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ABSTRACT 

 

Cost containment and quality of care have always been major challenges to the health care delivery 

system in the United States. Health care organizations utilize coded clinical data for health care 

monitoring, and reporting that includes a wide range of diseases and clinical conditions along with 

adverse events that could occur to patients during hospitalization. Furthermore, coded clinical data 

is utilized for patient safety and quality of care assessment in addition to research, education, 

resource allocation, and health service planning. 

Thus, it is critical to maintain high quality standards of clinical data and promote funding 

of health care research that addresses clinical data quality due to its direct impact on individual 

health outcomes as well as population health. This dissertation research is aimed at identifying 

current coding trends and other factors that could influence coding quality and productivity 

through two major emphases: (1) quality of coded clinical data; and (2) productivity of clinical 

coding. It has adopted a mix-method approach utilizing varied quantitative and qualitative data 

analysis techniques. Data analysis includes a wide range of univariate, bivariate, and multivariate 

analyses.  

Results of this study have shown that length of stay (LOS), case mix index (CMI) and DRG 

relative weight were not found to be significant predictors of coding quality. Based on the 

qualitative analysis, history and physical (H&P), discharge summary, and progress notes were 
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identified as the three most common resources cited by Ciox auditors for coding changes. Also, 

results have shown that coding productivity in ICD-10 is improving over time. Length of stay, case 

mix index, DRG weight, and bed size were found to have a significant impact on coding 

productivity. Data related to coder’s demographics could not be secured for this analysis. 

However, factors related to coders such as education, credentials, and years of experience are 

believed to have a significant impact on coding quality as well as productivity. Linking coder’s 

demographics to coding quality and productivity data represents a promising area for future 

research.  
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1.0  INTRODUCTION 

Coding constitutes one of the fundamental functions in the field of Health Information 

Management (HIM) (AHIMA, 2016). Coding can be defined as “the process of translating 

descriptions of diseases, injuries, and procedures into numeric or alphanumeric designations” 

(AHIMA, 2013). In this era of electronic health records (EHRs) and based on the need for 

electronic transactions, coders need not only to be familiar with the code assignment process but 

also with mapping among different clinical nomenclature and terminology (DeAlmeida, 2012; 

Giannangelo, 2011; Alakrawi, 2016).  

Clinical coders, at least, should have the knowledge and skills that are needed to deal with 

the Health Insurance Portability and Accountability Act (HIPAA) code sets. HIPAA standard code 

sets include the following: International Classification of Diseases, Tenth Revision, Clinical 

Modification (ICD-10-CM/PCS); Current Procedural Terminology (CPT-4); Code on Dental 

Procedures and Nomenclature (CDT); National Drug Codes (NDCs); and Healthcare Common 

Procedure Coding System (HCPCS) (AHIMA, 2016; CMS, 2016).  

ICD-10-CM is the system used to collect morbidity statistics in the United States (CMS, 

2016). It constitutes the basis for the U.S. reimbursement systems, particularly for the Inpatient 

Prospective Payment System (IPPS) developed by the Centers for Medicare and Medicaid Services 

(CMS). The IPPS is used by CMS to finance inpatient services rendered to Medicare and Medicaid 

beneficiaries (CMS, 2016). The United States implemented ICD-10-CM/PCS on October 1, 2015 
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(CMS,2016; Miller, 2016). ICD-10-CM/PCS includes both diagnoses and procedures code sets. 

Implementation of ICD-10-CM/PCS was crucial to replace the outdated ICD-9-CM coding system 

that had been in use since 1979 (Rode, 2013; Alakrawi, 2016).  

However, the World Health Organization’s (WHO) ICD-10 has been used since 1990 in 

the United States to collect mortality statistics; basically, to code death certificates and collect 

causes of death (NCHS, 2016; WHO, 2017). Based on the WHO’s ICD-10, the United States has 

developed ICD-10-CM/PCS for purposes related to morbidity and public health. Furthermore, 

coded clinical data has a considerable impact on the health care industry for assessing clinical 

outcomes, conducting research, promoting education, and planning health services (Alakrawi, 

2016; Avril & Bowman, 2012; Glenn, 2013; Linder, 2016; Rode, 2013; Walker, 2012). As 

mentioned earlier, coding is known to serve as the foundation of the reimbursement system in the 

United States. Therefore, there has been a rising demand to clinical data quality to meet 

reimbursement requirements (Alakrawi, 2016; Land, 2016). In addition, there has been an ever-

increasing demand to improve ICD-10 coding productivity standards to maintain healthy revenue 

and cashflow (Linder, 2016; Martin, 2016; Stanfill, 2015).  

There are many critical reasons to address the issue of clinical coding quality and 

productivity. Codes at the individual-level reflect the patients’ health status and are used as a 

communication tool between different healthcare providers. Codes are also used in conjunction 

with other items for reimbursement of services rendered to patients during their episodes of care. 

At the public health level, clinical codes are used to collect mortality as well as morbidity statistics 

that are further used for assessing population health in addition to health services planning and 

monitoring (Alakrawi, 2016; CMS, 2016; NCHS, 2016). 
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 There any many forces that can potentially influence coding quality and productivity. ICD-

10-CM codes are used for patient safety and quality of care monitoring. Specifically, ICD-10-CM 

codes are used by acute care facilities for reporting of adverse events that could happen to patients 

during hospitalization. These codes are further used by governmental organizations such as the 

Centers for Medicare and Medicaid Services (CMS) and the Agency for Healthcare Research and 

Quality (AHRQ) for assessing patient safety, and quality of care through performance indicators 

used to compare hospital performance across the country. The results of these assessments are 

frequently released to the public so that healthcare consumers can make informed decisions about 

their own health and safety.   

Clinical coded data are also used for public health reporting and health services planning. 

Particularly, ICD-10-CM data is used to collect population health statistics at the national and 

international levels. The Centers for Disease Control and Prevention (CDC) use coded clinical data 

in ICD-10-CM to identify the leading causes of death in the U.S. in addition to other measures of 

population health status. At the global level, the World Health Organization (WHO) utilizes data 

collected from all different countries for reporting of the leading causes of death in the globe. This 

type of reporting that is frequently performed is heavily dependent upon quality of data collected 

at the primary source. Consequently, health service planning and research priorities are set based 

on priorities identified through the aggregate coded data.  

The compliance date of implementation of ICD-10-CM/PCS was October 1, 2015 in the 

United States and many organizations had been reluctant to meet the deadline. The American 

Medical Association (AMA) and its regional associations had tried to delay the implementation of 

ICD-10-CM/PCS until 2017 (Health Data Management, 2014). However, the American Health 

Information Management Association had reaffirmed its stance and commitment to the actual 
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deadline. In 2012, “CMS estimated the cost to the healthcare industry of a one year delay to be as 

much as $6.6 billion, or approximately 30 percent of the $22 billion that CMS estimated had been 

invested or budgeted for ICD-10 implementation” (Butler, 2014; Butler, 2016).  

Implementation of ICD-10-CM/PCS had motivated healthcare providers and organizations 

to focus on the quality as well as productivity of their coded data as coding became more complex 

under the new system.  

Clinical documentation improvement (CDI) can also have a positive impact on coding 

quality as well as productivity. In fact, CDI programs could improve clinical documentation which 

can subsequently contribute to quality of the coded data. Furthermore, accurate and complete 

documentation can help reduce physician queries that are usually initiated by coders as they try to 

assign the appropriate codes based on the patient chart (Combs, 2016; Land, 2016).  

Financial incentives in terms of payment maximization and efficient utilization of 

resources will have a significant impact in promoting coding quality and productivity.  For 

example, “the American Recovery and Reinvestment Act of 2009 authorizes CMS to provide 

incentive payments to eligible professionals (EPs) and hospitals who adopt, implement, upgrade, 

or demonstrate meaningful use of certified electronic health record (EHR) technology” 

(HealthIT.gov, 2016; Houser & Meadow, 2017; Linder, 2016). Such financial incentives have 

contributed to higher coding quality and productivity standards through automation of coding 

workflow and continuous improvement of coding software applications.  

Audit programs that look for compliance and coding issues have further contributed to an 

ever-increasing emphasis on coding quality and subsequently coding productivity. Conducting 

internal as well as external audits has been a major trend in health care. This is basically due to the 

health care organizations’ efforts to meet compliance requirements demanded by government 
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auditors such as the CMS’s Medicare Recovery Audit Contractors (RACs). In addition to meeting 

auditing standards, health care organizations should meet higher productivity standards for coding 

due to its direct link with reimbursements, claim submission, cashflow, and revenue cycle in 

general (Godbey-Miller, 2016; Martin, 2016) 

Along with coding, healthcare providers are expected to comply with other federal laws 

and regulations. A brief discussion of some federal laws and regulations is provided in chapter 4.  

It is inevitable to maintain high quality and productivity standards of coded clinical data 

and promote funding of health care research that addresses clinical coding due to its direct impact 

on individual health outcomes as well as population health. With the rapid adaptation of health 

information technology (HIT), there is a rising demand for effective and data-driven decision-

making strategies (Houser & Meadow, 2017). Coded clinical data needed for such decision-

making should be reliable and available to users at times of decision making. Therefore, this 

dissertation research aims at identifying current coding trends and other factors that could 

influence coding quality and productivity through two major emphases: (1) quality of coded 

clinical data; and (2) productivity of clinical coding. Figure 1 presents the conceptual framework 

of the literature review that will be followed in this dissertation research.  
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This study aims at identifying determinants of coding quality and productivity through the 

following:  

Specific Aim I: Identify factors that could influence coding accuracy: 

(1) Length of stay (LOS) 

(2) Case mix index (CMI) 

(3) DRG relative weight 

(4) MS_DRG categories that are more often impacted by coding discrepancies 

Figure 1: Conceptual Framework to Literature Review 

Coding Trends, 

Quality & 

Productivity 
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(5) Coding errors at the major digit level versus the minor digit level 

Specific Aim II: Identify documentation discrepancies that could influence coding quality.   

Specific Aim III: Identify the impact of coding errors on CMI and hospital’s payment.  

Specific Aim IV: Identify individual and facility-related factors that could influence coding 

productivity:  

(1) Length of stay (LOS)  

(2) DRG relative weight 

(3) Case mix index (CMI) 

(4) Facility bed capacity (bed size) 

(5) Teaching status 

(6) Trauma status  

Specific Aim V: Explore the relationship between coding productivity and coding quality 

Specific Aim VI: Develop a predictive model to predict coding productivity and coding quality 

based on the individual and facility-related factors.  
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2.0  HEALTHCARE VOCABULARY, TERMINOLOGY, AND CLASSIFICATION 

A very important aspect in this context is to discuss the differences between “vocabulary”, 

“terminology”, and “classification systems.” In general, clinical vocabularies, terminologies, and 

classification systems, are a “structured list of terms which together with their definitions are 

designed to describe unambiguously the care and treatment of patients.” (AHIMA, 2016, 

Alakrawi, 2016). They are used to cover diseases, procedures, diagnoses, findings, medications, 

and other items used to “support recording and reporting a patient's care at varying levels of detail, 

whether on paper or, increasingly, via an electronic medical record (EMR).” (AHIMA, 2016; De 

Lusignan, 2005). Figure 2 illustrates the levels of detail given by vocabularies, classification 

systems and terminologies (Alakrawi, 2016; HL7, 2009).  

 

Figure 2: The level of detail given by a vocabulary, classification system, and terminology 

 Source: (HL7, 2009, De Lusignan, 2005; HISTDO, 2014) 
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Based on Figure 2, a vocabulary represents general terms about a certain concept 

(Respiratory Infection and Inflammation) with the lowest level of detail. These general terms are 

used for public communication and can also be adapted for specified fields of science and industry. 

A classification system can be used to communicate with higher level of detail regarding a certain 

concept. The general term Respiratory Infection can be further specified using International 

Classification of Diseases Tenth Revision (ICD-10): 

Respiratory Infection -----------------> U04 -Severe Acute Respiratory Syndrome [SARS] 

The highest level of detail and specificity can be provided when using a reference 

terminology such as SNOMED-CT. SNOMED-CT can provide further detail and specificity with 

respect to ICD-10 classification of Severe Acute Respiratory Syndrome [SARS]: 

U04 -Severe Acute Respiratory Syndrome [SARS] -----------> 

Severe Acute Respiratory Syndrome (SARS) 

Associated Coronavirus Disease L30041 

ID 243608008 

A vocabulary is “a collection of words or phrases with their meanings” and a classification 

is “a system that arranges or organizes like or related entities” (Alakrawi, 2016; De Lusignan, 

2005; Ginanngelo, 2012). A terminology is “a set of terms representing a system of concepts” (De 

Lusignan, 2005; Ginanngelo, 2012; IHTSDO, 2016). Further, the ISO (ISO 17115) defines a 

clinical terminology as a “terminology required directly or indirectly to describe health conditions 

and healthcare activities”. Effective communication of meanings across healthcare settings and 

disciplines is the main goal of developing healthcare terminologies (IHTSDO, 2016). Thus, 

different sets of healthcare terminology have been developed by healthcare professionals for use 

in their areas of clinical specialty (IHTSDO, 2016). 
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However, in this era of information exchange and ever-increasing use of electronic 

communication and the EHRs, a need arises for a more controlled and comprehensive set of 

terminologies that cover all concepts of healthcare (reference terminology) (Alakrawi, 2016; De 

Lusignan, 2005; IHTSDO, 2016). A reference terminology is defined by the ISO (ISO 17115) as 

“a terminology containing only concept names as determined by an authorized organization”. In 

general, there are many reasons for needing a vocabulary, terminology, or classification system. 

Some of these reasons are presented in Table 1 (Giannangelo, 2012).  

Table 1: Reasons for needing a vocabulary, terminology, or classification system 

 Function Reasons for needing a vocabulary, terminology, or 

classification system 

1 Access to complete and 

accurate clinical data 

• Facilitate electronic data collection at the point of care 

• Possess the ability to capture the detail of diagnostic studies, 

history, and physical examinations, visit notes, ancillary 

department information, nursing notes, vital signs, outcome 

measures, and any other clinically relevant observations about 

the patient 

• Allow many different sites and different providers the ability 

to send and receive medical data in an understandable and 

usable manner, thereby speeding care delivery and reducing 

duplicate testing and duplicate prescribing 

2 Links to medical 

knowledge 

• Provide organized systems of data collection and retrieval;  

• link published research with clinical care in order to improve 

quality of care through outcome measurement 
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Table 1 (continued) 

3 Practitioner alerts and 

reminders and clinical 

decision support systems 

• Improve the quality of healthcare through the effective use of 

information found in other information management systems 

• Allow the computer to manipulate standardized data and find 

information relevant of individual patients for the purpose of 

producing automatic reminders or alerts  

• Permits retrieval of relevant data, information, and knowledge 

for generating patient-specific assessments or 

recommendations designed to aid clinicians in making clinical 

decisions 

• Provide data to consumers regarding costs and outcomes of 

treatment options 

4 Research and 

epidemiological studies 

and public health 

• Allow collection and reporting of health statistics and ensure a 

high-quality database for accurate clinical as well as statistical 

data 

• Provide data for use in public health monitoring 

5 Healthcare claims 

reimbursement and 

management 

• Provide data for use in designing payment systems, 

determining the correct payment for healthcare services, and 

identifying fraud and abuse 

• Make available information for use in improving performance 

(clinical, financial, and administrative) 
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2.1.1 HealthCare Terminology 

Systematized Nomenclature of Medicine, SNOMED, is a standardized health care terminology 

which was originally developed from pathology-specific nomenclature called Systematized 

Nomenclature of Pathology (SNOP). SNOMED is a controlled medical terminology that 

encompasses diseases, clinical findings, etiologies, procedures, and health outcomes (Alakrawi, 

2016; Cornet & Keizer, 2008; IHTSDO, 2016). It can be used by physicians, nurses, allied health 

professionals, veterinarians, and researchers.  

SNOMED is defined by the International Health Terminology Standards Development 

Organisation (IHTSDO) as “comprehensive clinical terminology that provides clinical content and 

expressivity for clinical reporting which is comprised of concepts, terms, and relationships with 

the objective of precisely representing clinical information across the scope of health care” 

(IHTSDO, 2016). The ownership, maintenance, and distribution of SNOMED was originally the 

responsibility of the College of American Pathologists (CAP) but this responsibility was 

transferred to the IHTSDO in 2007 (IHTSDO, 2016). 

However, it is useful in this context to discuss how a terminology differs from a 

classification system. First, terminologies and classifications systems are designed to serve 

different purposes; a clinical terminology such as SNOMED could be more useful in clinical 

applications and information retrieval, and research. SNOMED is considered as a global standard 

due to its wide acceptance and application world-wide which makes it a safe and accurate 

alternative for clinical communication between healthcare providers (Alakrawi, 2016; Bowman, 

2014; IHTSDO, 2016).  

In contrast, classification systems such as ICD-9-CM or ICD-10-CM/PCS are intended for 

classification of clinical conditions and procedures to be used for other applications including 
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statistical reporting and reimbursement (Bowman, 2014; Butler, 2016). A classification system 

can be less-detailed than a clinical terminology. Per Bowman (2014), “If a researcher wants to 

know how many patients died with a diagnosis of heart attack last year, ICD-10 is enough. If they 

want more detail, such as what muscle of the heart was involved, they will need SNOMED CT.”  

Nonetheless, SNOMED CT -the most current version of SNOMED- is available at no 

charge through the National Library of Medicine (NLM). The U.S. license for SNOMED was 

obtained by the NLM through the Unified Medical Language System (UMLS) project (NLM, 

2014; UMLS, 2014). The first edition of SNOMED was published in 1974. However, this edition 

was based on the Systemized Nomenclature of Pathology (SNOP) that was published by CAP in 

1965. Figure 3 provides a summary of the history of SNOMED and its evolution over time.  

 

        

1965 1974 1979 1993 1997 2000 2002 2007 

•  •  •  •  •  •  •  •  

SNOP* SNOMED* SNOMED 

II 

SNOMED 3.0 

(International) 

SNOMED 3.4 

(International) 

SNOMED* 

RT 

SNOMED* 

CT 

SNOMED 

CT 

 

*SNOP: The Systemized Nomenclature of Pathology 

*SNOMED: The Systemized Nomenclature of Human and Veterinarian Medicine 

*SNOMED RT: The Systemized Nomenclature of Medicine Reference Terminology 

*SNOMED CT: The Systemized Nomenclature of Medicine Clinical Terms 

 

Figure 3: History of SNOMED 
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Regardless of its continuous evolvement, SNOMED-CT has not been fully utilized in 

clinical practice and applications (Duarte et al, 2014; IHTSDO, 2016; Lee et al, 2014). Cornet & 

Kate (2008) provides a literature review of published studies in which SNOMED has been used in 

different clinical applications. The authors analyzed the use of SNOMED over time as reflected in 

scientific publications. A Medline literature search using PubMed was performed to select papers 

in which SNOMED was either the primary or secondary object of the study (study period was 

from 1966-2006, therefore SNOP was included). Selected papers were further classified based on 

version of SNOMED, medical domain, time of coding, usage, and type of evaluation (Cornet & 

Keizer, 2008).  

This analysis included 250 papers on SNOMED. However, in many cases it was difficult 

to determine which version of SNOMED was used. Pathology, nursing, and cancer were the most 

frequently mentioned medical domains when a specific medical domain is described. There were 

163 papers in which SNOMED was the primary object of the study and 87 in which it played a 

secondary role. Two major subjects were identified for the primary role: (1) comparing SNOMED 

to other Terminology Systems (TS) - mostly in content coverage; and (2) using SNOMED to 

illustrate a TS theory. For secondary uses, SNOMED was utilized as an example in most of the 

cases (Cornet & Keizer, 2008). 

Kate introduces a machine-learning method that can be utilized to convert clinical language 

text into structured representations using SNOMED CT. The author employed the Support Vector 

Machine (SVM) machine learning in combination with a new kernel specifically designed for this 

study. The aim of this study was to identify the relationship between clinical phrases and 

SNOMED-CT to enhance existing capabilities of natural language processing in clinical 

applications. Using existing datasets, the experimental results demonstrate that the trained system 
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shows an increased performance on the relation-identification tasks- by measuring both recall and 

precision. The author identifies syntactic analysis of SNOMED CT as a possible area for future 

work (Kate, 2013) 

In another study, Mikroyannidi et al (2012) provide an example of research in which 

SNOMED was incorporated into a framework to detect syntactic regularities as well as 

irregularities in ontology. This study specifically focuses on the Web Ontology Language (OWL) 

representation of SNOMED CT. It concluded that the tested framework can be utilized for quality 

assurance in ontology. However, application of SNOMED CT shows positive results that can be 

utilized in healthcare to support clinical application for administrative and direct care purposes 

(Allones et al, 2014; Daurte et al, 2014; IHTSDO, 2016; Lee et al, 2014; Mikroyannidi et al, 2012). 

In general, the literature review reflects increasing utilization of SNOMED in clinical 

applications and across medical specialties –other than pathology. However, there are no 

indications of the use of SNOMED for direct care purposes, performance or productivity, and 

quality audit. Future research to address the effect of terminology systems on the care process and 

outcomes is needed (Alakrawi, 2016).  

2.1.2 Healthcare Classifications 

A classification is “a system that arranges or organizes like or related entities” (AHIMA, 2013). 

Classifications are used to support statistical data across the healthcare system. Thus, the WHO 

has developed different classification systems that can be integrated to describe different aspects 

of health. These classification systems can be of three types (Madden, 2008; WHO, 2016): 



16 

2.1.2.1 Reference Classifications 

These classification systems cover the main parameters of healthcare as well as the healthcare 

system such as disease, functioning, disability, death, and healthcare interventions. The WHO 

reference classification systems are products of international agreement between the UN member 

states. They are used to describe the health experience or the health state of a given person at a 

particular point in time. Further, they can serve as models in development and revision of other 

classification systems. Examples are the International Classification of Diseases – 10th revision 

(ICD-10), and the International Classification of Functioning, Disability, and Health (ICF). 

2.1.2.2 Derived Classifications 

As the name implies, derived classifications are based upon one or more reference classifications. 

They are intended to be consistent with the references upon which they were developed and usually 

to provide additional details in specialized areas. Examples could include specialty-based 

adaptation of ICD or ICF such as the International Classification of Diseases for Oncology (ICD-

O-3) and the ICF Version for Children and Youth (ICF-CY).  

2.1.2.3 Related Classifications 

These classifications describe important aspects of health or the healthcare system not covered by 

reference or derived classifications. An example is the International Classification of External 

Causes of Injury codes (ICECI). 
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2.1.3 WHO Family of International Classification (FIC) 

Per Madden et al (2008), the WHO family is “a suite of classification products that may be used 

in an integrated fashion to compare health information internationally as well as nationally.” By 

using such classifications, compilations of consistent measures for comparing health systems 

within populations over time or between populations at a specific point in time- are facilitated at 

the national and international level (Madden, 2008; WHO, 2016) 

2.1.3.1 Purpose of the WHO-FIC  

The purpose of the WHO-FIC is to: (1) improve health through supporting health-related decision 

making, (2) provide a conceptual framework of health and health-related information domains, (3) 

provide a common language of communication, (4) facilitate comparison of data within and 

between countries, health disciplines, services and time, and (5) stimulate health research (WHO, 

2016).  

2.1.3.2 UN definition of the WHO-FIC  

The WHO family of international classifications (WHO-FIC) is comprised of classifications that 

have been endorsed by the WHO to describe various aspects of the health and the healthcare system 

in a consistent manner. The classifications may be owned by the WHO or other groups. The 

purpose of the family is to assist in the development of reliable statistical systems at local, national, 

and international levels, with the aim of improving health status and health care. The WHO family 

includes reference, derived, and related classifications.  
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2.1.3.3 Scope of the WHO Family  

The WHO-FIC is a conceptual framework of the healthcare system and factors influencing health. 

The reference classifications within the WHO-FIC cover the following dimensions: (1) diseases, 

(2) health problems, (3) body function, (4) body structure, (5) activity, (6) participation, (7) 

interventions, and (8) environment. More specialty-based or other health areas that are not covered 

in the reference classifications are included in either derived or related classifications (WHO, 

2008). However, when an information gap is identified within the current classification systems, 

an inevitable need arises to either develop a new classification system or endorse an existing 

classification system into the WHO family. Figure 4 provides a schematic representation of the 

WHO-FIC along with some examples. 

2.1.4 Use of Vocabulary, Terminology, and Classification Systems 

Clinical vocabulary, terminology, and classification systems can be used in the EHR systems as 

well as administrative applications. Per Giannangelo, “collectively, vocabularies, terminologies, 

and classification systems provide the common medical language necessary for the future state” 

of eHIM; electronic, patient-centered, comprehensive, longitudinal, accessible, and credible 

(AHIMA, 2003; AHIMA, 2016; Giannangelo; 2012).  

However, certain vocabulary, terminology, and classification systems are only appropriate for 

chosen applications or purposes such as documentation of clinical care, public health reporting, 

providing the data structure for EHRs, interoperability and health information exchange (HIE) 

(Houser & Meadow, 2017). 
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The ultimate challenge is how to utilize such vocabularies, terminologies, and classification 

systems to implement interoperability standards for EHR systems and HIE. Table 2 presents the 

differences between vocabulary, terminology and classification systems based on the purpose and 

user (AHIMA, 2016; Giannangelo, 2012; Houser & Meadow, 2017). As illustrated in Table 2, 

Source of information: (Madden et al, 2008) 

Figure 4: WHO-FIC with Examples 
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healthcare vocabulary, terminology, and classification systems can be used by different users 

including consumers, healthcare providers, quality and utilization management personnel, 

researchers, and other administrative staff (accounting, billing, and coding personnel). Healthcare 

vocabularies are mainly used to facilitate communication between healthcare providers and 

consumers at the point of care for data collection purposes.  

A more organized system of data collection and retrieval can be provided by utilizing 

healthcare terminology. This system can promote quality of care through providing a link between 

published research and clinical care. Furthermore, such systems can support integration of care 

through allowing effective exchange of clinical information between healthcare providers in 

different settings. Although terminologies such as SNOMED-CT can be utilized to support real 

time decision making and retrospective reporting for research and management, such utilization 

can be hindered by complexity of these systems (Alakrawi, 2016; IHTSDO, 2016). 

Classification systems are utilized by a wider spectrum of users in healthcare. They can be 

used to provide data to consumers on costs, treatment options, and outcomes. Also, classification 

systems provide a less complex system for data collection and reporting that can be further used for 

research purposes. Information provided by such systems can be used to improve clinical, financial, 

and administrative performance through designing effective payment systems, identifying potential 

fraud and abuse, and ensuring accurate reporting (Alakrawi, 2016).  
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Table 2. Differences between vocabulary, terminology and classification systems based on chosen goal and users  

 Users Purpose 

Vocabulary 

Terminology 

Consumers and 

Healthcare providers  

 

Facilitate data collection at the point of care with 

terms familiar to the user 

 

Healthcare providers Capture the details of diagnostic studies, history and 

physical examinations, visit notes, nursing notes, 

outcome measures and any other clinically relevant 

information about the patient 

Healthcare providers and 

IS personnel 

Allow exchange of medical data between different 

sites and different providers in an understandable and 

usable manner 

Allow effective use of information in other 

information management systems  

Allow manipulation of standardized data for 

generating alerts and reminders that are relevant to an 

individual patient 

Permits retrieval of relevant data, information, and 

knowledge to aid clinicians in making clinical 

decisions 

Data analysts, quality 

management and 

utilization management 

personnel 

Provide an organized system of data collection and 

retrieval resulting in linkage of published research 

with clinical care, and ultimately improving quality of 

care through outcomes measurement  
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Table 2 (continued) 

Classification Consumers Provide data on costs and outcomes of treatment 

options 

Researchers and 

epidemiologists  

Allow collection and reporting of health statistics 

 

Researchers and data 

analysts 

Ensure high-quality database for accurate clinical as 

well as statistical data 

 

Accounting, coding, and 

billing personnel and 

payers 

Provide data for designing payment systems and 

determining the correct payment for healthcare 

services 

 

Auditors and compliance 

personnel 

Identify fraud and abuse 

 

Public health personnel Provide data that are used in public health 

monitoring 

 

Management Improve clinical, financial, and administrative 

performance through use of information 
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2.1.5 Clinical Terminology and Clinical Classification Systems: A Critique Using 

AHIMA’s Data Quality Management DQM Model 

Clinical classification systems and clinical terminologies represent two distinct sets of coding 

schemes that are used in healthcare. These concepts – clinical terminology and classification- are 

often used incorrectly and interchangeably. The purpose of this section is to try to make a 

distinction between clinical terminologies and clinical classification systems, identify how both 

sets of systems are utilized in healthcare settings, and acknowledge individual contributions of 

each system to providing data infrastructure for clinical as well as administrative data uses in the 

healthcare delivery system.  

There are essentials elements that distinguish a clinical terminology from a classification 

system. Before jumping to a conclusion on which system is “best” to accommodate healthcare 

needs and data structure, a critique of both systems will be presented in the following section using 

American Health Information Management Association’s (AHIMA) Data Quality Management 

Model.  

The AHIMA’s DQM Model will be utilized as a framework for assessment due to the 

following reasons: (1) AHIMA’s DQM Model can provide a standard for comparison as well as 

an objective assessment of  totally-different systems with varying scopes and applications;  (2) 

AHIMA’s DQM Model was developed to accommodate complexity of health care data by 

providing a way to quantify quality of this data and its attributes; and (3) There are no other 

relevant models that can replace the AHIMA’s DQM Model in this capacity giving it is a long-

established health information standard. SNOMED CT and ICD-10-CM/PCS will be utilized as 

examples for clinical terminologies and clinical classification systems, respectively. 
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2.1.5.1 AHIMA’s DQM Model 

Data Quality Management (Alakrawi, 2016; AHIMA’s DQM practice brief, 2012) can be defined 

as “the business processes that ensure the integrity of an organization’s data during collection, 

application (including aggregation), warehousing, and analysis (AHIMA, 2016; Giannangelo, 

2009; Giannangelo, 2012; IHSDO, 2016). The purpose of DQM is continuous improvement of 

health data quality. DQM model consists of 10 characteristics to monitor data quality in 4 different 

domains including data application, collection, warehousing, and analysis. Table 3 provides a 

description of the four domains that constitute the AHIMA’s DQM Model along with 

characteristics of data integrity that should be applied in each domain. 

Accessibility 

SNOMED CT contributes to semantic interoperability across a wide range of clinical applications 

between healthcare providers in different clinical settings and therefore can improve the 

capabilities of health information exchange (Duarte, 2014; Gøeg, 2014; Houser & Meadow, 2017) 

Semantic interoperability can be defined as “ensuring that precise meaning of exchanged 

information is understandable by any other system or application not initially developed for this 

purpose” (Gøeg, 2014). However, such high-level of information exchange is not quite feasible 

utilizing a classification system like ICD-10-CM/PCS that is too general to serve this purpose 

(Jensen, 2012) Therefore, SNOMED CT can greatly improve data accessibility as opposed to ICD-

10-CM/PCS. In addition, applications that use SNOMED CT make the data accessible at the point 

of care, while ICD-10-CM/PCS data are accessible only after codes are assigned by the coders. 
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Table 3. DQM Domains and Characteristics with Definitions 

DQM Domains and Definitions 

I. Application The purpose for the data collection 

II.  Collection  The processes by which data elements are accumulated 

III. Warehousing Processes and systems used to archive data and data journals 

IV. Analysis The process of translating data into information utilized for an application 

DQM Characteristic and Definitions 

1. Accessibility Data items that are easily obtainable and legal to access with strong protections 

and controls built into the process 

2. Accuracy The extent to which the data are free of identifiable errors 

3.Comprehensive

ness 

All required data items are included—ensures that the entire scope of the data is 

collected with intentional limitations documented 

4. Consistency The extent to which the healthcare data are reliable and the same across 

applications 

5. Currency The extent to which data are up-to-date; a datum value is up-to-date if it is current 

for a specific point in time, and it is outdated if it was current at a preceding time 

but incorrect later 

6. Definition The specific meaning of a healthcare-related data element 

7. Granularity The level of detail at which the attributes and values of healthcare data are defined 

8. Precision Data values should be strictly stated to support the purpose 

9. Relevancy The extent to which healthcare-related data are useful for the purposes for which 

they were collected 

10. Timeliness Concept of data quality that involves whether the data is up-to-date and available 

within a useful time frame; timeliness is determined by manner and context in 

which the data are being used 
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Accuracy 

SNOMED CT is an automated clinical terminology scheme in which clinical representations are 

automatically encoded using a variety of coding applications that utilize Natural Language 

Processing NLP (Duarte, 2014; Stanfill, 2015). In fact, SNOMED CT is agnostic i.e. can capture 

all codes regardless of context. Therefore, incorrect data resulted from human errors are not 

probable as opposed to ICD-10-CM/PCS coding systems in which human judgement is an 

important element in the coding process.  However, there is a higher risk of systematic errors in 

clinical applications as opposed to human errors which tend to be randomly distributed in most 

cases (AHIMA, 2014). Human judgment component of coding has also contributed to coding 

variations and issues with coded data accuracy. Complexity of resource grouping schemes as well 

as unclear documentation can lead to inaccurate coding (Drake, 2016; Land, 2016; Nouraei, 2013).  

Furthermore; accuracy requires familiarity with medical terminology, surgical techniques, and 

complex coding systems (Moar, 2012). For example, coding accuracy can vary greatly across 

medical specialties. Some specialties like otolaryngology encompass a wide-range of procedures 

which are performed in “close anatomical proximity” and that ultimately affect coding accuracy 

(Drake, 2016; Land, 2016; Nouraei, 2013). Similar results were found in different medical 

specialties; urology (Moar, 2012), neurosurgery (Beckley, 2009), and surgery (Naran, 2014).  

Comprehensiveness 

SNOMED CT has better clinical coverage than ICD-10-CM/PCS. The number of codes 

representing concepts in clinical findings alone is 100,000 concepts compared 68,000 diagnosis 

codes in ICD-10-CM (AHIMA, 2014; Alakrawi, 2016; IHSDO, 2016). Thus, we might need more 

than one code in ICD-10-CM to represent one concept in SNOMED CT. New concepts in 

SNOMED CT (post-coordinated expression) can be created which contributes to the system 
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extensibility to cover all concepts related to the medical domain (IHSDO, 2016). In the other hand, 

ICD-10-CM/PCS is updated periodically to revise or add new diagnosis or procedure codes. Table 

4 provides examples on comprehensiveness of both systems.  

Consistency 

Concepts in SNOMED CT are always consistent between different users and across all clinical 

applications (Duarte, 2014; IHSDO, 2016). In contrast, studies have shown issues with coding 

reliability that contributes to inconsistent code assignments between coders and across medical 

specilaities (Beckley, 2009; Land, 2016; Moar, 2012; Naran, 2014). In addition, ICD systems in 

general are influenced by coding conventions that are subject to interpretation by coders and which 

can vary across settings i.e. inpatients vs. outpatient clinical context (AHIMA, 2013; AHIMA, 

2014; Butler, 2016). For examples, coding symptoms and signs such as “shortness of breath” can 

have different guidelines in acute-care hospitals and ambulatory care settings.  

