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A STATISTICAL STT-RAM DESIGN VIEW AND ROBUST DESIGNS AT SCALED

TECHNOLOGIES

Yaojun Zhang, PhD

University of Pittsburgh, 2017

Rapidly increased demands for memory in electronic industry and the significant technical scaling

challenges of all conventional memory technologies motivated the researches on the next genera-

tion memory technology. As one promising candidate, spin-transfer torque random access memory

(STT-RAM) features fast access time, high density, non-volatility, and good CMOS process com-

patibility. In recent years, many researches have been conducted to improve the storage density

and enhance the scalability of STT-RAM, such as reducing the write current and switching time of

magnetic tunneling junction (MTJ) devices. In parallel with these efforts, the continuous increasing

of tunnel magneto-resistance(TMR) ratio of the MTJ inspires the development of multi-level cell

(MLC) STT-RAM, which allows multiple data bits be stored in a single memory cell. Two types

of MLC STT-RAM cells, namely, parallel MLC and series MLC, were also proposed. However,

like all other nano-scale devices, the performance and reliability of STT-RAM cells are severely

affected by process variations, intrinsic device operating uncertainties and environmental fluctua-

tions. The storage margin of a MLC STT-RAM cell, i.e., the distinction between the lowest and

highest resistance states, is partitioned into multiple segments for multi-level data representation.

As a result, the performance and reliability of MLC STT-RAM cells become more sensitive to the

MOS and MTJ device variations and the thermal-induced randomness of MTJ switching.

In this work, we systematically analyze the impacts of CMOS and MTJ process variations and

MTJ resistance switching randomness that induced by intrinsic thermal fluctuations. Then, we

analyzed the extension of STT-RAM cell behaviors from SLC (single-level-cell) to MLC (multi-

level-cell). With the detail analysis study of STT-RAM cells, we proposed several error reduction
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design, such as ADAMS structure, and FA-STT structure. In which, ADAMS can be dynami-

cally configured between the high-reliable (HR) mode and the high-capacity (HC) mode upon the

real-time system requirement: For the performance and reliability critical applications, ADAMS

switches to HR mode. For the capacity critical applications, ADAMS switches to HC mode. The

ADAMS cell is broken into two “1T1J” cells that can work independently, offering the similar

performance and reliability to conventional STT-RAM design.
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1.0 INTRODUCTION

Conventional memory technologies, i.e., SRAM, DRAM, and Flash, have achieved a remarkable

success in modern electronic industry. As the semiconductor fabrication technology approaches

20nm range, the disadvantages of those technologies has become more and more prominent, i.e.,

the high leakage power of SRAM and DRAM, the poor endurance performance of NAND Flash,

and the generally degraded device reliability. Hence, the research on emerging memory technolo-

gies have been triggered to look for alternative process scaling paths. As a promising candidate,

spin-transfer torque random access memory (STT-RAM) aims the embedded memory and on-chip

cache applications [27, 36, 41]. In an STT-RAM cell, data is stored as the resistance states of a

magnetic tunneling junction (MTJ) device [8]. Compared to other competing technologies such

as Phase-Change RAM (PCRAM), Resistive RAM (RRAM) and Ferromagnetic RAM (FeRAM),

STT-RAM offers faster (nanoseconds) read access time, better CMOS process compatibility, as

well as the common properties such as zero standby power, small memory cell size, and good

scalability etc. [25].

As technology scales, the STT-RAM density and power consumption improve, followed by

the increased process variations. The impacts of the process variations on STT-RAM cell designs,

including the MOS transistor device variations, MTJ geometry and resistance variations, have been

analyzed by [33, 17]. Meanwhile, the intrinsic device operating uncertainties of STT-RAM, i.e.,

the thermal fluctuation in the MTJ switching, is aggravated when the working temperature varies

in a large range, which was also analyzed in [22]. In previous work, pure CMOS device process

variation aware statistical analysis method with the consideration of the MTJ geometry variations

is done in [33, 17]. And [22] has proposed some combined circuit and magnetic-level STT-

RAM model that can simulate the interaction between MOS transistor and MTJ without taking

into account process variations. In our work, we systematically analyze the impacts of both the

1



device parameter fluctuations of MTJ and transistors, and intrinsic MTJ operating uncertainties on

the performances and the reliabilities of STT-RAM cells. In this work, we quantitatively study

the influences of thermal fluctuation and process variation on the MTJ switching performance, and

extended it from Single level cell (SLC) to multi-level cell (MLC). In Multi-level cell (MLC) STT-

RAM, two MLC STT-RAM structures (parallel and serial) are analyzed. Also, by leveraging our

proposed STT-RAM cell model, we establish a statistical design flow that can optimize both the

persistent and non-persistent errors in STT-RAM design. Finally, two error reduction design and

one improved device structure are introduced to improving the existing challenges in STT-RAM

technology.

The rest of the paper is organized as follows: We briefly introduce preliminary background on

STT-RAM and its variation resource in Chapter 2. In Chapter 3, we start with presenting the anal-

ysis of operation errors in single level cell (SLC) STT-RAM . Then, based on the understanding of

SLC, multi-level cell (MLC) STT-RAM analysis will be demonstrated in Chapter 4. In Chapter 5,

we will give a novel differential sensing design called ADAMS to reduce the read error of STT-

RAM. Besides that, we will also present several other error reduction design in 6 And last is our

conclusion in Chapter 7.
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2.0 PRELIMINARY

2.1 STT-RAM BASICS

Spin-transfer torque random access memory (STT-MRAM) uses magnetic tunneling junction (MTJ)

devices to store the information. A MTJ has two ferromagnetic layers (FL) and one oxide barrier

layer (BL). The resistance of MTJ depends on the relative magnetization directions (MDs) of the

two FLs. When their MDs are parallel or anti-parallel, the MTJ is in its low or high resistance state,

as illustrated in Fig. 1. Rh and Rl are usually used to denote the high and the low MTJ resistance,

respectively. Tunneling magneto-resistance (TMR) is defined as (Rh − Rl)/Rl, which presents the

distinction between the two resistance states.

In a MTJ, the MD of one FL (reference layer) is pinned while the one of the other FL (free

layer) can be flipped by applying a polarized write current though the MTJ. For example, the

switching from low resistance state (“0”) to high resistance state (“1”) can be realized by applying

a current from B to A, as shown in Fig. 1. A larger write current can shorten the MTJ switching

time by paying the additional memory cell area overhead: In the popular “1T1J” (one-transistor-

one-MTJ) cell structure (see Fig. 1(c)), the MTJ write current is supplied by the NMOS transistor.

Increasing the write current requires a larger NMOS transistor. Also, the increased write current

raises the breakdown possibility of the MTJ device.

2.2 PROCESS VARIATIONS

The CMOS process variations that contribute to the variability of the driving strength of the NMOS

transistor in an “1T1J” STT-RAM cell structure include random dopant fluctuations (RDFs), line-
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Figure 1: MTJ Structure (a) Anti-parallel (high resistance state). (b) Parallel (low resistance state).

(c) 1T1J STT-RAM cell structure.

edge roughness (LER), shallow-trench isolation (STI) stress, and the geometry variations of tran-

sistor channel length/width. Besides the geometry variations, most of the CMOS process variations

are reflected as the threshold voltage deviations. The random variation of the threshold voltage is

prominent in the scaled CMOS technology and can severely affect circuit stability and perfor-

mance. It is known that the relative deviations of MOS transistor parameters reduce when the

transistor size increases.

CMOS process variations affect not only the driving strength of the MOS transistor but also

its equivalent resistance. The relative deviations of MOS transistor parameters reduce when the

transistor size increases.
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The major sources of MTJ device variations include: 1) MTJ shape variations; 2) MgO thick-

ness variations; and 3) normally distributed localized fluctuation of magnetic anisotropy K =

Ms·Hk [25]. The first two factors cause the variations of the MTJ resistance and the MTJ switching

current by changing the bias conditions of the NMOS transistor. The third factor is the intrinsic

variation of magnetic material that affects the MTJ switching threshold current density (Eq. 2.1)

and the magnetization stability barrier height (Eq. 2.2) [25].

JC0 = (
2e
~

)(
α

η
)(tF Ms)(Hk±Hext + 2πMs) (2.1)

∆ =
KuV
kBT

=
MsHkVcos2(θ)

kBT
(2.2)

Here, the switching threshold current density JC0 is the minimal current density that causes the

MTJ resistance flipping in the absence of any external magnetic field at 0K; e is the electron charge;

α is the damping constant; Ms is the saturation magnetization; tF is the thickness of the free layer; ~

is the reduced planck’s constant; Hk is the effective anisotropy field including magneto crystalline

anisotropy and shape anisotropy; Hext is the external field; η is the spin transfer efficiency; T is

working temperature; KB is Boltzmann constant; and V is MTJ element volume.

2.3 THERMAL FLUCTUATION IN MTJ SWITCHING

Device variations are introduced by the uncertainties during the manufacturing process. After the

device is fabricated, the device parameters are fixed and their impacts on the circuit performance

are deterministic. Besides the device variations of MOS transistor and MTJ, the MTJ switching

performance is also affected by the intrinsic thermal fluctuations. In general, the impact of ther-

mal fluctuations can be modeled by the thermal induced random field h f luc in stochastic Landau-

Lifshitz-Gilbert (LLG) equation (Eq. 2.3) [8, 2, 9] as

d−→m
dt = −−→m × (

−→
h e f f +

−→
h f luc) + α−→m × (−→m × (

−→
h e f f +

−→
h f luc)) +

−→
T norm

Ms
(2.3)
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Where −→m is the normalized magnetization vector. Time t is normalized by γMs; γ is the gyro-

magnetic ratio and Ms is the magnetization saturation.
−→
h e f f =

−−−→
He f f

Ms
is the normalized effective

magnetic field.
−→
h f luc is the normalized thermal agitation fluctuating field at finite temperature

which represent the thermal fluctuation. α is the LLG damping parameter.
−→
T norm =

−→
T

MsV
is the

spin torque term with units of magnetic field. And the net spin torque
−→
T can be obtained through

microscopic quantum electronic spin transport model. Under the intrinsic thermal fluctuations, the

MTJ switching time becomes unrepeatable and follows a distribution. As we shall show in the next

Section, this distribution is also affected by the MTJ and NMOS transistor device variations and

causes the asymmetric STT-RAM cell switching at two switching directions.
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3.0 SINGLE-LEVEL CELL OPERATION ANALYSIS

3.1 WRITE ERRORS OF AN STT-RAM CELL

STT-RAM errors mainly include two types – operational error and retention error. In this paper,

we mainly focus on the the operational error as normally the STT-RAM is designed with very high

retention time to cover the concerned storage time span, e.g., 10 years. Based on the occurrence

behaviors, operational errors of an STT-RAM cell can be further divided into two types: persistent

error and non-persistent error. In memory design, persistent errors denote the errors that happen

deterministically and can be repeated after the chip is fabricated. On the contrary, non-persistent

errors denote the transient failures incurred by intermittent events and cannot be repeated deter-

ministically.

3.1.1 Persistent Errors

The persistent error in STT-RAM write is referred to as the errors incurred by insufficient MTJ

write current and MTJ switching threshold current variation, which are induced by the process

variations of the NMOS transistor and the MTJ, respectively.

3.1.1.1 Geometry Variations of Transistor and MTJ Without considering any power rail

bounces, when programming an STT-RAM cell, the write current through the MTJ is mainly de-

termined by the size of the NMOS transistor and the MTJ resistance. The first order approximation

of the MTJ write current deviation generated from the process variations W (transistor channel

width), L (transistor channel length), Vth (threshold voltage), and RMT J (equivalent resistance of

7



Table 1: Summary of Device Parameters

Device Parameters Mean Std. Dev.

Transistor

Channel Length L 45nm 2.25nm

Channel Width W design dependent 2.25nm

Threshold Voltage Vth 0.466V δVth0=30mV

MTJ

MgO Thickness τ 2.2nm 2% of mean

Cross Section A 40 × 90nm2

5% of mean
Perpendicular CS AP 45 × 45nm2

Low Resistance Rl 2000Ω

High Resistance Rh 4500Ω

MTJ) can be expressed as:

(σIMT J)2 = ( σIMT J
σW |W=W0σW)2

+ ( σIMT J
σL |L=L0σL)2

+ ( σIMT J
σVth
|Vth=Vth0σVth)2

+ ( σIMT J
σRMT J

|RMT J=RMT J0σRMT J)2.

