI = 1.1215 𝜏𝜏 (𝜋𝜋𝜋𝜋)1/2 
(4.4) 

Substituting Eq. 4.4 into Eq. 4.3, we obtain  

 sin𝛼𝛼 +
τ
σ𝑛𝑛

(3 cos𝛼𝛼 − 1) = 0 (4.5) 

The resulting analytical solution derived using the theoretical method described above is 

shown in Table 4.2. 

 

Table 4.2. Theoretical solutions of 𝛼𝛼, the angle of crack propagation with respect to the crack plane 

 open0-1 open0-2 open0-3 

τ/σ𝑛𝑛 1.82 1.09 0.34 

𝛼𝛼, degree 80.5 88.46 120.72 

4.1.3 Comparison between XFEM and LEFM Approach 

Defined with t = τ/σ𝑛𝑛, the equation on the above can now be rewritten as 

 sin𝛼𝛼 + t(3 cos𝛼𝛼 − 1) = 0 (4.6) 

The angle of propagation is plotted against the ratio of shear to normal stress, as shown in 

Fig. 4.8. 
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Figure 4.8. Crack propagation angle, α plotted against the ratio of shear and normal stress, t derived with 

theoretical method 

 
 
The results of the XFEM and LEFM approach used in this study are combined in Table 

4.3. and compared in Fig. 4.9. 

As shown in Fig. 4.9, two methods give the similar solution in terms of the case in which 

ratio of shear and normal stress equals to one and similar results are obtained when the ratio is less 

than one. When the ratio exceeds one, XFEM cannot simulate the same angle as theoretical 

method. In general, simulation of arbitrary crack propagation based on XFEM is closer to the 

theoretical solution when the normal stress is larger than the shear stress acting on the crack plane.   

The two methods prove that a crack will propagate at a right angle with respect to the crack 

plane when the shear stress is equal to normal stress, at an acute angle when shear is greater than 

normal stress, and at an obtuse angle when shear is less than normal stress. In addition, the angle 

of the secondary crack propagation decreases as the ratio of shear to normal stress increases. It is 

not difficult to comprehend that when the shear stress is acting on the top of the crack plane (Mode 
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II), the tension will be induced above the crack tip on the right so that the crack will extend to the 

right, as shown in Fig. 4.10. 

 

Table 4.3. Theoretical and numerical solutions to the angle of propagation 

 under different ratio of shear and normal stress 

 open0-1 open0-2 open0-3 

t=τ/σ 1.82 1.09 0.34 

theoretical α, degree 80.50 88.46 120.72 

numerical α, degree 62.00 88.00 115.00 

 
 
 

 

Figure 4.9. Comparison between theoretical and numerical solutions of angle of crack propagation 
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Figure 4.10. Stress field around the crack tip under the shear stress 

4.2 INFLUENCE OF DIFFERENT OPENING OF INITIAL CRACK ON THE 

DIRECTION OF THE SECONDARY CRACK PROPAGATION 

When there is a notch at the toe of a coastal slope, wave impact and abrasion will cause erosion 

and the notch will grow. This section investigates how the increasing degree of the opening 

influences the secondary crack propagation. The theoretical solution introduced above focuses on 

the horizontal notch, a transformation of the force is needed for the inclined crack plane to adapt 

the method.   

4.2.1 Extended finite element method 

4.2.1.1 Test formulation 

In order to explore how the degree of opening of notch influences the direction of crack 

propagation, the load conditions were set to be same. Considering the result from the last section, 

i.e., that XFEM produces a better simulation when the shear stress is less than normal stress, the 
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ratio of shear to normal stress was set to be 0.82 in this section. The only variation, the angle of 

the initial crack for each of the three tests were 0 degree, 30 degree, and 45 degree, respectively. 

One of the benefits of partition is that the change in the angle only affects the region at the crack 

tip, thus, a large amount of time was saved when modifying the mesh configuration.  