Currency 

SNOMED CT in its current form was developed in 2007 (IHSDO, 2016) while the WHO’s ICD-

10 was first introduced in 1990s and has been used to collect mortality statistics in the US. 

However, the first field test of ICD-10-CM was conducted in 2003. Both systems are updated bi-

annually to reflect contemporary medical knowledge and medical technology (CMS, 2015; 

IHSDO, 2016).  

Definition 

Due to its logical structure, SNOMED CT makes more sense and is easier to be understood by 

clinicians (Alakrawi, 2016; Duarte, 2014; El-Sappagh, 2014; Mikroyannidi, 2012). However, 

ICD-10-CM can be too impeded with coding conventions and sometimes clinically irrelevant 

details needed for reimbursement of healthcare services (initial encounter, delayed healing, NOS, 
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NEC). These instructions are designed for professional coders and therefore make it hard for 

clinicians to adopt the system for direct care purposes (AHIMA, 2014; Stanfill, 2015).  Table 5 

provides examples on the different language used by both systems (data definition).  

Table 4. Example on Comprehensiveness of Both Systems 

SNOMED CT ICD-10-CM 

72854003    

Aspiration pneumonia 

due to near drowning  

J69.8 Pneumonitis due to inhalation of other solids and liquids 

Y21.8XXA Other drowning and submersion, undetermined intent 

(initial encounter) 

283647006 

Sewing needle in hand  

S61.449A      Puncture wound with foreign body of unspecified 

hand (initial encounter) 

W27.3XXA   Contact with needle (sewing) (initial encounter) 

275434003 

Stroke in the 

puerperium  

O99.43    Diseases of the circulatory system complicating the 

puerperium 

I63.9 Cerebral infarction, unspecified 

15781000119107 

Hypertensive heart 

AND chronic kidney 

disease with congestive 

heart failure  

I13.0 Hypertensive heart and chronic kidney disease with heart 

failure and stage 1 through stage 4 chronic kidney disease, or 

unspecified chronic kidney disease 

N18.9 Chronic kidney disease, unspecified 

I50.9 Heart failure, unspecified 

111570005 

Anemia due to infection 

B99.9 Unspecified infectious disease 

D64.89 Other specified anemias 
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Granularity 

SNOWMED CT is in general is more specific than ICD-10-CM/PCS (AHIMA, 2012). 

Furthermore, SNOMED CT has a unique characteristic that enables extensibility and creating of 

new concepts (post-coordinated expressions) by end-users (IHSDO, 2016). In contrast, less 

common diseases in ICD-10-CM are grouped together in “catch-all” categories e.g. J15.8 

Pneumonia due to other specified bacteria which can lead to loss of information (Drake, 2016; 

Stanfill, 2015).   

Precision 

Concepts have the same values in SNOMED CT; studies have shown up to 93% precision of 

SNOMED CT for identifying clinical expressions (IHSDO, 2016; Lee, 2014; Skeppelstedt, 2011). 

However, the presence of some codes with unspecified (not specified in documentation) and other 

specified (present in medical record but no enough details in ICD to code it) can impact ability of 

the ICD system to collect data related to certain conditions such as rare conditions. Therefore, it is 

advised to take caution when utilizing administrative data for less common conditions such as 

Down Syndrome, eosinophilic esophagitis, congenital heart disease, genetic blood disorders, and 

surgery (Broberg, 2014; Nouraei, 2013; Rybnicek, 2014).  
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Table 5. Examples on the Different Language Used by Both Systems (Data Definition) 

Clinical Expression SNOMED CT ICD-10-CM 

Apert syndrome 20528009 Apert syndrome Q87.0  Congenital malformation 

syndromes predominantly affecting 

facial appearance. 

Hashimoto thyroiditis  21983002 Hashimoto 

thyroiditis  

E06.3 Autoimmune thyroiditis 

Feather picker’s disease 11944003 Feather-pickers' 

disease  

J67.8   Hypersensitivity pneumonitis due 

to other organic dusts 

Airport malaria 240631007 Airport malaria  B54 Unspecified malaria 

Adhesion of penis due 

to circumcision 

435311000124103 Post-

circumcision adhesion of penis  

N99.89   Other postprocedural 

complications and disorders of 

genitourinary system 

Family history of 

Sickle cell anemia 

160321003 Family history of 

Sickle cell trait  

Z83.2 Family history of diseases of the 

blood and blood-forming organs and 

certain disorders involving the immune 

mechanism 

Syphilitic parkinsonism 38523005 Syphilitic 

parkinsonism  

A52.19   Other symptomatic 

neurosyphilis 

Fragile X syndrome 205720009 Fragile X 

chromosome  

Q99.2 Fragile X chromosome 

Kabuki syndrome 313426007 Kabuki make-up 

syndrome  

Q89.8 Other specified congenital 

malformations 

Drug abuse -

antidepressant 

191928000 Abuse of 

antidepressant drug  

F19.10 Other psychoactive substance 

abuse, uncomplicated 



31 

Relevancy 

A clinical terminology such as SNOMED CT could be more useful in clinical applications, 

information retrieval, and research. SNOMED is regarded as a global standard due to its wide 

acceptance and application world-wide which makes it a safe and accurate alternative for clinical 

communication between healthcare providers (Alakrawi, 2016; Duarte, 2014; El-Sappagh; 

IHSDO, 2016; Mikroyannidi, 2012).   In contrast, classification systems such as ICD-9-CM or 

ICD-10-CM/PCS are intended for classification of clinical conditions and procedures to be used 

for other applications including statistical reporting and reimbursement (Alakrawi, 2016; AHIMA, 

2012; AHIMA, 2014, Duarte, 2014). Both systems are relevant to with respect to the purposes for 

which they were originally designed. 

Timeliness 

SNOMED CT is designed to be used at the point of care by clinicians while ICD-10-CM/PCS 

codes are usually assigned by professional coders after the patient’s episode of care is complete 

(Alakrawi, 2016; IHSDO, 2016).  

Figure 5 presents a model that was developed based on AHIMA’s DQM to illustrate the 

fundamental differences between clinical terminologies (represented by SNOMED-CT) and 

clinical classification systems (represented by ICD-10-CM).  
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SNOMED CT 

(Clinical Terminology) 

 ICD-10-CM 

(Classification System) 

Semantic interoperability enables 

sharing and exchange of information 

by different providers in different 

healthcare settings 

 

Accessibility 

Technical interoperability between coding 

applications and other local applications 

but no semantic interoperability to enable 

high level exchange of health information  

SNOMED CT is originally designed 

to be used by computers. Data is 

automatically encoded and therefore 

errors in data entry caused by humans 

are eliminated 

 

 

Accuracy 

Coding is a semi-automated process at its 

best and therefore is susceptible to human 

errors. Coding conventions that require 

interpretations by coders are a major cause 

of coding variations.  

SNOMED CT has more content 

coverage; 100,000 concepts in 

clinical findings. SNOMED can be 

expanded by creating new concepts 

(post-coordinated expressions)  

 

 

Comprehensiveness 

ICD-10-CM is limited to a set of codes 

that cannot be expanded. New medical 

conditions cannot be incorporated by end-

users but rather through frequent updates 

of the system. Number of codes in ICD-

10-CM is 68,000 

Concepts has a unique numeric 

identifier, a unique description (FSN) 

and therefore, the same codes are 

generated for all users across 

different applications 

 

Consistency 

Coding is subjective to coding variability 

between coders. In addition, coding 

conventions can vary between inpatient 

and outpatient settings 

SNOMED CT in its current form was 

developed in 2007 and it is updated 

biannually through IHTSO 

 

Currency 

WHO’s ICD was used in 1990s and in 

2003 the first field test of ICD-10-CM was 

conducted. Reviewed biannually 

SNOMED-CT follows a logical 

structure which makes it easier for 

clinicians to understand. Every 

concept has a unique identifier and 

FSN which makes standard 

definitions of data elements that are 

not susceptible to interpretation 

 

 

 

Definition 

ICD-10-CM/PCS can be impeded with 

coding conventions and guidelines as well 

as irrelevant details that are important to 

coders but not clinicians. Also, some 

codes are not clearly defined 

Greater granularity and specificity- 

every piece of information can be 

covered through pre-coordinated and 

post-coordinated expressions. 

 

 

Granularity 

Less specific than SNOMED CT which 

can lead to loss of important details; 

inability of ICD-10-CM systems to 

capture some details documented in the 

EHR  

SNOMED-CT has shown higher 

precisions in information retrieval (up 

to 93%) due to its standardized 

structure. 

 

 

Precision 

ICD-9/10-CM have shown lower precision 

in identifying rare diseases and clinical 

conditions. Coding variability has 

significantly impacted precision of the 

ICD systems.   

Relevant for its intended purpose. 

SNOMED-CT is an input system that 

is widely accepted which makes it 

suitable for standard health 

information sharing and information 

retrieval.  

 

 

Relevancy 

Statistically focused- expanded to include 

reimbursement. Relevant for its intended 

purpose: output system designed for 

general reporting and reimbursement when 

used for resource grouping.  

Used at point of care by clinicians in 

different applications: clinical 

decision supports and in generating 

alerts and reminders. 

 

Timeliness 

Codes are usually entered after the episode 

of care is completed by coding 

professionals. 

Figure 5: AHIMA’s DQM Model; Comparing Data Quality of SNOMED-CT and ICD-10-CM 
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2.1.5.2 Users and Applications 

Healthcare terminology and classification systems can be used by different users including 

consumers, healthcare providers, quality and utilization management personnel, researchers and 

other administrative staff (accounting, billing, and coding personnel). They are also used to 

facilitate communication between healthcare providers and consumers at the point of care for data 

collection purposes. A more organized system of data collection and retrieval can be provided by 

utilizing healthcare terminology. This system can promote quality of care through providing a link 

between published research and clinical care. Furthermore, such systems can support integration 

of care through allowing effective exchange of clinical information between healthcare providers 

in different settings. Although terminologies such as SNOMED CT can be utilized to support real 

time decision making and retrospective reporting for research and management, such utilization 

can be hindered by complexity of these systems. Classification systems are utilized by wider 

spectrum of users in healthcare. They can be used to provide data to consumers on costs, treatment 

options, and outcomes. Also, classification systems provide a less complex system for data 

collection and reporting that can be further used for research purposes. Information provided by 

such systems can be used to improve clinical, financial, and administrative performance through 

designing effective payment systems, identifying potential fraud and abuse, and ensuring accurate 

reporting.  

ICD-10-CM/PCS 

The ICD coding system was originally created to code death certificates but its use was expanded 

to encompass a wide variety of statistical reporting. In fact, ICD-10 has been used since the 1990s 

to collect mortality statistics around the world. The WHO defines coding as “the translation of 

diagnoses, procedures, co-morbidities and complications that occur over the course of a patient’s 
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encounter from medical terminology to an internationally coded syntax” (WHO, 2016).  In this 

definition, the WHO acknowledges the capability of the ICD system that is used for clinical coding 

and classification to enable international comparisons with respect to mortality as well as 

morbidity statistics.  

ICD-9-CM had been used from 1978 - 2015 as the foundation of the reimbursement system 

in the United States and used by the Center for Medicare and Medicaid Services for inpatient and 

ambulatory resource grouping. Medicare Severity Diagnosis Related Group (MS-DRG) 

constitutes the foundation of Medicare’s Inpatient Prospective Payment System (IPPS) used to 

reimburse acute care and short term hospital for services rendered to Medicare beneficiaries. ICD-

9-CM was replaced by ICD-10-CM/PCS in October 1, 2015 and it will continue to serve as a base 

for healthcare reimbursement. For outpatient encounters, reporting diagnosis codes in ICD-10-CM 

is required to establish medical necessity (Alakrawi, 2016; CMS, 2016).  

Also, ICD-10-CM is now used in place of ICD-9-CM for public health reporting i.e. 

reporting the leading cause of death and morbidity on the national level. ICD-10-CM/PCS can also 

be used to assess clinical outcomes and improve quality of care provided for individual patients. 

For example, ICD-10-CM/PCS data is utilized for clinical documentation improvement (CDI) 

initiatives to educate physicians on clinical documentation in the EHR systems.   

However, the process of clinical classification itself is prone to variation due to the complex 

coding schemes and conventions that are subject to interpretation by coders which makes it 

difficult for clinicians to assign the codes by themselves. Thus, ICD-10 in general and ICD-10-

CM/PCS lacks standardization needed for electronic communication and clinical documentation.  
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SNOMED CT 

SNOMED CT can provide a unified language that can be used as a standard for communication 

between healthcare providers and across clinical applications. SNOMED CT can contribute greatly 

to semantic interoperability in healthcare applications (Alakrawi, 2016; Duarte, 2014; IHSDO, 

2016). Its standardized logical structure as well as its wide acceptance makes it more suitable than 

other terminologies or classification systems for high-level information sharing and information 

retrieval (IHSDO, 2016).  Thus, SNOMED CT can be used for health information exchange HIE 

and clinical documentation in the EHRs. SNOMED CT is an automated system which makes it 

convenient to be used at the point of care for generating clinical alerts and reminders, serves as a 

part of the Clinical Decision Support (CDS) System, and link providers to medical knowledge and 

current publications that can be used for outcome measurement. Furthermore, due to its fully-

automated scheme, SNOMED CT can be used for health care research, and in automated 

identification of patients for clinical trials due to its extensive granularity and content coverage 

(Alakrawi, 2016; Della Mea, 2014; IHSDO, 2016). In addition to its higher specificity, SNOMED 

CT has a unique feature that enables extensibility of concepts by end users which can foster reliable 

communication between healthcare providers, across medical specialties, and health information 

exchange at national as well as international levels. SNOMED CT has become one of the federal 

requirements for health information technology HIT; the Centers for Medicare and Medicaid 

Services (CMS) mandates the use of SNOMED CT to code the problem list for Meaningful Use 

(MU) stage 2 (Alakrawi, 2016; Della Mea, 2014; IHSDO, 2016).  

2.1.5.3 Clinical Documentation into the EHR 

However, SNOMED CT is not superior to ICD-10-CM/PCS as both coding schemes provide the 

necessary data structure needed to support healthcare clinical and administrative processes. 
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Clinical terminology systems as well as clinical classification systems were originally designed to 

serve different purposes and consequently different users requirements. ICD-10-CM/PCS is a 

more of an output system that is designed for general reporting purposes, public health 

surveillance, administrative performance monitoring, and reimbursement of healthcare services. 

In contrast, SNOMED CT was developed to serve as a standard data infrastructure for clinical 

applications which requires more specificity. A classification system can be less-detailed than a 

clinical terminology (Alakrawi, 2016; Chavis, 2013). Therefore, “less specificity” of ICD-10-

CM/PCS is an intrinsic feature rather than a “malfunction”; SNOMED CT is too detailed therefore 

to replace ICD-10 in this context (Alakrawi, 2016; AHIMA, 2014). In fact, both systems 

complement each other and contribute to providing quality data for different domains of the 

healthcare system. For example, “If a researcher wants to know how many patients died with a 

diagnosis of heart attack last year, ICD-10 (WHO’s) is enough. If they want more detail, such as 

what muscle of the heart was involved, they will need SNOMED CT” (Chavis, 2013).  Therefore, 

both can be used in research and education depends on which degree of specificity is required by 

circumstances: SNOMED is a better choice for identifying rare diseases while ICD-10-CM/PCS 

is more efficient for general reporting such as collecting the top causes of mortality and morbidity 

at the national level. Furthermore, ICD-10-CM/PCS will be needed to constitute the foundation of 

the reimbursement system.  
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3.0  CLINICAL CODING PROCESSES 

3.1 CLINICAL CODING 

Clinical coding can be defined as “the translation of diagnoses, procedures, co-morbidities and 

complications that occur over the course of a patient’s encounter from medical terminology to an 

internationally coded syntax” (WHO, 1994). Clinical coding was initially intended for causes of 

mortality reporting (Land, 2016; Nouraei et al, 2013). However, coded clinical data has a 

significant impact on the health care industry for assessing clinical outcomes, monitoring quality 

of care, conducting research, promoting education, resource allocation, planning health services, 

and benchmarking (Alakrawi, 2016; AHIMA, 2016; CDC, 2009; Giannangelo, 2012; Nouraei et 

al, 2013).  

Particularly, coding impacts public health reporting since it is used to determine the leading 

causes of mortality and morbidity in the U.S. Also, it is the major factor in the promotion of 

funding for different diseases and healthcare services in general (Alakrawi, 2016; CDC, 2014; 

CMS, 2016). Therefore, accurate coding for public health reporting solely depends on coding or 

data collection at the baseline (individual patient’s encounter). However, coded data are generally 

under-utilized in healthcare because of a lack of familiarity and issues related to data accuracy and 

availability (Land, 2016; Nouraei et al, 2013). Further discussion of these issues is provided in 

chapter 5. 

Coding is known to be the foundation of the reimbursement system in the United States, 

which creates an increasing demand to improving medical coding to meet compliance 

requirements. It is part of the fundamental functions in the field of HIM. However, in this era of 
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EHRs and based on the need for electronic transaction, coders need not only to be familiar with 

the code assignment process but also with mapping among different clinical nomenclatures and 

terminologies (Alakrawi, 2016; AHIMA, 2013; AHIMA & AMIA, 2007).  

According to McBride (2006), “Data mapping involves "matching" between a source and 

a target, such as between two databases that contain the same data elements but call them by 

different names. This matching enables software and systems to meaningfully exchange patient 

information, reimbursement claims, outcomes reporting, and other data.” Data mapping can be 

classified into unidirectional and directional mapping where “unidirectional mapping goes from 

the source to the target. Bidirectional maps translate in both directions” (McBride, 2006; NLM, 

2016).  

The National Library of Medicine (NLM) with participation from the National Center for 

Health Statistics (NCHS) is working on a project to Map SNOMED CT concepts to ICD-10-CM 

codes through I-MAGIC (Interactive Map-Assisted Generation of ICD Codes) (CDC, 2015; CMS, 

2016; NLM, 2016). Per NLM (2015), the purpose of mapping is to “is to support semi-automated 

generation of ICD-10-CM codes from clinical data encoded in SNOMED CT” to fulfill the 

requirements of healthcare. Therefore, SNOMED CT cannot replace ICD-10-CM/PCS and both 

systems complement each other and equally contribute to quality data structure for the entire 

healthcare system.  

In fact, the WHO joint with the International Health Terminology Standards Development 

Organisation (IHTSDO) has been working on similar projects that will enable mapping between 

SNOMED CT and ICD-10 (the WHO’s version) and ICD-11 as well (Alakrawi, 2016; Chavis, 

2013; NLM, 2016). However, due to substantial differences between both coding schemes, it is 

not always possible to have one-to-one map. However, these mapping projects further emphasize 
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the importance of future data infrastructure that encompasses both system characteristics to utilize 

the maximum benefits of information technology in healthcare.   

Thus, clinical coders, at least, should have the knowledge and skills that are needed to deal 

with the HIPAA code sets. HIPAA standard code sets include the following: International 

Classification of Diseases, tenth Revision, Clinical Modification (ICD-10-CM); Current 

Procedural Terminology (CPT); Code on Dental Procedures and Nomenclature (CDT); National 

Drug Codes (NDCs); and Healthcare Common Procedure Coding System (HCPCS) (AMA, 2014; 

CMS, 2017).  

3.2 CODING CLINICAL EXPRESSIONS USING SNOMED CT AND ICD-10-

CM/PCS 

The two sets of systems were designed to serve different purposes and therefore are intended to 

satisfy different user requirements. SNOMED CT is designed for input into Electronic Health 

Record (EHR) systems and other clinical applications while ICD-10-CM/PCS is basically 

designed for providing outputs in terms of reports and statistics. Therefore, each system has a 

unique hierarchical structure to serve the purposes for which it was originally intended (AHIMA, 

2013; Glenn, 2013; IHSDO, 2016).  

Figure 6 represents a brief description of how to code the clinical expression “pain in right 

leg” using a clinical terminology (SNOMED CT) and a classification system (ICD-10-CM). Also, 

more examples can be found in Table 6. 

Coding in SNOMED is totally different than conventional coding using ICD-10-CM/PCS. 

In fact, the process of “coding” using SNOMED CT differs from ICD-10-CM/PCS. Coding using 



40 

SNOMED CT is always automated: end users cannot view the codes assigned by the system 

(AHIMA, 2013; Glenn, 2013; IHSDO, 2016). For this reason, SNOMED-CT is being used by 

software developers and EHR vendors to facilitate communication between different applications 

through creating a standard language. In fact, we can think of SNOMED-CT as a programing 

language; users utilize applications that use SNOMED-CT without knowing what is it that in the 

background (IHSDO, 2016). 

SNOMED CT  ICD-10-CM 

Composed of a wide set of concepts and 

relationships that connect these concepts 

together to fully cover the presented clinical 

expression. Each concept is represented by a 

unique numeric identifier and a Fully Specified 

Name (FSN), which is a unique description of 

that specific concept. SNOMED CT is 

designed for clinical applications and therefore 

clinical expressions are automatically coded in 

the background without user intervention. In 

order to code the clinical expression “pain in 

the right leg”, a user needs to input the clinical 

phrase and SNOMED CT will generate the 

following code: 287048003 “Pain in the right 

leg” = “pain” + “right” + “leg”. 

 A classification system organized into chapters 

as well as categories and sub-categories in each 

chapter. ICD-10-CM coding has not been fully 

automated yet so the process of coding requires 

a degree of human intervention. To code the 

same clinical condition “pain in the right leg”, a 

coder is required first to search the alphabetic 

index and follow a specific set of coding 

conventions and instructions to assign the 

correct code from the tabular list. The 

corresponding code for “pain in the right leg” is 

M79.604. However, with increasing use of 

technology, Computer Assisted Coding (CAC) 

applications can be used to connect suggested 

codes to text entries in EHR system. 

Figure 6: Coding Natural Language Clinical Phrases Using SNOMED CT and ICD 10-CM 
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Table 6. Examples of Natural Language Expressions Coded in SNOMED-CT and ICD-10-CM 

Natural language clinical 

phrase 

SNOMED-CT ICD-10-CM 

Pain in right leg 287048003 Pain in right leg M79.604 Pain in right leg 

Metabolic acidosis 59455009 Metabolic acidosis E87.2 Acidosis 

Respiratory acidosis 12326000 Respiratory acidosis E87.2 Acidosis 

Diverticulitis of sigmoid 

colon 

427910000 Diverticulitis of 

sigmoid colon 

K57.32  Diverticulitis of 

large intestine without 

perforation or abscess 

without bleeding 

G6PD anemia 62403005 Glucose-6-

phosphate dehydrogenase 

deficiency anemia  

D55.0 Anemia due to 

glucose-6-phosphate 

dehydrogenase [G6PD] 

deficiency 

Polyp in cervix  65576009 Polyp of cervix  N84.1 Polyp of cervix uteri 

Otitis media in the right ear 194289001  Acute right otitis 

media  

H66.91 Otitis media, 

unspecified, right ear 

E. coli pneumonia 51530003 Pneumonia due to 

Escherichia coli  

J15.5 Pneumonia due to 

Escherichia coli 

Ovale malaria 19341001 Ovale malaria  B53.0 Plasmodium ovale 

malaria 

Vitamin A deficiency 72000004 Vitamin A 

deficiency  

E50.9 Vitamin A 

deficiency, unspecified 



42 

For example, SNOMED-CT has been combined with NLP to improve EHR capabilities. 

In this case, SNOMED could identify where a condition exists or not or when it is ruled out due 

to the unlimited set of concepts and attributes that could further clarify a certain case. If such 

capabilities are enabled, SNOMED-CT can be used for generating alerts and reminders as well as 

a part of the decision support system to spot such contradicting notes and improve the quality of 

patient care (Alakrawi, 2016; IHSDO, 2016).  

In contrast, ICD-10-CM/PCS coding is performed by professional coders who manually 

assign codes to patients’ diagnoses and procedures (AHIMA, 2014). With the advancement of 

technology, coders have been using special encoders and Computer Assisted Coding (CAC) 

applications. CAC applications can facilitate accurate and efficient coding by automatically 

suggesting codes based on the clinical documentation in the EHR system (AHIMA, 2013; Houser 

& Meadow, 2017; Godbey-Miller, 2016). Thus, ICD-10-CM/PCS coding is semi-automated at 

best and always requires a degree of human intervention to either assign or validate selected codes.  

3.3 INPATIENT V. OUTPATIENT CODING 

The International Classification of Diseases, Tenth Revision, Clinical Modification, and Procedure 

Classification System (ICD-10-CM/PCS) is used for inpatient coding while Current Procedural 

Terminology (CPT) codes are used for outpatient coding (AHIMA; 2017; CMS, 2017). Further, 

Healthcare Common Procedure Coding System (HCPCS) is used for Medicare and Medicaid in 

addition to CPT. ICD classification systems are published by the WHO (NCHS, 2014; WHO,2012; 

AHIMA;2017).  
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However, the National Center for Health Statistics (NCHS) is the public agency 

responsible for maintaining and coordinating activities related to ICD classification in North 

America. On the other hand, The American Medical Association (AMA) is responsible for 

publishing CPT codes. Although inpatient and outpatient coding utilizes different classification 

systems, the main difference between them is the procedure code (Arner, 2007; Chavis, 2013; 

CMS, 2016; Linder, 2016).  

Also, different resource grouping schemes are used in inpatient and outpatient settings. 

Resource grouping is simply grouping of conditions that are estimated to consume similar level of 

resources. This grouping is used for reimbursement particularly in the Prospective Payment 

Systems (PPS) where reimbursement is established before the services are rendered to patients 

(CMS, 2016; Giannangelo, 2012).  

Medicare Severity Diagnosis Related Group MS-DRG constitutes the foundation of 

Medicare’s Inpatient Prospective Payment System (IPPS) used to reimburse acute care and short 

term hospital for services rendered to Medicare beneficiaries. In contrast, Ambulatory Payment 

Classification (APC) is utilized as the unit of payment under the Outpatient Prospective Payment 

System (OPPS) used for reimbursement of hospital outpatient services rendered to Medicare 

beneficiaries. Furthermore, Resource Based Relative Value Scale (RBRVS) is Medicare’s 

payment methods for physician’s services rendered to its patients.  Table 7 summarizes the 

difference between inpatient and outpatient coding (CMS, 2016).  between inpatient and outpatient  

Table 7. Difference between inpatient and outpatient coding 

 Inpatient 

coding 

Outpatient 

coding 
Diagnosis Code ICD-10-CM ICD-10-CM 

Procedure Code ICD-10-PCS CPT 

Resource Grouping MS-DRG APCs/RBRVS 

SS 
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3.4 INPATIENT CODING CLASSIFICATION SYSTEMS; ICD-9-CM, ICD-10, ICD-

10-CM/PCS, AND ICD-11 

According to the CDC, “The ICD has been revised periodically to incorporate changes in the 

medical field. To date, there have been 10 revisions of the ICD. The years for which causes of 

death in the United States have been classified by each revision are illustrated in figure 7. (CDC, 

2016): 

 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

•  •  •  •  •  •  •  •  •  •  

1900-

09 

1910-

20 
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29 

1930-

38 

1939-

48 

1949-

57 
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67 

1968-

78 

1979-

98 

1999-

present 

 

 Figure 7: Revisions of ICD 

The International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-

9-CM) was built on the WHO’s Ninth Revision, International Classification of Diseases (ICD-9). 

ICD-9-CM used to be the official system of assigning codes to diagnoses as well as procedures 

related to utilization of acute care in the United States (1979-2015). The ICD-9 (the WHO edition) 

was used to code and classify mortality data from death certificates until 1999. After that, ICD-9 

was replaced by ICD-10 to serve the same purpose (CDC, 2016). 

However, ICD-9-CM had been used to collect morbidity statistics since 1979 until 2015 

when ICD-10-CM/PCS was implemented in the U.S. The ICD-9-CM consists of: (1) a tabular list 

which is a numerical list of the disease code numbers in tabular form; (2) an alphabetical index to 



45 

the diseases; and (3) a classification system for surgical, diagnostic, and therapeutic procedures 

(alphabetic index and tabular list of medical procedures) (CDC, 2016, CMS, 2016; WHO, 2016). 

Now, ICD-10-CM constitutes the basis for the IPPS developed by CMS to pay for services 

rendered to Medicare and Medicaid beneficiaries (Linder, 2016). Further, NCHS and the CMS are 

the U.S. governmental agencies are responsible for overseeing all changes and modifications to 

the ICD-10-CM (CMS, 2016). The United States has transitioned to ICD-10-CM/PCS in October 

1, 2015, to replace ICD-9-CM Volume 2 and 3, diagnoses and procedures code sets respectively.  

ICD-10-CM/PCS is undergone periodic revision. This revision is necessary to enable a 

scientific update of the coding scheme as well as interoperability of ICD-10 with electronic health 

applications (AHIMA; 2014; Houser & Meadow, 2017; Rode, 2013; WHO, 2012). A major 

interoperability issue here is how to make ICD-10 (WHO’s version) compatible with the 

Systematized Nomenclature of Medicine (SNOMED CT) and other terminologies and ontologies 

used for building clinical applications (IHSDO, 2016; Mahajan, 2013; WHO, 2012).  

ICD-10-CM is the United States’ clinical modification of the WHO’ ICD-10. The NCHS 

has developed ICD-10-CM for morbidity purposes. On the other hand, ICD-10-PCS was 

developed by 3M Health Information Systems based on a 3-year contract with Healthcare 

Financing Administration (HCFA), now CMS, in 1995. 

Major changes of ICD-10-CM include the following: (1) E codes are no longer separated 

but incorporated in the main classification; (2) injuries are grouped by body parts instead of 

categories; (3) expanded excludes notes; (4) combination codes have been created; (5) laterality 

has been added (as a concept); and (6) greater specificity in code assignment (AHIMA 2014; 

AHIMA 2013, Boyed et al, 2013; Land, 2016; Walker, 2012). Comparison between ICD-9-CM 
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and ICD-10-CM/PCS is provided in Table 8. Also, Figure 8 provides a coding scenario in ICD-

10-CM/PCS that could emphasize some of these differences.  

Table 8. Comparison between ICD-9-CM and ICD-10-CM/PCS 

 9th Revision 10th Revision 

ICD-9-CM ICD-10-CM ICD-10-PCS 

Maintenance National Center for Health 

Statistics (NCHS) 

National Center for 

Health Statistics 

(NCHS) 

Centers for Medicare and 

Medicaid Services (CMS) 

 

Structure Hierarchal structure:  

• All codes within the 

same category have 

common traits (first 

three digits) 

Greater specificity can be 

added with each additional 

character beyond the 3-

digit category  

Has the same hierarchal 

structure of ICD-9-CM: 

All codes within the 

same category have 

common traits (first 

three digits) Greater 

specificity can be added 

with each additional 

character beyond the 3-

digit category 

Multi-axial structure 

Number of 

Codes 

Diagnoses: 13,500  

Procedures: 4,000  

Max for diagnosis codes: 5-

digit 

• Max for procedure 

codes: 4-digit  

Diagnoses: 70,000  

Max for diagnosis 

codes: 7-digit  

 

 

 

 

Procedures: 72,000 

Procedure codes:7-digit 
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Table 8 (continued) 

Number of 

Chapters 

17 chapters (diagnoses): 

conditions are classified per 

etiology (cause of disease) 

or by anatomical site (body 

system)  

21 chapters (diagnoses): 

this includes chapters’ 

rearrangement, additions 

and revisions in addition 

to extensive changes to 

the mental and 

behavioral disorders, 

injury and poisoning, 

and external causes of 

morbidity and mortality. 

 

 

Type of 

Codes 

Mostly numeric with some 

alphanumeric codes (E,V, 

and Morphology codes) 

Alphanumeric coding 

scheme to provide more 

categories for diseases 

and health related 

conditions 

Alphanumeric 

E and V codes are 

considered as 

supplementary 

classifications 

Incorporated into the 

classification and not 

separated into 

supplementary 

classifications 

 

V and E 

codes 

Lacks laterality The concept of laterality 

(right-left) has been 

added 

Laterality added as 

opposed to procedure 

coding in ICD-9-CM 

(volume 3) 
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Table 8 (continued) 

Laterality Lacks detail Greater specificity in 

code assignment (for 

example, diabetes, 

family history) 

The current structure of 

ICD-10-PCS support 

greater specificity as 

opposed to ICD-9-CM’s 

volume 3 

Specificity  Sequencing multiple codes 

is necessary  

Combination codes have 

been created to resolve 

issues related to code-

sequencing 

 

 

Multiple 

conditions 

Grouped by categories of 

injuries: 

• Fractures (800-829) 

Sprains and strains (840-

848) 

Grouped by body parts: 

• Injuries to the head 

(S00-S09) 

Injuries to the neck 

(S10-S19) 

 

 

Grouping of 

injuries 

Volume 3 of ICD-9-CM 

was used to code medical 

procedures (it does not 

reflect the rapid changing 

in surgical technology) 

ICD-10-CM only 

contains diagnosis 

codes. Procedures are 

coded using ICD-10-

PCS. 

 

Procedures 

Coding 

 Sophisticated multi-axial system used to code 

procedures. It has a seven-character alphanumeric 

code structure. Each character essentially has many 

possible values in this coding scheme. 
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The following coding Scenario is provided in figure 8 with relevant ICD-10-CM/PCS 

codes: “A 16-year-old was at the gymnasium participating in a dancing contest to raise money 

for her class. She slipped on the gym floor and fell, injuring her left ankle. After she visited 

the emergency room, it was determined that she did not fracture her ankle. However, she did 

suffer a sprain to that ankle” 

 

 

Figure 8: A coding Scenario Using ICD-10-CM/PCS 

ICD-10-CM/PCS as illustrated above is superior to ICD-9-CM with respect to specificity, 

laterality, and detail surrounding the causes of injury such as the type of activity and place of 

occurrence. However, the WHO is currently working on the 11th revision of the ICD. The Beta 

draft of ICD-11 was made available online in May 2012 for interested stakeholders and individuals 
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to make comments or a proposal to change, participate in field trials, and assist in translating (Reed, 

2010; Stanfill; 2016). Figure 9 illustrates ICD-11 timeline.  

 

 

 

 

 

 

 

Figure 9: ICD-11 Timeline 
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4.0  REIMBURSEMENT METHODS IN HEALTHCARE 

Different reimbursement methods exist in the U.S. healthcare delivery system. In general, 

reimbursement is determined based on the following factors: (1) health care setting, (2) health care 

provider, and (3) third party payer. However, encoders and groupers could have an impact on 

reimbursement as well (AHIMA, 2016; Cade, 2012).  

Reimbursement methodologies can be simply classified into two distinct categories: 

Prospective and Retrospective payment systems (CMS, 2016). In the Retrospective Payment 

Systems (RPS), reimbursement is established after the healthcare services are rendered while in 

the Prospective Payment Systems (PPS), reimbursement is established before healthcare services 

are rendered (Alakrawi, 2016; Cade, 2012; DeAlmeida, 2012).  The CMS utilizes different 

reimbursement methodologies for different types of healthcare facilities (CMS, 2016). Below is a 

discussion of two PPSs used by the CMS: Inpatient Prospective Payment System (IPPS) and 

Outpatient Prospective Payment System (OPPS). 