(3.1)

Here W0, L0 and Vth0 are the nominal values of NMOS transistor width, length and threshold volt-

age, respectively. The standard variation of the threshold voltage Vth decreases when the transistor

size increases, say, σVth∝1/
√

WL. In this work, we select PTM 45nm technology as our reference

technology node in the simulations. Assuming a high-performance NMOS transistor is used, σVth0

is set to 30mV with the mean of channel length L0 = 45 nm [37]. The standard deviations of W

and L (σW and σL) are both set to 5% of the minimal transistor length (= 45nm). The details of

the parameters adopted in our simulations are summarized in TABLE 1.

The MTJ resistance RMT J∝eτ/A, where τ is the tunneling oxide thickness and A is the MTJ sur-

face area. The variations of both τ and A follow Gaussian distributions [17]. ∆VMT J = IMT J·RMT J

is the voltage drop across the MTJ where IMT J is the current through the MTJ. Hence, Vds =

Vdd − ∆VMT J is a function of IMT J.
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Based on the recent experimental results in [7], in our simulations, we choose the nominal

values of RL and RH ,or RL0 and RH0 as 2000Ω and 4500Ω, respectively. We also assume that the

standard deviations of τ and A are 2% or 5% of their means [17], as shown in TABLE 1.

The MTJ size are modeled by the equations from [40] as:

HK = MS (Nb − Na). (3.2)

Na =
4π

m2 − 1
[

m
√

m2 − 1
ln(m +

√
m2 − 1) − 1]. (3.3)

Nb = 2π −
Na

2
. (3.4)

m =
a
b
. (3.5)

Here a and b are the length and width of the MTJ nanopillar. Na and Nb are the demagnetization

factor along the longer a-axis and shorter b-axis, respectively. In a perpendicular MTJ, there is no

shape anisotropy since a = b,Na = Nb.

Meanwhile, we assume the variations of MTJ and CMOS devices are independent because

these two types of devices are fabricated at different layers with different processes.

3.1.1.2 Fluctuation of Magnetic Anisotropy Different from CMOS device variations and MTJ

geometry variations that directly affecting MTJ write current, localized fluctuation of MTJ mag-

netic anisotropy results in the variations of switching threshold current density JC0. In the con-

cerned MTJ switching time range (from a few ns to hundreds ns), our magnetic model shows

that the fluctuation of MTJ magnetic anisotropy causes a standard deviation of the MTJ switching

threshold current density about 2% of its nominal value.

9



Table 2: MTJ Write Current Distribution Under Process Variations

Transistor
Vds(V)

Nominal 0→1S tandardDeviation(µA) 0→1S tandardDeviation/Mean
Size IMT J(µA) MOS only MTJ only Both MOS only MTJ only Both

90nm 0.8498 75.12 7.53 1.01 7.61 10.03% 1.35% 10.13%
180nm 0.7685 115.7 10.61 3.12 11.11 9.17% 2.70% 9.60%
270nm 0.7201 139.9 11.63 4.84 12.87 8.31% 3.46% 9.20%
360nm 0.6877 156.1 12.46 5.71 14.02 7.98% 3.66% 8.98%
450nm 0.6643 167.8 12.71 7.25 14.72 7.64% 4.32% 8.77%
540nm 0.6465 176.7 12.77 8.25 15.20 7.23% 4.67% 8.60%
630nm 0.6323 183.8 12.83 9.02 15.68 6.98% 4.91% 8.53%
720nm 0.6208 189.6 12.93 9.61 16.10 6.82% 5.07% 8.49%

Transistor
Vds(V)

Nominal 1→0S tandardDeviation(µA) 1→0S tandardDeviation/Mean
Size IMT J(µA) MOS only MTJ only Both MOS only MTJ only Both

90nm 0.5629 97.15 9.08 0.39 9.09 9.35% 0.40% 9.36%
180nm 0.2893 157.9 10.27 1.37 10.35 6.50% 0.87% 6.55%
270nm 0.1914 179.7 9.64 4.07 10.42 5.36% 2.26% 5.80%
360nm 0.1431 190.4 8.42 6.37 10.46 3.73% 2.86% 4.42%
450nm 0.1143 196.8 7.18 7.75 10.57 3.65% 3.94% 5.20%
540nm 0.0952 201.1 3.90 10.03 10.23 1.48% 4.99% 5.37%
630nm 0.0815 204.1 2.84 10.96 11.31 1.39% 5.37% 5.54%
720nm 0.0713 206.4 2.77 11.53 11.85 1.34% 5.59% 5.74%

3.1.2 Quantitative Analysis on Persistent Write Errors

We perform Monte-Carlo simulations to quantitatively study the persistent write errors in STT-

RAM cell design with PTM 45nm technology [3]. A Verilog-A MTJ model was created for pro-

cess variation analysis and the assumptions of the process variations are listed in TABLE 1. All

simulations were conducted under Cadence Spectre Analog environment.

Three scenarios are simulated to study the impacts of different process variation sources on the

driving ability of the NMOS transistor in STT-RAM cells with different transistor sizes, including:

1. Case 1 (MOS variation only): Assuming no MTJ geometry variations and only NMOS tran-

sistor process variations are considered;

2. Case 2 (MTJ variation only): Assuming no NMOS transistor process variations and only MTJ

geometry variations are considered;

3. Case 3 (Both Variations): Both MTJ and NMOS transistor process variations are considered.
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TABLE 2 summarizes our simulation results. For every cases, Vdd = 1.0V . Both MTJ switch-

ing directions (parallel to anti-parallel, or ‘0→1’ and anti-parallel to parallel, or ‘1→0’) are sim-

ulated because the NMOS transistor has different biasing conditions at these two switching direc-

tions. For every simulated transistor size, 1000 Monte-Carlo simulations are conducted.

In “MOS variation only” case, when the MTJ switches from ‘0’ to ‘1’, the NMOS transistor

always works at its saturation region. Increasing transistor width W reduces the NMOS transistor

resistance as well as the Vds. However, the reduction of Vds is very moderate even all the coeffi-

cients corresponding to each transistor process variations in Eq. (3.1) become larger. It leads to a

larger standard deviation of MTJ write current even though the variations of Vth decreases. In the

case that MTJ switches from ‘1’ to ‘0’, the NMOS transistor works at saturation region first when

its width is small. However, following the increase of the channel width, NMOS transistor will

change its working region from saturation to linear. Vds reduces very sharply (even possibly below

Vth), as shown in TABLE 2. Combining with the decrease of σVth, the coefficients of transistor

process variations in Eq. (3.1) reduce when the transistor width increases.

In “MTJ variation only” case, the coefficient of MTJ variation in Eq. (3.1) always increases

when transistor size (and hence, IMT J) increases. Moreover, because of the higher IMT J, a larger

MTJ write current variation is induced by MTJ variations in 1→0’ switching compared to ‘0→1’

switching under the same NMOS transistor size. Due to the same reason (and also the reduction of

σVth), the MTJ variation induced MTJ write current deviation becomes more prominent when the

NMOS transistor size becomes larger.

When both the MTJ and NMOS transistor variations are considered, the contributions of dif-

ferent device variations to the MTJ driving current are mainly represented by the following four

terms in Eq. (3.1) as [34]:

S 1 = ( ∂I
∂W )2 · σ2

W , S 2 = ( ∂I
∂L )2 · σ2

L,

S 3 = ( ∂I
∂R )2 · σ2

R, S 4 = ( ∂I
∂vth

)2 · σ2
vth
.

(3.6)
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Table 3: Summary of Variation Contribution [34]

Variation Monoto W → ∞

”0”

S 1 ↓ S 1 → 0

S 2 ↗↘ S 2 → 0

S 3 ↑ max S 3

S 4 ↗↘ S 4 → 0

”1”

S 1 ↓ S 1 → 0

S 2 ↑ max S 2

S 3 ↑ max S 3

S 4 ↗↘ S 4 → 0

Based on short-channel BSIM model [34], the MTJ driving current supplied by a NMOS tran-

sistor working in saturation region can be calculated by:

I =
β

1 + 1
vsatL

(Vdd − IR)
·[

(Vdd − Vth) (Vdd − IR) −
a
2

(Vdd − IR)2
]
. (3.7)

Here β = µ0Cox
W
L , µ0 is electron mobility, Cox is gate oxide capacitance per unit area, a is body-

effect coefficient, and vsat is carrier velocity saturation.

TABLE 3 shows the changing trends of S 1 to S 4 at both switching directions when the transis-

tor channel width W increases. For each S i (i = 1 ∼ 4) that do not monotonically changes when

W increases, a larger S i corresponds to more contribution to the MTJ driving current variation.

The limits of each S i when W is approaching infinite are also listed in TABLE 3. It clearly shows

that the residual values of S 1–S 4 at ‘0→1’ switching is larger than that at ‘1→0’ switching when

W → ∞. In other words, ‘0→1’ switching suffers from a larger MTJ driving current variation than

‘1→0’ switching when the NMOS transistor is large.
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Furthermore, the mean of the MTJ write current of ‘0→1’ switching is always lower than that

of ‘1→0’ switching at all simulated transistor sizes. Therefore, the STDR (standard deviation vs.

mean ratio) of the MTJ switching time of ‘0→1’ switching is always larger than that of ‘1→0’

switching.

As also shown in TABLE 2, following the increase of the NMOS transistor size, the ratio

between the means of the MTJ write currents at both switching directions, i.e., I0→1
MT J,mean/I

1→0
MT J,mean,

decreases. It is because that the driving ability of the NMOS transistor quickly saturates when

Vgs reduces. However, the ratio between the standard deviations of the MTJ write currents, i.e.,

σ0→1
IMT J

/σ1→0
IMT J

, slightly increases when the NMOS transistor size grows. These two trends indicate

the aggravation of STT-RAM cell switching asymmetry when the NMOS transistor size increases.

Simulation Model

Analytical Model

120      140      160      180      200      220

(b) ( 0  to  1 )

(a) ( 1  to  0 )

175      185      195      205      215      225

Figure 2: Examples of the driving strength distribution of the NMOS transistor in the STT-RAM

cell: (a) 1→0. (b) 0→1.
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We note that the analytical expression in Eq. (3.1) is able to provide reasonable estimation on

the distribution of the MTJ write current by assuming the MTJ write current follows Gaussian dis-

tribution. The results of Monte-Carlo simulation and analytical estimation of the MTJ write current

distributions for the NMOS transistor with W = 270nm and 720nm, respectively, are compared in

Fig. 2.

Without considering thermal fluctuations, the MTJ write current IMT J must be larger than the

critical MTJ switching current IC to ensure a successful write. However, thermal fluctuation in-

duced operational randomness makes this statement invalid. In the next section, we will discuss

the impact of thermal functions on the write reliability of STT-RAM cells.

3.1.3 Non-Persistent Errors

The critical MTJ switching current at both switching directions, i.e., IC,0→1 and IC,1→0, are affected

by thermal fluctuations. Thermal fluctuation is a purely random process that cannot be determin-

istically repeated, and induces non-persistent errors in STT-RAM operations.

3.1.3.1 Thermal Fluctuations Our simulation results of the MTJ switching current vs. the

mean and the SDMR of the MTJ switching time are depicted in Fig. 3. The original device param-

eters are extracted from a 40nm×90nm elliptical MTJ device and have been carefully scaled to the

45nm technology. The results of both switching directions are included.

Since the switching process of a MTJ can be categorized into three working regions based on

its switching time range, different fitting equations are generated for each time range as follows:

For a long switching time (> 10ns):

IC1(tw) = IC0(1 − (1/∆)ln(tw/τ0)). (3.8)

Here, tw is switching time; τ0 is relaxation time.

For an ultra-short switching time (< 3ns):

IC3(tw) = IC0 + Cln(π/2θ). (3.9)
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Figure 3: (a) Switching current vs. Switching time mean. (b) Switching time mean vs. SDMR

(Switching time standard deviation/Mean Ratio).

Here C is a fitting parameter, θ is the initial angle between the magnetization vector and the

easy axis, n is a fitting parameters.