4.2.1.2 Result analysis 

The same methodology was adapted to derive the lateral force,  𝐹𝐹𝐿𝐿 from the node reaction 

force. It is not difficult to comprehend that the lateral force at the final step was same in each test 

when the lateral distance was set to be identical for all three. However, the lateral force was 

expected to differ when the crack initiated. The resulting lateral force at initiation of the crack is 

shown in Table 4.4 and plotted in Fig. 4.11 with respect to the opening of notch. Calculations of 

the normal and shear stress acting on the crack plane are also indicated in Table 4.4. 

As indicated in Fig. 4.11, the lateral force increases as the initial opening increases, that is, 

a slope with a notch of a larger degree of opening at the toe can resist a larger lateral force when 

the secondary crack initiates, which is consistent with the principle discussed in Chapter 2.  

 

Table 4.4. Lateral force at crack initiation and final step for initial cracks with different degrees of opening 

 open0-1 open0-2 open0-3 

Initiation 𝐹𝐹𝐿𝐿, N 1.06 1.90 5.05 

Final step 𝐹𝐹L, N 10.60 10.60 10.60 

τ, MPa 0.01 0.01 0.01 

σ𝑛𝑛, MPa 0.013 0.013 0.013 

𝜏𝜏 σ𝑛𝑛⁄  0.82 0.82 0.82 
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Figure 4.11. Lateral force at initiation of the secondary crack plotted against different degree of opening 

 
 
The process of the crack initiation and propagation in each condition simulated in 

ABAQUS are shown in Fig. 4.12- 4.14.  

In order to clearly observe the direction of the final crack propagation, another drawing is 

conducted based on the export result of ABAUQS, shown in Fig. 4.15. 
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(a) when the crack initiates 

 

(b) after the crack propagates 

 

(c) Geometry of the crack propagation at the final step 

Figure 4.12. Maximum principal stress contour (a) when the crack initiates; (b) after the crack propagates 

and (c) geometry of the final crack propagation when the initial crack opening is 0 degree 
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(a) when the crack initiates 

 

(b) after the crack propagates 

 

c) Geometry of the crack propagation at the final step 

Figure 4.13. Maximum principal stress contour a) when the crack initiates; b) after the crack propagates 

and c) geometry of the final crack propagation when the initial crack opening is 30 degree 
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(a) when the crack initiates 

 

(b) after the crack propagates 

 

c) Geometry of the crack propagation at the final step 

Figure 4.14. Maximum principal stress contour (a) when the crack initiates; (b) after the crack propagates 

and c) geometry of the final crack propagation when the initial crack opening is 30 degree 
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(a) Original crack opening, 𝛽𝛽 = 0° 

 

 

(b) Original crack opening, 𝛽𝛽 = 30° and the corresponding coastal slope in England [1] 

 

(c) Original crack opening, 𝛽𝛽 = 45° 

Figure 4.15. Final step with the angle of crack propagation in three test (a) Original crack opening, 𝛽𝛽 = 0°; 

(b) Original crack opening, 𝛽𝛽 = 30°; (c) Original crack opening, 𝛽𝛽 = 45° 
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The angle of the secondary crack propagation is defined as the angle between the final 

crack propagation and the crack plane. The entire crack is considered to have three components, 

the crack initiation, the crack growth, and the crack propagation. For the case of original crack 

opening, 𝛽𝛽 is equal to 30 degree and 45 degree, the crack growth part is more obvious than in the 

standard notch. In these two cases, variation of the crack plane is taken into consideration. For the 

standard notch with zero opening, the crack plane is horizontal; however, if the initial crack has 

an angle of 𝛽𝛽, then the crack plane is defined as the angular bisector of the two crack faces. Hence, 

the final crack propagation angle, 𝛼𝛼′ should be the same as the angle shown in the drawing, 𝛼𝛼 plus 

𝛽𝛽 2⁄ , shown in Table 4.5. 