4.1 INPATIENT PROSPECTIVE PAYMENT SYSTEM (IPPS) 

According to CMS, a Prospective Payment System (PPS) is “a method of reimbursement in which 

Medicare payment is made based on a predetermined, fixed amount. The payment amount for a 

particular service is derived based on the classification system of that service; for example, 

diagnosis-related groups [DRGs] for inpatient hospital services” (CMS, 2016). Further, CMS uses 

separate PPSs for reimbursement to acute inpatient hospitals, home health agencies, hospice, 
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hospital outpatient, inpatient psychiatric facilities, inpatient rehabilitation facilities, long-term care 

hospitals, and skilled nursing facilities (CMS, 2016). 

 The DRGs were originally developed at Yale University in 1975. The purpose of this 

project was to enable grouping of patients with similar conditions and treatments for comparative 

studies. In 1983, the DRGs were adopted by Medicare as the basis for the IPPS and have been 

modified by many agencies and companies since then. Different DRG systems are now used by 

different payers. However, the two main DRG systems in use today are the Medicare-Severity 

Diagnosis Related Group (MS-DRG) and All Patient Refined DRGs (APR-DRGs) developed by 

3M.  

 In general, DRGs are designed based on codes. However, there are other factors that should 

be considered: (1) diagnosis codes (ICD-10-CM); (2) procedure codes (ICD-10-PCS); (3) patient 

age; (4) patient sex; and (5) discharge disposition. Sequencing of codes on the claims has a 

significant impact on determining proper DRGs for each patient. DRGs are assigned using 

software applications that are called DRG groupers. However, DRGs were grouped manually 

using decision trees when they were first developed in the 1980s.  

 To assign an MS-DRG, a case should be classified into one of 25 Major Diagnostic 

Categories (MDC). These MDCs are usually classified based on body systems with some 

exceptions. Then, it should be determined whether this specific case is medical or surgical because 

surgical cases usually require more resources.  

In many cases, paints have other conditions that could influence their care. These 

conditions can be classified into Complications and Comorbidities (CC) or Major Complications 

and Comorbidities (MCC) simply based on their severity. Each individual DRG has a pre-

determined relative weight that reflects the amount of resources used in treating patients with that 
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DRG. DRGs with a relative weight of 1 suggest average resource consumption. DRGs with relative 

weights less than 1 suggest less than average resource consumption while DRGs with relative 

weights greater than 1 suggest more than average resource consumption in treating patients with 

these DRGs. Table 9 provides some examples of medical and surgical MS-DRGs.  

Table 9. Examples of MS-DRGs with different weights (FY 2016) 

MS-DRG MDC Type MS-DRG Title Weight 

1 020 01 Surgical INTRACRANIAL VASCULAR 

PROCEDURES W PDX HEMORRHAGE W 

MCC 

9.4201 

2 032 01 Surgical VENTRICULAR SHUNT PROCEDURES W 

CC 

1.9875 

3 042 01 Surgical PERIPH/CRANIAL NERVE & OTHER 

NERV SYST PROC W/O CC/MCC 

1.8655 

4 123 02 Medical NEUROLOGICAL EYE DISORDERS 0.6697 

5 152 03 Medical OTITIS MEDIA & URI W MCC 1.0141 

6 158 03 Medical DENTAL & ORAL DISEASES W CC 0.8482 

Source of information: (CMS, FY 2015 Proposed Rule Tables, 2014) 

As shown in Table 9, MS-DRG 032 (Ventricular Shunt Procedures W CC) has a relative 

weight of 1.9875. This suggests that more than average resources are used in treating patients with 

this condition. However, MS-DRG 032 is a surgical case with other complications or comorbidities 

which can justify the more than average resource consumption. In contrast, MS-DRG 158 (Dental 

and Oral Diseases W CC) is a medical case that requires less than average resource consumption 

since the relative weight for that specific MS-DRG is 0.8482. To determine the hospital’s payment 
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for each case, the DRG relative weight is multiplied by the hospital base rate. Table 10 provides 

the total payment amount for Hospital A where hospital rate is assumed to be $3,000.  

Table 10. Total payment for each case based on hospital rate 

MS-

DRG 

MDC Type MS-DRG Title Weight Hospital  

Payment 

1 020 01 Surgical INTRACRANIAL VASCULAR 

PROCEDURES W PDX 

HEMORRHAGE W MCC 

9.4201 $28260.3 

2 032 01 Surgical VENTRICULAR SHUNT 

PROCEDURES W CC 

1.9875 $5962.5 

3 042 01 Surgical PERIPH/CRANIAL NERVE & 

OTHER NERV SYST PROC W/O 

CC/MCC 

1.8655 $5596.5 

4 123 02 Medical  NEUROLOGICAL EYE 

DISORDERS 

0.6697 $2009.1 

5 152 03 Medical OTITIS MEDIA & URI W MCC 1.0141 $3042.3 

6 158 03 Medical DENTAL & ORAL DISEASES W 

CC 

0.8482 $2544.6 

 

The average relative weight for all DRGs in a certain hospital is what constitutes the case 

mix index for that hospital. Thus, case mix is based on DRGs which are originally assigned based 

on ICD codes. It is a financial indicator of reimbursement; any change in the case mix index of a 
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certain hospital could be attributed to a change in either patient population or coding. Therefore, 

case mix is frequently monitored to assess the financial health and quality of coding.   

In addition, CMI has become an indicator of hospital disease severity in the United States (Mendez 

et al, 2013). Yang and Reinke (2006) conducted a study to evaluate different CMIs in capturing 

disease severity. They concluded that DRG-based CMIs are the most valid CMIs in capturing 

disease severity. However, CMI can be affected by documentation, coding practices, hospital, and 

patients’ characteristics (AHIMA, 2008; Friesner et al, 2007; Hvenegaard et al, 2009; Martin, 

2016; Mendez et al, 2013; Rosenbaum et al, 2014; Steinbusch et al, 2006) 

In 2007, Friesner et al. conducted a study that evaluates the use of CMI as an indicator of 

resource utilization and patient illness severity using a panel of Washington state hospitals. 

Friesner and colleagues concluded that using a single CMI might not be appropriate for comparing 

small or mid-size hospitals but is appropriate when comparing large hospitals that treat a wide 

variation of conditions (Butler, 2016).  

Other hospital variables could have an impact on CMI as a marker of disease severity 

(Hvenegaard, 2009; Martin, 2016; Mendez et al, 2013). In 2009, Hvenegaard and colleagues 

conducted a study to develop a model to predict hospital cost based on CMI and other routinely 

collected characteristics. A major study finding is that CMI is a robust factor in predicting financial 

performance and adding other factors such as age, gender, and socioeconomic characteristics does 

not seem to affect the cost significantly.  

Furthermore, a study conducted by Mendez and colleagues (2013) to evaluate the impact 

of hospital variables on average CMI suggested that “between 1996 and 2007, average CMI 

declined by 0.4% for public hospitals, while rising significantly for private for-profit (14%) and 

non-profit (6%) hospitals.” However, after introducing the MS-DRG system in 2007, the CMI 
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increased for all types of hospitals but remained lowest in public hospitals. Also, trauma centers 

have higher CMI compared to non-trauma centers.  

Documentation practices and coding accuracy can have an impact on CMI (AHIMA, 2008; 

Combs, 2016; Land, 2016; Mendez et al, 2013, Rosenbaum, 2014). For instance, lower CMI can 

be attributed to diminished financial support to clinical documentation improvement (CDI) in 

public hospitals (Mendez et al, 2013). In 2014, Rosenbaum and colleagues conducted a study to 

evaluate the effect of CDI and education on CMI. For this study, they created a new metric to 

measure the subsequent documentation improvement (normalized CMI) and compare it with the 

traditional CMI after conducting the educational intervention. This study reported an increase in 

CMI and suggested that documentation accuracy and quality are significant factors that impact the 

hospital CMI. Another important factor that could impact CMI is coding.  

Coding practices such as quality and productivity might have a significant influence on 

MS-DRG assignment as well as CMI (AHIMA, 2008; Combs, 2016; Martin, 2016; Rosenbaum, 

2014; Steinbusch et al, 2007). Comparing different CMI systems, Steinbursch and colleagues 

(2007) suggested that “there are fewer opportunities for up-coding to occur in case-mix systems 

that do not allow for-profit ownership and in which the coder’s salary does not depend on the 

outcome of the classification process.” Therefore, “the US case-mix system tends to be more open 

to up-coding than the Australian system”. With respect to time, this is a higher probability of up-

coding when registration is initiated at the beginning of the care process (Land, 2016; Steinbusch 

et al, 2007). 
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4.2 OUTPATIENT PROSPECTIVE PAYMENT SYSTEM (OPPS) 

APCs or Ambulatory Payment Classifications is the United States government's method of paying 

for facility outpatient services for the Medicare beneficiaries (CMS, 2016). A part of the Federal 

Balanced Budget Act of 1997 made the CMS create a new Medicare "Outpatient Prospective 

Payment System" (OPPS) for hospital outpatient services (CMS, 2012; Cade, 2012). APCs are an 

outpatient prospective payment system applicable only to hospitals. The total number of APCs is 

850. A case is first coded using HCPCS/CPT codes then grouped to a relevant APC category; a 

single patient can have many different APCs. The provider receives payment for services for each 

APC. However, it is important to note that “not every CPT code will have a corresponding APC, 

and some APCs will have multiple CPT codes associated with them” (CMS, 2016; Martin, 2016; 

Shaeffer & Wash, 2000; Stanfill, 2016; Wirtzer, 2012). 

Physicians are reimbursed through other methodologies such as the Resource Based 

Relative Value System RBRVS (CMS, 2016; Cade; 2012; Linder, 2016). RBRVS is Medicare’s 

payment method for services provided by physicians to Medicare beneficiaries. The coding system 

used for this payment method is HCPCS/CPT and each CPT and HCPCS code has a payment 

amount. Particularly, each code has a Relative Value Unit (RVU) that accounts for the physician’s 

work, practice expense, and malpractice insurance. All RVUs are adjusted by Geographical 

Practice Cost Index (GPCI). The sum of the adjusted RVUs is then multiplied by the corresponding 

Medicare fee schedule amount to determine to total payment. 

CPT’s Evaluation and Management (E&M) services account for the majority of services 

rendered For Medicare patients (CMS, 2016; Wirtzer, 2012). Many studies have shown that E&M 

coding “exhibits poor reliability” even if performed by professional coders (Martin, 2016; Morsch 

et al, 2007; Stoner et al, 2007; Flanagan & Santos, 2009). In 2009, Flanagan and Santos conducted 
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a study to identify sources of outpatient coding variations. This study has identified two sources 

of outpatient coding variations or inconsistencies. First, CMS guidelines for E&M coding “allow 

a large range of interpretation, requiring several ad hoc decisions (CMS, 2016; Combs, 2016; 

Flanagan & Santos, 2009; Stanfill, 2016). These ad hoc decisions -required to be taken by 

providers, carriers, institutions, auditors, and individual coders- represent one source of coding 

variation in outpatient settings (Flanagan & Santos, 2009). In addition to “inference”, 

documentation represents another source of E&M coding variation. E&M coding inconsistency 

were attributed to issues related to history, physical exam and complexity of the coding scenarios. 

4.3 FEDERAL LAWS AND REGULATIONS 

Compliance with federal laws and regulation is an important element that drives quality and 

efficiency of operations in health care including clinical coding. Non-compliance with such 

regulations can present a serious disadvantage to any healthcare facility in term of liability and 

financial loss (disciplinary actions and fines by the federal government) (William & Cabin, 2014).  

Below are some of the federal regulations that have influenced clinical coding and auditing 

processes.  

(1) False Claim Act is a federal law that imposes liability on federal contractors who defraud 

governmental programs. Claims under the law have typically involved health care, military, 

or other government spending programs, and dominate the list of the largest pharmaceutical 

settlements (Hill et al, 2014).  
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(2) Health Insurance Portability and Accountability Act of 2002 (HIPAA): includes 

provisions to increase as well as stabilize funding for activities directed at reducing health 

care fraud and improper payments in federal health programs (CMS, 2014): 

a. Creating Health Care Fraud and Abuse Control (HCFAC) program  

b. Establishing Medicare Integrity Program (MIP); reduce improper payment in 

Medicare. 

(3) Improper Payments Information Act of 2002: Congress requires federal agencies to 

estimate and report an annual amount of improper payments for all programs and activities 

(CMS, 2016; Stockdale: 2009). 

(4) Medicare Prescription Drug, Improvement, and Modernization Act of 2003: Congress 

authorized the RAC demonstration program for Part A and B of Medicare. The RACs were 

contracted to identify overpayments and underpayments based on a contingency fee. 

However, many criticize that this contingency fee incentivize RACs to aggressively seek 

overpayments in particular (AHIMA: 2010; CMS, 2016; Stockdale: 2009).  

(5) Tax Relief and Health Care Act of 2006: RACs was authorized as a permanent program 

and extended to all states (CMS, 2016). 

(6) Patient Protection and Affordable Care Act of 2010: Medicare was required to expand the 

Recovery Audit Contractor (RAC) program to the Medicare Part C (Medicare Advantage) 

and Part D (Prescription Drug Benefit) programs (CMS, 2016). 
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5.0  CLINICAL CODING VALIDATION, CODED DATA QUALITY, AND 

PRODUCTIVITY-DRIVEN PRACTICES 

5.1 INTERNAL AUDIT PROGRAMS 

The role of the internal auditor is “to independently and objectively analyze, review, and evaluate 

existing procedures and activities as well as reports and recommended changes to management on 

various operations of the organization.” (Forman, 2013) Of course, internal audit can protect 

against the impact of noncompliance in health care organizations. However, the internal auditors 

primarily focus on non-financial operational audits.  

Per Kusserow (2014), internal auditors have been subjected to pressure from two forces: 

(1) outsourcing of audit in all business sectors including health care; and (2) the ever-increasing 

overlap between compliance and audit as organizational functions. Accordingly, there are three 

major approaches to audit including: (1) outsourcing; (2) merging of the internal audit and 

compliance functions; (3) coordination and cooperation of the two functions.  

5.1.1 Outsourcing approach 

Outsourcing of internal audit function is common in smaller and mid-size health care 

organizations. Kusserow suggested that “the smaller an organization, the more likely it is to either 

eliminate or outsource internal auditor” due to unaffordability of such internal audit programs or 

services to small facilities such as physician offices (Kusserow, 2014). However, smaller facilities 

can overcome the problem of affordability by outsourcing services as well as internal audit to the 
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same firm. A major limitation of this practice is the potential conflict of interests when the 

accounting or consulting firm that provides these services is the one in charge of conducting 

internal audit. To avoid such conflict of interest, it is advisable to hire another outsourcing firm to 

conduct external reviews from time to time (Boomershine et al, 2017; Forman, 2013). 

5.1.2 Merging approach 

In this approach, the internal audit and compliance functions are merged into one function to 

monitor and “ensure organizational compliance with all applicable laws, regulations, standards, 

policies and procedures as well as addressing high-risk areas” (Boomershine et al, 2017; Forman, 

2013; Kusserow, 2014). Therefore, this merged unit: (1) has access to the organization’s records, 

resources, and personnel; (2) perform independent reviews; and (3) monitor compliance. This 

practice is common in smaller and mid-sized facilities. However, in larger organizations, this can 

lead to persisting tension between the two functions with respect to fighting over resources and 

managerial attention.  

5.1.3 Coordination approach  

For many health care organizations, the best option is to “promote cooperation and coordination 

between the compliance officer and internal auditor functions” (Forman, 2013; Kusserow, 2014; 

Pitsikoulis & Doty, 2016). In this approach, “the internal auditor focuses on documents, 

operations, and controls” while the compliance officer focuses on compliance with rules and 

regulations and effective communication that builds trust between management and employees” 

(Kusserow, 2014). Coordination can enhance operational efficiency; this can be achieved by 
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development of annual audit plans, ensuring compliance with high-risk areas, and including 

compliance-related audit. An example of this audit-compliance approach is to include compliance 

elements in the audit process. For example, “does medical record documentation support coding 

and billing” (Kusserow, 2014). However, this is the core component of the Clinical Documentation 

Improvement initiatives and programs in health care organizations (Boomershine et al, 2017; 

DeAlmeida, 2012; Pitsikoulis & Doty, 2016; Stegman, 2011; Stanfill, 2015).  

Per Isenberg (2006), health plan administrators have started outsourcing chart audits. 

Particularly, the audit of outpatient charts (E/M codes, documentation, and level of billing). 

Further, practitioners should pay attention to level 4 and 5 E/M codes (CMS, 2016; Forman, 2013; 

Isenberg, 2006).  

However, providers are advised to conduct external coding audits (at least once a year) to 

assess their coding quality as well as productivity (Wilson & Dunn, 2009; Stanfill, 2015; 

Boomershine et al, 2017). According Brownfield & Didier (2009), “external audits can objectively 

analyze operations, detect holes in the system, and uncover deficiencies that an internal audit 

program may miss. This outside review helps strengthen future internal audits by discovering how 

and why internal audits may have overlooked findings.” 
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5.2 THE RECOVERY AUDIT PROGRAM AND MEDICARE 

5.2.1 Background on Medicare 

Medicare is considered the nation’s largest health insurance program for people 65 or older, and 

people with certain disabilities. Medicare insurance consists of four parts A, B, C, and D 

(Stockdale, 2009): 

(1) Part A is Medicare (Hospital Insurance) that primarily covers inpatient hospital services, 

skilled nursing facility services, home health services, and hospice services (Stockdale, 

2009; CMS, 2016); 

(2) Part B is Medicare (Supplementary Medical Insurance) that covers other medical services 

such as physician visits, outpatient hospital care, laboratory services, and durable medical 

equipment (CMS, 2016).  

(3) Part C is (Medicare Advantage MA) plan; it an optional plan that provides beneficiaries 

the benefits of Part A, B, and D (CMS, 2016).  

(4) Part D is Medicare (Prescription Drug Plan PDP) which is a private insurance for drug 

coverage.  

Part A and B constitute the fee-for-service portion of the program (Original Medicare) 

while Part C and D constitute the private insurance portion of the program (Stockdale, 2009). The 

Centers for Medicare and Medicaid Services (CMS) is the federal agency responsible for 

administering Medicare that was authorized under Title XVIII of the Social Security Act 

(Stockdale, 2009). CMS contracts with a variety of private entities to perform daily operations of 

the program such as claim payment, fraud detection, quality of care supervision (CMS, 2016; 

Stockdale, 2008; Stockdale, 2009; William & Cabin, 2014). 
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Further Medicare’s contractors can be responsible for other administrative functions such 

as provider enrollment in Medicare, physician education on proper billing, appeals, improper 

payment recovery (CMS, 2014; Stockdale, 2009; William & Cabin, 2014). According to CMS, an 

improper payment “is any payment that should not have been made or that was made in an 

incorrect amount” which can include: (1) duplicate payments; (2) payments to ineligible recipients; 

(3) payments for ineligible services; or (4) payments for services not received. In Medicare, 

improper payments include both overpayment and underpayment to providers (CMS, 2016).  

Due to its size, scope, and decentralized administrative structure, Medicare is at high risk 

of improper payments and fraud (Government Accountability Office, 2009). However, Stockdale 

suggests that improper payment cannot be considered as a measure of fraud although they 

sometimes could be fraudulent (CMS; 2016; Martin, 2016; Stockdale, 2009). 

5.2.2 RAC Audit Program 

The RAC was established initially as a 3-year demonstration program under section 306 of 

Medicare Prescription Drug, Improvement, and Modernization Act (CMS, 2016; Land, 2016; 

Wilson, 2009). Its primary purpose was to test the cost-effectiveness of using contract auditors to 

detect and correct underpayment and overpayments in the Medicare program for both Medicare as 

Secondary Payer (MSP) and non-MSP or Claim situations.  

The demonstration program was converted to an ongoing part of the Medicare Integrity 

Program under section 302 of the Tax Relief and Health Care Act of 2006 (AHIMA, 2016). A 

June 2008 RAC evaluation report found that the claims program, by far the largest of the two 

programs, had corrected in pre-appeal findings $1.3 billion in errors in 2½ years with 96% being 

overpayments (CMS, 2016).  
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To identify improper payment, RACs are instructed to use two types of review processes 

(AHIMA, 2009; CMS, 2016; Martin, 2016; Stockdale, 2009):  

1. Automated review: In this case, there is no human review of the claims or medical records. 

Alternatively, automated systems are used to automatically check claims within the claim 

processing system for evidence of improper payment or mistakes. Automated review is 

used when two conditions are met: (1) there is certainty that the service is not covered by 

Medicare; and (2) there is a written Medicare policy (Stockdal, 2009). However, when 

there is no policy by Medicare, RACs are required to perform complex review (CMS, 

2016).  

2. Complex review: this involves human review of the medical record as well as additional 

documentation supporting the claim (CMS, 2016; Stockdal, 2009). RACs must use a 

complex review when there is a high probability that the claim encloses overpayment.  

In general, the following claims can be considered improper by RACs: (1) claims that are 

incorrectly coded; (2) claims that have incorrect payment amounts; (3) claim for services not 

covered by Medicare; (4) claim for services that are already provided (AHIMA, 2009; CMS, 2016; 

Linder, 2016; Stockdal, 2009; William & Cabin, 2014). 

RACs can review all aspects of the supporting medical records. They are further advised 

to look for appropriate medical literature and clinical judgment when making complex claim 

demonstrations (AHIMA, 2009; CMS, 2016; Stockdal, 2009). However, CMS does not require 

RACs to hire nurses or certified coders for the record review. However, all Medicare contractors 

–including RACs- are required to hire one full-time medical director to supervise the claims review 
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process (CMS, 2016; Stockdal, 2009). Table 11 represents each of the RAC contractors with the 

states that it covers. 

Table 11. States Covered by Each RAC Contractor 

Region Contractor States 

A Diversified Collection 

Services (DCS) with 

subcontractor PRG Shultz 

Connecticut, Delaware, District of Columbia, 

Maine, Maryland, Massachusetts, New 

Hampshire, New Jersey, New York, 

Pennsylvania, Rhode Island, Vermont 

B CGI Technologies and 

Solutions with subcontractor 

PRG Shultz 

Illinois, Indiana, Kentucky, Michigan,  

Minnesota, Ohio, Wisconsin 

C Cannolly Consulting 

Associates with 

subcontractor Viant Payment 

Systems 

Alabama, Arkansas, Colorado, Florida 

Georgia, Louisiana, Mississippi, New Mexico, 

North Carolina, Oklahoma,  

South Carolina, Tennessee, Texas 

Virginia, West Virginia 

D Health Data Insights with 

subcontractor PRG Shultz 

Alaska, Arizona, California, Hawaii, Idaho, 

Iowa, Kansas, Missouri, Montana, Nebraska, 

Nevada, North Dakota, Oregon, South Dakota, 

Utah,  

Washington, Wyoming 

Source of information: Centers for Medicare and Medicaid CMS 
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5.3 ADMINISTRATIVE DATA QUALITY & PRODUCTIVITY 

Payment-by-results is a prospective payment method of payment for hospital care based on the 

actual volume and complexity of services rendered by hospitals in the United Kingdom. In that 

payment system, Healthcare Resource Groupings HRGs is the equivalent to Diagnosis Related 

Groups (DRGs) in the IPPS in the U.S.  (CMS, 2016; Haliasos, et al, 2009).  

A study of clinical coding audit in otolaryngology that was based in the United Kingdom 

suggested that coding variability cannot be eliminated but rather improved by ongoing education 

and audit programs (Nouraei et al, 2013). In this study, an audit of 3131 randomly-selected 

otolaryngology patients resulted in 13% change in the primary diagnosis (n=420), and 13% change 

in primary procedure (n=417). Further, in 44% of the cases (n=1420), there was at least one change 

of the original coding and in 16% (n=514), there was a change in the Health Resource Groupings 

(HRG). Primary diagnosis and primary procedure are what referred to as principle diagnosis and 

principle procedure in the U.S, respectively.  

Another study was concerned about the effect of inaccurate coding on the departmental 

activities concluded that coding inaccuracies provide a distorted picture of departmental activities 

in addition to contributing to major financial disadvantages. This study was conducted in the 

department of neurosurgery in a hospital in the United Kingdom. Audit was performed by 

physicians due to “sub-specialism” of neurosurgery (Haliasos, et al, 2009). 

A common coding discrepancy expected to result in a considerable financial impact was 

miscoding procedures (Moar & Rogers, 2011). Some studies have shown errors in coding 7-16% 

of the procedures (Dalal & Roy, 2009; Kwaja et al, 2009; Nouraei et al, 2009; Moar & Rogers, 

2011). Some specialties like otolaryngology encompass a wide-range of procedures which are 

performed in “close anatomical proximity” and that ultimately affect coding accuracy in addition 
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to coding productivity (Nouraei et al, 2013). In fact, neurology and otolaryngology specialties were 

associated with increased coding time and similar results were found in different medical 

specialties; urology (Beckley & Nouraei, 2009), neurosurgery (Haliasos et al, 2010), and surgery 

(Townley et al, 2011; Moar & Rogers, 2012; Naran et al, 2014).  

However, it should be noted that coding accuracy requires familiarity with medical 

terminology, surgical techniques, and complex coding systems (Moar & Rogers, 2011). Coders 

familiar with medical terminology, and anatomy were found to be more efficient in performing 

complex coding (Moar & Rogers, 2011). Also, this study suggested that more experienced coders 

who are familiar with medical terminology and surgical techniques were more efficient in coding 

complex cases compared to their less experienced counterparts (Moar & Rogers, 2011).  

Per Moar and Rogers (2011), “staff who record the codes are not familiar with 

technicalities and clinical staff are not familiar with coding protocols”. In this study, coding 

inaccuracies were found in all audited cases (n=21). Other studies (Dalal & Roy, 2009; Fillit et al, 

2002; Kwaja et al, 2009; Nouraei et al, 2009) further assure that “clinicians are no better at 

providing codes than administrative staff” (Moar & Rogers, 2011). However, the same study found 

that professional coders who were familiar with anatomy and medical terminology are the most 

efficient when it comes to code assignment (Moar & Rogers, 2011).  

Measuring coding time to assess productivity is not a new concept (Endicott, 2015; Martin, 

2016, Stanfill, 2016). However, measuring coding time for clinicians performing coding is not a 

prevalent practice (Nouaei, 2013). More research has been conducted on coding productivity to 

meet the demand of administrative efficiency in the health care industry (Godbey-Miller, 2016). 

Thus, many health care organizations have created new coding metrics to monitor coding 

productivity of their coders (Boomershine, 2016; Godbey-Miller, 2016).  
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In fact, factors related to medical coders’ background as well as education and training can 

further influence coding quality and productivity. A coder’s survey conducted by the American 

Academy of Professional Coders (AAPC) in 2010 concluded that:  (1) most coders are paid by the 

hour, and wages vary based on background;(2) coders in general report a positive relationship with 

physicians; (3) facilities prefer certified coders, (4) practice physicians regularly perform coding 

duties; (5) compliance risks are the biggest issue for coders; and (6) more coders work in physician 

practices than any other setting (AAPC, 2010). Based on this survey, coding variations can emerge 

because of varying educational background, relationship with physicians, and to which extent 

medical coders are involved in administrative tasks such as billing and compliance. In fact, coders’ 

demographics in this survey were found to have a profound impact on coding productivity as well 

as coding quality.  

Another survey conducted by HCPro in 2012 suggested that coders are usually involved in 

non-coding related tasks mostly including abstracting (79%). The other duties include: appealing 

denials, release of information, incomplete record management, chart assembly, RAC-related 

tasks, DRG, data set completion and others (AHIMA, 2008; AHIMA, 2013; HCPro, 2011). 

However, 10% of coders reported they spend 18 hours or more on non-coding related tasks 

compared to 27% who spend 3-5 hours per week performing such tasks (HCPro, 2011). This 

survey found out that coder’s involvement in more administrative tasks can have a negative impact 

on coding productivity.  

In a recent study conducted by the AHIMA Foundation, coders’ demographics were found 

to have a great impact on coding quality as well as productivity. A study published by the AHIMA 

Foundation has suggested that coder’s credentials have a significant impact on coding accuracy 

and productivity (AHIMA, 2016). The same study suggested that education and years of 
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experience are important determinants of coding productivity (AHIMA, 2016).  However, this 

study was based on anecdotal information provided by the professional coders who agreed to be 

interviewed for this study. Those coders provided their demographic information along with their 

perceptions of changes in coding accuracy, and coding productivity after ICD-10 implementation.  

Furthermore, coding audit is believed to have a significant impact on coding productivity 

and quality (Linder, 2016). In most cases, physicians were the ones responsible for performing the 

audit for their medical specialties. Some of the studies, however, did not indicate who was 

responsible for the coding audit in their facilities. In 2010, The American Academy of Professional 

Coders (AAPC) announced a new Audit Services Division that provides full-service health care 

compliance and corporate integrity audits. The AAPC validates each audit, focusing on the areas 

of the organization that have the largest risk potential. The following services are provided by 

auditors: (1) insurance audit appeal; (2) coding and billing accuracy; (3) account receivable audits; 

(5) compliance audit; (6) ICD-10 readiness (AAPC, 2011). 

However, the RAC program represents the largest clinical coding audit project in the 

United States. In 2009, the RAC demonstration program identified five key areas for improper 

payment: (1) Excisional Debridement; (2) Lysis of Adhesions; (3) Wrong Principal Diagnosis; (4) 

Coagulopathy; and (5) DRGs Designated as CC or MCC with Only One Secondary Diagnosis 

(Wilson, 2009).  Many studies have recommended health care organizations to perform periodic 

coding audits to increase their coding quality, and productivity of their professional coders 

(Combs, 2016, Martin, 2016; Land, 2016).  

The CMS’s RAC program would present a valuable source of information on the impact 

of coding audit programs on hospitals across the nation. Unfortunately, such information is not yet 

provided by the CMS. Based on the American Hospitals Association (AHA), “the AHA created 
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RACTRAC—a free, web-based survey—in response to a lack of data provided by CMS on the 

impact of the RAC program on America's hospitals” (AHA, 2015). 

Based on the AHA report on RACs (Quarter 1st , 2016), outpatient billing errors accounts 

for approximately 35% of the automated denials while inpatient coding errors (MS-DRG) accounts 

for only 2% of these denials (AHA, 2016). However, the most commonly cited reason for complex 

denial is inpatient coding (75%).  Furthermore, MS-DRGs as well as other inpatient coding errors 

had the highest dollar impact on hospitals nationwide during the first quarter of 2016. Inpatient 

claim denials represent 44% of all denials nationwide. Interestingly, around 16% of reporting 

hospitals have claims denied for DRG validation converted into full medical necessity denials 

when the determination was appealed.  

Complexity of resource grouping schemes can lead to inaccurate coding (Nouraei et al, 

2013). A change in the resource grouping category usually results in greater financial impact than 

a change in coding within the same category (Moar & Rogers, 2011). Further, unclear 

documentation especially with respect to coexisting morbidities and complications can impact 

resource grouping accuracy (Moar & Rogers, 2011).  

Per Stegman (2011) and based on the results from the RAC findings, the high-risk DRGs 

are (1) MS-DRGs 207 (RESPIRATORY SYSTEM DIAGNOSIS W VENTILATOR SUPPORT 96+ 

HOURS) and 208 (RESPIRATORY SYSTEM DIAGNOSIS W VENTILATOR SUPPORT <96 

HOURS); (2) MS-DRGs 166 (OTHER RESP SYSTEM O.R. PROCEDURES W MCC), 167 

(OTHER RESP SYSTEM O.R. PROCEDURES W MCC), and 168 (OTHER RESP SYSTEM O.R. 

PROCEDURES W/O CC/MCC); (3) MS-DRGs 853 (INFECTIOUS & PARASITIC DISEASES W 

O.R. PROCEDURE W MCC), 854 (INFECTIOUS & PARASITIC DISEASES W O.R. 

PROCEDURE W CC), 855 (INFECTIOUS & PARASITIC DISEASES W O.R. PROCEDURE W/O 



72 

CC/MCC); (4) MS-DRGs 813 (COAGULATION DISORDERS). These represent the following 

respectively: respiratory system diagnosis with vent support, closed biopsy of lung, procedure for 

infections and parasitic diseases, and coagulopathy. However, the “most identified improper 

payments due to the coding/DRG assignments were in cases where only one 

complication/comorbidity (CC) or major complication/comorbidity (MCC) were coded without 

clinical validation.” (AHIMA, 2014).  

Furthermore, complexity of resource grouping found to have a significant impact on coding 

productivity. Complexity of resource grouping was also associated with increased coding time as 

coders might need more time in coding complex cases that are usually associated with higher 

DRGs (Linder, 2016, Moar & Rogers, 2011; Stanfill, 2016). A recent productivity study that was 

conducted in Rochester Regional Health has shown that more time is required to code complex 

cases suggesting a positive relationship between DRG weight and coding time (Linder, 2016). In 

fact, other studies concluded similar results with a 10% average decrease in productivity (Linder, 

2016; Watzlaf et al, 2016, Alakrawi et al, 2017).  

Therefore, coding audits should be incorporated as an integral part of coding workflow 

(Combs, 2016). Audit should be established as an ongoing process that requires collaboration 

between clinicians, coders, and auditors on a regular rather than ad-hoc basis (Nouraei et al, 2013). 

Nouraei and colleagues suggested that conducting second audit cycles can help reduce variability 

in coding accuracy as well as in coding time. However, the same study found that reduction in 

coding variability was significant for the primary procedure and secondary diagnoses but not for 

primary diagnosis when conducting a secondary review (Nouraei et al, 2013).  

Martin (2016), suggests that “chronic conditions may be hardest for coding professionals 

to determine whether a code should be assigned” and that time might be wasted on additional 
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diagnoses that have no influence on reimbursement. Also, Linder (2016) suggested that inpatient 

coding productivity is the slowest to improve due to many co-morbidities that require additional 

diagnosis codes. Clear documentation of coexisting morbidities and complications is critical to 

payment maximization. These conditions however, should be documented using specific medical 

terminology rather than general terms. Further, coding should be linked to databases to enable 

“easier data capture and retrospective audit” (Moar & Rogers, 2011). 

Furthermore, clinical documentation is believed to have a significant impact on 

productivity (AHIMA, 2014; Boomershine, 2016; Endicott, 2015; Nourei, 2013). Clinical 

documents represent the main channel of communication between different caregivers. Effective 

communication is required for improving quality of care, ensuring efficient utilization of 

resources, and maintaining access to more health benefits (DeAlmeida et al, 2014; Stanfill, 2016).  

Also, patient’s safety could be compromised if documentation of clinical episodes was not 

reliable or available to clinicians for clinical decision making in a timely manner. In fact, provision 

of subsequent healthcare can ultimately be very costly if data required for clinical decision making 

was not reliable or available (Bower-Jernigan et al, 2014).  

In addition to its significant impact on patients’ care, clinical documentation is considered 

a critical factor in determining coding quality as well as coding productivity (Land, 2016). In fact,  

clinical documentation improvement (CDI) programs are believed to have a positive influence on 

coding quality and productivity (Bower-Jernigan et al, 2014; Combs; 2016). In contrast, 

documentation deficits could lead to more coding errors as well as increased time in coding 

patients’ charts (Combs, 2016). Also, Combs (2016) suggested that clinical documentation can 

have a direct influence on coding productivity. Therefore, it is important to constantly monitor the 
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following CDI metrics and assess their impact on coding productivity: query rate, response time, 

and revenue impact (Combs, 2016).  