When the MTJ switching time is in the intermediate region (3ns < tw < 10ns), a dynamic

reversal that combines the precessional and thermally activated switching occurs [8]. Based on

the simulation results of our macro-magnetic model, we derive a fitting function of the critical MTJ

switching current IC2 for this time range as:

IC2(tw) = 30(IC3(3n) − IC1(10n))/tw

+(10IC3(3n) − 3IC1(10n))/7.
(3.10)

Fig. 3(a) shows the simulation results of the means of the MTJ switching current and the nom-

inal switching time in both ‘1→0’ (red) and ‘0→1’ (blue) switching’s using the same MTJ config-

uration in the previous simulations. Thermal fluctuation influences the MTJ magnetic switching

15



process and causes the variations of MTJ switching time. When MTJ is operating in a relatively

long time region (> 10ns), thermal fluctuation is dominated by the thermal component of internal

energy; when MTJ working in a short time region (< 10ns), thermal fluctuation is dominated by

the thermally active initial angle of procession [37].

Under a certain threshold write current, the MTJ write latency is not fixed but suffers from the

thermal fluctuation induced variations. This uncertainty may cause unsuccessful writes if the MTJ

device fails to switch before the write pulse is removed. Fig. 3(b) shows the distribution of MTJ

switching time at both ‘1→0’ and ‘0→1’ switching’s. The distinction between the means of MTJ

switching time at two switching directions with the same switching current can be explained as the

asymmetric impacts of tunneling spin polarization P and follows:

J0→1
C0

J1→0
C0

=
1 + P2

1 − P2 . (3.11)

Here J0→1
C0 and J1→0

C0 denotes the MTJ switching threshold current density at the switching of ‘0→1’

and ‘1→0’, respectively.

The difference in the standard deviations of the MTJ switching time at two switching direc-

tions, however, is caused by the asymmetric influences of thermal agitation fluctuating field
−→
h f luc.

A larger MTJ switching time deviation is observed in ‘0→1’ switching than ‘1→0’ switching.

We found when the MTJ works at a long switching time range (>40ns, or switched by a low

current), the standard deviation of the MTJ switching time for both switching directions are high.

Following the decrease of the MTJ switching time, the standard deviation of the MTJ switching

time reduces first and then raises again. It is due to the reduced thermal impacts and the increased

impact of the spin torque term
−→
T norm on MTJ switching under a high switching current. In general,

when the nominal MTJ switching time decreases, its standard deviation decreases first and then

increases. The minimal SDMR of the MTJ switching time occurs around tw = 10ns.
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Figure 4: Perpendicular MTJ. (a) Switching current vs. Switching time mean. (b) Switching time

mean vs. SDMR.

As aforementioned, PMTJ has a lower switching threshold current density than in-plane MTJ.

Similar to Fig. 3, the simulation results of the nominal switching current and the SDMR of the

switching time for a 65nm×65nm PMTJ are illustrated in Fig. 4(a) and Fig. 4(b), respectively.

Here the size of the PMTJ is adopted from [7], which does not choose the minimal pitch of the

technology node due to other circuit design concerns. Compared to in-plane MTJ, PMTJ signifi-

cantly reduces the requirement of switching current due to the smaller switching threshold current

density. The switching current difference between writing ‘1’ and writing ‘0’ also becomes smaller,

indicating that PMTJ has a more symmetric switching performance. However, writing ‘1’ (‘0→1’,

blue line) still requires a larger current than writing ‘0’ (‘1→0’, red line). On the other hand, PMTJ

comes with a much smaller switching time variation though its changing trend is the same as that

of in-plane MTJ. In general, the SDMRs of the switching time of PMTJ at both MTJ switching

directions are very close: writing ‘1’ has a slightly larger switching time variation then writing ‘0’
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when the write current is small due to the asymmetric thermal effect on perpendicular anisotropy.

Nonetheless, compared to in-plane MTJ, PMTJ has a better balanced switching performance at

different directions.
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Figure 5: (a) MTJ Critical Switching Current vs. Switching Time under Varying Temperature,

(b)Threshold Switching Time against Temperature.

3.1.3.2 Temperature Dependency The switching performance of a MTJ improves when work-

ing temperature raises. Higher temperature degrades the magnetization stability barrier height

(Eq. 2.2) and reduces the critical MTJ switching current and/or the switching time. Fig. 5(a) shows

the relationship between the critical MTJ switching current and the switching time under different

temperatures for the adopted PMTJ. The impacts of temperature variations are more significant in

long working time region: the thermal impact on the MTJ switching performance is more promi-

nent when the MTJ switching current is low, compared to the impact of spin-torque.

We also simulated the temperature sensitivity of the nominal switching time of the MTJ driven

by the NMOS transistor with different sizes, as shown in Fig. 5(b). Only the mean values of

the switching performances are analyzed with temperature variation. The MTJ switching time
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increases when the temperature raises. Since the driving ability of NMOS transistors becomes

worse when operating in a high temperature environment, the result actually indicates that the

improvement of MTJ magnetic switching performance cannot compensate the driving ability loss

of the NMOS transistor when the working temperature increases.
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Figure 6: (a) Error Rate for 10ns Write Pulse Width, (b) Error Rate for 20ns Write Pulse Width,

(c) 1% and 0.1% error rate of writing ’1’.
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3.1.4 Statistical Write Error Rate Analysis

The write error rate of an STT-RAM cell can be defined as the probability that the write access

to the STT-RAM cell cannot complete within a certain write pulse width. Thus, a Monte-Carlo

simulation is conducted by generating 1,000 STT-RAM cell driving ability samples (reflecting

the persistent errors) and 1,000 MTJ switching time sampling for thermal fluctuation simulations

(modeling the non-persistent errors) on each sample of the STT-RAM cell driving ability.

Fig. 6(a) and Fig. 6(b) shows our simulation results of STT-RAM cell write error rates for both

writing “1” and “0” at 300K, when the write pulse width is set at 10ns and 20ns, respectively. Ex-

cept for the ambient temperature, all other aforementioned variation sources, including the device

variations of NMOS transistor and MTJ and the thermal fluctuations are taken into account in our

simulations. Increasing the transistor size can effectively suppress write error rate by raising the

MTJ write current. Due to the asymmetric cell structure, the NMOS transistor provides less current

to the MTJ during ‘0→1’ switching than ‘1→0’ switching. However, ‘0→1’ switching requires

higher MTJ switching current than ‘1→0’ switching, and becomes the limiting factor of write error

rate. The effectiveness of sizing up the NMOS transistor for error rate reduction degrades when

the transistor size is large because the NMOS driving ability becomes saturated due to the reduced

Vds.

Fig. 6(c) shows the required write pulse width (MTJ switching time) for the write error rates

of 1% and 0.1% when the NMOS transistor size varies. For comparison purpose, the ideal re-

sults based on the nominal device parameters without considering thermal fluctuations are also

presented. Significant differences are observed between the ideal and the actual performance of

the MTJ: the required write pulse width when the variations are considered can be multiple times

longer than the ideal result, depending on the targeted error rate.
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Figure 7: In-plane and perpendicular STT-RAM write error rate comparison under 10ns write pulse

width.

We also simulated write error rate of perpendicular STT-RAM cells. Fig. 7 shows write error

rates of both in-plane STT-RAM and perpendicular STT-RAM under a 10ns write pulse width.

Since the required switching current of perpendicular STT-RAM cell is much less than that of

in-plane STT-RAM cell, under the same transistor size, the write error rate of perpendicular STT-

RAM is much smaller than the one of in-plane STT-RAM. To maintain a certain level write error

rate, perpendicular STT-RAM can achieve a much higher cell density than in-plane STT-RAM.

3.1.5 Array Level Analysis

Variabilities in STT-RAM cell, e.g., geometry variations of transistor and MTJ size, occurs in

both random and systematic sources. Systematic variations usually demonstrate strong spatial

correlations, that means the neighbour cell variation are much smaller than two cells far apart.

In this section, we use VARIUS to generate distributions of variabilities of STT-RAM array

[26] with spatial correlations. Both inter-die and intra-die variations are considered. Particularly,

the inter-die variation is reflected as the fluctuation of the mean value of the variability (µ(die))

while the intra-die variation is shown as the standard deviation (σ(die)) which includes all the

parameters that affected by process variation, i.e. σW , σL and σR. ρ is the spatial correlation

coefficient which decreases when the distance between two cells increases. Furthermore, parameter
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φ defines the maximum distance where two cell can correlate. Cells that distance between each

other is longer than φ are assumed to have no correlations. The correlation range is radius of the

die, when φ is 0.5 as in our simulation, only the cell at the center is affected by the whole die.

We repeatly ran VARIUS to generate a 1k×1k array by using statistic tool R. The parameter set

including (W, L, and R(MT J)) of each cell in the array follows intra-die and inter-die variations,

and these variations are assumed to follow Gaussian distribution.

As an example, Fig. 8 shows two generated sample sets of transistor channel length distribution

map and histogram for a STT-RAM with σL = 0.05 ∗ L, andµ(die) = 0.02 ∗ L. The values of tran-

sistor channel length are represented by the color lightness: lighter color indicates longer transistor

length. For example, area A has the shortest transistor channel length, which behaves a strongest

driving ability, on the other hand, longest channel length happens in area B, correspondingly, area

B has the worst driving ability.

Figure 8: Transistor channel length distribution map for a STT-RAM array.
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To systematically calculate the array error rate, we assume that the power supply that applied

to each cell is the same. Thus the error rate will only be affected by the same resources, persistent

and non-persistent error as describe above. Also using transistor channel length as an example, in

single cell analysis we assume that the standard deviation of 45nm is 2.25nm as shown in Table 1.

Although 2% inter-die variation and spatial correlation is considered in the simulation, based on

the histogram also shows in Fig. 8, the standard deviation is still 2.25nm. Since all the parameter

has the same mean, and standard deviation, we can easily conclude that writing error rate will

maintain the same as single cell analysis.

3.2 READ ERRORS OF AN STT-RAM CELL

Read operations of STT-RAM are also affected by both persistent and non-persistent variations.

On the one hand, process variations of peripheral circuit (e.g., sense amplifier) and variation of

equivalent resistance of NMOS transistor and MTJ affect the sensing margin of STT-RAM; On the

other hand, thermal fluctuation will cause the MTJ resistance switches when read voltage/current

is applied. Such a non-persistent error that randomly occurs in read operations is usually referred

to as read disturbance. As a result, read errors of STT-RAM can be classified into two kinds of

errors: sensing error which is persistent error and read disturbance error which is non-persistent

error.

3.2.1 Persistent Error: Sensing Errors

In traditional current-sensing STT-RAM read scheme, for instance, a read current Iread is injected

into the memory cell. The generated bit-line voltage is then compared to a reference voltage to read

out the MTJ resistance state. The generated sense margin, which can be measured by the voltage

difference between the bit-line voltage and the reference voltage, is proportional to Iread ·RL ·T MR.

Certain sense margin must be maintained in STT-RAM read operations to overcome the device

mismatch in the sense amplifier and keep the sensing errors at a minimum level.

When Iread is small, the generated sense margin of STT-RAM will be very limited if the MTJ

resistance and/or TMR is fixed. The degraded sense margin may incur sensing errors if the device
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variation of sense amplifier is large. Since the process variations of CMOS technology become

more and more severe when manufacturing technology scales, readability may replace the write

failure to serve as the limiting factor of STT-RAm design reliability. It is necessary to conduct a

detailed analysis on the robustness degradation of the STT-RAM read operations and explore the

optimization of MTJ scaling from the readability perspective.
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Figure 9: Probability of Sensing Error and Read Disturbance under different read current. Tread =

5ns.

We define the sense margin as the voltage difference actually generated on the two inputs of

the sense amplifier. A large sensing margin generally implies a low sensing error rate. Because

of process variations, the sense margin observed by the sense amplifier must be large enough to

overcome the device mismatch in the sense amplifier.