 

Table 4.5. Numerical solutions for the angle of secondary propagation with respect to the crack plane 

 Open0 Open30 Open45 

𝛽𝛽, degree 0 30 45 

𝛼𝛼, degree 117.00 124.00 122.00 

𝛼𝛼′, degree 117.00 139.00 144.50 

 

4.2.2 Linear elastic fracture mechanics approach 

Theoretical solutions from Erdogan and Sih [16] are applicable for the standard notch, however, 

for the case in which the notch has an initial angle, the solution should be modified and extended 

by using the load resolution. Denoted with 𝜎𝜎𝑛𝑛  the normal stress on the standard notch, τ the shear 

stress on the standard notch, the normal stress 𝜎𝜎𝑛𝑛′  and shear stress 𝜏𝜏′ of the notch with an initial 

angle 𝛽𝛽 can be derived as  
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𝜎𝜎𝑛𝑛′ = 𝜎𝜎𝑛𝑛2 + 𝜏𝜏1 

                     = 𝜎𝜎𝑛𝑛 cos𝛽𝛽 + 𝜏𝜏 sin𝛽𝛽  

 𝜏𝜏′ = 𝜏𝜏2 − 𝜎𝜎𝑛𝑛1 

                     = 𝜏𝜏 cos𝛽𝛽 − 𝜎𝜎𝑛𝑛 sin𝛽𝛽 

(4.7) 

where 𝜎𝜎𝑛𝑛2 and 𝜎𝜎𝑛𝑛1 are the components of 𝜎𝜎𝑛𝑛 parallel and perpendicular, respectively, to 

the crack face, and 𝜏𝜏1 and 𝜏𝜏2 are the components of 𝜏𝜏 perpendicular and parallel to the crack face 

respectively, as shown in Fig. 4.16. 

  The ratio of the shear and normal stress, 𝑡𝑡′ for the notch with an initial angle is presented 

as 

 

 𝑡𝑡′ =
𝜏𝜏′

𝜎𝜎𝑛𝑛′
=
𝜏𝜏 cos𝛽𝛽 − 𝜎𝜎𝑛𝑛 sin𝛽𝛽
𝜎𝜎𝑛𝑛 cos𝛽𝛽 + 𝜏𝜏 sin𝛽𝛽

 

 𝑡𝑡′ =
𝑡𝑡 − tan𝛽𝛽

1 + 𝑡𝑡 tan𝛽𝛽
 

(4.8) 

where 𝑡𝑡 = 𝜏𝜏/𝜎𝜎𝑛𝑛. 

Now we can derive the direction equation for the notch with an initial angle as 

 sin𝛼𝛼 + 𝑡𝑡′(3 cos𝛼𝛼 − 1) = 0 (4.9) 

where 

 𝑡𝑡′ =
𝑡𝑡 − tan𝛽𝛽

1 + 𝑡𝑡 tan𝛽𝛽
 (4.10) 

As seen in the equation above, if 𝛽𝛽 increases, 𝑡𝑡′ will decrease, and based on the graph of 

the direction equation, the angle for the crack propagation will increase. In other words, a larger 

angle of the secondary crack propagation will be induced if given a notch with a larger initial 

angle.  
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(a) 

 

(b) 

 

(c) 

Figure 4.16. Load transformation from the normal notch to the notch with an angle 𝛽𝛽 

 (a) normal and shear stress acting on the normal notch; (b) load resolution of the normal and shear stress; 

(c) resulted normal and shear stress on a notch with an angle 
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Theoretical solutions for the directions of crack propagation for each geometry of notch 

are shown in Table. 4.6. 

 

Table 4.6. Theoretical result for the angle of secondary crack propagation given different initial openings 

 Open0 Open30 Open45 

β, degree 0 30 45 

𝑡𝑡′ 0.82 0.16 0.10 

𝛼𝛼, degree 94.18 144.10 157.00 

 

4.2.3 Comparison between XFEM and LEFM approach 

The secondary crack propagation angle, α  from the numerical and theoretical methods are 

compared in Table 4.7 and plotted with respect to the actual ratio of shear and normal stress, t and 

the degree of opening notch, β in Fig. 4.17 (a) and (b), respectively. 