Other studies have been conducted to examine coded administrative data quality in Canada 

and United States suggested issues with coded data accuracy and consistency and other issues 

related to coding productivity (Awad et al, 2014; Broberg et al, 2014; Gologorsky et al, 2014, 

Jensen et al, 2014; Nouraei et al, 2014; Rybnicek et al, 2014; Sacks et al, 2014).  

In 2014, Goldinvaux and colleagues from Yale School of Medicine conducted a cross-

sectional study to evaluate the ability of ICD-9-CM to identify preoperative anemia in patients 

undergoing spinal fusion. This study examined data for 260 patients at an academic medical center. 

Only 3.8% (n=10) received ICD-9-CM code for anemia and 7 of these cases were miscoded. 

According to this study, administrative data are compiled based on ICD-9-CM codes that are 

generated based on provider input and professional coders’ abstraction for reimbursement 

purposes. Therefore, this data could be “prone to omission of details and may not accurately 

represent the entire patient population” (Goldinvaux et al, 2014).  

Also, Broberg and colleagues (2014) performed a study to evaluate the accuracy of ICD-

9-CM data for detection and categorization of adult congenital heart disease (ACHD) patients 

using EHR data. An EHR algorithm for ACHD was developed and applied to 740 patients. The 

sensitivity and specificity for this algorithm were 99 and 88%, respectively. However, of 411 non-

ACHD patients, 49 were incorrectly categorized as ACHD based on ICD-9-CM codes. Of 329 

ACHD patients, 326 were correctly categorized and the ACHD defect subtype was correct in 80% 

of the patients. This study suggested that ICD-9-CM data can be utilized in identification of ACHD 

patients based on its excellent sensitivity and good specificity values. However, using this data for 

identification of the defect subtype is less robust since the “accuracy of sub-type categorization 
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varied greatly by defect group” (Broberg et al, 2014). Furthermore, less familiarity with ACHD 

will likely result in decreased coding accuracy and increased use of non-specific codes such as 

“other congenital heart disease”.  

However, accuracy of coded data varies greatly across medical specialty (Broberg et al, 

2014; Jensen et al, 2014; Rybnicek et al, 2014). Based on their study, Rybnicek and colleagues 

suggested that administrative coding is specific but not sensitive for identifying eosinophilic 

esophagitis (EoE). In this study, all diagnostic and procedures codes of EoE patients were obtained 

using University of Carolina data warehouse (2008-2011). Specificity and sensitivity were 

calculated based on data for 308,372 patients: 99% and 37% respectively. Consequently, using 

ICD-9-CM data for identifying EoE cases “will still miss number of cases, but those identified in 

this manner are highly likely to have the disease” and therefore coded data can be used as an 

effective tool to study EoE patients in large-scale administrative databases (Rybnicek et al, 2014). 

Furthermore, a study published in 2014 by Jensen, Cookes and Davis suggested that there 

are many potential pitfalls of using administrative coded data (ICD-9-CM) in analyses related to 

epidemiology, clinical effectiveness, risk assessment, healthcare utilization, and making informed 

decisions with respect to clinical care and health policy. In addition to confirming previous 

findings of false positive miscoding errors, this study highlights findings related to false negative 

miscoding errors and subsequent implications of these miscoding errors on data accuracy and 

conclusions that can be drowned from this data (Jensen et al, 2014). It is advised to take caution 

when utilizing administrative data for less common conditions such as Down Syndrome, 

eosinophilic esophagitis, congenital heart disease, genetic blood disorders, and surgery (Broberg 

et al, 2014; Jensen et al, 2014; Nouraei et al, 2014; Rybnicek et al, 2014; Sacks et al, 2014). 
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Likewise, productivity can be influenced by medical specialty (Nouraei et al, 2014, Combs, 2016; 

Linder, 2016).  

Administrative coded data have always been criticized of inaccuracy because it is usually 

collected by coders who have no direct contact with the care process (Chang, 2015). Per Chang, 

“supporters of administrative databases have noted that there are already extensive processes in 

place to ensure the accuracy of administrative coding.” Chang suggested that inaccuracies related 

to administrative databases are more likely limited to diagnosis coding rather than procedure 

coding since there is a higher impact of procedure coding in reimbursement. Inaccuracies in 

diagnostic coding are likely to be randomly distributed and therefore less likely to bias any findings 

(Chang, 2015).  

Sacks and colleagues (2014) conducted a retrospective review to evaluate hospital 

readmissions in surgical patients using administrative coded data. This review includes all 

consecutive patients discharged from general surgery services at a tertiary care, university-

affiliated hospital (2009-2011). This study reported “significant limitations of the Hospital-Wide 

All-Cause Unplanned Readmission Measure developed by CMS” (Sacks et al, 2014). 

These varying practices have significantly contributed to coding variation as well as coding 

discrepancies. Such practice variations can influence two major aspects of clinical coding: (1) 

quality, accuracy of coded data, and amount of coding errors; and (2) time required to perform 

clinical coding as a clinical task.  



77 

5.4 COMPUTER-ASSISTED CODING (CAC) 

The advancement of Information Technology (IT) has led to a new generation of software 

applications that would inevitably enhance the efficiency of operations and reduce the cost of direct 

and indirect health care services including coding. Although medical coding represents one of the 

areas in which information technology has not been fully utilized, few attempts have shown some 

success in employing technology to improve coding operations (Land, 2016; AHIMA, 2013). Such 

efforts progressed gradually from the attempts of introducing early encoders in the 1980s to the 

revolutionary use of NLP in Computer Assisted Coding (CAC) software and automated coding 

systems (AHIMA, 2013). 

Computer-Assisted coding (CAC) is defined by the American Health Information 

Management Association (AHIMA) as the: “... use of computer software that automatically 

generates a set of medical codes for review, validation, and use based upon clinical documentation 

provided by healthcare practitioners.” There are currently two available CAC models: natural 

language processing (NLP) and structured input (SI). Both models require human intervention to 

a certain level. The function of NLP in CAC is to convert words into codes to generate a set of 

suggested codes to be reviewed, validated, or edited by coders.  

With the advancement of informatics and technology, along with the federal incentives to adopt 

EHRs represented by The American Reinvestment and Recovery Act (ARRA/HITECH), and the cost 

of healthcare increasing year after year, healthcare decision makers are driven to pay greater attention 

to coding as it plays a critical role in reimbursement, research, and public health reporting. Computer-

Assisted Coding (CAC) has been shown to increase productivity, improve accuracy, and promote 

consistency of coding in addition to ultimately reducing overall cost (AHIMA, 2014; Houser & 

Meadow, 2017; Tully and Charmichael, 2012; Stanfill; 2016). Health IT vendors have provided some 
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excellent CAC solutions that have been implemented in different hospitals across the country 

(AHIMA, 2013; Linder, 2016).  

However, encoders have been used in healthcare for more than 20 years. Encoders can be 

defined as a “tool used to automate the coding process that is similar to using a code book to 

assign codes. Encoders are computer software programs that usually prompt the coder to evaluate 

documentation and coding rules during the process of assigning a code” (AHIMA, 2005; Stanfill, 

2016). In general, using encoders is intended to decrease variability in the code assignment process 

and therefore increasing accuracy of clinical coding (AHIMA, 2005; Houser & Meadow, 2017; 

Stanfill, 2015).  

Aside from encoders, two different types of CAC can be recognized in major health 

systems; structured input and CAC using NLP. While the former is mainly menu-driven, the latter 

utilizes narrative-text form which is promising as more qualitative data are needed to serve the 

purpose of quality of healthcare and patient’s safety (Alakrawi, 2016; Salmasian, 2013). 

Emergence of CAC applications has played a major role in shaping the health care industry in 

general and coding in particular. CAC has added another layer of technology reliance (AHIMA, 

2013) and therefore has initiated a major shift related to the role of clinical coders in the automated 

coding workflow environment. Instead of manual assignment of codes, coders have been more 

engaged in reviewing and validation of codes proposed by the CAC system (AHIMA, 2013; 

Bronnert et al, 2011; Houser & Meadow, 2017).  

The AHIMA’s CAC Industry Outlook and Resource Report (2011) provides valuable 

resources for all HIM professionals on current coding practices, envisioned changes in these 

practices, and required steps to enable a smooth transition to automated coding workflow using 

CAC technologies. In fact, Bronnert and colleagues (2011) identify specific gaps in the formal 
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educational system and other training programs in addition to the skills and competencies needed 

to fill those gaps.  

However, there are some major challenges to full adaptation of CAC systems. CAC 

applications work very well for outpatient coding. However, reliability of CAC applications in 

inpatients coding has not given comparable results (AHIMA, 2013; Linder, 2016). Inpatient coding 

is more complex than outpatient coding; coding complexity increases with inpatient hospitalization 

where more documents needed to be reviewed. Revenue generated by inpatient services is greater 

than what is generated by outpatient services; acute care accounts for 51% of Medicare spending 

compared to other healthcare services (CMS, 2012; CMS, 2016).  

Regardless, rapid adaptation of health information technology in general, and CAC in 

particular, made it possible for healthcare providers to integrate remote coding in the conventional 

coding workflow and operations. Remote coding has contributed greatly to fill in coding-related 

vacancies across the United States (AHIMA, 2013). Also, CAC provides a direct link between 

coding assignment and clinical documentation by (1) enabling tractability to the source documents 

used in the codes assignment; and (2) providing coding audit trails (AHIMA, 2013). Coding errors 

are consistent in CAC applications as opposed to coders; by “machine learning”, such applications 

can be trained over time to enable the correct code assignment (Alakrawi, 2016; Salmasian, 2013).  

CAC cannot eventually replace human coders in inpatient settings but could raise the level 

of coding function to an analyst, enhance the overall coding workflow, improve coding quality by 

providing a direct link to documentation, and foster a transition to ICD-10-CM/PCS that requires 

a more sophisticated information technology architecture (AHIMA, 2013; DeAlmieda, 2012; 

Martin, 2016). Nevertheless, the field of clinical coding has been rapidly evolving because of the 

increasing complexity in the field of HIM (AHIMA, 2014). The next generation of the CAC 
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applications will reflect these changes in the fields of HIM.HIT). The role of such applications will 

be shifted from coding to clinical validation (AHIMA, 2014).  

Per CMS, “Clinical validation is an additional process that may be performed along with 

DRG validation. Clinical validation involves a clinical review of the case to see whether the patient 

truly possesses the conditions that were documented in the medical record. Recovery Auditor 

clinicians shall review any information necessary to make a prepayment or post-payment claim 

determination. Clinical validation is performed by a clinician (RN, CMD or therapist). Clinical 

validation is beyond the scope of DRG (coding) validation, and the skills of a certified coder. This 

type of review can only be performed by a clinician or maybe performed by a clinician with 

approved coding credentials.” (AHIMA, 2014). The concept of clinical coding validation will be 

discussed in the following chapter. 
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6.0  STUDY SIGNIFICANCE 

 

Cost containment and quality of care have always been major challenges to the health care delivery 

system in the United States. Health care organizations utilize coded clinical data for health care 

monitoring, and reporting that includes a wide range of diseases and clinical conditions along with 

adverse events that could occur to patients during hospitalization. Governmental organizations-

such as the Centers for Medicare & Medicaid Services (CMS), and the Agency for Healthcare 

Research and Quality (AHRQ)- also utilize coded clinical data for assessing patient safety, and 

quality of care through performance indicators used to compare hospital performance across the 

country. The results of these assessments are frequently released to the public to aid health care 

consumers in making informed decisions related to treatment options, and health care utilization.  

Also, coded clinical data can have a major impact on population health since it is used to 

determine the leading causes of mortality and morbidity in the United States. Thus, it is a critical 

factor for promoting fund for healthcare services and research. Furthermore, it has other uses in 

research, education, resource allocation, and health service planning.  

Thus, it is very critical to maintain high quality standards of clinical coded data and 

promote funding for health care research that addresses clinical coding, due to its direct impact on 

individual health outcomes as well as population health. With the rapid adoption of health 

information technology (HIT), there has been a rising demand for effective and data-driven 

decision-making strategies. Coded clinical data needed for such decision-making should be 

reliable and available to users in a timely fashion.  
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Clinical coding can be influenced by many factors such as the clinical documentation 

within the health record, and education and training of the professional coders. Clinical documents 

represent the main channel of communication between different caregivers. Effective 

communication is required for improving quality of care, ensuring efficient utilization of 

resources, and maintaining access to more health benefits (DeAlmeida et al, 2014; Stanfill, 2016).  

Also, patient’s safety could be compromised if documentation of clinical episodes was not 

reliable or available to clinicians for clinical decision making in a timely manner. In fact, provision 

of subsequent healthcare can ultimately be very costly if data required for clinical decision making 

was not reliable or available (Bower-Jernigan et al, 2014).  

In addition to its significant impact on patients’ care, clinical documentation is considered 

a critical factor in determining coding quality as well as coding productivity (Land, 2016). In fact,  

clinical documentation improvement (CDI) programs are believed to have a positive influence on 

coding quality and productivity (Bower-Jernigan et al, 2014; Combs; 2016). In contrast, 

documentation deficits could lead to more coding errors as well as increased time in coding 

patients’ charts (Combs, 2016). 

 Furthermore, attributes related to the professional coders’ background can have significant 

influences on coding quality, consistency, and productivity. A coder’s survey conducted by the 

American Academy of Professional Coders (AAPC) in 2010 concluded that:  (1) most coders are 

paid by the hour, and wages vary based on background;(2) coders in general report a positive 

relationship with physicians; (3) facilities prefer certified coders, (4) practice physicians regularly 

perform coding duties; (5) compliance risks are the biggest issue for coders; and (6) more coders 

work in physician practices than any other setting (AAPC, 2010).  
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Based on this survey, variations of coding practices were attributed to coders’ education, years of 

experience, relationship with physicians, and coders’ involvement in other administrative tasks 

such as billing and compliance. In fact, coders’ demographics in this survey were found to have a 

profound impact on coding productivity as well as coding quality.  

Another survey that was conducted by HCPro in 2012 suggested that coders are usually 

involved in non-coding related tasks, mostly including abstracting (79%). The other duties include: 

appealing denials, release of information, incomplete record management, chart assembly, RAC-

related tasks, DRG, data set completion and others (AHIMA, 2008; AHIMA, 2013; HCPro, 2011). 

However, 10% of coders reported they spend 18 hours or more on non-coding related tasks 

compared to 27% who spend 3-5 hours per week performing such tasks (HCPro, 2011). This 

survey found out that coder’s involvement in more administrative tasks can have a negative impact 

on coding quality and consistency. In addition, it found that coding productivity decreased as 

coders were constantly distracted by other tasks.  

Clinical data quality might suffer because of variations in coding practices. Furthermore, 

coding productivity can also be affected due to these coding variations. Therefore, this dissertation 

research aimed at identifying current coding trends. and other factors that could influence coding 

quality and productivity through two major emphases: (1) quality of coded clinical data; and (2) 

productivity of clinical coding.  

It will also examine the relationship between coding quality and coding productivity which 

represents a major strength of this study as no previous research has been conducted in this area. 

Previous studies have only tried to establish a link between coding quality and productivity based 

on qualitative data rather than quantities evidence.  
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Thus, data analytics will be performed on coding quality and productivity data sets to 

explore the most common trends related to clinical data quality, and coding productivity. 

Specifically, major factors that influence coding quality as well as productivity will be identified 

using different data analytics and statistical techniques and mixed research designs.  

To summarize, the significance of this study lies in three  major premises: (1) this 

dissertation research focuses on coding, a critical function that is underutilized in health care 

research; (2) it applies a new approach utilizing quantitative and qualitative methods along with 

statistics and data analytics techniques  to identify factors that could influence clinical coding 

quality and productivity; and (3) it tries to establish a connection between coding quality and 

productivity, a topic that has never been addressed based on real data analysis.  
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7.0  SPECIFIC AIMS AND RESEARCH QUESTIONS 

This study aims at identifying determinants of coding quality and productivity, error patterns, and 

current trends of professional coding practices. This can be achieved through the following specific 

aims:  

Specific Aim I: Identify factors that could influence coding accuracy: 

1. Length of stay (LOS) 

2. Case mix index (CMI) 

3. DRG relative weight 

4. MS_DRG categories that are more often impacted by coding discrepancies 

5. Coding errors at the major digit level versus the minor digit level 

Specific Aim II: Identify documentation discrepancies that could influence coding quality.   

Specific Aim III: Identify the impact of coding errors on CMI and hospital’s payment.  

Specific Aim IV: Identify individual and facility-related factors that could influence coding 

productivity:  

1. Length of stay (LOS)  

2. DRG relative weight 

3. Case mix index (CMI) 

4. Facility bed capacity (bed size) 

5. Teaching status 

6. Trauma status  

Specific Aim V: Explore the relationship between coding productivity and coding quality 
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Specific Aim VI: Develop a predictive model to predict coding productivity and coding quality 

based on the individual and facility-related factors. 

7.1.1 Specific Aim I: Identifying factors that could influence coding accuracy:  

7.1.1.1 Length of Stay (LOS) 

Extended Average Length of Stay (ALOS) can be indicative of more complex cases being treated. 

Thus, coders tend to review more documents to assign the right codes and maintain correct 

sequencing of these codes when working with more complex cases. However, this can lead to 

higher probability of coding errors associated with increased ALOS.  

7.1.1.2 Case Mix Index (CMI) 

Related to length of stay is the hospital Case Mix Index (CMI). According to CMS, “A hospital’s 

CMI represents the average diagnosis-related group (DRG) relative weight for that hospital. It is 

calculated by summing the DRG weights for all Medicare discharges and dividing by the number 

of discharges.” Therefore, it is expected to some extent that there is a correlation between coding 

quality and CMI. Particularly, higher CMI is associated with greater coding quality: higher CMI 

can be translated into higher reimbursement which can trigger external audit activities.  

7.1.1.3 DRG Relative Weight 

Based on the preceding discussion, it is expected to find a significant correlation between coding 

quality and DRG relative weight.  



87 

7.1.1.4 MS_DRG categories  

Some MS-DRG categories, Major Diagnostic Categories (MDCs), are more affected by coding 

errors than others.  

7.1.1.5 Digit Level 

Coding errors are more likely to occur at the minor digit level than at the major digit level: the 

more specific the case, the more difficult it is to select the appropriate code among different related 

alternatives. Therefore, as the degree of specificity in the coding assignment process increases, the 

coding errors increase. This results in more coding errors at the major digit level versus the minor 

digit level. Table 12 provides a summary of Specific Aim I.  

Table 12. Summary of Specific Aim I 

Factor Null Hypothesis Research Hypothesis 

1 Length of stay (LOS) 
There is no correlation 

between coding quality and 

ALOS  

(H0): ρ = 0 

There is a significant 

correlation between coding 

quality and ALOS  

(H1) ρ > 0 

2 Case mix index (CMI) 
There is no correlation 

between CMI and coding 

quality 

(H0): ρ = 0 

There is a positive 

correlation between CMI 

and coding quality 

(H1) ρ > 0 
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Table 12 (continued) 

3 DRG relative weight 
There is no correlation 

between coding quality and 

DRG relative weight 

(H0): ρ = 0 

There is a significant 

correlation between coding 

quality and DRG weight  

(H1) ρ > 0 

4 MS-DRG category 
There is no difference in coding 

quality across MDCs.  

(H0): μ1 = μ2 = μ3 = μ4....≠ μn 

Coding quality varies across 

different MDCs 

(H1): μ1 ≠ μ2 ≠ μ3 ≠ μ4....≠ μn 

 

5 Digit level 
There is no difference in coding 

error at the major and minor 

digit levels 

(H1) μ1 = μ2 = μ3 

There are more coding 

errors at 4th and 5th digit 

levels 

 (H1) μ1 ≠ μ2 ≠ μ3 

 

7.1.2 Specific Aim II: Identifying documentation discrepancies that could influence 

coding quality 

Documentation discrepancies can also have a significant impact on coding quality. Documentation 

issues can be related to lack of documentation, conflicting or incomplete documentation, and 

overlooking some documents in the process of code assignment. Therefore, it is important to 

identify documentation-related issues that can lead to inappropriate code assignment.  
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7.1.3 Specific Aim III: Identifying impact of coding errors on CMI and hospital’s 

payment 

Coding errors can have an impact on facility’s payment and consequently its case mix index. 

Assigning inaccurate codes can lead to inaccurate DRG assignment which can eventually lead to 

erroneous calculation of the facility’s CMI. Table 13 provides a summary of Specific Aim III.  

Table 13. Summary of Specific Aim III 

Factor Null Hypothesis Research Hypothesis 

1 Facility payment 
There is no correlation 

between coding quality and 

payment 

(H0): ρ = 0 

There is a significant 

correlation between coding 

quality and payment  

(H1) ρ > 0 

2 Case mix index (CMI) 
There is no correlation 

between coding quality and 

CMI 

(H0): ρ = 0 

There is a significant 

correlation between coding 

quality and CMI 

(H1) ρ ≠ 0 

7.1.4 Specific Aim IV: Identifying individual and facility-related factors that could 

influence coding productivity 

Coding productivity can be influenced by factors that are related to individual patients as well as 

to the healthcare facility or system in which coding takes place. Individual and facility related 

factors include the following: (1) length of stay (LOS) (2) DRG relative weight; (3) case mix index 

(CMI); (4) facility bed capacity (bed size); (5) teaching status; and (6) trauma status.  
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7.1.4.1 Length of Stay (LOS)  

Extended Average Length of Stay (ALOS) can be indicative of more complex cases being treated. 

Thus, coders will be demanded to review more documents to assign the right codes and maintain 

correct sequencing of these codes which can increase coding time. Furthermore, surgical cases 

where patients undergo surgical procedures are expected to have increased coding time compared 

to cases with surgeries are performed.  

7.1.4.2 Case Mix Index (CMI) 

Related to length of stay is the hospital Case Mix Index (CMI). A hospital’s CMI represents the 

average diagnosis-related group (DRG) relative weight for that hospital. It is calculated by 

summing the DRG weights for all Medicare discharges and dividing by the number of discharges.” 

Therefore, it is expected to some extent that there is a correlation between coding time and CMI. 

Particularly, higher CMI is associated with greater coding quality: higher CMI can be translated 

into higher reimbursement which can trigger external audit activities.  

7.1.4.3 DRG Relative Weight 

Based on the preceding discussion, it is expected to find a significant correlation between the 

coding time and DRG relative weight.  

7.1.4.4 Bed Size  

Facility size can be measured by bed count. Healthcare facilities with greater capacity have higher 

volume of patients with wide variety of conditions (usually more complex cases) which can have 

a positive impact on coding quality. Furthermore, healthcare facility with higher bed count tend to 

hire more experienced coders to maintain quality of clinical coding that in turn has a significant 
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influence on revenue cycle and “cash-flow”.  However, quality can be compromised when an 

increasing demand for productivity is created by a higher-volume of patients. Therefore, the 

direction of the relationship between coding quality and facility size is inconclusive.  

7.1.4.5 Teaching Status 

Teaching facilities are expected to have increased coding time compared to non-teaching facilities.  

7.1.4.6 Trauma Status 

Trauma centers are expected to have increased coding time due to complexity of cases treated in 

these facilities. Table 14 provides a summary of Specific Aim IV.  

Table 14. Summary of Specific Aim IV 

Factor Null Hypothesis Research Hypothesis 

1 Length of stay (LOS) 
There is no correlation 

between coding time and 

ALOS  

(H0): ρ = 0 

There is a positive 

correlation between coding 

time and ALOS  

(H1) ρ > 0 

 

2 DRG relative weight 
There is no correlation 

between coding time and DRG 

relative weight 

(H0): ρ = 0 

 

There is a positive 

correlation between coding 

time and DRG weight  

(H1) ρ > 0 
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Table 14 (continued) 

3 Case mix index (CMI) 
There is no correlation 

between CMI and coding time 

(H0): ρ = 0 

 

There is a positive 

correlation between CMI 

and coding time 

(H1) ρ > 0 

4 Bed size 
There is no difference in 

coding time between 

healthcare facilities with 

different bed counts.  

(H0): μ1 = μ2 = μ3 

 

Coding time is affected by 

facility size (bed count) 

 (H1) μ1 ≠ μ2 ≠ μ3 

5 Teaching status 
There is no difference between 

teaching and non-teaching 

facilities in coding time 

(H0): μ1- μ2 = 0 (μ1 = μ2) 

 

Coding time is different 

between teaching and non-

teaching facilities 

(H1): μ1- μ2 ≠ 0   (μ1 ≠ μ2) 

6 Trauma Status 
There is no difference between 

trauma and non-trauma 

facilities in coding time 

(H0): μ1- μ2 = 0 (μ1 = μ2) 

 

Coding time is different 

between trauma and non-

trauma facilities 

(H1): μ1- μ2 ≠ 0   (μ1 ≠ μ2) 

 



93 

7.1.5 Specific Aim V: Explore the relationship between coding productivity and coding 

quality 

Coding productivity and quality can be perceived as conflicting values when it comes to clinical 

coding. However, coders do not have to sacrifice quality for quantity. Therefore, the correlation 

between coding quality and coding productivity will be examined to identify the type of 

relationship between both variables. Table 15 provides a summary of Specific Aim V.  

Table 15. Summary of Specific Aim V 

Factor Null Hypothesis Research Hypothesis 

1 Coding productivity 
There is no correlation 

between coding quality and 

coding productivity 

(H0): ρ = 0 

There is a significant 

correlation between coding 

quality and coding 

productivity 

(H1) ρ > 0 

7.1.6 Specific Aim VI: Develop predictive models to predict coding productivity and 

coding quality based on the individual and facility-related factors. 

A predictive model will be developed to predict coding quality and productivity based on all 

significant factors examined in this research study.  

 



94 

8.0  METHODOLOGY 

8.1 STUDY DESIGN 

This study is a descriptive study that examined coding quality and productivity databases provided 

by Ciox Health.  Quantitative as well as qualitative methods were utilized to answer the research 

questions.  

 First, data was tabulated and organized into graphs using descriptive statistics. Using 

descriptive statistics is an important step to (1) explore the distribution of all variables across the 

selected sample (normal vs skewed); (2) account for any missing data in the subsequent analysis 

(pairwise vs listwise analysis); and (3) determine the types of tests to be used i.e. parametric vs. 

non-parametric tests. Second, bivariate analysis was performed in addition to tests of significance 

to look for significant correlations and relationships between different variables. Linear and 

multiple regression was used to develop a predictive model of coding quality as well as 

productivity.   

 Periodic reports were provided to Ciox Health and conference calls were conducted on a 

monthly-basis to discuss the progress of this research. Based on study findings, recommendations 

were provided to Ciox health on how to improve coding quality and productivity. Furthermore, a 

predictive model was developed to predict coding quality and productivity based on significant 

predictors.  
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8.2 SAMPLING DESIGN 

 

This study utilizes nonprobability sampling design (convenient sampling). However, large sample 

size can account for sampling bias that could be produced using nonprobability sampling. Samples 

will be representative of the general population of the United States. Representativeness is critical 

to establish external validity requirements needed for generalizing the study findings. Samples are 

representative with respect to the following: (1) demographically representativeness (age, gender, 

conditions); (2) geographically representativeness; and (3) diseases and procedures. 

8.3 SAMPLE SIZE  

The accuracy data includes a total of 106 audit reviews, including 57 facilities, were conducted by 

Ciox Health in 2011, 2012, and 2013. The total number of inpatient cases reviewed is 1,010 cases 

(13,713 ICD-9-CM codes). In contrast, ICD-10 productivity data includes a total number of 

323,112 cases for a 10-month period (October 2015-July 2016).   

8.4 DATA COLLECTION  

The accuracy data contains coded ICD-9-CM data that has been audited to improve quality and 

accuracy of coding and billing practices of Ciox’s clients. Upon audit, clients are given feedback 

on their coding accuracy level with respect to: (1) ICD-9-CM codes assignment (can include 
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inpatient, outpatient, and long-term care data); (2) MS-DRG grouping; and (3) the reasons for 

codes or DRG changes to learn the best coding practices. The productivity data contains data on 

coding time that was automatically recorded by Ciox professional coders.  

All databases are de-identified and therefore do not contain any patient identifying information.  

The IRB office at the University of Pittsburgh has approved this dissertation research and Data 

Use Agreement (DUA) was determined by the University of Pittsburgh Office of Research.  

8.4.1 Accuracy Data Set 

Accuracy data was received in the form of individual reports. Thus, the data was re-structured, 

organized, and tabulated in a data set. This data set includes the following data items: (1) case ID; 

(2) facility ID; (3) code ID; (4) length of stay; (5) CMI; (6) DRG relative weight; (7) DRG 

description; (8) DRG relative weight; and (9) payment amount; and (10) ICD-9-CM codes. DRG 

variables, ICD-9-CM codes, and payment were redundant (measured for both coders and auditors).  

In addition, accuracy scores were assigned to all codes based on the following ranked agreement:  

5 All digits are captured by codes assigned 

4 One digit is different between the codes assigned 

3 Two digits are different between the codes assigned 

2 Three digits are different between the codes assigned 

1 >3 digits are different between the codes assigned  

0 0= Not coded (added by reviewer) 

 

Finally, a total accuracy score was assigned to each case. The following formula was used to 

calculate the overall accuracy score: 
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Using this formula as opposed to the conventional accuracy rate formula has a major advantage in 

accounting for depth of the coding. In other words, the number of codes in each case is considered 

when measuring accuracy.  

8.4.2 Productivity Data Set 

The productivity data set used data compiled by Ciox for a 10-month period (October 2015- July 

2016). This data was selected specifically so researchers could focus on coding productivity after 

ICD-10 was in use for a longer period. The data was analyzed, organized, and influential outliers 

were removed from the final analysis. Influential outliers include length of stay greater than 365 

and coding time greater than 10 hours. Productivity is defined as the time required to code a patient 

record measured in minutes. The productivity data set includes the following data items: (1) case 

ID; (2) facility ID; (3) LOS; (4) CMI); (5) DRG; (6) DRG relative weight; (7) DRG description; 

(8) MDC; (9) MDC description; (10) teaching status; (11) trauma level; (12) coding time (in 

minutes); (13) coding complete data.  
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8.5 DATA ANALYSIS 

This is an exploratory study and therefore starting with descriptive statistics is important to identify 

the current state of coding and issues related to its quality and practice. Univariate and bivariate 

analyses was performed on Ciox data followed by regression analyses. Quantitative analysis was 

performed using SAS version 9.4 and SPSS 17 while qualitative analysis was performed using 

Nvivo Qualitative Analysis Software. Outliers as well as missing data was adjusted for during this 

stage as well:  

Handling missing data: data was examined to determine whether data is missing completely at 

random (MCAR), missing at random (MAR), or not missing at random (NMAR): 

(1) MCAR: a missing value is unrelated to any other value  

(2) MAR: a missing value is related to other observed value(s) 

(3) NMAR: a missing value is related to other missing values 

In case of missing data, listwise deletion, or complete case analysis was performed. If the 

percentage of missing data is high, multiple imputation (MI) was performed.  

Dealing with outliers: Data analysis was performed with as well as without extreme values 

(outliers). Univariate outliers do not usually represent a significant problem in the analysis. 

However, outlier diagnostics was performed to determine whether regression outliers are 

influential.  

Furthermore, recommendations have been provided on how to improve coding quality and 

productivity and models to predict both variables were developed based on the data analysis. 
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9.0  RESULTS 

In this section, results of this dissertation research are presented with respect to the following 

sections: 

I. Identifying factors that could influence coding accuracy. 

II. Identifying documentation discrepancies that could influence coding quality.   

III. Identifying the impact of coding errors on CMI and hospital’s payment.  

IV. Identifying individual and facility-related factors that could influence coding 

productivity. 

V. Exploring the relationship between coding productivity and coding quality 

VI. Developing a predictive model to predict coding productivity and coding quality based on 

the individual and facility-related factors.  

9.1 IDENTIFYING FACTORS THAT COULD INFLUENCE CODING ACCURACY 

In this section, univariate and bivariate analyses were conducted to identify the influence of LOS, 

CMI, and DRG relative weight on coding accuracy. Descriptive statistics revealed interesting 

patterns related to coding errors and DRG changes. However, no significant correlations were 

found between coding accuracy and LOS, CMI, and DRG relative weight.  
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9.1.1 Descriptive Statistics 

The total number of cases analyzed is equal to 1,010 cases with a total number of 13,713 codes. 

Quality data is ICD-9 audited data that includes 12, 938 diagnosis codes (94.35%) and 775 

procedure codes (5.65%). The average LOS in this sample is 3.85 days with a standard deviation 

of ± 4.07 days (LOS ranges from 1 to 60 days). Also, Average CMI in this sample is 1.10 with a 

standard deviation of ± 0.19 points. The DRG relative weight ranges from .43 to 7.80 with a mean 

of 1.12 and standard deviation of ± .83. Interestingly, differences in payment (based on coding 

audit) ranges from -$28,587.74 to +$26,060.16. Table 16 represents distribution of LOS, CMI, 

DRG Relative Weight and Payment Difference.  

Table 16. Descriptive Statistics (Accuracy Data) 

 N Mean Standard 

Deviation 

Minimum Maximum 

LOS 1,010 3.85 4.07 1.00 60.00 

CMI 1,010 1.04 0.19 0.88 1.74 

DRG Relative 

Weight 

1,010 1.12 0.83 0.43 7.80 

Payment Difference 1,010 $-34.91 $1603.62 $-28587.74 $26060.16 

 

As shown in Table 17 and figure 10, the top 10 principle diagnoses in this sample include the 

following: pneumonia, atrial fibrillation, septicemia, urinary tract infection, chest pain, chronic 
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obstructive bronchitis, transient cerebral ischemia, syncope and collapse, congestive heart failure, 

and acute on chronic diastolic heart failure. 

Table 17. Most Frequent Principle Diagnoses 

ICD-9-CM 

Code 

Description  Number of 

Cases (%) 

1 486 Pneumonia, organism NOS  93 (9.21%) 

2 427.31 Atrial fibrillation 62 (6.14%) 

3 389  Septicemia NOS 58 (5.74%) 

4 599.0 Urinary tract infection NOS 52 (5.15%) 

5 786.59  Chest pain NEC 33 (3.27%) 

6 491.21 Chronic Obstructive bronchitis with acute exacerbation  29 (2.87%) 

7 435.9 Transient cerebral ischemia NOS 22 (2.18%) 

8 780.2 Syncope and collapse 22 (2.18%) 

9 428.0 Congestive heart failure NOS 20 (1.98%) 

10 428.33 Acute on chronic diastolic heart failure 19 (1.88%) 

Total 410 (40.59%) 

 

Also, the top 10 secondary diagnoses are the following: pnuemonia, urinary tract infection, 

hyposmolality, acute kidney failure, congestive heart failure, acute respiratory failure, end stage 

renal disease, dehydration, atrial fibrilation, and chronic airway obstruction. Table 18 and figure 

11 represent distributions of the most frequent secondary diagnoses. 
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Figure 10: Top 10 Principal Diagnoses 

Table 18. Most Frequent Secondary Diagnoses 

ICD-9-CM Codes and Descriptions N (%) 

1 486 Pneumonia, organism NOS  37 (3.66%) 

2 599.0 Urinary tract infection NOS 31 (3.07%) 

3 276.1 Hyposmolality 30 (2.97%) 

4 584.9 Acute kidney failure NOS 20 (1.98%) 

5 428.0 Congestive heart failure NOS 19 (1.88%) 

6 518.81 Acute respiratory failure 19 (1.88%) 

7 585.6 End stage renal disease 17 (1.68%) 

8 276.51 Dehydration 14 (1.39%) 

9 427.31 Atrial fibrillation 13 (1.29%) 

10 496 Chronic airway obstruct NEC 13 (1.29%) 

Total 213 (21.09%) 
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Figure 11: Top 10 Secondary Diagnoses 

Furthermore, the following are the five most frequent principal procedures: implantation or 

replacement of intracranial neurostimulator, vaccination, cervical fusion, diagnostic ultrasound of 

heart, and heart countershock (table 19 and figure 12).  