The sensing errors occur when the voltage difference on the inputs of the sense amplifier cannot

overcome the device mismatch of the circuit. The red line in Fig. 9 shows the sensing error rates

of an in-plane STT-RAM cell when changing Iread. Here the device variations of both MTJ and

NMOS transistor are included in our simulation. The adopted device parameters are shown in

TABLE. 1. Following the increase of Iread, the sensing error rate reduces rapidly. It is because with

the same RL and T MR, increasing the Iread will raise the sensing margin, or say, Iread · ∆R.
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3.2.2 Non-Persistent Error: Read Disturbance

The resistance state of the MTJ may be flipped by the read current. Since the read current is usually

small, the MTJ switching performance in STT-RAM read operations can be modeled by Eq. (3.8).

The switching probability of the MTJ, hence, can be approximated by:

Psw = 1 − exp{−Tw
τ0

exp[− 1
∆

(1 − Iread/Ic0)]}. (3.12)

Eq. (3.12) clearly shows that the MTJ switching probability is a function of the critical switch-

ing current Ic0, the switching time τp, and the applied current Iread. Fig. 9 also shows the simulated

STT-RAM cell read disturbance rate under different read currents (the yellow line). The read

disturbance quickly increases when Iread raises. Note that here the read current is applied for 5ns.

3.2.3 Read Error Rate Analysis

It is obvious that the probability of STT-RAM read disturbance and sensing errors follow an op-

posite trend during STT-RAM design optimization: On the one hand, when increasing the read

current or read lantency, sensing error will reduce due to the enlarged sensing margin or more ro-

bust sensing process; On the other hand, increasing the read current or read latency will also raise

the occurrence probability of read disturbance. Hence, it is possible to find an optimal point that

can achieve the minimum total read error rate. In general, read error rate of an STT-RAM cell can

be expressed as:

P(Ree) = P(S ene) + P(Dise) − P(S ene) × P(Dise). (3.13)

Here P(Ree), P(S ene), and P(Dise) represent the probability of total read error rate, sensing error

rate, and read disturbance rate, respectively.

In Fig. 9, the optimum read current that achieves the minimum total read error rate (2.1×10−4)

is 70µA. Deviating from this optimum value will quickly raise either the sensing error rate or read

disturbance rate.

Note that this conclusion is valid only for the sensing time of 5ns, which is the minimum

sensing time that is required to charge the sense amplifier for a read current larger than 50uA.

Reducing the sensing time will cause a higher requirement of sensing current.
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3.2.4 Reading Analysis of a STT-RAM Array

Same as array level writing operation simulation, we generated a array using statistic tool R. To

demonstrate the impacts of sensing margin and variation, we used a basic and popular sense ampli-

fier design in STT-RAM arrays as shown in Fig. 10 which is shared by each column of 1k bit cells.

Only conventional sensing scheme is adopted. We note that, the performance and reliability can

always be further improved by a better SA design. The Sense amplifier we used here was tuned for

best possible performance in typical process corner by sizing of the transistors. We also assume

that the sense amplifier is placed very close to the array to reduce the affect of routing delays. Thus,

for each parameter of transistor width, length and threshold voltage, a 1009 × 1009 array is gener-

ated, we pick a 1009×1000 matrix among the array, and using the 1K×1K numbers as our sample

array, and the rest 9 × 1K represents the parameter ratio of a sense amplifier. Since every column

has its own sensing reference, the reference should be adjustable to have the optimize value for its

own column instead of using Rh+Rl
2 for the whole array.

PC PC

OUTOUT_B

SAEN

IN Ref

Figure 10: Sense amplifier design.

A Monte Carlo simulation that can read out every bit of the entire array has been developed to

systematically analysis the read error rate for STT-RAM array. To accurately model a random noise

that may cause a mismatch in sense amplifier, we applied a random noise voltage (from -0.1V to

0.1V) to the output node of the sense amplifier as shown in Fig. 10. Since the simulation determine
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a success read or a read failure based on whether readout result is same as the value stored in the

cell, it is very difficult to differential a sensing error that is caused by a not enough sensing margin,

or mismatch by noise, thus, we count both these read failure as sensing error in here. Since it is

impossible to run through all the bit cells, we also assume that each cell that its sensing margin is

large enough, i.e. ≤ 30mV , will always perform a successful reading. We accumulated the results

and calculated the final read error rate based on all the roles above.

Fig. 11 shows one Monte Carlo simulation results of a STT-RAM array that generate as above.

Compare with read error in the single cell analysis, the read error is higher when the read current is

small, however when the read current is increasing, the error rate is largely reduced. It is obvious

that with small sensing margin, the error is also increased by the mismatch and noise of the sense

amplifier. On the other hand, when sensing margin increases, and effect on amplifiers are reduced.

The read error rapidly reduce since every column is compared with its own reference. Especially

when spatial correlation are token into account, most of cells in each column are biased from the

same direction compare with typical value. The results can be further improved by optimizing the

distribution of sense amplifier connections.
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Figure 11: Probability of Sensing Error and Read Disturbance in a STT-RAM array.
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3.3 STT-RAM DESIGN SPACE EXPLORATION OF RELIABILITY OPTIMIZATION.

3.3.1 Oxide Layer Thickness Design Specification

Increasing the sensing margin can enhance the read reliability of STT-RAM. As aforementioned,

the sensing margin is a product of read current and MTJ resistance difference. Sec. 3.2 concludes

that the read current cannot be greatly increased when read disturbance is taken into account.

Hence, a more viable way to enhance the sensing margin is increasing the MTJ resistance differ-

ence.

One approach to increase the MTJ resistance difference is to raise the MTJ resistance value

(i.e., Rhigh and Rlow) while still maintaining the similar TMR by increasing the thickness of oxide

layer. This method may reduce the write current applied to the MTJ during write operation and

harm the write reliability of the STT-RAM cell (see Section 3.1). In addition, the TMR of the

MTJ will slightly change with the thickness of oxide layer. Nonetheless, it has been proved that

such a TMR degradation can be controlled within a small range [20]. To analyze the potential

benefit of optimizing the thickness of the oxide layer in STT-RAM readability enhancement, we

performed the relevant simulations by sweeping the thickness of the oxide layer from 2nm to 3nm.

The corresponding TMR keeps above 100%.
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Figure 12: Resistance states and resistance difference changes with oxide layer thickness.

Fig. 12 shows the changes of the high and the low resistance states, and the resistance difference

of the MTJ when oxide layer thickness varies. When the oxide layer thickness increases from 2nm

to 3nm, the MTJ resistance can vary up to 2.78×. The resistance difference keeps increasing,

well-controlled TMR degradation [38] leads to more than doubled sensing margin.

28



1E-16

1E-13

1E-10

1E-7

1E-4

1E-1

50 55 60 65 70 75 80
A)

Disturb 2nm 2.1nm 2.2nm

2.3nm 2.4nm 2.5nm 2.6nm

2.7nm 2.8nm 2.9nm 3nm

Read Current (μ

R
ea

d
 E

rr
o

r 
R

a
te

Figure 13: Sensing error rate and disturbance error rate when oxide layer thickness varies.

Although the standard deviation of the oxide layer thickness variation is smaller (2%) than that

of other horizontal process variations (5%), the impact of oxide layer thickness variation on MTJ

resistance is still significant because of the exponential relation between these two parameters.

Fig. 13 depicts both sensing error rate and read disturbance error rate of an STT-RAM cell when

the oxide layer thickness varies. Note that the read disturbance error rate is determined by the

amplitude of the read current and independent on the oxide layer thickness. As a comparison, the

sensing error rate is greatly reduced by increasing the oxide layer thickness, which leads to the

improved MTJ resistance difference. As the process variation induced MTJ resistance variability

keeps almost the same, the improved MTJ resistance difference generates larger sensing margin.
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Figure 14: (a) NMOS driving ability varies with oxide layer thickness. (b) NMOS driving ability

varies with transistor channel width.
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Follows oxide layer thickness increase, the increased MTJ resistance causes the driving ability

degradation of the NMOS transistor. Fig. 14(a) and (b) respectively show the changes of the

driving ability of the NMOS transistor in the STT-RAM cell when the transistor size and oxide

layer thickness vary. When the oxide layer thickness raises from 2nm to 3nm, the driving ability of

the 180nm NMOS transistor reduces from 127.2µA to only 72.2µA. The driving ability degradation

ratio becomes severer for a large size NMOS transistor (i.e., 720nm). Fig. 14(b) shows that when

the oxide layer is thick (i.e., 3nm), the driving ability of the NMOS transistor quickly saturates

when the transistor size increases: since the MTJ resistance is much larger than that of the NMOS

transistor, the benefit of increasing the transistor size is offset by the degraded (Vds). Moreover, the

NMOS transistor driving abilities at two switching directions merges together when the transistor

size increases. The above results show that raising the MTJ resistance may not be a good choice

when the NMOS transistor size is large.
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Figure 15: Write error rate under different oxide layer thicknesses.

Fig. 15 shows the writing error rates of the STT-RAM cell at different oxide layer thicknesses

and transistor sizes. To have a fair comparison, we only changes one parameter each time, thus in

here we fixed the writing pulse width, which means the writing time is the same in each situation.

When write pulse width is fixed, increasing the MTJ resistance significantly increases the write

error rate of the STT-RAM cell. An extreme case is when oxide layer thickness is 3nm, the write

error rate is close to 1! In STT-RAM design, the selection of proper oxide layer thickness depends

on not only the corresponding read and write error rates but also the frequencies of read and write.

30



3.3.2 Word-line Override Designs

Word-line Override Designs 

ECE/ University of Pittsburgh 17

WL voltage is raised to 1.1V rather than the normal 1V.
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Figure 16: Comparison between original design and override design in writing ‘1’.

A popular approach to improve write reliability of STT-RAM is ‘word-line override’, which boosts

the word-line voltage to a slightly higher voltage to compensate the loss of Vgs during writing

‘1’ [33]. We conducted Monte-Carlo simulations to evaluate the effectiveness of word-line override

scheme at different transistor sizes. The word-line voltage is boosted to 1.1V from the normal 1V.

Fig 16 shows the write error rate reduction when the NMOS transistor size increases for both

conventional design and word-line override design. For simplicity, only the results of the limiting

switching direction ‘0→1’ are presented. For the same transistor size, word-line override greatly

reduce the write error rate at all the simulated transistor sizes.
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3.4 STT-RAM CELL DESIGN OPTIMIZATION FLOW
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Figure 17: Precess Variation Aware STT-RAM Design Flow.

Fig 17 illustrates our proposed STT-RAM cell design optimization flow to minimize the operation

errors. After the device parameters are given, the NMOS transistor size is calculated accordingly

based on the designed (nominal) values of both MTJ and CMOS parameters. Meanwhile, a reason-

able operation pulse width will be calculated, which is often required to align with the performance

requirement. In the second step, the device parameter samples, including both the geometry and

the material parameters, are generated based on the process variations of both NMOS transistor

and MTJ. These samples are sent to Monte-Carlo-based SPICE simulations to collect the samples

of the write current through the MTJs. The third step takes into account the thermal fluctuation ef-

fects and the fluctuation of magnetic anisotropy under the given operation pulse width to calculate

the distribution of the MTJ switching time and the write errors. Based on the requirements of write

32



performance and write error rate, we should be able to find the optimal design points for both the

NMOS transistor and the MTJ. If the result leads to a design failure, then the word-line override

design may be applied. Similar design flow can be applied to the read error rate optimization or

the overall STT-RAM error rate optimization.
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4.0 MULTI-LEVEL CELL OPERATION ANALYSIS

The multi-level cell (MLC) capability can be implemented by realizing four or more resistance

levels in MTJ designs. At least two proposals of MLC MTJ structures have emerged [13, 19]

so far, including parallel MLC MTJs and series MLC MTJs. In parallel MLC MTJs, the four

resistance states – ‘00’, ‘01’, ‘10’, and ‘11’, are uniquely defined by the four combinations of the

magnetic directions of the two magnetic domains in the free layer. The first and the second digit of

the two-bit data refer to the resistance state of the hard domain and the soft domain [5]. In series

MLC MTJs, the four resistance states are uniquely defined by the combinations of the relative

magnetization of the two SLC MTJs. The minimal device size of a parallel MLC MTJ and the

small SLC MTJ in a series MLC MTJ can be as the same as that of the normal SLC MTJ, which is

defined by the required aspect ratio and the lithography limit.