 

Table 4.7. Results of angle, 𝛽𝛽 of secondary crack propagation for different angles of notch from numerical 

and theoretical method 

 Open0 Open30 Open45 

𝛽𝛽 0 30 45 

𝑡𝑡′ 0.82 0.16 0.10 

theoretical α, degree 94.18 124.10 157.00 

numerical α, degree 117.00 139.00 144.50 
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(a) 

 

(b) 

Figure 4.17. Comparison between theoretical and numerical approaches with regard to the angle of the 

secondary crack propagation against (a) the actual ratio of shear and normal stress on the crack plane and (b) 

different openings of  the notch 
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As shown in Fig. 4.17, the theoretical and numerical method indicate that the angle of the 

secondary crack propagation with respect to the crack plane grows when the opening of the notch 

increases. This can be observed by that the actual ratio of shear and normal stress acting on the 

crack plane decreases when the opening of notch grows.  

In addition, the results derived from the two method are more similar when the ratio of 

shear and normal is lower. In another words, a lower ratio of shear to normal stress, or a larger 

initial opening of the notch will increase the accuracy of XFEM simulation. However, at the 

narrow notch, the difference between the two method is larger. Mesh contour is not so precise at 

the concentration with small degree of opening which causes the difference with LEFM.  

The results also indicates that although XFEM based LEFM approach in ABAQUS is 

applicable for mixed mode, this method produces more accurate results when simulating the crack 

propagation under the load condition of Mode I than that under Mode II. The method associated 

with Mode I more accurately simulates the secondary propagation under mixed loading. 
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5.0  CONCLUSIONS 

This study of clay under uniaxial compression and direct shear test, using both numerical analysis 

based on the finite element method as well as theoretical analysis using linear elastic fracture 

mechanics produced the following conclusions: 

1. The geometry of the opening in clay significantly influences both the maximum stress around 

the excavation boundary as well as the secondary propagation at the notch of a slope. In 

uniaxial compression tests on clay with excavation, compression at the crack with larger degree 

of opening produces a lower value in the boundary excavation. However, the magnitude of 

tension varies a little in terms of different degree of opening. In direct shear test, both tension 

and compression reach the lowest value when H/W equals one. In the direct shear test for the 

slope with a notch at its toe, the angle of the secondary crack propagation increases as the 

degree of initial opening grows. In addition, the ratio of shear stress to normal stress also 

influences the secondary crack propagation. With more shear stress acting on the slope, the 

crack will propagate to the right side of the crack tip. 

2. In simulating the uniaxial compression test on clay with excavation of different geometry, 

FEM produces better results for modeling maximum compression and tension around the 

excavation boundary at the concentrations with a larger curvature, whereas at concentrations 

with a narrow opening, the results are not so accurate. In modeling the direct shear test, the 

compression results more closely resembled the theoretical results than the tension results. In 
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modelling the arbitrary crack propagation at the notch of a slope, the XFEM based LEFM 

method in ABAQUS accurately determines the angle of propagation accurately under mixed 

modes of loading. However, the results are not so accurate when the Mode II contributes a 

larger part in the load condition. The results from XFEM are closer to the results from LEFM 

when the initial opening of the notch is smaller for the reason that the actual ratio of shear and 

normal stress acting on the crack plane grows as the initial opening increases. 

3. LEFM is utilized successfully to solve the traditional problem as well as the problem with 

extended situations. For the uniaxial compression test, the LEFM is adapted directly. For the 

direct shear test, the loading system is modified to that in the theoretical problem, which has 

been effective in giving the reasonable results. For the slope with a notch at its toe, maximum 

tangential stress criterion is extended to the case with an inclined crack plane. However, some 

limitations are found in using the theoretical solutions.  

4. The author provides an explanation for the difference between XFEM and LEFM in simulating 

the tension behavior of brittle material under direct shear stress field in this study, however, 

more research is needed to investigate why this difference only occurs in tension behavior but 

not in compression behavior.  

5. This study provides only one real-world case that matched the simulation (ratio t is more than 

one). In future study, it would be beneficial to find and discuss additional practical cases related 

to the other two simulations as well.
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