Table 19. Most Frequent Principal Procedures 

ICD-9 Description  Number of 

cases (%) 

1 02.93 Implantation or replacement of intracranial neurostimulator 

lead(s) 

23 (2.28%) 

2 99.55 Vaccination NEC 19 (1.88%) 

3 81.03 Other cervical fusion of the posterior column, posterior technique 13 (1.29) 

4 88.72 Diagnostic ultrasound of heart 9 (0.89%) 

5 99.62 Heart countershock NEC 6 (0.59%) 

Total  70 (6.93%) 
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Figure 12: Top 5 principal procedures 

Finally, table 20 and figure 13 represent the 10 most frequent DRGs in this sample. The most 

frequent DRG in this list is 0.5617 for chest pain. This DRG also represents the lowest weight in 

this list.  

Table 20. Most Frequent DRGs 

DRG Description  Weight  

0313 CHEST PAIN 0.5617 

0392 ESOPHAGITIS, GASTROENT & MISC DIGEST DISORDERS W/O MCC 0.7375 

0885 PSYCHOSES 0.9209 

0194 SIMPLE PNEUMONIA & PLEURISY W CC 0.9996 

0871 SEPTICEMIA OR SEVERE SEPSIS W/O MV 96+ HOURS W MCC 1.8803 

0312 SYNCOPE & COLLAPSE 0.7339 

0309 CARDIAC ARRHYTHMIA & CONDUCTION DISORDERS W CC 0.8098 

0069 TRANSIENT ISCHEMIA 0.7449 

0690 KIDNEY & URINARY TRACT INFECTIONS W/O MCC 0.7810 

0552 MEDICAL BACK PROBLEMS W/O MCC 0.8533 
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Distribution of Coding Errors Based on Number of Digits 

Accuracy scores were assigned to individual codes based on the following scale:  

5 All digits are captured by codes assigned 

4 One digit is different between the codes assigned 

3 Two digits are different between the codes assigned 

2 Three digits are different between the codes assigned 

1 >3 digits are different between the codes assigned  

0 0= Not coded (added by reviewer) 

 

A total of 1,058 coding errrors were found in this sample which represents 7.72% of the total 

codes. The accuracy rate in this sample is around 93% which is considered relatively high. The 

most common error was missing codes which accounts for 46.88% of the entire coding errors. 

Errors where one digit is different account for approximately 9% while errrors where two digits 
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are different accounts for 7%. Table 21 and figure 14 represent the distribution of coding errors 

based on the different number of digits cited by the coding auditors. 
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However, when examining errors at the major vs minor digit categories, errors at the fifth-digit 

categories account for approximately 25% while errors at the fourth-digit and three-digit categories 

account for around 20% and 55%, respectively. Figure 15 illustrates percentages of errors at the 

third, fourth, and fifth digit levels.  

 

 

Coding Accuracy Observations 

 

The total number of cases analyzed in this sample is 1,010 cases with a total number of 13,713 

codes. The total number of cases with errors is equal to 940 cases while the total number of cases 

with any type of errors is equal to 70 cases. The accuracy rate was calculated using two methods:  
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Figure 15: Distribution of Coding Errors Based on 3rd, 4th, and 5th Digits 
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1. Method I:   

 

 

 

Based on this method, accuracy rate = (70/1,010)*100= 93.07% 

 

2. Method II:  

 

 

When using the second method, the average accuracy rate increased to 94.98%. 

The total number of cases with DRG changes is 52 cases of which 18 cases were changed due to 

principle diagnosis.  DRG change due to secondary or additional diagnoses was observed in 23 

cases. Furthermore, sequencing errors lead to DRG change in 11 cases. The total payment 

difference is equal to $ -34,461.6 in deficit. Table 22 provides a summary of the descriptive 

analysis.  

Accuracy Rate by DRGs 

Table 23 represents the accuracy rate for the 10 most frequent DRGs: (1) CHEST PAIN; (2) 

ESOPHAGITIS, GASTROENT & MISC DIGEST DISORDERS W/O MCC; (3) PSYCHOSES; 

(4) SIMPLE PNEUMONIA & PLEURISY W CC; (5) SEPTICEMIA OR SEVERE SEPSIS 

W/O MV 96+ HOURS W MCC; (6) SYNCOPE & COLLAPSE; (7) CARDIAC 

ARRHYTHMIA & CONDUCTION DISORDERS W CC; (8) TRANSIENT ISCHEMIA; (9) 

KIDNEY & URINARY TRACT INFECTIONS W/O MCC; and (10) MEDICAL BACK 

PROBLEMS W/O MCC.  

 

Total Number of Cases with Errors 
*100 

Total Number of Cases 

Sum of Accuracy Scores of Individual Codes  
*100 

Sum of Highest Possible Score of Individual codes 
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Table 22. Accuracy Statistics 

1 Total number of cases analyzed 1010 

2 Total number of codes  13713 

3 Number of cases with no errors 940 (93.07%) 

4 Number of cases with errors 70 (6.93%) 

5 Number of cases with DRG change 52 (5.15%) 

6 DRG change due to principle diagnosis 18 (1.78%) 

7 DRG change due to secondary (additional) diagnoses  23 (2.28%) 

8 DRG change due to sequencing error  11 (1.09%) 

9 DRG change due to principle or secondary procedure 0  

10 Number of cases with change in principle diagnosis 37 (3.66%) 

11 Number of cases with change in secondary diagnosis 41 (4.06) 

12 Number of cases with change in principle procedure 7 (0.69%) 

13 Number of cases with change in secondary procedure 2 (0.20%) 

14 Overall Payment Difference (deficit) -34,461.6 

 

DRG Changes based on Coding Audit 

In most cases, coding audit did not result in changes in DRG assignment. Changes in principle 

diagnosis as well as sequencing were the most common reasons for changes in DRG assignment. 

Table 24 represents the most frequent DRG changes due to principle diagnosis.  
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Table 23. Accuracy Rate based on the Most Frequent DRGs 

DRG Description  Weight Accuracy 

0313 CHEST PAIN 0.5617 98.65 

0392 ESOPHAGITIS, GASTROENT & MISC DIGEST 

DISORDERS W/O MCC 

0.7375 99.75 

0885 PSYCHOSES 0.9209 100 

0194 SIMPLE PNEUMONIA & PLEURISY W CC 0.9996 100 

0871 SEPTICEMIA OR SEVERE SEPSIS W/O MV 96+ 

HOURS W MCC 

1.8803 99.98 

0312 SYNCOPE & COLLAPSE 0.7339 100 

0309 CARDIAC ARRHYTHMIA & CONDUCTION 

DISORDERS W CC 

0.8098 97.99 

0069 TRANSIENT ISCHEMIA 0.7449 99.09 

0690 KIDNEY & URINARY TRACT INFECTIONS W/O 

MCC 

0.7810 98.97 

0552 MEDICAL BACK PROBLEMS W/O MCC 0.8533 100 
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Table 24. Most Frequent DRG Changes Due to Principle Diagnosis 

DRG 

(Weight) 

 

Payment Description DRG 

(Weight) 

 

Payment Description 

871 

(1.8803) 

11657.86 SEPTICEMIA OR 

SEVERE SEPSIS W/O 

MV 96+ HOURS W MCC 

291 

(1.5174) 

9407.88 HEART FAILURE & 

SHOCK W MCC 

193 

(1.4893) 

9233.66 SIMPLE PNEUMONIA 

& PLEURISY W MCC 

190 

(1.186) 

7353.2 CHRONIC 

OBSTRUCTIVE 

PULMONARY 

DISEASE W MCC 

291 

(1.5174) 

9407.88 HEART FAILURE & 

SHOCK W MCC 

689 

(1.1784) 

7306.08 KIDNEY & URINARY 

TRACT INFECTIONS 

W MCC 

455 

(5.8705) 

34937.93 COMBINED 

ANTERIOR/POSTERIOR 

SPINAL FUSION W/O 

CC/MCC 

502 

(1.067) 

6350.19 SOFT TISSUE 

PROCEDURES W/O 

CC/MCC 

689 

(1.1784) 

7306.08 KIDNEY & URINARY 

TRACT INFECTIONS W 

MCC 

194 

(0.9996) 

6197.52 SIMPLE PNEUMONIA 

& PLEURISY W CC 

988 

(1.8567) 

11511.54 NON-EXTENSIVE O.R. 

PROC UNRELATED TO 

PRINCIPAL 

DIAGNOSIS W CC 

349 

(0.8075) 

5006.5 ANAL & STOMAL 

PROCEDURES W/O 

CC/MCC 
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Table 24 (continued) 

812 

(0.792) 

4910.4 RED BLOOD CELL 

DISORDERS W/O MCC 

760 

(0.7892) 

4893.04 MENSTRUAL & 

OTHER FEMALE 

REPRODUCTIVE 

SYSTEM DISORDERS 

W CC/MCC 

872 

(1.1339) 

7030.18 SEPTICEMIA OR 

SEVERE SEPSIS W/O 

MV 96+ HOURS W/O 

MCC 

690 

(0.787) 

4879.4 KIDNEY & URINARY 

TRACT INFECTIONS 

W/O MCC 

422 

(1.3006) 

7740.44 HEPATOBILIARY 

DIAGNOSTIC 

PROCEDURES W/O 

CC/MCC 

866 

(0.7594) 

4519.52 VIRAL ILLNESS W/O 

MCC 

312 

(0.7339) 

4334.66 SYNCOPE & 

COLLAPSE 

948 

(0.701) 

4140.34 SIGNS & SYMPTOMS 

W/O MCC 

9.1.2 Bivariate Analyses 

 Pearson and Spearman correlation coefficients (r, rho) were calculated for the relationship 

between variables. Table 25 demonstrates zero-order correlations among variables.  

The strongest correlation was found between DRG Weight and CMI (r (1008) = 0.259, p 

< .01), indicating that a significant linear relationship exists between both variables. This is 

considered as a positive and weak correlation.  
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Table 25. Zero-order correlations among the variables (Accuracy) 

  (1) (2) (3) (4) 

(1) Coding Accuracy -    

(2) Length of Stay (LOS)   -0.016 -   

(3) Case Mix Index (CMI)   -0.022 -0.046 -  

(4) DRG Relative Weight    -0.023 .183** .259** - 

 N 1,010 1,010 1,010  

** Correlation is significant at the 0.01 level (2-tailed) 

However, it was expected to find a significant correlation in this context since CMI and 

DRG weight are not conceptually independent. Also, another positive but weak correlation was 

found between LOS and DRG weight (r (1010) = 0.183, p < .01), indicating a significant linear 

relationship between the two variables. Obviously, higher DRGs are associated with longer 

hospital stay.  

Furthermore, there are weak and negative relationships between coding accuracy and LOS 

(r (1,010) =   -0.016, p = 0.610); coding accuracy and CMI (r (1,010) = -0.022, p =0.485); and 

coding accuracy and DRG weight (r (1,010) = -0.023, p =0.532). However, all of them were not 

found to be statistically significant. It should be noted here that accuracy score was calculated for 

each case using the following formula:  

 

Sum of Accuracy Scores of Individual Codes  

*100 Sum of Highest Possible Score of Individual 

codes 
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9.2 IDENTIFYING DOCUMENTATION DISCREPANCIES THAT COULD 

INFLUENCE CODING QUALITY   

Clinical documentation can have a significant influence on coding quality. Accurate and complete 

documentation would contribute to clinical data integrity and help coders through code assignment 

process without having to constantly query physicians about documentation (Combs, 2016). 

Therefore, documentation-related issues that could influence coding quality will be explored and 

identified through quantitative and qualitative data analyses. The following aspects will be 

discussed in this section: (1) unspecified codes rate; (2) physician query rate; (3) most frequent 

coding errors by ICD-10 chapters; (4) source documents most frequently used to identify coding 

errors; and (5) coding errors related to coding guidelines.  

9.2.1 Unspecified codes rate 

The unspecified codes rate is one of the most current coding metrics used to evaluate the impact 

of clinical documentation on coding quality (combs, 2016). Assigning unspecified codes would be 

coder’s last resort if no further information can be obtained from the patient chart. The unspecified 

codes rate is calculated by dividing the total number of unspecified codes (numerator) by the total 

number of codes in each sample (denominator). The total number of unspecified codes assigned 

in this sample (N=13,713) is 2,027 which means that the unspecified code rate is 14.78%. This can 

indicate high standards of clinical documentation in this sample as Combs (2015) suggested that 

an unspecified code rate should not exceed 20%.  
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9.2.2 Physician Query Rate 

Physician query rate is also considered one of the new coding metrics that is used to evaluate the 

quality of clinical documentation (Combs, 2016).  It has been suggested that the need to query 

physicians decreases with complete and clear clinical documentation. Physician query rate is 

calculated by dividing the total number of cases in which coders had to query physicians 

(numerator) by the total number of cases in each sample (denominator). The physician query rate 

for this sample (N=1010) is 19/1010= 1.88 %. Low physician query rate in this sample can indicate 

high clinical documentation standards in this sample (Butler, 2016).  

9.2.3 Most Frequent Errors By ICD-10 Chapters 

In this section, ICD-10-CM chapters most commonly related to coding errors  were identified 

using General Equivalence Mappings (GEMs). In some cases, one-to-one mapping could not be 

obtained. Therefore, all potential targets were included per NLM and IHSDO mapping rules 

(IHSDO, 2014; NLM; 2015).  

Table 26 and figure 16 show the distribution of coding errors by ICD-10 chapters with the 

number of errors in each chapter. Diseases of the circulatory system (chapter 9), Symptoms, signs 

and abnormal clinical and laboratory findings, not elsewhere classified (chapter 18), Diseases of 

the digestive system (11), Diseases of the musculoskeletal system and connective tissue 

(chapter13), and Diseases of the respiratory system (chapter10) were identified as the top 5 ICD-

10-CM chapters associated with coding errors (table 27).  
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Table 26. Distribution of Errors by ICD-10 Chapters 

  ICD-10-CM Chapter N Percent Cumulativ

e Percent 

1 Certain infectious and parasitic diseases 11 5.9 5.9 

2 Neoplasms 2 1.1 7.0 

3 Diseases of the blood and blood-forming organs and 

certain disorders involving the immune mechanism 

2 1.1 8.1 

4 Endocrine, nutritional and metabolic diseases 15 8.1 16.2 

5 Mental, Behavioral and Neurodevelopmental disorders 6 3.2 19.5 

6 Diseases of the nervous system 1 0.5 20.0 

8 Diseases of the ear and mastoid process 4 2.2 22.2 

9 Diseases of the circulatory system 38 20.5 42.7 

10 Diseases of the respiratory system 16 8.6 51.4 

11 Diseases of the digestive system 24 13.0 64.3 

13 Diseases of the musculoskeletal system and connective 

tissue 

18 9.7 74.1 

14 Diseases of the genitourinary system 11 5.9 80.0 

18 Symptoms, signs and abnormal clinical and laboratory 

findings, not elsewhere classified 

28 15.1 95.1 

19 Injury, poisoning and certain other consequences of 

external causes 

9 4.9 100.0 

Total 185 100.0 100.0 
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Figure 16: Distribution of ICD-10 Coding Errors Based on GEMs 

Table 27. Most Frequent Errors: Top Five ICD-10 Chapters 

 ICD-10 Chapter  

 

Frequency  % 

1 Diseases of the circulatory system (9) 38 20.54 

2 Symptoms, signs, and abnormal clinical and laboratory findings, 

not elsewhere classified (18) 

28 15.14 

3  Diseases of the digestive system (11) 24 12.97 

4 Diseases of the musculoskeletal system and connective tissue (13) 18 9.73 

5 Diseases of the respiratory system (10) 16 8.65 
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9.2.4 Source Documents Used to Identify Coding Errors 

A critical aspect of the coding audit process is providing feedback to coders in case of disagreement 

between coders and auditors regarding code assignment. Coding audit is conducted for two major 

reasons: (1) quality improvement of coded data; and (2) training and education for coders.  

Therefore, auditors usually explain their reasoning behind any coding changes. They guide 

coders to look at certain coding guidelines or to look at specific documents that were used to 

change the codes initially assigned by coders.  

In this section, qualitative analysis was performed on the audited data to identify 

documentation-related issues that influenced accuracy of coding. All cases with coding 

discrepancies which include auditor’s comments to coders were identified. A transcript of all 

comments was developed and analyzed using Nvivo. Automated coding was performed to identify 

themes with higher relative weights. In addition, manual coding was performed to look at specific 

issues related to documentation and coding change. Based on this qualitative analysis, different 

documentation-related issues that could have a significant impact on coding accuracy were 

identified.  

The following are the most common documents cited by auditors for coding change: (1) 

history & physical; (2) discharge summary; (3) progress notes; (4) consulting notes; (5) anesthesia 

record; (6) operative report; (7) emergency record; and (8) psychiatric evaluation. An auditor 

might use a single document to justify coding changes or different documents combined.  

Coders were instructed to look at certain documents especially when there is a change in the 

principle diagnosis code. Other changes include changes in secondary diagnoses, sequencing 

errors, and adding more codes related to health status based on documentation. Table 28 and figure 

17 show most cited documents used by auditors for coding change.  
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Table 28.. Source Documents used to Change the Assigned Codes (Nvivo) 

Word Length Count Percentage (%) 

H&P 3 87 0.2175 

Discharge summary 17 81 0.2025 

Progress Notes 14 79 0.1975 

Consultation  12 75 0.1875 

Anesthesia 10 74 0.185 

Operative  9 74 0.185 

ED Record 9 69 0.1725 

Psychiatric Evaluation 22 30 0.075 

 

 

Figure 17: Source Documents Used for Coding Changes 
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Examples of cases where specific documents were identified to guide the coders through coding 

changes are provided in APPENDIX A.  

9.2.5 Most Frequent Errors Related to Coding Guidelines 

The following are the most frequent errors related to coding guidelines that were cited by auditors 

for coding change: (1) general coding guidelines; (2) symptoms & signs; (3) principle diagnosis; 

(4) secondary diagnoses; (5) V codes; (6) procedures; (7) combination codes; (8) MCC; (9) CC; 

and (10) POA. Table 29 shows most cited guidelines used for coding change. Also, figure 18 

shows distribution of errors by coding guidelines.  

Table 29. Most Frequent Errors Related to Coding Guidelines (Nvivo) 

Word Length  Count  Percentage (%) 

Guidelines 10 53 0.19 

Symptoms & Signs 16 49 0.18 

Principle 9 46 0.16 

Secondary 9 39 0.14 

V code 6 39 0.14 

Procedure 9 28 0.10 

Combination code 16 17 0.06 

MCC 3 13 0.05 

CC 2 12 0.04 

POA 3 9 0.03 

Place 5 9 0.03 
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Figure 18: Distribution of Errors by Coding Guidelines 

 

Examples of cases where relevant guidelines were identified to guide the coders through coding 

changes are provided in APPENDIX A. In addition, examples of recommended changes per 

documentation are provided in APPENDIX A.  

9.3 IDENTIFYING IMPACT OF CODING ERRORS ON CMI AND HOSPITAL’S 

PAYMENT 

Table 30 represents a list of the top 5 sequencing errors that resulted in DRG changes along with 

their impact on facility payment. To identify the impact of coding errors on hospital payment as 

well as CMI, two paired-samples t tests were calculated.  

Distribution of Errors by Coding Guidelines 
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A paired-samples   t test   was calculated to compare the mean CMI (before audit) to the 

mean CMI (after audit).  The mean CMI before coding audit is 1.048 (sd=.19), and the mean CMI 

after coding audit is   1.043 (sd=.19).  No significant difference in CMI was found based on the 

coding audit (t (16) = .861, p= 0.19).  

Also, another paired-samples   t test    was calculated to compare the mean facility payment 

(before audit) to the mean facility payment (after audit).  The average hospital payment before 

coding audit is $6774.07 (sd= 4976.65), and after coding audit is $6739.17 (sd= 5207.39).  No 

significant difference in payment was found based on the coding audit (t (16) = -.608, p=0.11). 
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Table 30: Most Frequent Sequencing Errors and Their Impact on Payment 

# DRG  Weight Payment Description DRG  Weight Payment Description ICD-9-F Description ICD-9-R Description 
Impact on 

Payment 

1 
  

0949 
  

0.9372 
  

$5,810.64 
  

AFTERCARE W 
CC/MCC 
  

194 
  

0.9996 
  

$6,197.52  
  

SIMPLE 
PNEUMONIA 
& PLEURISY W 
CC 

 

V5862  
Long-term use 
antibiotic  
 

486 
Pneumonia, 
organism NOS 

$386.88  

486 
Pneumonia, 
organism NOS 
 

V5862  
Long-term use 
antibiotic  

$0.00  

2 
  

0689 1.1784 $7,306.08 

KIDNEY & 
URINARY 
TRACT 
INFECTIONS 
W MCC 

194 0.9996 $6,197.52  

SIMPLE 
PNEUMONIA 
& PLEURISY W 
CC 

599.0 
Urinary tract 
infection NOS  
 

486 
Pneumonia, 
organism NOS 

($1,108.56) 

486 
Pneumonia, 
organism NOS 
 

599.0 
Urinary tract 
infection NOS  

$0.00  

3 
  

0872 1.0988 $6,489.89 

SEPTICEMIA 
OR SEVERE 
SEPSIS W/O 
MV 96+ 
HOURS W/O 
MCC 

564 1.4459 $8,539.98  

OTHER 
MUSCULOSKEL
ETAL SYS & 
CONNECTIVE 
TISSUE 
DIAGNOSES W 
MCC 

381.2 MRSA septicemia  997.62 

 Infection 
amputation 
stump 
 

$2,050.09  

997.62 
 Infection 
amputation stump 
 

381.2 MRSA septicemia  $0.00  

4 
  

0988 1.8567 $11,511.54 

NON-
EXTENSIVE 
O.R. PROC 
UNRELATED 
TO PRINCIPAL 
DIAGNOSIS W 
CC 

349 0.8075 $5,006.50  

ANAL & 
STOMAL 
PROCEDURES 
W/O CC/MCC 

250.80 

Diabetes with other 
specified 
manifestations, 
type II or 
unspecified type, 
not stated as 
uncontrolled 

566 
 Anal & rectal 
abscess 

($6,505.04) 

566 
 Anal & rectal 
abscess 
 

250.80 

Diabetes with 
other specified 
manifestations, 
type II or 
unspecified type, 
not stated as 
uncontrolled 

$0.00  

5 
0392 
  

0.7241 
  

$4,489.42 
  

ESOPHAGITIS, 
GASTROENT & 
MISC DIGEST 
DISORDERS 
W/O MCC 

641 
  

0.6988 
  

$4,332.56  
  

MISC 
DISORDERS OF 
NUTRITION,M
ETABOLISM,  
,FLUIDS/ELECT
ROLYTES W/O 
MCC 

558.9 
Noninfectious 
gastroenteritis NEC  
 

276.51  Dehydration ($156.86) 

276.51 
 Dehydration 
 
 

558.9 
 Noninfectious 
gastroenteritis 
NEC  

$0.00  

 ($5,333.49) 
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9.4 IDENTIFYING INDIVIDUAL AND FACILITY-RELATED FACTORS THAT 

COULD INFLUENCE CODING PRODUCTIVITY 

9.4.1 Descriptive Analyses 

Analysis of the productivity data begins with descriptive statistics which are critical to explore. 

Descriptive statistics include measures of central tendency (mean, trimmed mean, and median) and 

dispersion (standard deviation, minimum and maximum values to calculate range). 

Coding Time (N= 323,112) 

The average coding time is 39.46 minutes (95% CI= 39.33-39.60) with a standard deviation of ± 

35.91 minutes. The coding time ranges from .10 to 593.80 minutes -minimum and maximum 

values respectively- which indicates that data is widely spread. Median coding time is 30.60 

minutes which suggests that distribution is skewed to the right (median < mean). Furthermore, 

skewedness and kurtosis statistics are 3.355 and 22.979 respectively which suggests deviation 

from normality (skewed to the right with higher peak).  

Length of Stay (LOS) (N= 323,112) 

The average LOS is 4.86 days (95% CI= 4.82-4.87) with a standard deviation of ± 7.00 days. The 

minimum and maximum LOS are 1 and 357.00 days respectively (range= 356).  Skewness (13.89) 

and kurtosis (405.64) suggest non-normality in LOS distribution; right-skewed & leptokurtic 

distribution.   

Case Mix Index (CMI) (N= 323,112) 

The average CMI is 1.57 (95% CI= 1.570-1.573) with a standard deviation of ± 0.36 points. The 

minimum and maximum CMI are .68 and 10.47 respectively (range= 9.79). Skewness (3.68) and 
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kurtosis (35.21) suggest non-normality in LOS distribution; right-skewed & leptokurtic 

distribution.   

Relative DRG Weight (N= 323,112) 

The average relative DRG Weight is 1.59 ± 1.53 (95% CI= 1.58- 1.59). DRG relative weight 

ranges from .16 to 26.25- minimum and maximum values. The median and mode weight are 1.14 

and .59 respectively. Skewness (.665) and kurtosis (56.72) suggest non-normality in LOS 

distribution; right-skewed & leptokurtic distribution.    

Bed Size (N= 323,112) 

The average bed size is 509 beds with a standard deviation of 296 beds (95% CI= 508-510). 

Hospital beds in the sample ranges from 25 to 1346 beds which represent minimum and maximum 

values, respectively. Skewness (5.61) and kurtosis (-.484) suggest distribution is slightly skewed 

to the right with a flat-topped curve (platykurtic distribution).  

Inpatient Coding Productivity Observations 

A total of 323,112 cases were analyzed based on data provided from 119 facilities. These facilities 

are in 25 different states across the US including: AR, CA, CT, DE, FL, GA, ID, IL, IN, KS, LA, 

MA, MI, NC, NJ, NM, NY, OR, PA, SC, TN, TX, VA, WA, and WI. Thirty-seven percent of 

participating facilities were non-trauma centers and 51 percent of these facilities are designated 

trauma centers (Level-1= 29%; Level-2= 18%, and Level-3= 4%). No information was provided 

regarding trauma status of the remaining 12% of the facilities. Sixty-three percent of the facilities 

hold teaching status while only 25 percent are non-teaching facilities. No information was 

provided regarding teaching status of the remaining 12% of the facilities.  
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In addition, participating facilities have a wide range of bed capacity ranges from 25 to 

1,346 beds. The average bed count is 509 beds with standard deviation of ± 296 beds. Finally, 

average CMI is 1.57 with a standard deviation of .36 units and ranges between .68 and 10.47.  

The mean coding time of all facilities is 39.46 minutes with standard deviation of ±35.91 

minutes. When excluding the highest and lowest 5% of the data, mean coding time decreases by 4 

minutes (trimmed mean). Average length of stay (LOS) is 5 days with standard deviation of 7 

days. Lowest and highest length of stay are 1 and 357 days, respectively. Also, average DRG 

relative weight of all cases is 1.59 with standard deviation of ±1.53 and it ranges between .16 and 

26.25. Table 31 presents distribution of coding time, LOS, CMI, DRG Weight, and Bed Size.  

Table 31. Descriptive Statistics of Productivity Data 

 
Mean Trimmed 

Mean 

Standard 

Deviation 

Minimum Maximum N 

CODING 

TIME 

39.46 35.53 35.91 0.10 593.80 323,112 

LENGHT OF 

STAY (LOS) 

4.86 4.04 7.00 1  357.00 323,112 

CASE MIX 

INDEX 

(CMI) 

1.57 1.55 0.36 0.68 10.47 323,112 

DRG 

WEIGHT 

1.59 1.39 1.53 0.16 26.25 323,112 

BED SIZE 509.00 

 

495.01 296.00 25.00 1346.00 323,112 
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Coding Productivity Over Time 

Productivity continues to improve steadily over time. Coding productivity has improved 

consistently over the 10-month period (N= 323,112). The average coding time in October (2015) 

is 43.68 minutes compared to 37.45 minutes in July (2016). Figure 19 represents the average 

coding time for the 10-month period (October 2015-July 2016).  

 

Comparing to Standard Coding Times 

Coding productivity with ICD-10 has decreased by nearly 22 percent when compared to ICD-9 

productivity for the first five months of the new code set’s use (October 2015 to February 2016). 

When compared to ICD-9, however, coding productivity has only decreased by 11 percent for the 

next five months (March 2016 to July 2016). In fact, ICD-10 coding productivity has consistently 

improved over time in terms of the number of coded records and average coding time. Further 

details are provided in figure 20.  

 

 

 

 
Figure 19: Average Coding Time for 10-month period (October 2015-July 2016) 
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Figure 20: Comparing Standard Coding Productivity Times 

Coding Time by LOS 

Approximately 80 percent of the cases in the March 2016 to July 2016 data set had a LOS of six 

days or less. The lowest coding time was 27.8 minutes (LOS = one to two days) while the highest 

coding time was 79.5 minutes (LOS > 10 days). Distribution of coding time by six LOS categories 

is provided in figure 21. One can see that as LOS increases, coding productivity times increase as 

well, which is to be expected.  

 

Figure 21: Average Coding Time by LOS 



129 

Coding Productivity by CMI 

Also, as expected, the average coding time increased as the CMI increased. See figure 22 for a 

chart graphing this with cases studied between March 2016 and July 2016.  

 

Figure 22: Average Coding Time by CMI 

CMI and Coding Time by Months 

It was observed that productivity gains did not come at the cost of CMI. This is a very important 

observation since CMI is a key indicator or metric in organizations. Otherwise stated, as 

productivity time continued to improve, CMI was observed to increase (see figure 23). 

Top DRGs by Month 

Normal newborn (DRG weight = 1.649) was the highest DRG for three consecutive months (April 

2016 to June 2016) while septicemia (DRG weight = 1.7926) and vaginal delivery (DRG weight 

= 0.5865) were the top DRGs for the months of March 2016 and July 2016 respectively. The three 

highest DRGs for each month and their sample of cases are provided in the table in figure 24.  
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Figure 23: CMI and Coding Time by Month 

 

Figure 24: Top Three DRGs by Month (March - July 2016) 

 Coding Time by Teaching and Trauma Status 

The mean coding time for teaching facilities is 41. 85 minutes compared to non-teaching facilities 

in which average coding time is 34.49 minutes. Coding time also varies by Trauma status. Level-

III trauma facilities have the lowest mean coding time (36 minutes) compared to level-I trauma 
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facilities (45 minutes). In general, coding time decreases in facilities with higher trauma status. 

Table 32 demonstrates average coding time by teaching and trauma status. 

Table 32. Coding time by teaching and trauma status. 