4.1 VARIABILITY SOURCES IN MLC STT-RAM DESIGNS

The performance and reliability of MLC STT-RAM cells are seriously affected by mainly two types

of variabilities, including a) the process variations of MOS and MTJ devices and b) the thermal

fluctuations in MTJ switching process.
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4.1.1 Process Variations in MLC

The major sources of MTJ device variations mainly include: 1) MTJ shape variations, i.e., the

surface area variation; 2) MgO layer thickness variations; and 3) normally distributed localized

fluctuation of magnetic anisotropy: K = Ms·Hk. Here Ms is saturation magnetization. Hk is the

effective anisotropy field including magneto crystalline anisotropy and shape anisotropy. These

factors lead to the deviations of MTJ resistance and the required switching current from the nominal

values.

The MTJ device variations affect the reliability of the two types of MLC MTJs in the different

ways: In parallel MLC MTJs, the two parts of the MTJ with different magnetic domains (For

simplicity, we also call them “two magnetic domains” in the rest of this paper) share the same free

layer, reference layer and MgO layer. In such a small geometry size, we can assume the MgO layer

thickness and the RA (resistance-area) of these two parts are fully correlated. Other parameters,

such as the MTJ surface areas, the magnetic anisotropy and the required switching current density

can be very different for these two parts because they are determined by the magnetic domain

partitioning. In series MLC MTJs, however, all these parameters of two SLC MTJs are close to

each other and only spatially correlated.

We note that the MOS device variations also impacts the robustness of MLC STT-RAM de-

signs by causing the magnitude variations of the read and the write currents of the MTJ. In our

reliability analysis of MLC STT-RAM, the parametric variability of MOS devices is represented

by the variations of the current source output.

4.1.2 Thermal Fluctuations

The thermal fluctuations results in the randomness of the MTJ switching time. As we described

in Section 2.3, in general, the impact of thermal fluctuations can be modeled by a normalized

thermal induced random field. MTJ switching time becomes a distribution under the impact of

thermal fluctuations. A write failure occurs when the MTJ switching time is longer than the write

pulse width. The impact of thermal fluctuations is an accumulative effects and determined by
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the length of the MTJ switching time. The reduction of switching current does not only prolong

the MTJ switching time but also increases the ratio between the standard deviation and the mean

value of the switching time [8], indicating a larger impact of thermal fluctuations. Hence, in MLC

STT-RAM designs, the impacts of thermal fluctuations could be stronger than that in the SLC STT-

RAM designs when the MTJ switching current density is lower than that of the SLC MTJ (e.g.,

during the soft-domain flipping in parallel MLC MTJs).

4.2 READABILITY ANALYSIS OF MLC MTJS

4.2.1 Nominal Analysis of the Readability of MLC MTJs

We assume that the resistances of the hard domain and the soft domain in a parallel MLC MTJ

are R1 and R2, respectively. The corresponding the high and the low resistance states of the two

domains are R1H, R1L, R2H, and R2L, respectively. The T MR ratio of each domain is defined as:
RiH−RiL

RiL
, (i = 1, 2). As aforementioned in Section 4.1.1, the two magnetic domains share the same

magnetic structure and MgO layer within a small proximity. Thus, we can safely assume the RAs

and the T MRs of the two domains are the same, or RA1 j = RA2 j, ( j = HorL) and R1H
R1L

= R2H
R2L

. For

the existing in-plane MTJ technology, the typical T MR ratio is 1 ∼ 1.2 [13]. Because the size of

the hard domain is larger than that of the soft domain, we have R1H < R2H and R1L < R2L. In the

simulations in our work, we assume the surface area of the parallel MLC MTJ is a 45nm × 90nm

ellipse, which is the minimum shape that satisfies the shape anisotropy requirement [11, 28] and is

allowed by the lithography constraint of 45nm CMOS fabrications process.

Sense margin is one of the major concerns in MLC STT-RAM designs because the resistance

state distinction of the MTJ is partitioned into multiple levels. Read errors happen when the distri-

butions of the two adjacent resistance states (i.e., 00 vs. 01, 01 vs. 10, and 10 vs. 11) overlap with

each other, or the distinction between the two resistance states is smaller than the sense amplifier

resolution. The reading error rate can be reduced by maximizing the distinctions between every

two adjacent states. Without considering the process variations, the goal of the nominal design

method of MLC STT-RAM cell is to maximize the distinctions between the designed values of

every two adjacent resistance states.
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In the real implementation of parallel MLC MTJs, R00 = R1L||R2L and R11 = R1H ||R2H are

fixed by the MTJ designs. The changes of R01 and R10 are not independent and determined by the

partitioning of the free layer. If we assume the surface area of the parallel MLC MTJ is A and the

surface area of the hard domain is A1, we have:

R1L·A1 = R2L·(A − A1) = R00·A,R1H·A1 = R2H·(A − A1) = R11·A. (4.1)

Here A1 > A/2. The distinctions between every two adjacent resistance states can be calculated

as:

D00−01 = R01 − R00 = T MR·RA
A ·

A−A1
A+A1·T MR

(4.2)

D01−10 = R10 − R01 =
[T MR·(T MR+1)·RA](2A1−A)

(A+T MR·A1)[T MR·(A−A1)+A]
(4.3)

D10−11 = R11 − R10

=
T MR·(T MR+1)·RA

A ·
A−A1

T MR·(A−A1)+A

(4.4)

We calculated the derivatives of D00−01, D01−10, and D10−11 with respect to A1 and have: dD00−01
dA1

< 0,
dD10−11

dA1
< 0, and dD01−10

dA1
> 0 when A1 ∈ [A/2, A]. In other words, D00−01 and D10−11 monotonically

decrease when A1 increases from A/2 to A and D01−10 monotonically increases in the same range.

Also, since A − A1 < A1 and T MR ≥ 1, D10−11 is always larger than D00−01 based on Eq. (4.2) and

(4.4). Therefore, the optimal design of parallel MLC MTJs happens when D00−01 = D01−10 or:

(T MR + 1)(R2L
R1L

)2 −
R2L
R1L

= 2(T MR + 1) (4.5)

Here R1L||R2L = R00.

In a series MLC MTJ, the optimal MTJ design happens when D00−01 = D01−10 = D10−11, or:

R1L = 1
2R2L (4.6)

Here R2L is usually the low resistance state of the SLC MTJ with the minimum surface area (say,

A). The optimal design parameters of a typical parallel MLC MTJ and a typical series MLC MTJ

are: RA = 20ΩµA, T MR = 1.2, The limitation sizes is 45nm×90nm.
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4.2.2 Statistical Analysis of the Readability of MLC MTJs

All the optimizations in Section 4.2.1 are based on the nominal values of the device parameters of

MLC MTJs. In this section, we will analyze the impacts of process variations on the readability of

MLC STT-RAM cells.
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Figure 18: Four state resistance distributions of (a) Parallel MLC MTJ and (b) Series MLC MTJ,

optimized by nominal design method.

Fig. 18(a) and Fig. 18(b) shows the distributions of the four resistance states in a parallel

MLC MTJ and a series MLC MTJ, respectively. Both MTJs are optimized by using the nominal

optimization method presented in Section 4.2.1. The standard deviations (1σ) of RA and T MR

are 7% and 9%, respectively, based on the measurement data in [13]. In the nominal optimized

parallel MLC MTJ, R1
R2

= 1.66. In the nominal optimized series MLC MTJ, the surface area of the

larger MTJ is 64nm×127nm, which corresponds to a low resistance state of R2L = 2500Ω. After

the process variations are taken into account, the distributions of the resistance states overlap with

each other, resulting in the read errors of the MLC MTJs. Because of the different deviations of

every resistance state, the original nominal optimization that maximizes the distinctions between

the nominal values of the adjacent resistance states is no longer able to guarantee the minimal

overlaps between the adjacent resistance state distributions. A statistical optimization method is

required for the minimization of the read error rate of MLC STT-RAM cells.

4.2.2.1 Optimization of Parallel MLC MTJs In our design, we assume the size of the parallel

MLC MTJs is the same as the minimum size of the SLC MTJ or 45nm×90nm. The resistances of

the two magnetic domains can be adjusted by changing the partition of the free layer. The surface
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areas of the whole MTJ follows Gaussian distributions and the surface areas of the two magnetic

domains follow a joint Gaussian distribution. To sense the four resistance states in a four-level

parallel MLC MTJ, three reference resistances, i.e., RI , RII , RIII , are needed. The read error rates

of reading R00, R01, R10 and R11 can be respectively expressed as:

Pe00 = P(R00 > RI)

Pe01 = P(R01 < RI) + P(R01 > RII)

Pe10 = P(R10 < RII) + P(R10 > RIII)

Pe11 = P(R11 < RIII) (4.7)

We note that the impacts of the read error rates of each resistance states are not accumulative

in MLC STT-RAM designs: For a MLC STT-RAM cell, the highest read error rate is the max-

imum one of all resistance states, or, Pe = Max(Pe00, Pe01, Pe10, Pe11). To minimize the Pei, i =

00, 01, 10, 11, the RI , RII , ideally, RIII must be selected at the cross point of the two adjacent dis-

tributions. In memory designs, Pe can be used to determine the required error tolerance capability.

The read errors due to the MTJ resistance variations can be corrected or tolerated in the design

practices by using error correction code (ECC) and design redundancy etc.

In Fig. 18(a), the overlaps of the resistance state distributions of the parallel MLC MTJ gener-

ate the read error rates of Pe00 = 0.73%, Pe01 = 6.44%, Pe10 = 6.05% and Pe11 = 0.018%. High

read error rates happen at R00 and R01, which are incurred by the large overlaps between these

two resistance states. Fig. 19(a) depicts read error rate under the different ratios of the nominal

resistances of the two magnetic domains (R2/R1). Pe11 is always lower than Pe00 due to the bigger

distinction between R10 and R11 compared to the one between R00 and R01. Following the increase

of R2/R1 from 1.6, both Pe00 and Pe11 increase, indicating the reduced distinction from the adja-

cent resistance states. However, the increase of R2/R1 decreases the Pe01 and Pe10 by raising the

distinction between R01 and R10. When R2/R1 = 2.2, the parallel MLC MTJ achieves its lowest

maximum read error rate as Pe00 = 3.31%, Pe01 = 2.97%, Pe10 = 0.73% and Pe11 = 0.23%. The

change of the optimal R2/R1 ratios in the nominal and statistical optimizations comes from the

correlation between the standard deviation and the nominal values of the MTJ resistance state: the

higher resistance is, the larger standard deviation of the resistance will be [30].
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4.2.2.2 Optimization of Series MLC MTJs In series MLC MTJ, the serially connected SLC

MTJs are fabricated separately. The parameters of these two MTJs are partially correlated due to

the spatial correlations. The two resistance states of the small SLC MTJ with the minimum size are

R2L = 5000Ω and R2H = 11000Ω, respectively. The distinctions between two adjacent resistance

states can be adjusted by changing the surface area of the large SLC MTJ.
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Figure 19: (a) Error Rate vs. R2/R1 Ratio Sweep, (b)Error Rate vs. Resistance of Hard Domain

Sweep.

Fig. 19(b) shows the read error rates of the four resistance states of the series MLC MTJ when

the size of the large SLC MTJ changes. The variation of the large SLC MTJ size is represented by

its low resistance state(R1L). The lowest maximum read error rate happens when R1L = 2440Ω, or

the MTJ size is 64.5nm×129nm. It is very close to the result of the nominal optimization method

– R1L = 2500Ω, or the MTJ size of 64nm×127nm. The corresponding read error rates of each

resistance states are Pe00 = 0.000118%, Pe01 = 0.46%, Pe10 = 1.57% and Pe11 = 1.15%. Compare

to parallel MLC MTJs, series MLC MTJs demonstrated significantly lower read error rate under

the same fabrication conditions. Although the read error rate has not achieved the commercial

requirement yet, these results are still very encouraging.
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4.3 WRITABILITY ANALYSIS OF MLC MTJS

In SLC MTJ designs, increasing the switching current density can effectively reduce the MTJ

switching time and improve the write error rate of the SLC STT-RAM cell. In MLC MTJ de-

signs, however, increasing the switching current when programming the MTJ to an intermediate

resistance state may overwrite the MTJ to the next resistance level. The thermal fluctuations fur-

ther complicate the situations of MLC MTJ programming by incurring the additional variability

of MTJ switching time. In this section, we will discuss the impacts of these variations and the

multi-level programming mechanisms on the writability of the MLC MTJs.

4.3.1 Write Mechanism of MLC STT-RAM Cells

The write operation of a MLC STT-RAM cell is much more complex than that of a SLC STT-RAM

cells – Both the polarizations and the amplitude of the switching current must be carefully tuned

according to the current and the target resistance states, it need a different directions as the single

level STT-RAM do, the amplitudes of it should also be differential for 2 bit writing.

The write scheme of parallel MLC MTJs has been discussed in [6]; In general, the soft do-

main can be switched by a small current (density) while the hard domain must be switched by a

relatively large current (density). It means that the soft domain can be switched alone but the hard

domain switching is always associated with the soft domain switching if the original magnetization

directions of the two domains are the same. Hence, some resistance state transitions require two

switching steps. For example, when a parallel MLC MTJs switches from R00 to R10, a large current

is applied first to switch the MTJ from R00 to R11. Then a small current is applied to complete the

transition from R11 to R10.
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For easy analysis, we assume that the bits of a MLC MTJ from ‘00’ to ‘11’ follow the resistance

value from low to high. As summarized in [5], the transitions of the MTJ resistance states can be

classified into three types:

1. Soft transition (ST), which switches only the soft domain in a parallel MLC MTJ or the small

SLC MTJ in a series MLC MTJ;

2. Hard transition (HT), which switches the both domains in a parallel MLC MTJ or both SLC

MTJs in a series MLC MTJ to the same magnetization direction;

3. Two-step transition (TT), which utilizes two steps to switch the MLC MTJ to the target resis-

tance states, i.e., one HT followed by one ST.

4.3.2 Impacts of Thermal Fluctuations

We define the threshold switching current (density) as the minimal current (density) required to

switching a MTJ within a switching time. The relationship between the magnetization switching

time (tw) and the nominal value of the threshold switching current density (JC) can be divided in

three working regions [25]. When tw < 10ns, the reduction of tw requires the dramatic increase of

the JC. Also, due to the asymmetry of MTJ switching, the threshold switching current density of

writing ‘1’ is usually larger than that of writing ‘0’ [39].

The thermal fluctuation demonstrates different impacts on the MTJ switching performance in

the different working regions: For a low switching current density or a Tw > 10ns, the thermal

fluctuation is dominated by the thermal component of internal energy; the MTJ switching time

follows a Poisson distribution. For a high switching current density or a Tw < 3ns, the thermal

fluctuation is dominated by the thermally active initial angle of procession; the MTJ switching time

follows a Gaussian distribution [8]. The distribution of the MTJ switching time in the middle of

these two regions follows a combination of the two distributions. In the write operations of MLC

STT-RAM, the two parts of the MLC MTJs, i.e., the two magnetic domains in the parallel MLC

MTJ or the two SLC MTJs in the series MLC MTJ, may experience different switching current

densities, thermal fluctuations and even different threshold current densities (mainly exist in the

parallel MLC MTJs). The MTJ switching could ends up with multiple possible resistance states

with different probabilities, as we shall show in following sections.
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4.3.3 Write Operations of Parallel MLC MTJs

During the write operations of parallel MLC MTJs, the voltage (V) applied to the two terminals of

the two magnetic domains are the same. For each domains, the switching current density has:

Ji = V
Ri·Ai

= V
RAi
Ai
·Ai

= V
RAi
, i = 1, 2. (4.8)
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Figure 20: Switching properties of the two domains for a parallel MLC MTJ. (a) switching time

vs. switching current. (b) switching time standard deviation vs. switching current.

It shows that after V is fixed, the switching current density through each domain is uniquely

determined by the RA of the domain. Here RAi = RAL or RAL · (T MR + 1) for the low- or the

high-resistance state, respectively. RAL is the RA of the low resistance state. As we discussed

in Section 4.1.1, the two magnetic domains of a parallel MLC MTJ have the exactly same RA

when they are in the same resistance state. In such a case, the two magnetic domains have the the

same current density. However, if the two domains are in the opposite resistance states, the current

densities of them will be different.

Fig. 20(a) shows our simulation results of the relationships between the Tw and JC for the two

domains in a typical parallel MTJ. The MTJ parameters are scaled from the measured data of a

90×180nm elliptical MTJ device in [19]. Two domains demonstrate different JC even under the

same Tw due to the different shape anisotropy’s etc. The write asymmetry is also observed in

the result, i.e., the JC of ‘0’→‘1’ transition of the magnetic domain is always higher than that of

‘1’→‘0’ transition for the same Tw. The relative deviations of the Tw of the two magnetic domains

at the whole working region are shown in Fig. 20(b).
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During the write operations of parallel MLC STT-RAM cells, the write current must be applied

to switch only the domain(s) that need(s) to be flipped. However, the variability in the magneti-

zation switching of the two domains can introduce write errors. Different from the SLC MTJ

where the write error is only incurred by incomplete switching, the writing errors of the parallel

MLC MTJ come from either the incomplete switching of the target domains (incomplete write)

or overwriting the other domain to an undesired resistance state (overwrite). In a HT transition,

only incomplete writes will happen because the write operations require either both domains flip

together or only the hard domain flips if the soft domain has already been in the target resistance

state. In such a case, increasing the switching current can effectively improve the switching per-

formance of both domains and suppress the write error rate. In a ST transition, the situation can

be divided into two scenarios: 1) If the destination resistance state is boundary state, i.e., R00 and

R11, then only incomplete write failures are possible; 2) If the destination resistance state is inter-

mediate state, i.e., R01 and R10, then both incomplete write and overwrite failures may occur. An

appropriate switching current must be selected to achieve a low combined writing error rate. We

denote the transitions in 2) as “dependent” transitions and the transitions in 1) and HT transitions

as “independent” transitions.

Monte-Carlo simulations are conducted to evaluate the write error rates of the dependent tran-

sitions, i.e., 00 → 01 or 11 → 10, as shown in Fig. 21. Here we assume the MTJ switching

current is supplied by an adjustable on-chip current source, whose output magnitude has an intrin-

sic standard deviation of 2% of the nominal value [15]. For a 10ns write pulse width, the optimal

switching current for the transitions of ‘00’→‘01’ and ‘11’→‘10’ are 46.5µA and 49.9µA, respec-

tively. Fig. 21 also shows the changes of incomplete and overwrite errors over the whole simulated

range. When the switching current decreases from the optimal value, the incomplete writes start

to dominate the write errors; When the switching current increases from the optimal value, the

overwrite errors of the hard domain start to dominate the write errors. Nonetheless, the error rates

of the two dependent transitions are still high ( 8.2%), indicating a large overlap area between the

threshold switching current distributions of the hard domain and the soft domain.
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Figure 21: Writing error rate in parallel MLC STT-RAM cell at Tw = 10ns. Notes: The total error

rate is not necessarily equal to the sum of incomplete error and overwrite error, which are the errors

overwriting the hard domain or incurring the incomplete soft domain flipping, respectively.

Fig. 22(a) shows the write error rates of the dependent transitions of the parallel MLC MTJ

at different switching currents when Tw = 3ns, 10ns, and 100ns, respectively. The lowest write

error rate is achieved at Tw = 3ns. It is because that when Tw reduces, the required MTJ switching

current increases. The impact of the thermal fluctuations on the MTJ switching is suppressed and

the distributions of the Tw are compressed. This fact indicates that the parallel MLC MTJ better

work at a fast working region to minimize the write error rate.
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Figure 22: (a)Writing error rate in a parallel MLC STT-RAM cell at different Tw, Threshold current

distributions of resistance state trasitions for the parallel MLC MTJ.(b) Dependent transitions. (c)

Independent transitions.

We can also map the uncertainties in the switching time of the parallel MLC MTJ under the

fixed switching current into the distributions of the required switching currents for fixed switching

time. Fig. 22(b) shows the distributions of the threshold switching current of the dependent tran-

sitions for the parallel MLC MTJ at a 10ns write pulse width. The distributions of the MTJ write
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current supplied by the on-chip current source are also depicted. Take the transition of ‘00’→‘11’

as an example, a write current is selected between the threshold current distributions of the tran-

sitions of ‘00’→‘01’ and ‘00’→‘11’. The two types of write errors, including incomplete write

and overwrite, are represented by the overlap between the distributions of the write current and the

threshold switching current of ‘00’→‘01’ and the overlap between the distributions of the write

current and the threshold switching current ‘00’→‘11’, respectively. Fig. 22(c) shows the distribu-

tions of the threshold switching current of the independent transitions for the parallel MLC MTJ at

a 10ns write pulse width. Since only the target magnetic domain will flip during the independent

transitions, a sufficiently large write current can be always applied to suppress the incomplete write

errors without incurring any overwrite errors.
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Figure 23: (a)Writing error rate in a series MLC STT-RAM cell at different Tw, Threshold current

distributions of resistance state transitions for the series MLC MTJ.(b) Dependent transitions. (c)

Independent transitions.

Similar to the distributions of the MTJ switching time, the distributions of the threshold switch-

ing current of the parallel MLC MTJ are also dependent on the working regions of the MTJ. After

the distributions of the switching current of the resistance state transitions are obtained, the optimal

write current can be derived as Fig. 22(a).

4.3.4 Write Operations of Series MLC MTJs

In a series MLC MTJ, the magnitudes of the currents passing through the two SLC MTJs are the

same. However, the applied current densities on the two SLC MTJs are different and determined

by the different surface areas of them. In Section 4.2.2.2, the analysis on the read reliability of the

series MLC MTJs shows that the optimal surface area ratio between the two MLC MTJs is around
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2, or 45nm×90nm and 64.5nm×129nm at 45nm technology node. In our simulations, we also

assume the two SLC MTJs maintain the same aspect ratios and were fabricated under the same

conditions. Thus, they have the same switching properties, i.e., the same relationships between

threshold switching current density and the switching time. Again, the switching current density

on each SLC MTJ is controlled by the on-chip write current source.

Fig. 23(a) shows the write error rates of the dependent transitions of the series MLC MTJ

under different switching currents for a 10ns write pulse width. The optimal switching current for

the transitions of ‘00’→‘10’ and ‘11’→‘01’ are 79.0µA and 92.5µA, respectively. Compared to

parallel MLC MTJs, the write error rates of the dependent transitions are significantly reduced: the

minimum write error rates of the transitions of ‘00’→‘10’ and ‘11’→‘01’ are only 0.0015% and

0.0043%, respectively. The improvement of the write reliability is because of the larger distinction

between the threshold switching current distributions of the dependent transition and the adjacent

resistance state transition, as shown in Fig. 23(b). For comparison purpose, the results of the

independent resistance state transitions are shown in Fig. 23(c).

Fig. 23(a) also shows the write error rates of the dependent transitions of the serial MLC MTJ

at different switching currents when Tw = 3ns and 100ns, respectively. Similar dependency of the

write error rate on the MTJ working region is observed. Interestingly, the minimum write error

rate occurs when Tw = 10ns, since the standard deviation/mean ratio reaches its minimum value

(see Fig. 23(a)). Compared to parallel MLC MTJs, series MLC MTJs demonstrate much higher

write reliability at the same technology node,, while requiring slightly larger switching current and

higher write energy consumption.
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5.0 DIFFERENTIAL SENSING SCHEME TO IMPROVE THE READ

PERFORMANCE OF STT-RAM

5.1 MOTIVATION

Previous conventional wisdom for STT-RAM is that writes are slower and require more power than

their conventional SRAM counterparts. Several architectural solutions such as hybrid caches with

fast and slow writing memory components [35, 18], various methods or preempting, avoiding, and

bypassing writes [41, 10, 24], and leveraging the asymmetry of writing different logic values [24]

have been proposed to mitigate the write performance problem. However, due to scaling effects,

performance and reliability of STT-RAM reads, not writes will become the ultimate bottleneck at

technologies of 45nm and below. Read performance, the dominant operation in caches [1], suffers

from increased sense amplifier delays for detecting increasingly small sense margins and higher

read error rates. In contrast, due to reduced energy barriers at smaller technology nodes, writes

will become faster at lower energy, although this leads to higher susceptibility to read disturbance

(inadvertent writes from applying a read current).