  

  Mean 

95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation Minimum Maximum 

Teaching 

Status 

  

Non-Teaching 

 

34.49 

 

34.24 

 

34.75 

 

32.820 

 

0.1 

 

538.21 

 

Teaching 

 

41.85 

 

41.67 

 

42.03 

 

38.20 

 

0.6 

 

593.82 

 

Trauma 

Status 

  

  

  

Non-Trauma 

 

36.06 

 

35.85 

 

36.27 

 

33.83 

 

0.2 

 

565.23 

 

Trauma Level-1 

 

44.96 

 

44.68 

 

45.25 

 

41.00 

 

0.8 

 

593.88 

 

Trauma Level-2 

 

40.72 

 

40.40 

 

41.046 

 

36.81 

 

0.7 

 

523.56 

 

Trauma Level-3 

 

36.17 

 

35.47 

 

36.88 

 

30.47 

 

0.4 

 

440.40 

 

 

Coding Time by Bed Size 

Facilities with a bed count of 900-999 beds have the highest mean coding time (58 ± 53 minutes) 

compared to facilities with a bed capacity between 100-199 in which coding time is lowest (33 ± 

33 minutes).  Table 33 and figure 25 demonstrate average coding time for facilities with different 

bed capacity (bed size).  
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Table 33. Coding time by bed size 

 Bed Size  Mean 

95.0% 

Lower CL 

for Mean 

95.0% 

Upper CL 

for Mean 

Standard 

Deviation Minimum Maximum 

<100 40.43367 39.29568 41.57166 36.19239 0.3 412.2 

100-199 33.04041 32.68649 33.39433 33.17787 0.2 565.2 

200-299 35.3099 35.04987 35.56994 31.91482 0.2 538.2 

300-399 38.14078 37.7514 38.53016 31.48119 0.1 475.4 

400-499 45.39972 44.95493 45.84451 39.60867 0.1 523.5 

500-599 40.87163 40.56113 41.18213 33.79512 0.3 482.3 

600-699 35.48513 34.93426 36.03601 32.84922 0.4 431 

700-799 38.0379 37.53323 38.54257 34.13892 0.1 548.8 

800-899 39.91138 39.34133 40.48144 39.09396 0.5 515 

900-999 58.26093 57.41923 59.10264 53.00428 0.4 593.8 

1000-1099 52.89986 50.02278 55.77693 38.63114 0.9 277.1 

1100-1199 42.18533 41.67302 42.69764 34.31209 0.7 475.3 

>= 1200 38.29066 36.83296 39.74837 41.79258 0.1 522.4 
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Figure 25: Coding time by bed size 

Average Coding Time by MDCs 

Mean coding time varies across specialties. Lowest and highest coding times belong to MDC #15 

NEWBORNS & OTHER NEONATES and MDC#31 TRACHEOSTOMY with average coding times of 

20.14± 24.98 minutes (95% CI= 19.80-20.48) and 131.94±93.91 minutes (95% CI= 126.41-137.48), 

respectively. Below is the average coding time for each MDC along with 95% CI intervals, 

standard deviation, as well as minimum and maximum values. Table 34 and figure 26 represent 

average coding time for each MDC.  
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Table 34. Average Coding Time by MDC 

MDC Coding 

Time 

 

95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation 

Max Min 

1 NERVOUS SYSTEM 42.37 41.89 42.86 34.74 468.60 0.10 

2 EYE 41.57 37.80 45.34 42.13 415.10 0.30 

3 EAR, NOSE, MOUTH & 

THROAT 

38.68 37.36 40.00 34.37 593.80 0.40 

4 RESPIRATORY SYSTEM 39.92 39.52 40.33 34.56 523.50 0.10 

5 CIRCULATORY SYSTEM 43.64 43.27 44.00 36.52 516.80 0.10 

6 DIGESTIVE SYSTEM 42.45 42.03 42.86 34.97 518.10 0.30 

7 HEPATOBILIARY 

SYSTEM & PANCREAS 

43.37 42.61 44.14 38.42 547.60 0.10 

8 MUSCULOSKELETAL 

SYSTEM & CONN TISSUE 

39.86 39.48 40.25 33.97 538.20 0.10 

9 SKIN, SUBCUTANEOUS 

TISSUE & BREAST 

38.39 37.64 39.13 31.80 435.50 0.30 

10 ENDOCRINE, 

NUTRITIONAL & 

METABOLIC DISEASES & 

DISORDERS 

36.81 36.18 37.44 32.65 506.80 0.30 

11 KIDNEY & URINARY 

TRACT 

 

41.77 41.23 42.30 33.91 520.10 0.10 
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Table 34 (continued) 

12 MALE REPRODUCTIVE 

SYSTEM 

35.74 34.13 37.35 30.43 474.30 0.40 

13 FEMALE REPRODUCTIVE 

SYSTEM 

37.93 36.85 39.01 30.74 300.10 0.40 

14 PREGNANCY, 

CHILDBIRTH & THE 

PUERPERIUM 

25.83 25.56 26.10 21.46 419.50 0.10 

15 NEWBORNS & OTHER 

NEONATES 

20.14 19.80 20.48 24.98 496.50 0.10 

16 BLOOD, BLOOD 

FORMING ORGANS, 

IMMUNOLOG DISORD 

40.34 39.24 41.44 34.16 448.80 0.30 

17 MYELOPROLIFERATIVE 

DISEASES & DISORDERS, 

POORLY 

DIFFERENTIATED 

NEOPLASM 

50.88 49.22 52.54 42.25 394.90 0.10 

18 INFECTIOUS & 

PARASITIC DISEASES, 

SYSTEMIC OR 

UNSPECIFIED SITES 

49.40 48.86 49.95 40.68 515.00 0.10 

19 MENTAL DISEASES & 

DISORDERS 

 

25.30 24.78 25.82 23.22 394.00 0.20 
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Table 34 (continued) 

20 ALCOHOL/DRUG USE & 

ALCOHOL/DRUG 

INDUCED ORGANIC 

MENTAL DISORDERS 

32.81 31.69 33.92 30.65 463.50 0.30 

21 INJURIES, POISONINGS & 

TOXIC EFFECTS OF 

DRUGS 

45.10 44.11 46.09 37.65 468.50 0.10 

22 BURNS 42.59 35.53 49.66 33.55 181.20 1.00 

23 FACTORS INFLUENCING 

HLTH STAT & OTHR 

CONTACTS WITH HLTH 

SERVCS 

44.07 42.27 45.86 38.60 481.50 0.50 

24 MULTIPLE SIGNIFICANT 

TRAUMA 

70.51 67.20 73.83 50.89 391.30 0.40 

25 HUMAN 

IMMUNODEFICIENCY 

VIRUS INFECTIONS 

56.29 52.03 60.56 43.28 359.70 0.40 

31 MAJOR TRANSPLANT 84.47 75.46 93.49 86.26 545.10 0.60 

32 TRACHEOSTOMY 131.94 126.41 137.48 93.91 565.20 0.60 

33 AUTOLOGOUS BONE 

MARROW TRANSPLANT 

70.08 61.96 78.21 47.17 330.00 0.20 

41 UNRELATED OPERATING 

ROOM PROCEDURE 

65.18 63.23 67.13 50.10 547.10 0.30 
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32 TRACHEOSTOMY  

31 MAJOR TRANSPLANT  

24 MULTIPLE SIGNIFICANT TRAUMA  

33 AUTOLOGOUS BONE MARROW TRANSPLANT  

41 UNRELATED OPERATING ROOM PROCEDURE  

25 HUMAN IMMUNODEFICIENCY VIRUS INFECTIONS  

17 MYELOPROLIFERATIVE DISEASES & DISORDERS, POORLY DIFFERENTIATED 
NEOPLASM  

18 INFECTIOUS & PARASITIC DISEASES, SYSTEMIC OR UNSPECIFIED SITES 

21 INJURIES, POISONINGS & TOXIC EFFECTS OF DRUGS 

23 FACTORS INFLUENCING HLTH STAT & OTHR CONTACTS WITH HLTH SERVCS 

Figure 26: Coding Time by MDCs 

Average Coding Time by DRGs 

DRG# 3 (ECMO OR TRACH W MV 96+ HRS OR PDX EXC FACE, MOUTH & NECK W MAJ 

O.R) was associated with the highest coding time compared to all DRGs included in the data sets 

followed by DRG#7 (LUNG TRANSPLANT) with average coding times of 154.83 and 129.45 

minutes, respectively. Table 35 represents the average coding time by DRGs (top 50).  
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Table 35. Average Coding Time by DRGs 

DRG DRG Description Mean 95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation 

Min Max 

3 ECMO OR TRACH W 

MV 96+ HRS OR PDX 

EXC FACE, MOUTH & 

NECK W MAJ O.R. 

154.83 146.15 163.52 104.76 0.80 565.20 

7 LUNG TRANSPLANT 129.45 

 

68.93 189.97 90.08 17.20 330.70 

4 TRACH W MV 96+ HRS 

OR PDX EXC FACE, 

MOUTH & NECK W/O 

MAJ O.R. 

115.46 108.00 122.92 75.41 1.20 543.30 

453 COMBINED 

ANTERIOR/POSTERIOR 

SPINAL FUSION W 

MCC 

114.28 80.33 148.24 121.97 1.80 503.60 

5 LIVER TRANSPLANT 

W MCC OR 

INTESTINAL 

TRANSPLANT 

114.13 90.34 137.93 88.02 3.70 334.00 
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Table 35 (continued) 

11 TRACHEOSTOMY FOR 

FACE, MOUTH & NECK 

DIAGNSES W MCC 

106.90 89.75 124.05 68.11 7.50 411.90 

14 ALLOGENEIC BONE 

MARROW 

TRANSPLANT 

106.17 90.43 121.91 76.84 2.10 489.60 

456 SPINAL FUS EXC CERV 

W SPINAL 

CURV/MALIG/INFEC 

OR 9+ FUS W MCC 

103.24 84.43 122.06 68.93 2.00 435.70 

957 OTHER O.R. 

PROCEDURES FOR 

MULTIPLE 

SIGNIFICANT 

TRAUMA W MCC 

102.39 91.84 112.94 64.73 1.00 391.30 

984 PROSTATIC O.R. 

PROCEDURE 

UNRELATED TO 

PRINCIPAL DIAGNSIS 

W MCC 

99.78 65.46 134.11 32.71 63.20 147.60 

28 SPINAL PROCEDURES 

W MCC 

 

99.76 74.85 124.67 86.71 3.80 446.30 
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Table 35 (continued) 

955 CRANIOTOMY FOR 

MULTIPLE 

SIGNIFICANT 

TRAUMA 

99.09 80.89 117.29 42.10 28.90 195.60 

20 INTRACRANIAL 

VASCULAR 

PROCEDURES W PDX 

HEMORRHAGE W MCC 

98.57 82.98 114.16 69.14 1.00 385.70 

228 OTHER 

CARDIOTHORACIC 

PROCEDURES W MCC 

95.77 76.13 115.40 71.94 1.00 323.50 

901 WOUND 

DEBRIDEMENTS FOR 

INJURIES W MCC 

94.77 69.19 120.35 68.51 19.10 279.70 

405 PANCREAS, LIVER & 

SHUNT PROCEDURES 

W MCC 

94.07 83.01 105.13 67.84 2.00 507.30 

826 MYELOPROLIF 

DISORD OR POORLY 

DIFF NEOPL W MAJ 

O.R. PROC W MCC 

93.96 68.37 119.54 59.16 18.70 290.40 

834 ACUTE LEUKEMIA 

W/O MAJOR O.R. 

PROCEDURE W MCC 

92.63 81.03 104.24 66.88 0.60 394.90 
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Table 35 (continued) 

576 SKIN GRAFT &/OR 

DEBRID EXC FOR SKIN 

ULCER OR 

CELLULITIS W MCC 

92.11 53.00 131.22 76.06 1.00 358.10 

939 O.R. PROC W 

DIAGNSES OF OTHER 

CONTACT W HEALTH 

SERVICES W MCC 

91.59 63.45 119.72 81.90 1.90 381.10 

969 HIV W EXTENSIVE 

O.R. PROCEDURE W 

MCC 

89.54 56.24 122.84 60.14 14.90 214.80 

216 CARDIAC VALVE & 

OTH MAJ 

CARDIOTHORACIC 

PROC W CARD CATH 

W MCC 

88.21 77.23 99.18 65.68 0.50 435.60 

907 OTHER O.R. 

PROCEDURES FOR 

INJURIES W MCC 

87.05 77.86 96.25 68.40 0.50 420.90 

12 TRACHEOSTOMY FOR 

FACE, MOUTH & NECK 

DIAGNSES W CC 

86.90 66.65 107.15 74.20 0.60 419.60 
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Table 35 (continued) 

616 AMPUTAT OF LOWER 

LIMB FOR 

ENDOCRINE, NUTRIT, 

& METABOL DIS W 

MCC 

86.29 66.11 106.48 64.77 1.70 431.00 

823 LYMPHOMA & NN-

ACUTE LEUKEMIA W 

OTHER O.R. PROC W 

MCC 

85.54 68.34 102.74 62.41 0.50 381.30 

856 POSTOPERATIVE OR 

POST-TRAUMATIC 

INFECTIONS W O.R. 

PROC W MCC 

84.53 76.68 92.39 59.27 0.60 405.10 

239 POSTOPERATIVE OR 

POST-TRAUMATIC 

INFECTIONS W O.R. 

PROC W MCC 

83.51 73.82 93.21 59.88 0.70 389.90 

295 DEEP VEIN 

THROMBOPHLEBITIS 

W/O CC/MCC 

83.50 -97.66 264.66 72.93 24.40 165.00 

463 WND DEBRID & SKN 

GRFT EXC HAND, FOR 

MUSCULO-CONN TISS 

DIS W MCC 

82.71 72.42 93.00 63.36 1.30 423.30 
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Table 35 (continued) 

219 CARDIAC VALVE & 

OTH MAJ 

CARDIOTHORACIC 

PROC W/O CARD 

CATH W MCC 

81.68 74.81 88.55 59.22 0.70 424.40 

326 STOMACH, 

ESOPHAGEAL & 

DUODENAL PROC W 

MCC 

81.64 75.78 87.51 62.49 0.30 518.10 

23 CRANIO W MAJOR 

DEV IMPL/ACUTE 

COMPLEX CNS PDX W 

MCC OR CHEMO 

IMPLANT 

81.48 74.88 88.07 51.99 0.70 355.20 

981 EXTENSIVE O.R. 

PROCEDURE 

UNRELATED TO 

PRINCIPAL DIAGNSIS 

W MCC 

81.17 77.44 84.91 58.68 0.60 547.10 

423 OTHER 

HEPATOBILIARY OR 

PANCREAS O.R. 

PROCEDURES W MCC 

80.71 61.53 99.88 39.78 2.30 148.90 
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Table 35 (continued) 

659 KIDNEY & URETER 

PROCEDURES FOR NN-

NEOPLASM W MCC 

80.27 71.80 88.74 58.84 1.60 384.30 

215 OTHER HEART ASSIST 

SYSTEM IMPLANT 

80.20 13.92 146.48 53.38 1.00 141.70 

853 INFECTIOUS & 

PARASITIC DISEASES 

W O.R. PROCEDURE W 

MCC 

79.82 77.35 82.29 57.09 0.40 514.00 

231 CORONARY BYPASS 

W PTCA W MCC 

79.65 63.95 95.35 44.28 3.50 166.50 

163 MAJOR CHEST 

PROCEDURES W MCC 

79.19 71.98 86.41 62.34 0.90 478.70 

260 CARDIAC 

PACEMAKER 

REVISION EXCEPT 

DEVICE 

REPLACEMENT W 

MCC 

78.72 64.36 93.09 47.26 2.80 219.90 

870 SEPTICEMIA OR 

SEVERE SEPSIS W MV 

96+ HOURS 

78.53 74.75 82.30 51.13 0.50 410.20 

503 FOOT PROCEDURES W 

MCC 

78.39 65.37 91.41 32.91 17.40 147.60 
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Table 35 (continued) 

237 MAJOR CARDIOVASC 

PROCEDURES W MCC 

OR THORACIC AORTIC 

ANEURYSM REPAIR 

77.85 45.14 110.56 59.07 1.20 209.10 

408 BILIARY TRACT PROC 

EXCEPT ONLY 

CHOLECYST W OR 

W/O C.D.E. W MCC 

77.53 68.17 86.90 60.73 0.00 547.60 

800 SPLENECTOMY W CC 77.50 

 

45.02 109.98 58.66 18.00 226.00 

40 PERIPH/CRANIAL 

NERVE & OTHER 

NERV SYST PROC W 

MCC 

77.43 68.10 86.75 48.87 1.10 240.90 

21 INTRACRANIAL 

VASCULAR 

PROCEDURES W PDX 

HEMORRHAGE W CC 

77.14 55.32 98.96 62.54 3.20 274.60 

270 OTHER MAJOR 

CARDIOVASCULAR 

PROCEDURES W MCC 

76.84 71.54 82.13 50.51 0.90 334.70 
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9.4.2 Bivariate Analyses 

Correlation Coefficients 

Pearson and Spearman correlation coefficients (r, rho) were calculated for the relationship between 

variables. Table 36 demonstrates zero-order correlations among the variables in the productivity 

data set.  

Table 36. Zero-order correlations among the variables (productivity data) 

  (1) (2) (3) (4) (5) (6) (7) 

(1) Coding Time -       

(2) Length of Stay  0.330** -      

(3) Case Mix Index  .119** .091** -     

(4) DRG Weight  .323** .334** .134** -    

(5) Bed Size  .096** .028** .080** .016** -   

(6) Teaching Status  .088** .035** .202** .048** .420** -  

(7)       Trauma Status .050** .015** .114** .013** .241** .260** - 

 N 323,112 323,112 323,112 323,112 323,112 323,112 323,112 

** Correlation is significant at the 0.01 level (2-tailed) 

Table 36 presents correlations between the different variables. In this context, however, we are 

more interested in examining how different predictors affect coding productivity. First, the 

strongest correlation was found between bed size and teaching status (r (323,110) = 0.420, p < .01), 

indicating that a significant linear relationship between teaching status and bed size. Facilities 

holding teaching status tend to have greater bed capacity.  Also, a moderate positive correlation 

was found between coding time and length of stay (r (323,110) = 0.330, p < .01), indicating a 

significant linear relationship between both variables. Coders need more time to code patients 
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charts with longer hospital stays. Also, other moderate positive correlations were found between 

DRG relative weight and coding time (r (323,110) = 0.323, p < .01) as well as between DRG relative 

weight and CMI (r (323,110) = 0.334, p < .01). Cases with higher DRGs require additional coding 

time and are attributed with higher CMIs. Furthermore, many weak but significant correlations 

were found between different variables. These relationships include: teaching status and CMI (r 

(323,110) = .202, p < .01); trauma status and bed size (r (323,110) = .241, p < .01). 

Although we did not find any strong correlations between the variables, they can still be included 

in our model as predictors of coding productivity since they are statistically significant.  

Scatterplots 

In addition to correlation coefficients, scatter diagrams were created to visually depict the 

correlations between coding time, LOS, DRG weight, bed size, and CMI (Figure 27- Figure 31).  

 

Figure 27:  Coding Time by Length of Stay 

Correlation Between Coding Time & Length of Stay 
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Figure 28: Coding Time by Bed Size 

 

 

Figure 29: Coding Time by CMI 
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Figure 30: Coding Time by DRG Relative Weight 

 

Figure 31: Correlation Between CMI and LOS 

    Correlation Between Case Mix Index & Length of Stay 
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9.4.3 Multiple Linear Regression  

Predicting Coding Productivity based on LOS and CMI 

To predict ICD-10 coding time based on LOS and CMI, a model using multiple linear regression 

was developed. LOS and CMI were found to be significant predictors of ICD-10 coding 

productivity. Average coding time is 39.54 minutes for LOS of 4.86 and CMI of 1.57. Coding time 

increases by approximately two minutes for each additional day in LOS accounting for all 

variables in the model. Also, coding time increases by 9 minutes for each additional unit increase 

in CMI (.9 minute for each .10 increase in CMI) accounting for all other variables in the model. 

Furthermore, LOS and CMI combined account for 12 percent of ICD-10 coding productivity.  

Table 37. Predicting Coding Productivity Based on LOS & CMI 

Model Predictors Regression Equation R2 SE 

1 LOS 

CMI 

Coding Time= 39.54+ 1.679(ALOS)+  

8.883 (CMI) 

0.117 33.745 

A multiple linear regression was calculated to predict coding time based on LOS and CMI 

(table 37). A significant regression equation was found (F(2, 323,111 )= 19267.781, p < .001), with 

an R of .117. Coding time is equal to 39.459+ 1.679 (LOS)+ 8.883 (CMI), where LOS is measured 

in days.  

Coding time increases by approximately two minutes for each additional day in LOS 

accounting for all variables in the model. Also, coding time increases by 9 minutes for each 

additional unit increase in CMI (0.9 minute for each 0.10 increase in CMI) accounting for all other 

variables in the model. Both LOS and CMI are significant predictors: combined account for 

approximately 12 percent of ICD-10 coding productivity. Thus, 12% of the variation in coding 
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time can be explained by differences in LOS and CMI. It takes more time to code cases with longer 

hospital stays and as CMI for the facility increases.  

The mean coding time for facilities with an average LOS of 5 days and a CMI of 1. 68 is 39.46. In 

this case, 95% of the time, the mean coding time would be within 67.5 minutes of being correct.  

Adding Predictors to LOS-CMI Model 

To improve predictive power of the LOS-CMI model, we added more predictors to help further 

explain ICD-10 coding productivity. LOS, CMI, Relative DRG weight, bed size, teaching status, 

and trauma status were all included in the second model (table 38).  

Table 38. Predicting Coding Productivity Based on LOS, CMI, DRG Weight, Bed Size, Trauma Status, and 

Teaching Status 

Model Predictors Regression Equation R2 SE 

2  

LOS 

CMI 

Bed size 

DRG Weight 

Teaching Status 

Trauma Status 

Coding Time= 33.811+ 

1.387(ALOS) +  

5.100 (CMI) + 

.007 (Bed Size) + 

.5227 (DRG Weight) + 

1.507 (Teaching) + 

2.040 (Trauma) 

0.175 33.743 

A multiple linear regression was calculated to predict coding time based on LOS and CMI 

bed size, DRG weight, teaching status, and trauma status. A significant regression equation was 

found (F(6, 323,111 )= 8371.984, p < .001), with an R of .175. Coding time is equal to 33.811+ 

1.387 (LOS)+ 5.1 (CMI)+ .007 (Bed Size) + .5227 (DRG weight) + 1.507 (Teaching) + 2.040 
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(Trauma) where LOS is measured in days; Bed Size is the number of beds; Teaching is coded as 

1=Non-Teaching & 2= Teaching; and Trauma is coded as 1= Non-Trauma & 2=Trauma.  

Coding time increased by 1.39 minutes for each additional day in LOS accounting for all 

variables in the model. Also, coding time increased by approximately 5 minutes for each additional 

unit increase in CMI (.5 minute for each .10 increase in CMI) accounting for all other variables in 

the model. For each 10 additional facility beds, coding time increases by approximately .1 minutes 

(.007 for each bed).  

In addition, coding time increased by .5 minute for each additional unit increase in DRG 

weight accounting for all other variables in the model. Finally, it takes an additional 1.5 minutes 

on average to code patient charts in teaching facilities compared to non-teaching facilities and an 

additional 2 minutes on average in trauma centers compared to non-trauma facilities.  

LOS, CMI, Bed Size, DRG Relative Weight, Teaching Status, and Trauma Status are 

significant predictors. Combined, they account for 17.5% of variability in coding time. In general, 

coders spend more time coding cases with longer LOS, and higher DRG relative weight. The 

coding time further increases in facilities with higher CMI and greater bed capacity. Teaching 

facilities as well as trauma centers tend to have increased coding time compared to their non-

teaching and non-trauma counterparts.  

The mean coding time for facilities with average length of stay of 5 days, CMI of 1. 68, 

DRG weight of 1.59, bed size of 509, designated as teaching hospitals and trauma centers is 33.81 

minutes. In this case, 95% of the time coding time would fall between 0.11 and 67.55 minutes.  
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Adding Interaction Terms  

Interaction between LOS and CMI was added to model 2 to see if there is a significant correlation 

between both variables. Interaction was significant but adding this interaction term to the model 

would only increase its predictive power by 0.2%. Therefore, interaction terms were not included 

in the predictive model. Also, keeping a simple model would increase its utilization by coders, 

coding managers, and other professionals with basic knowledge of statistics. Furthermore, there is 

no theoretical basis to support inclusion of other interaction terms: none of the variables were 

found to have mediating effects on coding time.  

9.4.4 Hierarchical Linear Modeling 

Hierarchical Linear Modeling is used to analyze nested data that are presented in multiple levels 

(Hox, 2002; Kreft & Leeuw, 2007; Raudenbush, 2014). In this case, data on two different levels 

was analyzed: level-1 is patient data and level-2 is facility data so patients are nested within 

facilities (clusters). There are many reasons to use HLM in analyzing coding productivity data. 

First, HLM has advantages over multiple linear regression for estimating the standard error for 

clustered data (Kreft & Leeuw, 2007). Second, HLM can reduce aggregation bias that arises when 

the results of aggregated data are different than results produced at the original level of observation 

(Kreft & Leeuw, 2007). Finally, multilevel analysis like HLM allows for a straightforward 

estimation of cross-level interactions (Hox, 2002; Kreft & Leeuw, 2007; Raudenbush, 2014). 
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Predicting Mean Coding Time Using HLM (Random-Slope Model) 

This is the basic model in HLM where we allow variations in slopes. In other words, in this 

model we allow each facility to have a different mean coding time while holding other predictors 

constant across the facilities (Kreft & Leeuw, 2007).  

A hierarchical linear model was developed to predict coding time based on LOS and CMI bed 

size, and DRG weight (teaching status and trauma status were not found to be significant 

predictors on coding productivity)- table 39.  

Coding time increases by 1.36 minutes for each additional day in LOS accounting for all 

variables in the model. Also, coding time increases by approximately 8 minutes for each additional 

unit increase in CMI (.8 minute for each .10 increase in CMI) accounting for all other variables in 

the model. For each 10 additional facility beds, coding time increases by approximately .12 

minutes (.012 for each bed). In addition, coding time increases by .5 minute for each additional 

unit increase in DRG Weight accounting for all other variables in the model. 

Table 39. Hierarchical Linear Model to Predict Coding Time based on LOS and CMI bed size, and DRG weight 

Model Predictors Regression Equation SE 

3  

LOS 

CMI 

Bed size 

DRG Weight 

Coding Time= 40.02+  

1.36 (ALOS) +  

8.44 (CMI) + 

.012 (Bed Size) + 

5.03 (DRG Weight)  

31.97 

 

LOS, CMI, Bed Size, and DRG Relative Weight were found to be significant predictors of 

coding productivity. Combined, they account for 18.2% of variability in coding time (fixed effect). 
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After controlling for fixed effect, the proportion of variance in coding time due to facility effect 

(random effect) is 7%. In general, coders spend more time coding cases with longer LOS, and 

higher DRG relative weight. The coding time further increases in facilities with higher CMI and 

greater bed capacity. The mean coding time for facilities with average length of stay of 5 days, 

CMI of 1. 68, DRG weight of 1.59, bed size of 509 is 40.03 minutes.  

9.5 IDENTIFYING IMPACT OF CODING TIME ON PRODUCTIVITY 

A Pearson correlation coefficient was calculated for the relationship between coding time and 

coding accuracy. A moderate positive correlation was found (r (757)=0.316, p< .001), indicating 

significant linear relationship between the two variables. Increased coding time is associated with 

higher coding accuracy (figure 32).  

 

Figure 32: Relationship Between Coding Accuracy and Productivity (Coding Time) 
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9.6 DEVELOPING A PREDICTIVE MODEL TO PREDICT CODING QUALITY 

AND PRODUCTIVITY 

9.6.1 Conceptual Framework:  

Figure 33 represents a framework of factors influencing coding quality and productivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Conceptual Framework of Factors Influencing Coding Quality & Productivity 

Coding Quality 
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9.6.2 Prediction of Coding Productivity 

The models shown in Table 40 can be used to predict coding productivity based on the chosen 

predictors. The first model includes LOS and CMI as predictors of coding productivity that was 

developed using multiple linear regression. The second model includes DRG relative weight, bed 

size, teaching status, and trauma status in addition to LOS and CMI. It was also developed using 

multiple linear regression. The third model which is an HLM model includes LOS, CMI, DRG 

relative weight, bed size as predictors of coding productivity. Teaching status and trauma status 

were excluded from Model 3 as they were not statistically significant. A statistically significant 

difference was found between Model1/Model2 and Model 3. However, all models practically 

generate comparable results when it comes to prediction of coding time.  

9.6.3 Prediction of Coding Quality 

There are many factors that can influence coding quality. Although LOS and CMI were not found 

to be significant predictors of coding quality, DRG weight was found to be a significant predictor. 

Furthermore, evidence based on qualitative analysis suggests that documentation plays critical role 

in predicting coding quality. Higher unspecified codes rate and physician query rate suggest issues 

related to documentation that could influence coding quality. Also, depth of coding can be an 

indicator of coding quality. Coding errors increases in cases where coders must assign multiple 

codes. A model to predict coding quality was not generated due to insignificant results. However, 

insignificant results can be attributed to the small sample size of the accuracy data (N=1010) 

compared to the productivity data (N= 323,112).  
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Table 40: Prediction of Coding Productivity (Final Models) 

     Model 1     Model 2 Model 3 

Independent Variable 

b 

(s.e) 

β b 

(s.e) 

β b 

(s.e) 

β 

Length of Stay (LOS) 1.679 

(.009) 

- 1.387 

(0.011) 

.255 1.36 

(0.010) 

- 

Case Mix Index (CMI) 8.883 

(0.173) 

- 6.100 

(0.190) 

.062 8.44 

(0.55) 

- 

Relative DRG Weight - - 5.227 

(0.047) 

.221 5.03 

(0.46) 

- 

Bed Size - 

 

- .007 

(0.000) 

.056 0.012 

(0.004) 

- 

Teaching Status - - .007 

(0.186) 

.018 - - 

Trauma Status  - - 2.040 

(0.177) 

.027 - - 

Constant 39.459 33.811 40.02  

R2 0.117 0.175 .182  

Adjusted R2 0.117 0.175   

N 323,112 323,112 323,112  
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9.6.4 Case Studies 

In this section, three case studies were selected to provide examples on prediction of coding time 

for three medical specialties. The case studies include the following: Oncology, Cardiovascular 

System, and Musculoskeletal System and Connective Tissues. Cardiovascular system and 

musculoskeletal system were the first two ICD-10-CM chapters with respect to coding error. 

Oncology was selected due to its increased coding time compared to other specialties.   

9.6.4.1 Case Study 1: Circulatory System 

To select the cases that only pertain to circulatory system, the data was filtered in SPSS by MDCs. 

The total number of cases for MDC #5 is equal to 38, 885 cases which represents 12.03% of the 

entire dataset. Below is the sampling distribution for the circulatory system represented by mean, 

standard deviation, minimum and maximum values (table 41).  

Table 41. Descriptive Statistics (Circulatory System) 

 
Mean 95.0% 

Lower CL 

for Mean 

95.0% 

Upper CL 

for Mean 

Standard 

Deviation 

Maximum Minimum 

Coding Time 

 

43.64 43.27 44.00 36.52 516.80 0.7 

Length of Stay 

(LOS) 

5.00 5.00 5.00 9.00 315.00 1.00 

Case Mix Index 

(CMI) 

1.62 1.62 1.63 0.41 10.47 0.68 

DRG Relative 

Weight 

1.93 1.91 1.95 1.58 15.87 0.45 

Bed Size 

(Count)  

461.00 459.00 464.00 263.00 1346.00 25.00 
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Also, below is a breakdown of cases based on the DRG type (table 42). Medical cases 

approximately represent 67% of the cases (N=25,900) while surgical cases represent the remaining 

33% of the cases (N= 12,985).  

Table 42. Average Coding Time by DRG Type (Circulatory System) 

 
Variable Mean 95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation 

Min Max 

Medical 

N=25,900 

(66.61%) 

Coding Time 

 

39.46 39.06 39.85 32.39 0.50 475.40 

DRG Relative 

Weight 

1.11 1.10 1.11 0.42 0.45 2.79 

Length of Stay 

 

4.48 4.38 4.59 8.31 1.00 315.00 

Surgical 

N=12,985 

(33.39%) 

Coding Time 

 

51.98 51.25 52.71 42.38 0.80 516.80 

DRG Relative 

Weight 

3.57 3.54 3.60 1.76 1.08 15.87 

Length of Stay 

 

5.87 5.72 6.02 8.90 1.00 269.00 

 

Based on this analysis, the following represent the top 10 DRGs with highest mean coding time 

(table 43 and figure 34).   
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Table 43. Average Coding Time by DRG (Circulatory System) 

DRG DRG 

Relative 

Weight 

ALOS Coding 

Time 

95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation 

Min Max 

228 

 

6.95 11.91 95.77 76.13 115.40 71.94 1 323.5 

216 

 

9.46 14.02 88.21 77.23 99.18 65.68 0.5 435.6 

239 

 

4.84 13.81 83.51 73.82 93.21 59.88 0.7 389.9 

295 

 

0.74 1.33 83.50 -97.66 264.66 72.93 24.4 165 

219 

 

7.56 10.76 81.68 74.81 88.55 59.22 0.7 424.4 

215 

 

15.87 7.2 80.20 13.92 146.48 53.38 1 141.7 

231 

 

7.81 12.33 79.65 63.95 95.35 44.28 3.5 166.5 

260 

 

3.73 10.73 78.72 64.36 93.09 47.26 2.8 219.9 

237 

 

5.08 6.47 77.85 45.14 110.56 59.07 1.2 209.1 

270 

 

4.73 8.87 76.84 71.54 82.13 50.51 0.9 334.7 
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228 OTHER CARDIOTHORACIC PROCEDURES W MCC 

216 CARDIAC VALVE & OTH MAJ CARDIOTHORACIC PROC W CARD CATH W MCC 

239 AMPUTATION FOR CIRC SYS DISORDERS EXC UPPER LIMB & TOE W MCC 

295 DEEP VEIN THROMBOPHLEBITIS W/O CC/MCC 

219 CARDIAC VALVE & OTH MAJ CARDIOTHORACIC PROC W/O CARD CATH W MCC 

215 OTHER HEART ASSIST SYSTEM IMPLANT 

231 CORONARY BYPASS W PTCA W MCC 

260 CARDIAC PACEMAKER REVISION EXCEPT DEVICE REPLACEMENT W MCC 

237 MAJOR CARDIOVASC PROCEDURES W MCC OR THORACIC AORTIC ANEURYSM REPAIR 

270 OTHER MAJOR CARDIOVASCULAR PROCEDURES W MCC 

Figure 34: Coding Time by DRGs (Circulatory System) 

Predicting Mean Coding Time for Circulatory System 

A multiple linear regression was calculated to predict coding time based on LOS, CMI and DRG 

relative weight (table 44). A significant regression equation was found (F(3, 38, 885)= 1320.461, 

p < .001), with an R of .175. Coding time is equal to 25.15+ 1.692 (LOS)+ 3.136 (CMI)+ 5.170 

(DRG Weight), where LOS is measured in days.  
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Table 44: Predicting Mean Coding Time for Circulatory System 

Model     Predictors Regression Equation R2 SE 

Circulatory 

System 

 

LOS 

CMI 

DRG Weight 

Coding Time= 25.15+ 

1.692(ALOS) +  

3.136 (CMI) + 

5.170 (DRG Weight)  

0.113 34.79 

 

The mean coding time for circulatory system cases with average LOS of 5 days, CMI of 1.62, 

DRG weight of 1.93 is 25.15 minutes.  

9.6.4.2 Case Study 2: Musculoskeletal System and Connective Tissues 

To select the cases that only pertain to musculoskeletal system and connective tissues, the data 

was filtered in SPSS by MDCs. The total number of cases for MDC #8 (Musculoskeletal System 

and Connective Tissues) is equal to 29, 630 cases which represents 9.17% of the entire dataset. 

Table 45 demonstrates the sampling distribution for the circulatory system represented by mean, 

standard deviation, minimum and maximum values.  

Also, below is a breakdown of cases based on the DRG type (table 46). Medical cases 

approximately represent 22.37% of the cases (N=6,628) while surgical cases represent the 

remaining 77.63% of the cases (N= 23,002).  
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Table 45. Descriptive Statistics (Musculoskeletal System and Connective Tissues) 

 
Mean 95.0% 

Lower CL 

for Mean 

95.0% 

Upper CL 

for Mean 

Standard 

Deviation 

Min Max 

Coding Time 39.86 39.32 39.91 33.97 0.34 538.23 

Length of Stay (LOS) 3.96 3.00 4.00 4.32 1.00 322 

Case Mix Index (CMI) 1.619 1.5 1.64 0.36534 0.6766 3.68 

DRG Relative Weight 2.23 2.08 2.20 1.29 0.63 11.43 

Bed Size (Count) 494 480 482 280 25 1346 

 

Table 46. Average Coding Time by DRG Type (Musculoskeletal System and Connective Tissues) 

 
Variable Mean 95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation 

Min Max 

Medical 

N=6,628 

(22.37%) 

Coding Time 

 

39.83 32.00 33.40 32.10 0.30 475.7 

DRG Relative 

Weight 

1.03 0.86 0.91 0.35 0.63 2.4409 

Length of Stay 

 

4.60 3.00 4.00 6.15 1.00 322 

Surgical 

N=23,002 

(77.63%) 

Coding Time 

 

39.87 31.10 31.80 34.49 0.70 538.2 

DRG Relative 

Weight 

2.58 2.08 2.20 1.25 0.91 11.4304 

Length of Stay 

 

3.77 3.00 4.00 3.61 1.00 71 
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Based on this analysis, the following represent the top 10 DRGs with highest mean coding time 

(table 47 and figure 35).   

Table 47. Average Coding Time by DRGs (Musculoskeletal System and Connective Tissues) 

DRG DRG 

Relative 

Weight 

ALOS Coding 

Time 

95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation 

Min Max 

453 

 

11.43 10.00 114.28 61.00 90.90 121.97 1.80 503.60 

456 

 

9.41 11.00 103.24 74.90 111.90 68.93 2.00 435.70 

463 

 

5.10 11.00 82.71 59.10 84.40 63.36 1.30 423.30 

503 

 

2.27 8.00 78.39 61.70 92.90 32.91 17.40 147.60 

485 

 

3.21 13.00 76.02 48.30 81.10 56.09 1.20 233.00 

500 

 

3.20 10.00 75.80 60.30 75.30 48.55 0.80 287.20 

466 

 

5.04 8.00 72.14 52.30 75.70 45.73 1.90 279.50 

545 

 

2.44 10.00 71.41 48.90 70.40 54.59 1.90 314.70 

471 

 

4.90 8.00 71.31 48.60 73.80 54.48 1.10 324.40 

459 

 

6.55 8.00 70.62 53.70 70.20 41.23 1.70 200.20 
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Figure 35: Coding Time by DRGs (Musculoskeletal System & Connective Tissues) 

Predicting Mean Coding Time for Musculoskeletal System and Connective Tissues 

A multiple linear regression was calculated to predict coding time based on LOS, CMI and DRG 

relative weight (table 48).  