5.2 ADAMS TECHNOLOGY

By examining the pros and cons of the existing STT-RAM cell structures, we are able to pro-

pose ADAMS – Asymmetric Differential STT-RAM Cell Structure which can substantially promote

the robustness and performance of STT-RAM designs. In this section, we will illustrate the cell

structure of ADAMS and discuss its read and write operations.
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5.2.1 Regular Differential Sensing Scheme (RDAMS)

During read operations of an 1T1J cell, a sensing current is injected into the cell while the generated

voltage on the bit-line (BL) is compared to a reference level. The maximum sense margin is only
1
2 · (Rhigh − Rlow). Here Rhigh and Rlow denote the high- and the low-resistance state of the MTJ,

respectively. To further improve the readability of STT-RAM cells, differential sensing scheme

may be applied, as shown in Fig. 24(a). A complete differential STT-RAM cell includes two

separate 1T1J cells, which can be referred to ‘positive’ cell (P-cell) and ‘negative’cell (N-cell),

respectively. The resistance states of these two cells are always opposite, say, the one in the P-cell

is high and the one in the N-cell is low for storing ‘1’. We refer to this design as regular differential

STT-RAM cell structure (RDAMS). During the read operation, the sensing currents with the same

magnitude are injected into both P-cell and N-cell and the generated voltages on each bit-line will

be compared. The corresponding maximum sense margin is (Rhigh − Rlow), which is doubled from

the one of 1T1J cell. Both the read latency and the device variation tolerance of the STT-RAM cell

are improved. Obviously, the capacity of RDAMS is only half of the one of 1T1J cell.
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Figure 24: Structure of (a) RDAMS. (b) ADAMS.

However, RDAMS aggravates the read disturbance issue: Between the P-cell and the N-cell,

there is always one has the chance to be flipped by the sensing current regardless the value of the

data stored in the RDAMS cell. Also, compared to 1T1J cell, the write error rate of the RDAMS

cell is doubled as both MTJs must be successfully programmed in one correct write operation.

Note that the write performance of a RDAMS cell is limited by the longest write latency between

the P-cell and the N-cell which always switch at the opposite directions.
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5.2.2 Asymmetric Differential Cell Structure (ADAMS)
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Figure 25: (a) 3D view of RDAMS. (b) Layout of RDAMS. (c) 3D view of ADAMS. (d) Layout

of ADAMS.(e) layout of 1T1J.

Fig. 24(b) shows the schematic of an ADAMS cell. The MTJ in the P-cell is reversely connected

to the NMOS transistor. In the implementation of ADAMS, the MTJ in the N-cell can be prepared

at different layer from the one in the P-cell. Fig. 25(a)–(d) shows the 3D-views and layouts of

RDAMS and ADAMS cells at 45nm technology. The width of the NMOS transistors is set to

270nm. For comparison purpose, we also include the layout of an 1T1J cell where the NMOS

transistor channel width is 630nm, as shown in Fig. 25(e). In all designs, the channel lengths of

the NMOS transistors keep minimum (45nm). The resistance states of the P-cell and N-cell in an

ADAMS cell are also always opposite, maintaining the same sense margin as that of an RDAMS

cell. However, ADAMS has some interesting characteristics which are different from RDAMS.

5.2.3 Read and Write Robustness of ADAMS

5.2.3.1 Read robustness Different from RDAMS where the read disturbance could happen

when sensing the data of any values, ADAMS limits the occurrence of the read disturbance only

when ‘1’ is sensed: Assuming the sensing current is applied from BL to SL during the read oper-

ation, reading ‘0’ in ADAMS is read-disturbance-free as the P-cell stores ‘0’ and the N-cell stores

‘1’ (0̄1̄). Here we use x̄ȳ, x, y = 0 or 1 to denote the ADAMS state where x and y are the stored

bit of the P-cell and the N-cell, respectively. When the ADAMS state is 1̄0̄ (‘1’), read disturbance

could happen on both P-cell and N-cell. However, the probability that read disturbance simulta-
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neously happens at both cells is usually very low. Then the final states of an ADAMS cell after

read disturbance occurs are most likely 0̄0̄ and 1̄1̄, neither of which is a valid state during normal

operations. Thus, if we encounter an invalid ADAMS state (i.e., 0̄0̄ and 1̄1̄), we may assume the

original ADAMS cell state is 1̄0̄ (‘1’).

5.2.3.2 Write robustness In the write operation of an ADAMS cell, the possibility that both

P-cell and N-cell are unsuccessfully programmed is also very low. When the write error happens

in only one cell, the final state of the ADAMS cell will stop at 0̄0̄ or 1̄1̄. In such a case, we may not

be able to directly figure out the original and target state of the write operation of the ADAMS cell

because the incomplete write can happen in either P-cell or N-cell. However, as we shall show in

Section 5.3.1.3, if we assume the invalid final states 0̄0̄ and 1̄1̄ always considered as the target state

of 1̄0̄ (writing ‘1’), the write performance and reliability of the ADAMS cell can be substantially

improved.

5.2.4 Asymmetric SenAmp and Latch Design

A sense amplifier (SenAmp) is used in RDAMS or ADAMS to compare the resistance difference

between the P-cell and the N-cell. However, if the two cells store the same value, i.e., 0̄0̄ and 1̄1̄,

the SenAmp may not be able to output a stable result due to the small signal difference at its inputs.

As we discussed in Section 5.2.3.1, if ADAMS can output the same results for the invalid ADAMS

states 0̄0̄ and 1̄1̄ as that for 1̄0̄, then the majority of the read disturbance errors can be hidden. To

realize this function, we propose the following Asymmetric SenAmp and latch designs:

5.2.4.1 Asymmetric SenAmp As shown in Fig. 26(a), we carefully increase the sizes of the

PMOS transistors PMA and PMB in the SenAmp. The enhanced driving abilities of PMA and

PMB will pull up the OUT signal at the beginning of the sensing process. If the ADAMS cell is in

a valid state, i.e., 0̄1̄ or 1̄0̄, the Out signal will quickly reach Ground or Vdd, respectively; If the

ADAMS cell is in an invalid state, i.e., 0̄0̄ or 1̄1̄, the Out signal will gradually approach Ground or

Vdd depending on the relative small voltage level difference at the inputs. In this case, however,

the jump-up of the Out signal at the beginning will delay its decay to Ground. Since the decay of

51



the Out signal of sensing 0̄0̄ or 1̄1̄ is normally slower than that of sensing 0̄1̄, we may be able to

differentiate these two cases by carefully choosing the cutoff point.
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Figure 26: (a) Asymmetric sense amplifier (SenAmp) design. (b) Simulation results of SenAmp

Out signal at different corner cases.

Fig. 26(b) illustrates the SPICE simulation results of the Out signal of our asymmetric SenAmp

design. We use Rmt j,p and Rmt j,n to denote the resistance of the MTJs in the P-cell and N-cell,

respectively. We also assume the nominal values of Rhigh and Rlow are 1000Ω and 2000Ω, re-

spectively, and their standard deviations are both 5%. The SenAmp is designed with PTM 45nm

technology [3]. We simulated the Out signals at ±3σ corners of all possible ADAMS states. The

simulation results show that at the valid ADAMS states like 1̄0̄ and 0̄1̄, the Out signal always

quickly reaches Vdd or Ground, respectively, at all corners. At the invalid ADAMS states like 0̄0̄

and 1̄1̄, the Out signal ends up with Vdd if Rmt j,p > Rmt j,n. When Rmt j,p < Rmt j,n, the Out signal

slowly decay to ground. However, the difference between the worst-corner Out signal in such a

case (i.e., Rmt j,p − Rmt j,n = 300Ω) and that of the state 0̄1̄ (i.e., Rmt j,p = 1150Ω and Rmt j,n = 1850Ω)

becomes the possible working region for the output latch to differentiate 0̄0̄/1̄1̄ and 0̄1̄.
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5.2.4.2 Asymmetric Latch Fig. 27(a) shows the schematic of our asymmetric latch design for

ADAMS. The forward inverter has a small size PMOS transistor (PM0) and a large size NMOS

transistor (NM0) while the feedback tristate inverter has large size PMOS transistors (PM1 and

PM2) and small size NMOS transistors (NM1 and NM2). The unbalanced driving ability between

NMOS and PMOS transistors creates a working point for latching ‘0’ and ‘1’ below Vdd
2 .

Fig. 27(b) shows the simulated worst-case results of the asymmetric latch at the ADAMS states

of 0̄0̄ and 1̄0̄. The working point of the asymmetric latch is designed to 0.3V. The output of the

asymmetric SenAmp is captured at 135ps. As shown in the microscope view in Fig. 26(b), at this

time the Out signal of the SenAmp of the ADAMS state 0̄1̄ is below 0.3V while that of the invalid

states 0̄0̄ and 1̄1̄ are above 0.3V. The generated sense margins, i.e., ∆V00, ∆V11 and ∆V01, ensure

that the states 0̄0̄ and 1̄1̄ are detected as ‘1’ while the state 0̄1̄ is detected as ‘0’.
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5.2.5 Reconfigurable Scheme STT-RAM

Another advantage of ADAMS is that it can be dynamically reconfigured into two independently

functional 1T1J cells in case that the memory capacity is critical. As shown in Fig. 28, the operation

of an ADAMS cell can be switched between two modes: high-reliable (HR) mode and high-

capacity (HC) mode. A multiplexer is used to select the reference signal of an 1T1J cell from

either external or its complimentary 1T1J cell (where the MTJ is reversely connected) depending

on the operation mode. The performance, reliability and capacity of the STT-RAM can be flexibly

adjusted by switching between the HR and HC modes.
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Figure 28: Reconfigurability of ADAMS. Mode = 0: High-reliable (HR) mode; Mode = 1: High-

capacity (HC) mode.
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5.3 ADAMS DESIGN OPTIMIZATION AND ANALYSIS

5.3.1 Write Operation Analysis

5.3.1.1 Asymmetric Write Analysis Fig. 29 shows the relationship between the MTJ switch-

ing current and switching time, including both 1→ 0 and 0→ 1 switching’s. The data comes from

a 45nm × 90nm elliptical MTJ device model, which have been calibrated with the measurement

of a real fabricated device from a leading magnetic recording company. Following the decrease

in MTJ switching time, the difference between the nominal values of the required MTJ switch-

ing current at two switching directions becomes more and more significant. Fig. 29(b) shows the

SDMR (Standard Deviation and Mean Ratio) of different MTJ switching times. In general, the

MTJ switching time at 0→ 1 switching suffers from a larger variation than 1→ 0 switching.
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Figure 29: (a) Switching current vs. Inverse of switching Time. (b) Switching time mean vs

Standard deviation and mean ratio (SDMR).

As aforementioned in Section 3.1, the MTJ switching current during the write operations is

determined by the bias conditions of the NMOS transistor as well as the process variations of the

NMOS transistor and the MTJ. We conduct SPICE Monte-Carlo simulations to obtain the MTJ

switching current and its distribution at different NMOS transistor sizes and bias conditions. The

device parameters adopted in the simulations are summarized in TABLE 4.

Fig. 30 shows the simulation results of the MTJ switching current in P-cell and N-cell at dif-

ferent NMOS transistor sizes and switching directions. The reliability of different cell structures is
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limited by the different switching directions e.g., 0→ 1 in P-cell and 1→ 0 in N-cell, respectively.

Also, the limiting switching direction always suffers from a larger SDMR than the other switching

direction.

Table 4: Summary of Device Parameters

Device Parameters Mean Std. Dev.
Tr

an
si

st
or Channel Length L 45nm 5%·F1

Channel Width W design dependent 5%·F

Threshold Voltage Vth 0.466V 30mV

M
T

J Low Resistance Rl 1000Ω
5%·mean

High Resistance Rh 2000Ω

1F = 45nm.