453 COMBINED ANTERIOR/POSTERIOR SPINAL FUSION W MCC 

456 SPINAL FUS EXC CERV W SPINAL CURV/MALIG/INFEC OR 9+ FUS W MCC 

463 WND DEBRID & SKN GRFT EXC HAND, FOR MUSCULO-CONN TISS DIS W MCC 

503 FOOT PROCEDURES W MCC 

485 KNEE PROCEDURES W PDX OF INFECTION W MCC 

500 SOFT TISSUE PROCEDURES W MCC 

466 REVISION OF HIP OR KNEE REPLACEMENT W MCC 

545 CONNECTIVE TISSUE DISORDERS W MCC 

471 CERVICAL SPINAL FUSION W MCC 

459 SPINAL FUSION EXCEPT CERVICAL W MCC 
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A significant regression equation was found (F(3, 29, 630)= 1418.465, p < .001), with an R of 

0.126. Coding time is equal to 39.33 + 2.36 (LOS)+ 4.12 (CMI)+ 3.76 (DRG Weight), where LOS 

is measured in days. 

Table 48. Predicting Mean Coding Time for Musculoskeletal System and Connective Tissues 

Model Predictors Regression Equation R2 SE 

Circulatory 

System 

 

LOS 

CMI 

DRG Weight 

Coding Time= 39.33+ 

2.36 (ALOS) +  

4.12 (CMI) + 

3.76 (DRG Weight)  

0.126 31.76 

 

The mean coding time for circulatory system cases with average LOS of 3.96 days, CMI of 1. 62, 

DRG weight of 2.23 is 39.33 minutes.  

9.6.4.3 Case Study 3: Oncology 

To select the cases that only pertain to oncology, the data was filtered to include DRGs related to 

oncology. The total number of cases of oncology in this sample is equal to 10,206 cases which 

represents 3.16% of the entire dataset. Table 49 demonstrates the sampling distribution Oncology 

m represented by mean, standard deviation, minimum and maximum values. 

Also, below is a breakdown of cases based on the DRG type (table 50). Medical cases 

approximately represent 52.04% of the cases (N=5,311) while surgical cases represent the 

remaining 47.96% of the cases (N= 4,895).  
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Table 49. Descriptive Statistics (Oncology) 

 
Mean 95.0% 

Lower CL 

for Median 

95.0% 

Upper CL 

for Median 

Standard 

Deviation 

Min Max 

Coding Time 

 

48.15 47.40 48.91 38.89 0.9 474.30 

Length of Stay 

(LOS) 

5.37 5.24 5.50 6.49 1.00 188.00 

Case Mix Index 

(CMI) 

1.62 1.61 1.63 0.34 0.68 10.47 

DRG Relative 

Weight 

1.91 1.89 1.94 1.36 0.59 9.41 

Bed Size (Count) 

 

560 554 566 298 48 1346 

Table 50. Average Coding Time by DRG Type (Oncology) 

 
Variable Mean 95.0% 

Lower CL 

for Mean 

95.0% 

Upper CL 

for Mean 

Standard 

Deviation 

Min Max 

Medical 

N=5,311 

(52.04%) 

Coding Time 

 

47.97 46.95 48.99 37.81 0.9 474.30 

DRG Relative 

Weight 

1.65 1.62 1.68 0.98 0.59 6.13 

Length of Stay 

 

6.06 5.88 6.25 6.93 1.00 181.00 

Surgical 

N=4,895 

(47.96%) 

Coding Time 

 

48.35 47.23 49.48 40.03 0.8 435.70 

DRG Relative 

Weight 

2.20 2.16 2.25 1.63 0.85 9.41 

Length of Stay 

 

4.62 4.45 4.78 5.88 1.00 188.00 
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Based on this analysis, the following represent the top 10 DRGs with highest mean coding time 

(table 51 and figure 36).  

Table 51. Average Coding Time by DRGs (Oncology) 

DRG DRG 

Relative 

Weight 

ALOS Coding 

Time 

95.0% 

Lower 

CL for 

Mean 

95.0% 

Upper 

CL for 

Mean 

Standard 

Deviation 

Min Max 

456 

 

9.41 11.00 103.24 84.43 122.06 68.93 2.00 435.70 

826 

 

2.30 7.00 93.96 68.37 119.54 59.16 18.70 290.40 

834 

 

3.14 11.00 92.63 81.03 104.24 66.88 0.60 394.90 

840 

 

1.19 4.00 92.58 -14.69 199.85 86.39 32.20 244.50 

823 

 

1.51 4.00 85.54 68.34 102.74 62.41 0.50 381.30 

736 

 

4.33 11.00 75.50 50.61 100.38 58.93 1.00 279.80 

829 

 

2.77 8.00 75.13 56.84 93.42 67.01 2.30 375.30 

820 

 

1.40 4.00 74.18 57.15 91.21 51.08 12.30 203.90 

840 

 

2.46 8.00 72.56 65.14 79.98 53.33 0.00 392.30 

828 

 

6.13 16.00 70.98 55.41 86.55 44.63 10.30 180.70 
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456 SPINAL FUS EXC CERV W SPINAL CURV/MALIG/INFEC OR 9+ FUS W MCC 

826 MYELOPROLIF DISORD OR POORLY DIFF NEOPL W MAJ O.R. PROC W MCC 

834 ACUTE LEUKEMIA W/O MAJOR O.R. PROCEDURE W MCC 

840 LYMPHOMA & NON-ACUTE LEUKEMIA W MCC 

823 LYMPHOMA & NN-ACUTE LEUKEMIA W OTHER O.R. PROC W MCC 

736 UTERINE & ADNEXA PROC FOR OVARIAN OR ADNEXAL MALIGNANCY W MCC 

829 MYELOPROLIF DISORD OR POORLY DIFF NEOPL W OTHER O.R. PROC W CC/MCC 

820 LYMPHOMA & LEUKEMIA W MAJOR O.R. PROCEDURE W MCC 

840 LYMPHOMA & NN-ACUTE LEUKEMIA W MCC 

828 MYELOPROLIF DISORD OR POORLY DIFF NEOPL W MAJ O.R. PROC W/O CC/MCC 

Figure 36: Coding Time by DRG (Oncology) 

Predicting Mean Coding Time for Oncology 

A multiple linear regression was calculated to predict coding time based on LOS, CMI and DRG 

relative weight. A significant regression equation was found (F(3, 10,206)= 900.645, p < .001), 

with an R of 0.126. Coding time is equal to 46.36+ 2.17 (LOS)+ 6.01 (CMI)+ 4.57 (DRG Weight), 
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where LOS is measured in days. The mean coding time for circulatory system cases with average 

LOS of 5.37 days, CMI of 1. 62, DRG weight of 1.91 is 46.36 minutes.  

Table 52. Predicting Mean Coding Time for Oncology 

Model Predictors Regression Equation R2 SE 

Circulatory 

System 

 

LOS 

CMI 

DRG Weight 

Coding Time= 46.36+ 

2.17 (ALOS) +  

6.01 (CMI) + 

4.57 (DRG Weight)  

0.209 34.58 
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10.0  DISCUSSION 

Coding constitutes one of the fundamental functions of HIM. Clinical coding is widely utilized in 

the health care system across the nation. Clinical terminology and classification systems have been 

developed to meet the increasing demand for data-driven decision making in health care, especially 

with rapid adoption of health information technology. Inpatient coding, however, represents the 

major focus of this dissertation research. ICD-10-CM is the system used for inpatient coding in 

the U.S. and it is the U.S clinical modification of the WHO’s ICD-10.  

ICD-10-CM represents the foundation of reimbursement in the U.S health care system. 

Also, coded clinical data is utilized to compile wide range of statistics and quality of care 

indicators. It can be used to evaluate clinical outcomes for individual patients, compare 

performance between health care organizations, or to compile the major causes of mortality and 

mobility at the public health level. In addition, this data can be utilized for education, research, 

and healthcare services utilization.  

Therefore, it is important to address two major aspects related to quality of clinical coded 

data including quality and productivity. Ensuring quality of coded data can significantly contribute 

to reliable data-driven decision-making. However, accuracy can be useless if data is not processed 

in a timely and efficient manner. This dissertation research aims at identifying current coding 

trends, and factors that could influence coding quality and productivity. The significance of this 

study lies in three premises: (1) coding is not considered a revenue-generating activity and thus is 

underutilized in health care research; (2) this study tries a new approach to coding using 

quantitative and qualitative methods along with statistics and data analytics; and (3) it tries to 



173 

establish a connection between coding quality and productivity- a topic that has never been 

addressed based on real data analysis.  

This dissertation research utilized two different data sets for this purpose: (1) accuracy data 

set (N=1,010) and productivity data (323,112). All cases were provided by Ciox Health. The first 

data set includes audited coded data in ICD-9-CM while the second data set includes ICD-10-CM 

productivity data.  SAS, SPSS, and Nvivo were used for data analysis. Data analysis includes 

univariate (descriptive), and bivariate analyses. Also, linear, and multiple regressions were 

performed in addition to t-tests. A hierarchical linear model was further developed to account for 

the nested productivity data.  

Many factors were found to have a significant impact of coding quality and productivity. 

Although LOS and CMI were not found to be significant predictors of coding quality, DRG weight 

was found to be a significant predictor. Qualitative evidence suggests that documentation plays 

critical role in predicting coding quality. Furthermore, higher unspecified codes rate and physician 

query rate suggest issues related to documentation that could influence coding quality. In this 

sample, the unspecified codes rate and physician query rate were approximately 15% and 2%, 

respectively, which suggests relatively high documentation standards in the participated facilities.  

History and physical examination, discharge summary, and progress notes were identified 

as the most frequent documents cited for coding change.  Also, this study found that there are some 

issues related to the coding guidelines that could influence coding quality including: symptoms & 

signs, principle diagnosis, secondary and additional diagnoses, and combination coding. In 

general, the accuracy rate of this sample was around 94%. Furthermore, the accuracy rate increased 

to approximately 95% when accounting for depth of coding. The second method of measuring 

accuracy has been developed in this study to meet the demand for advanced coding metrics that 
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account for complex variables including depth of coding when measuring coding accuracy 

(Stanfill, 2016). Depth of coding can be an indicator of coding quality. Coding errors increase in 

cases where coders must assign multiple codes (Stanfill, 2016). A model to predict coding quality 

was not generated due to insignificant results. However, insignificant results can be attributed to 

the small sample size of the accuracy data (N=1010) compared to the productivity data (N= 

323,112). 

Regarding coding productivity, many factors were found to be significant predictors of 

coding productivity (coding time in minutes). Specifically, LOS, CMI, DRG weight, bed size, 

trauma status, and teaching status were found to have statistically significant effects on coding 

time when performing multiple linear regression. However, trauma status and teaching status were 

not statistically significant when using HLM that was required to account for the nested design. In 

addition, this study found that there is a significant positive (moderate) correlation between coding 

time and coding quality. This leads us to the conclusion that if coding time increases, coding 

quality (accuracy) increases. Coders do not have to sacrifice quality for quantity. Although the 

relationship is locally linear, a possibility of existence of non-linear form should be further 

investigated.  

It should be noted that data on coders’ demographics could not be secured for this study. 

Linking attributes such as coder’s education, years of experience, and credentials represents a 

major opportunity for future research. Based on secondary analysis performed by the researcher, 

coder’s education and credentials accounts for approximately 17% of coding variability accounting 

for all variables in the model. Furthermore, clinical coding represents a promising area for 

qualitative research in HIM. Qualitative analyses could be exceptionally beneficial if applied in 

coding complex training on coding. Data-driven decision making can be made more effective, 
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reliable and of less risk if mixed research methods, applied statistics, and data analytics techniques 

are utilized for health care quality improvement.  
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11.0  LIMITATIONS 

The following represent major limitations and challenges to this study: (1) Sampling bias; (2) 

external validity; (3) non-blind review; (4) obtaining accuracy data on ICD-10; and (4) obtaining 

coders' demographics. 

I. Sampling Bias: Sampling bias that is a result of using non-probability sampling. This is 

especially true in case of accuracy (N=1,010). However, in case of productivity sampling 

bias is not an issue due to very large sample (N= 323,112). 

II. External Validity: The ability to generalize study’s results (accuracy) could be limited since 

the sample used for this study in not representative of the entire population. 

III. Non-blind Review: Auditors were not blinded in chart review process which could 

represent another source of bias with respect to the review process. 

IV. Obtaining ICD-10 data: ICD-10 accuracy data could not be obtained from Ciox Health. 

V. Correlation between accuracy and productivity: to establish a connection between coding 

productivity and accuracy, the two data sets were linked using DRGs. However, this 

violates the assumption of Pearson’s correlation as the pairs of observations used for this 

purpose were not related (coming from two different populations). 

VI. Obtaining Coders’ demographics: Larger variance in coding productivity is yet to be 

explained. Specific information such as education, training, and years of the coders' 

experience would have significantly contributed to more accurate prediction of coding 

time. Coders' information could not be obtained in this study and therefore, a vital piece of 

information was missing from this analysis. 
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12.0  FUTURE WORK  

This study aimed at identifying factors influencing current coding trends, coding quality, and 

productivity. Length of stay, CMI, DRG weight, bed size, teaching status, and trauma status were 

found to have significant impact on coding productivity. 

However, variability in coding productivity due to coder-related factors represents a 

promising area for future research. Although length of stay, case mix index, and DRG weight were 

not found to be significant determinants of coding quality, the results are inconclusive due to 

sample size. Therefore, identifying significant determinants of coding quality is still an open area 

that needs further investigation if a larger and more representative sample could be granted for this 

purpose. 

Furthermore, clinical coding and classification as a sub-specialty of HIM has great 

potential for qualitative research. Specifically, qualitative research should be further utilized in 

identifying potential coding scenarios based on the coding audit for education and training 

purpose. Clinical coding and classification represents one area where research is underutilized and 

there is more truth to be revealed using various methods of data analytics, statistics, and research. 
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13.0  CONCLUSION 

Coding is one of the most critical functions of HIM and has different applications in health care. 

This study identified current coding trends and factors that might influence coding quality and 

productivity. It found that coding productivity in ICD-10 improved over time. Length of stay, case 

mix index, DRG weight, bed size, and teaching as well as trauma status were found to be 

significant factors that influence coding productivity. However, length of stay, case mix index, and 

DRG weight were not found to have significant influences on coding quality. Based on the 

qualitative analysis, H&P, discharge summary, and progress notes were identified as the three most 

common resources to guide coders through the coding audit process. Coders’ demographics could 

not be granted for this study. However, factors related to coders such as education, credentials, and 

years of experience are believed to have significant impact on coding quality as well as 

productivity, which are to be further explored in future opportunities. 
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APPENDIX A 

 

GLOSSARY 

Case Mix Index: The average diagnosis-related group (DRG) relative weight for that hospital. It 

is calculated by summing the DRG weights for all Medicare discharges and dividing by the number 

of discharges. 

Classification: A system that arranges or organizes likes or related entities; also, a system for 

assigning numeric or alphanumeric code to represent specific diseases and/or procedures. 

Clinical terminology: A set of standardized terms and their synonyms that record patient findings, 

circumstances, events, and interventions with sufficient detail to support clinical care, decision 

support, outcomes research, and quality improvement. 

Code Set: under HIPAA, any set of codes used to encode data elements, such as tables of terms, 

medical concepts, medical diagnostic codes, or medical procedure codes; includes both the codes 

and their descriptions. 

Coding: The process of translating descriptions of diseases, injuries, and procedures into numeric 

or alphanumeric designations 

Controlled medical terminology: A coded vocabulary of medical concepts and expressions used 

in healthcare 

Controlled vocabulary: A restricted set of phrases, generally enumerated in a list and perhaps 

arranged into a hierarchy  

Current Procedural Terminology (CPT): A comprehensive list of descriptive terms and codes 

published by the American Medical Association and used for reporting diagnostic and therapeutic 

procedures and other medical services performed by physicians 
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Derived Classification: One based on a reference classification such as ICD or ICF by adopting 

the reference classification structures and categories and providing additional detail or through 

rearrangements and aggregation of items from one or more reference classifications 

Healthcare Common Procedure Coding System (HCPCS): A two-level classification system 

introduced in 1983 to standardize the coding systems used to process Medicare and Medicaid 

claims 

HCPCS level I: Current Procedural Terminology (CPT), developed by the American 

Medical Association  

HCPCS level II: Codes not covered by CPT and modifiers that can be used with all levels 

of codes, developed by the Centers for Medicare and Medicaid Services 

HCPCS level III: Codes, often called local codes, developed by local Medicare and/or 

Medicaid carriers for use in their geographic locations; eliminated on December 31, 2003 

International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM): 

A classification system used in the United States to report morbidity information 

International Classification of Diseases, Tenth Revision (ICD-10): The most recent revision of 

the disease classification system developed and used by the World Health Organization to track 

morbidity and mortality worldwide 

National Center for Health Statistics (NCHS): The federal agency responsible for collecting 

and disseminating information on health services utilization and the health status of the population 

in the United States; developed the clinical modification to the International Classification of 

Diseases, Ninth Revision (ICD-9) and is responsible for updating the diagnosis portion of the ICD-

9-CM 

Prospective payment system (PPS): A type of reimbursement system based on preset payment 

levels rather than actual charges billed after a service has been provided; specifically, one of 

several Medicare reimbursement systems based on predetermined payment rates or periods and 

linked to the anticipated intensity of services delivered as well as the beneficiary’ condition 
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Reference terminology: A set of concepts and relationships that provide a common reference 

point for comparisons and the aggregation of data about the entire healthcare process, recorded by 

multiple different individuals, systems, or institutions 

Related Classification: Partially refers to a reference classification or is associated with the 

reference classification at specific level of structure only and describes important aspects of health 

or the health system not covered by reference or derived classifications 

Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT): A systematized, 

multi-axial, and hierarchically organized controlled terminology developed by the College of 

American Pathologists and currently owned by the International Health Terminology Standards 

Development Organization  

Terminology: A set of terms representing the system of concepts of a subject field 

Vocabulary: A list or collection of clinical words or phrases with their meanings; also, the set of 

words used by an individual or group within a subject field 
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EXAMPLES I: SOURCE DOCUMENTS USED TO IDENTIFY CODING ERRORS 

(Figures 37-43) 

Cases in Which H&P Was Used for Coding Change  

Adding personal and family history codes, “Add 412 history of heart attack per consultation 

and H/P”; “Add 305.1 tobacco use per H/P” 

“Change 414.01 CAD of native vessel to 414.00 CAD of unspecified vessel, native or graft per 

H/P” 

“Recommend adding V49.86 (Do not resuscitate status) per the last paragraph in the H&P and 

the Swing-bed Admission Orders form”.   

“Recommend adding 276.7 (hyperkalemia) as documented in the H&P and DS. Treatment 

began in the ER but monitoring continued during the in-house stay” 

 “Recommend adding 244.9 (hypothyroidism) as documented in the H&P. Patient under 

treatment with Levothyroxine” 

“Recommend adding 428.0 (CHF) as documented in the H&P and as the component code to 

428.22” 

“Recommend adding V58.66 (long term aspirin) and V49.86 (do not resuscitate) per H&P 

documentation” 

“From the H&P for the acute care stay, recommend adding 414.01 (CAD), 412 (old MI), 401.9 

(hypertension), 250.00 (diabetes mellitus), V58.61 (long term use of coumadin), and V58.66 

(long term use of aspirin)” 

“Recommend adding 799.02 (hypoxemia) as documented in the H&P. This documents the 

effects on breathing by the pneumonia” 

“Change 246.9 unspecified disorder of thyroid to 244.9 hypothyroidism per H/P” 

“Add 272.4 hyperlipidemia per H/P” 

“Change 369.9 unspecified visual loss to 368.8 other specified visual disturbances per H/P 

blurred vision” 

“Report 2724. (dyslipidemia) on Plavix, V15.82 (h/o tobacco use) per H&P” 

 

Figure 37.  Cases in Which H&P Was Used for Coding Change 
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Cases in Which Discharge Summary Was Used for Coding Change 

“Change POA from (Y) to (N) for E960.0 unarmed fight or brawl per discharge summary on 

second day father struck patient.” 

Identifying organisms in discharge summary, “Add 041.49 E. coli per discharge summary” 

“Recommend adding 285.9 (anemia) per the DS statement of anemia and the prescription for 

iron supplement. The patient's Hgb remained in the 8 gram range for the stay” 

“Recommend adding 599.60 for obstructive uropathy as documented in the discharge 

summary. It was noted that a bladder catheter was inserted and the patient went home with it 

for removal after seeing the urologist in his office” 

“Delete 288.60 leukocytosis, unspecified as this condition is inherent in diverticulitis. Per 

discharge summary patient's symptoms resolved on IV flagyl and cipro; discharged home on 

po flagyl and cipro x 10 days” 

“Add 300.00 anxiety per discharge summary. Patient given Xanax for recurrent stressors” 

 

Figure 38. Cases in Which Discharge Summary Was Used for Coding Change 

Cases in Which Progress Notes Were Used for Coding Change 

“Add 599.0 UTI per discharge summary and progress notes 6/22 patient was treated for same” 

“Add 780.2 syncope and collapse (fainting) per progress notes 6/24” 

“Recommend adding 599.0 (UTI) as documented in progress note 6/12. There are multiple 

entries of E coli positive urine culture” 

“Recommend adding 03.31 (spinal tap) as documented in the progress notes on 6/12” 

Discharge disposition in progress notes, “Change to (01) home per progress notes” 

“Add 584.9 AKI (acute kidney injury) per progress notes 10/02” 

“Add 724.5 back pain per progress note 2/17; patient given morphine sulfate extended release” 

“Add 799.02 hypoxemia per progress note 2/20” 

“Change 496 COPD to 491.21 COPD with acute exacerbation per pn 2/20” 

No Error Assessed as electronically signed after coding. Add 250.00 diabetes per progress 

note 3/02” 

 

Figure 39. Cases in Which Progress Notes Were Used for Coding Change 
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Cases in Which Anesthesia and Operative Report Were Used for Coding Change  

BMI assigned per per-anesthesia record, “Add 278.00 obesity per pre-anesthesia record” 

“Add 530.81 GERD (reflux) per pre-anesthesia record” 

“Delete 87.53 interoperative cholangiogram per the operative report the procedure could not 

be performed due to a stone lodged in the neck of the gallbladder. The DRG does not change” 

“Add 571.8 fatty liver per the body of the operative report. There was difficulty removing the 

gallbladder due to the patient's body habitus along with the gallbladder being intrahepatic” 

“Recommend deleting 04.81 (injection of anesthetic into peripheral nerve for anesthesia). The 

documentation by both the surgeon and the anesthesiologist list the block along with the 

general. If the block is done as part of the operative anesthesia, it is not separately coded. If it 

is done for postoperative pain control regardless of the time of the performed, then it would be 

separately coded. There is no documentation that is was done for anything other than 

interoperative anesthesia. CPT Assistant December 2012, pg.12” 

 

Figure 40. Cases in Which Anesthesia and Operative Report Were Used for Coding Change 

Cases in Which Consultation Notes Were Used for Coding Change 

“Change 414.01 CAD of native coronary artery to 414.00 CAD of unspecified, native or graft 

vessel per consultation note 11/02 patient had previous CABG. Add V45.81 status post 

CABG” 

“Change 593.9 unspecified disorder of kidney and ureter (renal insufficiency) to 585.9 CKD 

(chronic kidney disease) per consultation patient assessment 'chronic kidney disease with 

increased creatinine” 

“Add 783.7 adult failure to thrive per consultation note 2/15” 

“Add 401.9 HTN per consultation” 

“Add V45.82 (s/p ptca) per consult” 

Figure 41. Cases in Which Consultation Notes Were Used for Coding Change 

Cases in Which Psychiatric Evaluation Was Used for Coding Change 

“Add V15.81 noncompliance with medical treatment per psychiatric evaluation” 

“Add V15.81 noncompliance with medical treatment per psychiatric evaluation/H/P 'she has 

not been taking medication correctly.' Also noted in the consultation note 2/15. 

Figure 42. Cases in Which Psychiatric Evaluation Was Used for Coding Change 
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Cases in Which Different Sources Were Used for Coding Change  

“Recommend adding 311 (depression) per the H&P and DS” 

“Recommend adding 571.5 (liver cirrhosis) as documented in the H&P and DS” 

“Recommend adding 272.4 (hyperlipidemia on Zocor) and 244.9 (hypothyroid on 

Levothyroxine) per the H&P and DS.” 

“Recommend adding 571.5 (liver cirrhosis) as documented in the H&P and DS” 

“Recommend adding 250.00 (diabetes mellitus) and V58.67 (long term use of insulin) as 

documented in the H&P and DS” 

“Recommend adding the following secondary codes which are documented in the H&P and 

DS and under current treatment: 401.9 (hypertension), 493.90 (asthma), 424.0 (mitral valve 

disorder), and 276.51 (dehydration)” 

“Add E950.4 self-inflicting poisoning; other specified drugs and medicinal substances per ED 

and progress notes” 

“Add 244.9 hypothyroidism, 272.4 hyperlipidemia and 285.9 anemia per ED,H/P, 

consultation, progress notes” 

“Add 272.4 hyperlipidemia per progress notes 11/20 and operative report” 

“Add E888.8 other fall and E849.0 place of occurrence, home per ED, consultation and 

discharge summary” 

“Add 272.4 hyperlipidemia per consult, progress notes and D/S” 

“Change principal diagnosis from 780.60 fever, unspecified to 079.99 unspecified viral illness 

per discharge summary and consultation” 

“Change principal diagnosis from 296.20 major depressive disorder, single episode, unspecified 

to 296.24 major depressive disorder, single episode, severe, specified as w/ psychotic behavior 

per 

discharge summary and psychiatric evaluation/H/P” 

 

Figure 43. Cases in Which Different Sources Were Used for Coding Change 
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EXAMPLES II: ERRORS RELATED TO CODING GUIDELINES 

(Figures 44-50) 

Changes Related to Principle Diagnosis 

“Change principal diagnosis from 574.10 cholelithiasis with other cholecystitis to 574.71 

cholelithiasis w/o choledocholithiasis with other cholecystitis; with obstruction per the body of 

the operative report the cholangiogram could not be performed due to the stone lodged into the 

neck of the gallbladder. The DRG does not change”  

“Recommend changing the principal diagnosis from 715.91 (OA unspecified whether 

generalized or localized; shoulder region) to 715.31 (OA, localized, not specified whether 

primary or 2nd; shoulder region) The documentation in the medical record does not document 

OA anywhere but in the shoulders. The below referenced coding clinic guides coding into the 

715.3x category. Coding Clinic 4Q 2003, pg.118” 

“Recommend changing 038.42 (septicemia due to E. coli) to 038.9 (unspecified septicemia). 

There is no physician documentation of the sepsis being due to an organism and the blood 

cultures are negative” 

“Recommend changing the principal diagnosis from 715.96 (osteoarthrosis, unspecialized 

whether general or localized) to 715.36 (osteoarthrosis, localized, not specified whether 

primary or secondary). The OA is specified only for the knee and the RA is systemic” 

“Recommend changing the principal diagnosis from 715.96 (osteoarthrosis, unspecified 

whether generalized or localized) to 715.36 (osteoarthrosis, localized) as the documentation of 

OA includes only the knee” 

“Recommend changing the principal from 715.96 (osteoarthrosis, unspecified whether 

generalized or localized) to 715.36 (osteoarthritis, localized) per documentation in the record. 

The OA is confined to the knee. 

“Recommend changing the principal diagnosis from 038.42 (e coli septicemia) to 038.9 

(unspecified septicemia). There is no linkage of organism to the septicemia and the blood 

culture is negative” 

“Change principal diagnosis from 414.01 CAD of native vessel to 414.00 CAD; unspecified 

vessel, native or graft in a patient with previous CABG and PTCA. DRG does not change” 
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“Change 786.50 chest pain, unspecified to 786.59 atypical chest pain per discharge summary. 

The DRG does not change” 

“Would recommend using R04.0 for the epistaxis. 

Figure 44: Changes Related to Principle Diagnosis 

Changes Related to Secondary Diagnoses 

“Recommend adding the following secondary codes which are documented in the H&P and DS 

and under current treatment: 401.9 (hypertension), 493.90 (asthma), 424.0 (mitral valve 

disorder), and 276.51 (dehydration)” 

 

Secondary and principle: “Would recommend using G47.33 for the OSA. Would recommend 

using D63.8 for the anemia in other chronic diseases” 

 

“Delete 285.9 (unspecified anemia) and report 280.9 (iron deficiency anemia) which is more 

specific” 

 

“Report 2724. (dyslipidemia) on Plavix, V15.82 (h/o tobacco use) per H&P” 

 

“Add V58.67 Type 2 Diabetes Mellitus patient on insulin – Coding Clinic directives is to report 

V58.67 to show the use of insulin for these patients” 

 

“Delete 584.9 and report 584.5 per consult as this is the more definitive code” 

 
Figure 45: Changes Related to Secondary Diagnoses 

Changes Related to Combination Codes  

“Recommend deleting 997.49 (Other digestive system complications) as this code is included 

in 536.49” 

“Recommend changing 788.42 (polyuria) to 791.9 (pyuria) per documentation. Polyuria is a 

symptom of the newly diagnosed diabetes mellitus and would not be separately coded. 

Figure 46: Changes Related to Combination Codes 

Changes Related to Symptoms & Signs 

“Unless needed for medical necessity, cough and wheezing are considered symptoms of the 

definitive diagnosis and as such are not separately coded” 

“Delete 780.97 (altered mental status) this is a symptom code and would not be reported 

separately. Documentation states " altered mental status is secondary to infection”. 

(pneumonia) 

Figure 47: Changes Related to Symptoms & Signs 
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Changes Related to V Codes 

“Recommend adding V58.66 (long term aspirin) and V58.67 (long term use of insulin). 

Official Coding Guidelines” 

Recommend adding V58.66 (long term aspirin) and V49.86 (do not resuscitate) per H&P 

documentation 

“Recommend adding V58.66 (long term aspirin) and V58.67 (long term insulin) per the chart 

documentation. Long term aspirin poses a bleeding risk and long term insulin documents 

progression of the diabetes” 

Figure 48: Changes Related to V Codes 

Changes Related to CC/MCC/POA 

“Add 296.20 major depressive disorder per discharge summary. This is a CC, however, does 

not affect DRG” 

“Add 486 pneumonia per D/S. This is a MCC; does not change DRG in this case” 

“Add 290.3 senile dementia with delirium per D/S and consultation 02/15. This is a CC; does 

not change DRG” 

“Change 401.1 hypertension to 403.90 hypertensive kidney disease per coding guidelines” 

“Add V58.67 Type 2 Diabetes Mellitus patient on insulin – Coding Clinic directives is to 

reportV58.67 to show the use of insulin for these patients” 

Figure 49: Changes Related to CC/MCC/POA 

Changes Related to Place of Occurrence 

Place of occurrence- Heart Attack 

“Delete E849.9 place of occurrence, unspecified per Coding Guidelines below: Place of 

Occurrence Guideline- Use an additional code from category E849 to indicate the Place of 

Occurrence for injuries and poisonings. The Place of Occurrence describes the place where 

the event occurred and not the patient’s activity at the time of the event. Do not use E849.9 if 

the place of occurrence is not stated”. 

“Change E849.0 place of occurrence, home to E849.7 place of occurrence, hospital per 

discharge summary on second inpatient day father struck patient and police were called” 

Figure 50: Changes Related to Place of Occurrence 
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EXAMPLES III: RECOMMENDED CHANGES PER DOCUMENTATION 

(Figures 51-53) 

Lack of Supporting Documentation 

“Recommend deleting 296.90 (episodic mood disorder) due to a lack of supporting 

documentation in the record”  

“Delete 99.77 (adhesion barrier) as this was not documented in the record as being used during 

this procedure” 

“Recommend changing 286.9 (other and unspecified coagulation defects) to 287.5 

(thrombocytopenia) per documentation in the record. There was no documentation to support a 

coagulopathy” 

“Recommend changing 327.23 (obstructive sleep apnea) to 780.57 (unspecified sleep apnea) 

due to a lack of documentation that the sleep apnea was obstructive in nature” 

“It is noted that the record contained documentation from both the IP admission and the Swing 

Bed. None of the chronic health conditions (ex. htn) are coded. This leaves gaps in the capture 

of the general health of the patient and the comorbidities that may have an impact on this 

patient's therapy” 

“Recommend changing 337.21 (RSD upper limb) to 337.20 (RSD unspecified site) as the 

record does not document what area(s) are involved” 

 

Figure 51: Lack of Supporting Documentation 

Addition and Deletion Per Documentation  

“Recommend adding 427.31 (atrial fib) and V58.61 (long term use of coumadin) per 

documentation in the record” 

“Recommend adding 428.0 (CHF) per documentation. The treatment of this patient including 

holding the digoxin that was prescribed for treating the CHF” 

“Recommend adding 585.9 (chronic renal insufficiency). There is a code also underlying renal 

disease instruction under code 403.90 in the ICD-9 Code Book” 

“Recommend adding 274.9 (gout). The patient is treated with allopurinol which can be renal 

toxic and was held for a bit to help facilitate resolution of the kidney failure” 
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“Recommend adding 600.00 (BPH) as this condition was a possible contributing source of the 

documented hematuria” 

“Recommend adding 57.94 for the urinary catheter inserted at discharge”. 

“Recommend adding V58.66 (long term use of aspirin) and V58.64 (long term use of NSAID) 

as these meds can help encourage bleeding. In this patient, she was encouraged to avoid these 

meds after discharge” 

“Recommend adding 584.9 (acute renal failure) and E930.6 (adverse effect antimycobacterial 

antibiotic) as the patient went into acute renal failure with vancomycin charted as the cause” 

“Delete 285.9 (unspecified anemia) and report 280.9 (iron deficiency anemia) which is more 

specific.” 

Figure 52: Addition and Deletion Per Documentation 

Recommended Query 

“Recommend clarification regarding patient's final diagnosis as documentation is conflicting. 

Discharge summary does not state patient with Alzheimer's and consultation states dementia 

and Alzheimer's Disease” 

“On admission, the patient's hemoglobin was 10.6 (5/9) and fell to 7.9 on 5/10. The patient 

received two units of packed cells. The patient returned to surgery for postoperative oozing 

from the liver bed. Would query for acute postoperative blood loss anemia” 

Query for conflicting documentation: “Recommend clarification regarding patient's final 

diagnosis as documentation is conflicting. Discharge summary does not state patient with 

Alzheimer's and consultation states dementia and Alzheimer's Disease. 

Figure 53: Recommended Query 

 

 



191 

BIBLIOGRAPHY 

AHIMA. "Taking Coding to the Next Level through Clinical Validation." Journal of AHIMA 88, 

no.1 (January 2014): expanded web version. 

 

AHIMA & AMIA Terminology and Classification Task Force. (2007). Healthcare terminologies 

and classification: An action agenda for the United States. 

 

AHIMA “Working Smarter with Computer-Assisted Coding." AHIMA Today, the Convention 

Daily Newsletter, October 5, 2009. Brouch K. AHIMA Project offers insights into 

SNOMED, ICD-9-CM mapping process. J AHIMA 2003:74:52-5. 

 

AHIMA e-HIMTM Work Group on Computer-Assisted Coding. "Delving into Computer-assisted 

Coding" (AHIMA Practice Brief). Journal of AHIMA 75, no.10 (Nov-Dec 2004): 48A-H 

(with web extras). 

 

AHIMA. "Automated Coding Workflow and CAC Practice Guidance." Journal of AHIMA 81, 

no.7 (July 2010): 51-56. 

 

AHIMA. & AMIA, (2007). Healthcare terminologies and classification: Essential keys to 

interoperability. 

 

AHIMA. “Automated Coding Workflow and CAC Practice Guidance (Update).” Journal of 

AHIMA, 84, no.11 (November-December 2013): expanded web version.  

 

AHIMA Practice Brief. “Automated Coding Workflow and CAC Practice Guidance (2013 

Update).” Journal of AHIMA 84, no. 11 (2013). Available at 

http://library.ahima.org/xpedio/groups/public/documents/ahima/bok1_050535.hcsp?dDoc

Name=bok1_050535. 

 

 AHIMA. “Data Quality Management Model (2012 Update).” Journal of AHIMA83, no. 7 (July 

2012): 62–67. Available at 

http://library.ahima.org/xpedio/groups/public/documents/ahima/bok1_049664.hcsp?dDoc

Name=bok1_049664. 

 

American Health Information Management Association. A Coder’s Guide to Natural Language 

Processing and Coded Data. Chicago: AHIMA, 2011. 

 

http://library.ahima.org/xpedio/groups/public/documents/ahima/bok1_050535.hcsp?dDocName=bok1_050535
http://library.ahima.org/xpedio/groups/public/documents/ahima/bok1_050535.hcsp?dDocName=bok1_050535
http://library.ahima.org/xpedio/groups/public/documents/ahima/bok1_049664.hcsp?dDocName=bok1_049664
http://library.ahima.org/xpedio/groups/public/documents/ahima/bok1_049664.hcsp?dDocName=bok1_049664


192 

Alakrawi, Zahraa M; Watzlaf, Valerie J.M.; Nemchik, Scot; Sheridan, Patty Thierry. "New 

Study Illuminates the Ongoing Road to ICD-10 Productivity and Optimization" Journal 

of AHIMA 88, no.3 (March 2017): 40-45. 

 

American Health Information Management Association. CAC 2010: Industry Outlook and 

Resources Report. Chicago: AHIMA, 2011. 

 

Arner, Kathy. "When Guidelines Depend on the Setting: Comparing, Contrasting Facility 

Reporting and Professional Fee Coding." Journal of AHIMA 78, no.2 (February 2007): 

70-71. 

 

Averill, R., Bowman, S., & Bowman, S. (2012). There are critical reasons for not further 

delaying the implementation of the new icd-10 coding system. Journal of AHIMA, 83(7). 

 

Beinborn, Julie. “Automated Coding: The Next Step.” Journal of AHIMA 70, no. 7 (1999): 38–

43. 

 

Benjamin P. Rosenbaum, MD; Robert R. Lorenz, MD, MBA; Ralph B. Luther, MBA; Lisa 

Knowles-Ward, RHIT, CCS; Dianne L. Kelly, RN; and Robert J. Weil, MD. “Improving 

and Measuring Inpatient Documentation of Medical Care within the MS-DRG System: 

Education, Monitoring, and Normalized Case Mix Index.” Perspectives in Health 

Information Management (Summer 2014): 1-11. 

 

Bhargava, B., Temkin, T., Fireman, B., Eaton, A., McCaw, B., Kotz, K., & Amaral, D. (2011). A 

predictive model to help identify intimate partner violence based on diagnoses and phone 

calls. Am J Prev Med, 41(2), 129-135. 

 

Bower-Jernigan, Patricia; Chenoweth, Ann; James, Jaime. "Realigning HIM to the New 

Healthcare Environment: Case Studies in HIM Transformation Due to Accountable Care 

and Pay-For-Outcomes Initiatives." Journal of AHIMA 85, no.8 (August 2014): 34-38. 

 

Brownfield, Cathy; Didier, Donna M. "Making the Most of External Coding Audits: From 

Preparation to Recommendations " Journal of AHIMA 80, no.7 (July 2009): 34-38. 

 

Boyd, A., John, J., Burton, M., Jonen, M., Gardeux, V., Achour, I., Q Luo, R., Zenku, I., 

Bahroos, N., Brown, S., Vanden Hoek, T., Lussier, Y. The discriminatory cost of ICD-

10-CM transition between clinical specialties: metrics, case study, and mitigating tools 

Journal of the American Medical Informatics Association: amiajnl-2013-001358. 

 



193 

Broberg, C., McLarry, J., Mitchell, J., Winter, C., Doberne, J., Woods, P., & Burchill, L. (2014). 

Accuracy of administrative data for detection and categorization of adult congenital heart 

disease patients from an electronic medical record. Pediatr Cardiol, 1-7. 

 

Bronnert, J., Bonnie , C., Eichenwald, S., Eminger, H., & Flanagan, J. (2011). Cac 2010-11 

industry outlook and resources report. AHIMA. 

 

Brouch, Kathy. “AHIMA Project Offers Insights into SNOMED, ICD-9-CM Mapping Process.” 

Journal of AHIMA 74, no.7 (July/August 2003): 52-55. 

 

Burton, Ben. "How to Lead Your Organization in Compliance, Ethics, and Customer Service." 

Journal of AHIMA 85, no.8 (August 2014): 22-25. 

 

Butler, Mary. "Not So Fast! Congress Delays ICD-10-CM/PCS: Examining How the Delay 

Happened, Its Industry Impact, and How Best to Proceed." Journal of AHIMA 85, no.6 

(June 2014): 24-28. 

 

Butler, Mary. "Survey: Coding Productivity Dipped After ICD-10 Implementation" (Journal of 

AHIMA website), June 13, 2016. 

 

Chapman, W., Nadkarni, P., Hirschman, L., D’Avolio, L., Savova, G., & Uzuner, O. (2011). 

Overcoming barriers to nlp for clinical text: the role of shared tasks and the need for 

additional creative solutions. J Am Med Inform Assoc., 18(5), 540-543. 

 

Chavis, S. “Two Systems, One Direction.” For the Record 25, no. 14 (2013): 10. Available at 

http://www.fortherecordmag.com/archives/1013p10.shtml. 

 

Combs, Tammy. "Understanding CDI Metrics" (Journal of AHIMA website), February 24, 2016. 

 

Cornet, R., and N. Keizer. “Forty Years of SNOMED: A Literature Review.”BMC Medical 

Informatics and Decision Making 8 (2008): 1–6. 

 

Chute, C. (2000). J am med inform assoc. Clinical Classification and Terminology: Some 

History and Current Observations, 7, 298-303. 

 

Chute, C. (2013). State of the art and science: Coding patient reimbursement for care, and the icd 

transition. Virtual Mentor; American Medical Association Journal of Ethics, 15, 596-599. 

 

http://www.fortherecordmag.com/archives/1013p10.shtml


194 

Chute, C., Huff, S., Ferguson, J., Walker, J., & Halamka, J. There Are Important Reasons For 

Delaying Implementation Of The New ICD-10 Coding System. Health Affairs, 31, 

(2012): 836-842. 

 

CMS. (n.d.). Icd-9 code lookup. Retrieved from https://www.cms.gov/ 

 

Cockbain, A., Carolan, M., Berridge, D., & Toogood, G. (2012). Performance and quality 

indicators: the importance of accurate coding. Ann R Coll Surg Engl, 94, 46-50. 

 

Cornet, R., & Keizer, N. (2008). Forty years of SNOMED: a literature review. BMC Medical 

Informatics and Decision Making, (8), 1-6. 

 

DeAlmeida, D., Watzlaf, V., Anania-Firouzan, P., Salguero, O., Rubinstein, E., Abdelhak, M., 

Parmanto, B., Evaluation of Inpatient Clinical Documentation Readiness for ICD-10-CM, 

Perspectives in Health Information Management. 2014 11(Winter): 1h. Published online 

Jan 1, 2014. 

 

DeVault, Kathryn. “Best Practices for Coding Productivity: Assessing Productivity in ICD-9 to 

Prepare for ICD-10.” Journal of AHIMA 83, no. 7 (July 2012): 72-74. 

 

Desai, Anna. "Focus on the Future: Environmental Scan Illuminates the Path Ahead for 

HIM."Journal of AHIMA 84, no.8 (August 2013): 48-52. 

 

Dimick, Chris. "Achieving Coding Consistency" Journal of AHIMA 81, no.7 (July 2010): 24-28. 

 

Dimick, Chris. "Treating Healthcare with Health "I"T." Journal of AHIMA 83, no.9 (September 

2012): 30-37. 

 

Drake, Suzanne P. "Coding and Quality Measures Brief: Pressure Ulcer Rate" CodeWrite 

(December 2016). 

 

Drake, Suzanne P. "Coding and Quality Measures Brief. Patient Safety Indicator 11: 

Postoperative Respiratory Failure Rate" CodeWrite (January 2017). 

 

Dunn, Rose T. and Christina Mainord. "The Latest Look at Coding Trends." Journal of AHIMA 

72, no.7 (2001): 94-96. 

 

Dunn, Rose. "Developing Facility-specific Productivity Measures." Journal of AHIMA 72, no.4 

(2001): 73-74. 

https://www.cms.gov/


195 

Duarte, J., S. Castro, M. Santos, A. Abelha, and J. Machado. “Improving Quality of Electronic 

Health Records with SNOMED.” Procedia Technology 16 (2014): 1342–50. 

 

e-HIM Work Group on Benchmark Standards for Clinical Coding Performance Measurement. 

Quality Subgroup. "Collecting Root Cause to Improve Coding Quality Measurement." 

Journal of AHIMA 79, no.3 (March 2008): 71-75. 

 

Endicott, Melanie. "Maintaining Productivity During the Transition to ICD-10" (Journal of 

AHIMA website), July 08, 2015. 

 

Endicott, Melanie. "Effects of ICD-10 on Coding Productivity" (Journal of AHIMA website), 

March 10, 2016. 

 

Eramo, Lisa A. "Healthcare’s Data Revolution: How Data is Changing the Industry and 

Reshaping HIM’s Roles." Journal of AHIMA 84, no.9 (Sept 2013): 26-32. 

 

Farishta, Mehnaz. "More than a Database: Mining Your Data for Decision-Making 

Success." Journal of AHIMA 72, no.10 (2001): 28-32. 

 

Farley, D. (2012). Code theory: the impact of icd-10 on predictive modeling. Predictive 

Modeling News, 5(8). 

 

Flanagan, J., & Santos, M. (2009). Defining the standards for automated e&m coding through 

coding consistency methodology. Perspectives in Health Information Management. 

 

Forman, S. (2013). Compliance program leveraging of audit resources. Journal of Health Care 

Compliance, 55-70. 

 

Friedman, C., Rindflesch, T., & Corn, M. (2013). Natural language processing: State of the art 

and prospects for significant progress, a workshop sponsored by the national library of 

medicine. Journal of Biomedical Informatics, (46), 765–773. 

 

Friesner, D., Roseman, R., & McPherson, M. (2007). Does a single case mix index fill all 

hospitals? empirical evidence from washington state .Research in Healthcare Financial 

Managment,11(1), 35-55. 

 

Giannangelo, K. Healthcare code sets, clinical terminologies, and classification systems. (2nd 

ed.). Chicago: American Health Information Management Association (AHIMA). 

 



196 

Gjertsen, F., Bruzzone, S., Vollrath, M., Pace, M., & Ekeberg, O. (2013). Comparing icd-9 and 

icd-10: The impact on intentional and unintentional injury mortality statistics in Italy and 

Norway. 44, 132-138. doi: Injury. Int. J. Care Injured.  

 

Gleberman, Amy L. "Incentive Programs Offer Aid to Increase Coding Productivity." Journal of 

AHIMA 71, no. 1 (2000): 75-77. 

 

Glenn, M. “Synergizing ICD-10: Integrating an ICD-10 Implementation into Other Compliance 

Programs Will Reduce Costs, Maximize Investments.” Journal of AHIMA84, no. 2 

(March 2013): 34–38. 

 

Gøeg, K. R., R. Chen, A. R. Højen, and P. Elberg. “Content Analysis of Physical Examination 

Templates in Electronic Health Records Using SNOMED CT.” International Journal of 

Medical Informatics 83, no. 10 (2014): 736–49. 

 

Godbey-Miller, Barbara. "ICD-10: How to Move Your Coding Professionals to the Head of the 

Class [Sponsored Article]" (Journal of AHIMA website), January 2016. 

 

Grzybowiski, D. (2012). Computer-assisted coding and electronic health records EHR. 

Electronic Health Records Briefing, 7-10. 

 

Gurrieri, Joseph J; Karban, Karen M. "The Good, Bad, and Reality of Offshore Coding: Some 

Turn to Distant Shores to Fill US Coding Demands ." Journal of AHIMA 84, no.9 (Sept 

2013): 44-48. 

 

Hayrinen, K., Saranto, K., & Nykanen, P. (2008). Definitions, structure, content, use and impacts 

of electronic health records: A review of the research literature. International Journal of 

Medical Informatics , (77), 291-304. 

 

Hevnegaard, A., Street, A., Sorensen, T., & Gyrd-Hansen, D. (2009). Comparing hospital costs: 

What is gained by accounting for more than a case-mix index?. Social Science and 

Medicine, (69), 640-647. 

 

He, D., Mathews, S., Kallo, A., & Hutfless, S. (2013). Mining high-dimensional administrative 

claims data to predict early hospital readmissions. J Am Med Inform Assoc, (0), 1-8. 

 

Hill, C., Hunter, A., Jobnson, L., & Coustasse, A. (2014). Medicare fraud in the united states: 

can it ever be stopped?. The Health Care Manager, 33(3), 254-260. 

 



197 

Hohl, Corinne M., et al. ICD-10 codes used to identify adverse drug events in administrative 

data: a systematic review. Journal of the American Medical Informatics 

Association (2013): amiajnl-2013. 

 

Houser, Shannon H.; Meadows, Jean M. "Transitioning to Electronic Clinical Quality Measures 

in the Informatics Era" Journal of AHIMA 88, no.2 (February 2017): 28-31. 

 

Humphreys, B., Lindburg, D., Schoolman, H., & Barnett, O. (1998). The unified medical 

language system: An informatics research collaboration. Journal of the American 

Medical Informatics Association, 5(1), 1-11. 

 

International Health Standards Development Organisation. SNOMED CT Starter Guide. 2014. 

Available at 

http://ihtsdo.org/fileadmin/user_upload/doc/download/doc_StarterGuide_Current-en-

US_INT_20140222.pdf. 

 

International Health Standards Development Organisation. SNOMED CT® Frequently Asked 

Questions. Available at 

http://ihtsdo.org/fileadmin/user_upload/doc/download/doc_FAQ_Current-en-

US_INT_20130731.pdf. 

 

Inza, L., Calvo, B., Armananzas, R., Bengoetxea, E., Larranaga, P., & Lozano, J. (2010). 

Machine learning: An indispensable tool in bioinformatics. In L. Inza 

(Ed.), Bioinformatics Methods in Clinical Research (pp. 25-48). 

 

Jiang, G., Jiang, G., Pathak, J., & Chute, C. (2009). Formalizing ICD coding rules using formal 

concept analysis. Journal of Biomedical Informatics, 42, 504-517. 

 

Jensen, K., Cooke, C., & Davis, M. (2014). Fidelity of administrative data when researching 

down syndrome. Medical Care, 52(8), 52-57. 

 

Kate, R. (2013). Towards converting clinical phrases into SNOMED CT expression. Biomedical 

Informatics Insights, 6(1), 29-37. 

 

Koutroumanos, J. (2010). Comparing coding between interventional radiologists and hospital 

coding departments. Clinical Audit, 2, 33-36. 

 

Kusserow, R. (2014). Dissecting the internal audit function in health care. Journal of Health Care 

Compliance, 47-50. 

 

http://ihtsdo.org/fileadmin/user_upload/doc/download/doc_StarterGuide_Current-en-US_INT_20140222.pdf
http://ihtsdo.org/fileadmin/user_upload/doc/download/doc_StarterGuide_Current-en-US_INT_20140222.pdf
http://ihtsdo.org/fileadmin/user_upload/doc/download/doc_FAQ_Current-en-US_INT_20130731.pdf
http://ihtsdo.org/fileadmin/user_upload/doc/download/doc_FAQ_Current-en-US_INT_20130731.pdf


198 

Land, Daniel. "Auditing ICD-10 Through the Lens of Education" Journal of AHIMA 87, no.10 

(October 2016): 82-83. 

 

Lasserre, J., Arnold, S., Vingron, M., Reinke, P., & Hinrichs, C. (2012). Predicting the outcome 

of renal transplantation. J Am Med Inform Assoc., 19, 255-262. 

 

Lau, F., Kuziemsky, C., Price, M., & Gardner, J. (2010). A review on systematic reviews of 

health information system studies. J Am Med Inform Assoc., (17), 637-645. 

 

Leon-Chisen, Nelly. "Coding and Quality Reporting: Resolving the Discrepancies, Finding 

Opportunities" Journal of AHIMA 78, no.7 (July 2007): 26-30. 

 

Linder, Karen M. "Finding the New Normal with ICD-10-CM/PCS" Journal of AHIMA 87, no.4 

(April 2016): 56-59. 

 

Lorence, Daniel P. "Productivity: How Do You Measure Up?" Journal of AHIMA 70, no. 5 

(1999): 35-39. 

 

Madden, R., Sykes, C., & Ustun, T. (2008.). World health organization family of international 

classifications: Definition, scope and purpose. 

 

Mahjan, R., Moorman, A., Liu, S., & Rupp, L. (2013). Use of the international classification of 

diseases, 9th revision, coding in identifying chronic hepatitis b virus infection in health 

system data: implications for national surveillance. J Am Med Inform Assoc., (20), 441-

445. 

 

Martin, Ginny. "Using Additional Diagnoses to Improve Productivity" CodeWrite (February 

2016). 

 

Mathias, J., Agrawal, A., Feinglass, J., Cooper, A., Baker, D., & Choudhary, A. (2013). 

Development of a 5 year life expectancy index in older adults using predictive mining of 

electronic health record data. J Am Med Inform Assoc., 20, e118–e124. 

 

McBride, Susan, et al.. "Data Mapping." Journal of AHIMA 77, no.2 (February 2006): 44-48.  

 

Mea, D., et al. “A Web-based Tool for Development of a Common Ontology between ICD11 

and SNOMED-CT.” 2014 IEEE International Conference on Healthcare Informatics 

(2014): 144–48. 

 



199 

Melton, G., & Hripcsak, G. (2005). Automated detection of adverse events using natural 

language processing of discharge summaries. J Am Med Inform Assoc.,12, 448–457. 

 

Mendez, C., Harrington, D., Christenson, P., & Spellberg, B. (2014). Impact of hospital variables 

on case mix index as a marker of disease severity. Population Health 

Management, 17(1), 28-34. 

 

Mikroyannidi, E., Stevens , R., Lannone, L., & Rector, A. (2012). Analyzing syntactic 

regularities and irregularities in SNOMED-CT. Journal of Biomedical Semantics, 3(8). 

 

Miller, P.J., and F.L. Waterstraat. "Apples to Apples: Using Autobenchmarking to Measure 

Productivity." Journal of AHIMA 75, no.1 (January 2004): 44-49. 

 

Mitchell, Glenn. "Synergizing ICD-10: Integrating an ICD-10 implementation into other 

compliance programs will reduce costs, maximize investments." Journal of AHIMA 84, 

no.2 (March 2013): 34-38. 

 

Mitra, I., Malik, T., Homer, J., & Loughran, S. (2009). Audit of clinical coding of major head 

and neck operations. Ann R Coll Surg Engl, 91, 245-248. 

 

Moar, K., & Rogers, S. (2012). Impact of coding errors on departmental income: an audit of 

coding of microvascular free tissue transfer cases using opcs-4 in uk . British Journal of 

Oral and Maxillofacial Surgery, 50, 85-87. 

 

Morsch, M. (2010). Computer-assisted coding: The secret weapon. Health Management 

Technology, 24-26. Chute, C. (2000). J am med inform assoc. Clinical Classification and 

Terminology: Some History and Current Observations, 7, 298-303.  

 

Morsch, Mark L., David S. Byrd, and Daniel T. Heinze. “Factors in Deploying Automated Tools 

for Clinical Abstraction and Coding.” Unpublished work. 2007. 

 

Nadkarni, P., & Darer, J. (2010). Migrating existing clinical content from icd-9 to snomed. J Am 

Med Inform Assoc., (17), 602-607. 

 

Nadkarni, P., Ohno-Machado, L., & Chapman, W. (2011). Natural language processing: an 

introduction. J Am Med Inform Assoc., 18, 544-551. 

 

Naran, S., Hudovsky, A., Antscherl, J., Howells, S., & Nouraei, S. (2014). Audit of accuracy of 

clinical coding in oral surgery. British Journal of Oral and Maxillofacial Surgery, 52, 

735-739. 

 



200 

Nicole Blair Johnson, Locola D. Hayes, Kathryn Brown, Elizabeth C. Hoo. & Kathleen A. 

Ethier. (2014). CDC National Health Report: Leading Causes of Morbidity and Mortality 

and Associated Behavioral Risk and Protective Factors—United States, 2005–2013. 

CDC. Retrieved form: http://www.cdc.gov/mmwr/preview/mmwrhtml/su6304a2.htm 

 

Nichols, Cindy. "Measuring True Productivity." 2011 AHIMA Convention Proceedings, October 

2011. 

 

Nouraei, S., Hudovsky, A., Virk, J., Chatrath, P., & Sandhu, G. (2013). An audit of the nature 

and impact of clinical coding subjectivity variability and error in otolaryngology. Clinical 

Otolaryngology, 38, 512-524. 

 

Osborn, Carol E. "Practices and Productivity in Acute Care Facilities." Journal of AHIMA 71, 

no. 2 (2000): 61-66. 

 

Pitsikoulis, John; Doty, Laura. "Developing Productivity Standards through Analytics 

[sponsored article]" (Journal of AHIMA website), July 15, 2016. 

 

Price, Kurt, and Dean Farley. "How Does Your Coding Measure Up?: Analyzing Performance 

Data Gives HIM a Boost in Managing Revenue." Journal of AHIMA 76, no.7 (July-

August 2005): 26-31. 

 

Rea, S., Pathak, J., Savova, G., Oniki, T., Westberg, L., Beebe, C., Tao, C., & Parker, C. (2012). 

Building a robust, scalable and standards-driven infrastructure for secondary use of ehr 

data: The sharpn project. Journal of Biomedical Informatics, (45), 763-771. 

 

Reed, G. (2010). Toward icd-11: Improving the clinical utility of WHO's international 

classification of mental disorders. Professional Psychology: Research and Practice, 41(6), 

457-464. 

 

Rode, D. Embracing ICD-10 Advocacy: HIM Professionals Must Offer Implementation Help to 

Physicians. Journal of AHIMA 84, no.2; (2013, Feb):16-18. 

 

Rode, D. Why ICD-10 Can't Wait. Journal of AHIMA, 79, 10 (2008): (18 - 20). 

 

Rode, Dan. "Taking the Next Step Forward for ICD-10." Journal of AHIMA 75, no.1 (January 

2004): 14-15. 

 

Rode, Dan. "Why ICD-10 Can’t Wait" Journal of AHIMA 79, no.10 (October 2008): 18-20. 

Romano, PS. ICD-9-CM to ICD-10-CM/PCS Conversion of AHRQ Quality Indicators. 

 

http://www.cdc.gov/mmwr/preview/mmwrhtml/su6304a2.htm


201 

Rybnicek, D., Hanthorn, K., Pfaff, E., Bulsiewicz, W., Shaheen, N., & Dellon, E. (2014). 

Administrative coding is specific, but not sensitive, for identifying eosinophilic 

esophagitis. Diseases of the Esophagus, (27), 703-708. 

 

Salmasian, H., Freedberg, D., & Friedman, C. (2013). Driving comorbidities form medical 

records using natural language processing. (0), 1-4. 

 

Sacks, G., Dawes, J., Russell, M., Lin, A., Maggard-Gibbons, M., Winogard, D., Chung, H., & 

Tomlinson, J. (2014). Evaluation of hospital readmissions in surgical patients: Do 

administrative data tell the real story?. JAMA Surg, 149(12), 759-764. 

 

Sett, Ajit; Hickman, George T; Karban, Karen. "Trust But Verify: Safeguards in Contracting for 

Outsourced Coding Services." Journal of AHIMA 85, no.6 (June 2014): 40-44. 

 

Sion, D., Dooling, J., Glondys, B., Jones, T,.Kadlec, L., Overgaard, S., Ruben, K., & Wendicke, 

A. “Data Quality Management Model (2015 Update)” Journal of AHIMA 86, no.10 

(October 2015): expanded web version. 

 

Spencer, Carol. "Two Key Metrics in Evaluating the Effectiveness of Hospital Coding Services: 

Paid Claims Error Rate and Coding Accuracy." 2010 AHIMA Convention Proceedings, 

September 2010. 

 

Stanfill, M., Williams, M., Fenton, S., Jenders, R., & Hersh, W. (2010). A systematic literature 

review of automated clinical coding and classification systems. J Am Med Inform 

Assoc., 17, 646-651. 

 

Stanfill, Mary H; Hsieh, Kang Lin; Beal, Kathleen; Fenton, Susan H. "Preparing for ICD-10- 

CM/PCS Implementation: Impact on Productivity and Quality" Perspectives in Health 

Information Management (Summer, July 2014). 

 

Stanfill, Mary H. "Call for Additional Coding Metrics" Journal of AHIMA 86, no.4 (April 2015): 

56-57. 

 

Stausberg, J., Lehmann, N., Kaczmarek, D., & Stein, M. (2008). Reliability of diagnoses coding 

with icd-10. International Journal of Medical Informatics ,77, 50-57. 

 

Steinbusch, P., Joost, O., Zuurbier, J., & Schaepkens, F. (2007). The risk of upcoding in casemix 

systems: A comparative study. Health Policy, (81), 289-299. 

 

Steindel, S. International classification of diseases, 10th edition, clinical modification and 

procedure coding system: descriptive overview of the next generation HIPAA code sets 



202 

Journal of the American Medical Informatics Association. May-Jun; 17(3): (2010):274–

282. 

 

Stoner, Jean, Michael Nossal, Philip Resnik, Andrew Kapit, and Richard Toren. “Assessing Coder 

Change Rates as an Evaluation Metric.” Unpublished work. 2007. 

 

Sun, J., McNaughton, C., Sun, J., Zhang, P., Perer, A., Gkoulalas-Divanis, A., Denny, J., & 

Kirby, J. (2013). Predicting changes in hypertension control using electronic health 

records from a chronic disease management program. J Am Med Inform Assoc., (0), 1-8. 

 

Tully , M., & Charmichael, A. (2012). Computer-assisted coding and clinical 

documentation. Healthcare Financial Management , 46-49. 

 

Walker, R., Hennessy, D., Johansen, H., Sambell, C., Lix, L., & Quan, H. (2012). Implementing 

of ICD-10 in Canada: how has it impacted coded hospital discharge data. BMC Health 

Services Research, 12(149). 

 

Watzlaf, V., Garvin, J. H., Moeini, S., & Anania-Firouzan, P. The Effectiveness of ICD-10-

CM/PCS in Capturing Public Health Diseases. Perspectives in Health Information 

Management, 4, (2007, Jun 12): 6. 

 

Watzlaf, Valerie J.M.; Nemchik, Scot; Hoerner, Mike; Sheridan, Patty Thierry. "ICD-10 Coding 

Productivity Study Highlights Emerging Standards" Journal of AHIMA 87, no.8 (August 

2016): 44-47. 

 

W. C. Morris et al. “Assessing the Accuracy of an Automated Coding System in Emergency 

Medicine.” Proceedings of the AMIA Annual Symposium (2000): 595–599. 

 

Weinstein, L., Jack, T., Radano, T., Kalina , P., & Eberhardt , J. (2009). Application of 

multivariate probabilistic (bayesian) networks to substance use disorder risk stratification 

and cost estimation. Perspectives in Health Information Management. 

 

White, Susan E. "Predictive Modeling 101: How CMS’s Newest Fraud Prevention Tool Works 

and What It Means for Providers." Journal of AHIMA 82, no.9 (September 2011): 46-47. 

 

Wilson, Donna D; Hampton-Bagshaw, Kim; Jorwic, Therese M; Bishop, Jean; Giustina, 

Elizabeth. "New Focus on Process and Measure: Raising Data Quality with a Standard 

Coding Workflow and Benchmarks" Journal of AHIMA 79, no.3 (March 2008): 54-58. 

 

Wilson, Donna, and Rose Dunn, technical editor. Benchmarking to Improve Coding Accuracy and 

Productivity. Chicago, IL: AHIMA, 2009. 



203 

Wilson, Donna D. "Five RAC Coding Targets: Demonstration Program Identified Key Areas of 

Improper Payment" Journal of AHIMA 80, no.5 (May 2009): 64-66. 

 

WHO. (2012). ICD-10 Browser. Retrieved from 

http://apps.who.int/classifications/icd10/browse/2010/en 

 

WHO. (2012). ICD-11 Browser . Retrieved from 

http://apps.who.int/classifications/icd11/browse/f/en 

 

Yang, C., & Reinke, W. (2006). Feasibility and validity of international classification of diseases 

based case mix indices. BMC Health Services Researh,6(125), 1-10. 

 

Ying, T., Sun, X., Nunez, C., & Johannes, R. (2013). Using electronic health record data to 

develop inpatient mortality predictive model: Acute laboratory risk of mortality score 

(alarms). J Am Med Inform Assoc., (0), 1-9. 

 

 
 

 

 

 

http://apps.who.int/classifications/icd10/browse/2010/en
http://apps.who.int/classifications/icd11/browse/f/en

	TITLE PAGE
	COMMITTEE
	COPYRIGHT
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	PREFACE
	1.0  INTRODUCTION
	2.0  HEALTHCARE VOCABULARY, TERMINOLOGY, AND CLASSIFICATION
	2.1.1 HealthCare Terminology
	2.1.2 Healthcare Classifications
	2.1.2.1 Reference Classifications
	2.1.2.2 Derived Classifications
	2.1.2.3 Related Classifications

	2.1.3 WHO Family of International Classification (FIC)
	2.1.3.1 Purpose of the WHO-FIC
	2.1.3.2 UN definition of the WHO-FIC
	2.1.3.3 Scope of the WHO Family

	2.1.4 Use of Vocabulary, Terminology, and Classification Systems
	2.1.5 Clinical Terminology and Clinical Classification Systems: A Critique Using AHIMA’s Data Quality Management DQM Model
	2.1.5.1 AHIMA’s DQM Model
	2.1.5.2 Users and Applications
	2.1.5.3 Clinical Documentation into the EHR


	3.0  CLINICAL CODING PROCESSES
	3.1 Clinical Coding
	3.2 Coding Clinical Expressions Using SNOMED CT and ICD-10-CM/pcs
	3.3 Inpatient v. Outpatient Coding
	3.4 Inpatient Coding Classification Systems; ICD-9-CM, ICD-10, ICD-10-CM/PCS, AND ICD-11

	4.0  REIMBURSEMENT METHODS IN HEALTHCARE
	4.1 INPATIENT PROSPECTIVE PAYMENT SYSTEM (IPPS)
	4.2 OUTPATIENT PROSPECTIVE PAYMENT SYSTEM (OPPS)
	4.3 FEDERAL LAWS AND REGULATIONS

	5.0  CLINICAL CODING VALIDATION, CODED DATA QUALITY, AND PRODUCTIVITY-DRIVEN PRACTICES
	5.1 Internal Audit Programs
	5.1.1 Outsourcing approach
	5.1.2 Merging approach
	5.1.3 Coordination approach

	5.2 The Recovery Audit Program and Medicare
	5.2.1 Background on Medicare
	5.2.2 RAC Audit Program

	5.3 Administrative data quality & Productivity
	5.4 COMPUTER-ASSISTED CODING (CAC)

	6.0  STUDY SIGNIFICANCE
	7.0  SPECIFIC AIMS AND RESEARCH QUESTIONS
	7.1.1 Specific Aim I: Identifying factors that could influence coding accuracy:
	7.1.1.1 Length of Stay (LOS)
	7.1.1.2 Case Mix Index (CMI)
	7.1.1.3 DRG Relative Weight
	7.1.1.4 MS_DRG categories
	7.1.1.5 Digit Level

	7.1.2 Specific Aim II: Identifying documentation discrepancies that could influence coding quality
	7.1.3 Specific Aim III: Identifying impact of coding errors on CMI and hospital’s payment
	7.1.4 Specific Aim IV: Identifying individual and facility-related factors that could influence coding productivity
	7.1.4.1 Length of Stay (LOS)
	7.1.4.2 Case Mix Index (CMI)
	7.1.4.3 DRG Relative Weight
	7.1.4.4 Bed Size
	7.1.4.5 Teaching Status
	7.1.4.6 Trauma Status

	7.1.5 Specific Aim V: Explore the relationship between coding productivity and coding quality
	7.1.6 Specific Aim VI: Develop predictive models to predict coding productivity and coding quality based on the individual and facility-related factors.

	8.0  METHODOLOGY
	8.1 Study Design
	8.2 Sampling Design
	8.3 Sample Size
	8.4 Data Collection
	8.4.1 Accuracy Data Set
	8.4.2 Productivity Data Set

	8.5 Data Analysis

	9.0  RESULTS
	9.1 Identifying Factors That Could Influence Coding Accuracy
	9.1.1 Descriptive Statistics
	9.1.2 Bivariate Analyses

	9.2 Identifying Documentation Discrepancies That Could Influence Coding Quality
	9.2.1 Unspecified codes rate
	9.2.2 Physician Query Rate
	9.2.3 Most Frequent Errors By ICD-10 Chapters
	9.2.4 Source Documents Used to Identify Coding Errors
	9.2.5 Most Frequent Errors Related to Coding Guidelines

	9.3 Identifying Impact of Coding Errors on CMI and Hospital’s Payment
	9.4 Identifying Individual and Facility-Related Factors That Could Influence Coding Productivity
	9.4.1 Descriptive Analyses
	9.4.2 Bivariate Analyses
	9.4.3 Multiple Linear Regression
	9.4.4 Hierarchical Linear Modeling

	9.5 Identifying Impact of Coding Time on Productivity
	9.6 Developing a Predictive Model to Predict Coding Quality and Productivity
	9.6.1 Conceptual Framework:
	9.6.2 Prediction of Coding Productivity
	9.6.3 Prediction of Coding Quality
	9.6.4 Case Studies
	9.6.4.1 Case Study 1: Circulatory System
	9.6.4.2 Case Study 2: Musculoskeletal System and Connective Tissues
	9.6.4.3 Case Study 3: Oncology



	10.0  DISCUSSION
	11.0  LIMITATIONS
	12.0  Future Work
	13.0  Conclusion
	APPENDIX A
	GLOSSARY
	Examples I: Source Documents Used to Identify Coding Errors
	Examples II: Errors Related to Coding Guidelines
	Examples III: Recommended Changes Per Documentation

	BIBLIOGRAPHY