5.3.1.2 Definition of Write Error Rate Fig. 31 shows the data storage states of 1T1J, RDAMS

and ADAMS and the transitions between different states. The blue circles denote the states storing

‘0’ while the red circles denote the states storing ‘1’. The black circles denote the prohibited

states during the operation and directly correspond to an error. A successful write is defined as

the transition between a blue circle and a red circle, and shown as a solid line; A unsuccessful

write is defined as the transition between two states marked with the same color, or ending with a

prohibited state. The occurrence of an unsuccessful write indicates an write error.
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Figure 31: STT-RAM writing state. (a) 1T1J. (b) RDAMS. (c) ADAMS

In an 1T1J cell, the write error rate PWF at different switching directions can be defined as the

probability that the MTJ switching time τ is longer than the write pulse width TW , or:

PWF,0→1 = P(τ0→1 > TW0)

PWF,1→0 = P(τ1→0 > TW1) (5.1)

Similarly, the write error rates of P-cell and N-cell at different switching directions can be

summarized as:

Pi
WF,0→1 = P(τi

0→1 > T i
W0)

Pi
WF,1→0 = P(τi

1→0 > T i
W1), i = p or n. (5.2)

Here the superscripts ‘p’ and ‘n’ denote the parameters for P-cell and N-cell, respectively. Fig. 32(a)

and (b) shows the write error rates of the P-cell and N-cell at different switching directions when

the NMOS transistor size changes. When the NMOS transistor is small, the write error rates at

different switching directions are close. However, when the NMOS transistor size grows, the gap

between the write error rates at different switching directions quickly increases. Nonetheless, the

limiting switching directions of each cell structure, i.e., 0→ 1 in P-cell and 1→ 0 in N-cell, suffer

from much higher write error rate than other switching directions.
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Figure 32: Write error rate at 10ns write pulse width.

The switching probabilities of the transitions from state x̄sȳs to state x̄eȳe in a RDAMS cell and

an ADAMS cell can be respectively represented by: PR
x̄sȳs→x̄eȳe

, and PA
x̄sȳs→x̄eȳe

. Here superscript ‘R’

and ‘A’ denote the parameters belonging to RDAMS and ADAMS, respectively. Hence, the total

write error rate of a RDAMS cell can be calculated by:

PR
WF = αβ×PR

10→00

⋃
PR

10→11

+(1 − α)(1 − β)×PR
01→00

⋃
PR

01→11. (5.3)

Here α is the probability of the memory cell storing ‘1’ (1̄0̄), β is the probability that the memory

cell will be programmed to ‘0’ (0̄1̄).

5.3.1.3 Write Optimization of ADAMS As discussed in Section 5.2.2, the states 0̄0̄, 1̄1̄ and 1̄0̄

are all detected as ‘1’ in ADAMS cell designs. Therefore, a correct output can be still read out even

only one of the P-cell and the N-cell is successfully programmed during writing ‘1’ (0̄1̄ → 1̄0̄).

The rite error rate of an ADAMS cell can be expressed as:

PA
WF = αβ×PA

10→00

⋃
PA

10→11

+(1 − α)(1 − β)×PA
01→00

⋂
PA

01→11. (5.4)
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Comparing Eq. (5.4) to Eq. (5.3) we found that, the write error rate contributed by writing ‘1’,

which is the second item at the right side of the equations, is significantly reduced in ADAMS.

Fig. 33 shows the write error rates when writing ‘0’ and ‘1’ for a RDAMS cell and an ADAMS

cell, which are respectively denoted by Pu
WF,1→0 and Pu

WF,0→1, (u = R or A), at different write pulse

widths. As the NMOS transistor size increases, all the write error rates reduce though Pu
WF,1→0

decrease faster than Pu
WF,0→1. The highest write error rate is PR

WF,0→1, which dominates the write

error rate of the RDAMS cell. When the write pulse width is long, (i.e, 10ns and 8ns, as shown in

Fig. 33(a) and (b),) PA
WF,1→0 and PA

WF,0→1 in turn dominate the write error rate of the ADAMS cell

when the transistor size is small and large, respectively. When shortening the write pulse width

(e.g, 3ns), however, PA
WF,0→1 dominates the write error rate over the whole transistor size range, as

shown in Fig. 33(d). It indicates a higher sensitivity of the error rate of writing ‘1’ to the write

pulse width.
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(a) 10ns; (b) 8ns; (c) 5ns; and (d) 3ns.
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Comparing Fig. 33(a) with Fig. 32, we found that Pp
WF,0→1 at the transistor channel width of

630nm (6.34 × 10−6) is 12× higher than PA
WF,1→0 at the transistor channel width of 270nm (5.26 ×

10−7). As shown in Fig 25(d) and (e), the layout areas of the corresponding 1T1J cell and ADAMS

cell are 0.189µm2 and 0.167µm2, respectively. Note that Pp
WF,0→1 and PA

WF,1→0 dominate the write

error rate of the 1T1J and ADAMS cells, respectively. Therefore, it means that ADAMS does not

necessarily occupy a larger cell area than 1T1J cell under a certain reliability requirement.

5.3.2 Read Operation Analysis

20 40 60 80 100 120 140 160
0

0.01

0.02

0.03

0.04

0.05

0.06

Voltage (mV)

P
ro

b
ab

ili
ty

 

 

R
high

×I
Read

R
low

×I
Read

V
Ref

Figure 34: Example of BL voltages distribution of a 1T1J cell.

5.3.2.1 Read Reliability Analysis The two resources of read errors are read disturbance and

sensing error. Sensing errors happen if the resistance state of the MTJ is erroneously detected by

the SenAmp under the influences of the NMOS transistor and MTJ resistance variations. Fig. 34

shows the Monte-Carlo simulation results on the distributions of the voltages generated on the BL

of a 1T1J cell when the MTJ is in the low- and high-resistance states. The simulation parame-

ters are depicted in Table 4. In the 1T1J cell, the reference voltage is generated by a reference

cell, which also suffers from device variations. Although some robust devices with small process

variations, e.g., resistors, can be used to implement the reference cell, the overlap between the dis-

tribution of the reference voltage and the BL voltage still generate a considerable sensing error rate.

Usually the reference cell of the 1T1J cell is carefully designed so as to achieve the equal sensing

error rates at both ‘0’ and ‘1’. RDAMS and ADAMS can dramatically reduce the sensing error
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rate by directly comparing the resistance states of two complimentary MTJs. The corresponding

sensing error rate, which is indicated by the overlaps between the distributions of two BL voltages,

is significantly less than that of the 1T1J cell. Note that RDAMS and ADAMS have the same sens-

ing error rate as they all compare the BL voltages generated from the complimentary 1T1J cells.

Our simulations show that at an sensing current of 66µA, the sensing error rates of the 1T1J cell

and the RDAMS/ADAMS cell are 4 × 10−4 and 5.37 × 10−6, respectively. Here the conventional

SenAmp and our asymmetric SenAmp/latch designs are used in the sensing of the 1T1J cell and

the CDAMS/ADAMS cell, respectively.

Because the sensing error is generated by the device variations, it can be reduced by leveraging

design redundancy and discarding the memory cells with large device variations. Also, as we shall

show later, ADAMS has lower read disturbance error rate than other cell structures under the same

sensing current. Hence, the sensing current magnitude in an ADAMS cell may be increased to

suppress the sensing error rate.

The MTJ switching probability PS W can be modeled as:

PS W = 1 − exp{−τp/τ0exp[−E/kBT (1 − Ic/Ic0)]}. (5.5)

Here Ic0 and τ0 are the MTJ threshold switching current and switching time at 0K. Ic is the current

applied on the MTJ. τp is the pulse width of the applied current. Eq.(5.5) implies that the read

disturbance could happen under any sensing current magnitude and pulse width as long as the

original resistance state of the MTJ is different from the possibly flipped one.

Read Disturbance

0

1

01 00

11 10

01 00

11 10

(a) (b) (c)

Figure 35: STT-RAM reading state. (a) 1T1J. (b) RDAMS. (c) ADAMS
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Fig. 35(a)-(c) shows the state transitions of different STT-RAM cell structures at all possible

read disturbances. In 1T1J cell, the read disturbance can happen only when sensing ‘1’ and may

flip the state of the MTJ to ‘0’. In RDAMS, the read disturbance can happen when sensing two

non-prohibited states 0̄1̄ and 1̄0̄, and may flip them to 0̄0̄. The read error rates of both 1TJ cell and

RDAMS when the stored state is fixed (i.e., ‘1’ for 1T1J and 0̄1̄/1̄0̄ for RDAMS, respectively) can

be calculated by:

P1
dierr = PR

dierr = Pp
dis. (5.6)

In ADAMS, the read disturbance can happen when sensing any four states. Since states 1̄1̄ and

0̄0̄ can be read out as ‘1’, a read disturbance will result in a read error in only the following two

situations: 1) The state 1̄0̄ is stored in the ADAMS cell, but read disturbances occur in both P-cell

and N-cell in the read operation; 2) Due to the unsuccessful write or the read disturbance happened

before, the state stored in the ADAMS cell is either 0̄0̄ or 1̄1̄. A read disturbance happens in

either P-cell or N-cell during the read operation and flips the state of the ADAMS cell to 0̄1̄. As a

consequence, the read error rate of an cell induced by the read disturbance can be calculated by:

PA
diserr = S 10Pp

disP
n
dis + S 11Pp

dis + S 00Pn
dis. (5.7)

In Eq.(5.6) and (5.7), Pp
dis and Pn

dis are the read disturbance probability in the P-cell and N-cell,

respectively, during the read operations. S 10, S 11 and S 00 are the probabilities of the ADAMS

cell storing 1̄0̄, 1̄1̄, and 0̄1̄, respectively, which are determined by the historical operations of the

ADAMS cell.

We measure the read reliability of the ADAMS cell by assuming the cell state starts with 0̄1̄

and then is written into 1̄0̄. The corresponding read disturbance error rate of the ADAMS cell can

be derived from Eq.(5.7) as:

PA
diserr = (1 − PA

01→11 − PA
01→00)Pp

disP
n
dis

+PA
01→11Pp

dis + PA
01→00Pn

dis.
(5.8)

Here PA
01→00 and PA

01→11 are the probabilities that the state of the ADAMS cell is wrongly pro-

grammed from 0̄1̄ to 0̄0̄ and 1̄1̄, respectively. The corresponding definitions can be found in Section

5.3.1.2.
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Figure 36: Sensing errors and disturbance errors of different cell structures. (a) Without redun-

dancy. (b) With 3% redundancy.

Fig. 36(a) shows the Monte-Carlo simulation results of both sensing error rate and read distur-

bance error rate of all three cell structures at different read current. The NMOS transistor channel

width is set to 630nm in the 1T1J cell and 270nm in the RDAMS and ADAMS cells. The sensing

current pulse width is set to 1ns. As expected, the RDAMS cell and the ADAMS cell have the

same sensing error rate, which is significantly lower than that of the 1T1J cell. Similarly, the read

disturbance error rate of the RDAMS cell is the same as that of the 1T1J cell as illustrated by

Eq.(5.6). The ADAMS cell, however, achieves much lower read disturbance errors than the 1T1J

cell and the RDAMS cell by tolerating the invalid states 0̄0̄ and 1̄1̄. Each cell structure has different

optimal working point, which refers to the sensing current magnitude ensuring the equal sensing

error rate and read disturbance error rate. Among all three cell structures, ADAMS offers the low-

est combined read error rate at its optimal working point,i.e., 1.4 × 10−6 at the sensing current of

76µA.

Fig. 36(b) shows the sensing and read disturbance error rate of three structures after a 2-bit

redundancy is applied to every 64-bit memory bits (3% area overhead). The sensing error rates of

both ADAMS cell and CDAMS cell are reduced by more than 3 orders of magnitude. It shows the

effectiveness of redundant designs on reducing the sensing errors. However, design redundancy

does not help to reduce the intermittent read disturbance errors. As a result, the read disturbance

errors dominate the read errors of the ADAMS cell as well as the RDAMS cell. Nonetheless, the

combined read error rates of both RDAMS and ADAMS cells are reduced substantially.
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5.3.2.2 Read Latency Analysis In an ADAMS cell, the modified working point of the asym-

metric SenAmp and latch designs may prolong the sensing latency w.r.t. the conventional design

under the same sense margin. As shown in Fig. 26(b), the worse-case read latency of ADAMS is

bounded by the sensing of states 0̄0̄/1̄1̄ and 0̄1̄. After the SenAmp design is fixed, the total read

latency is also affected by the process variations as well as the data capturing time of the latch. To

reduce the total read latency, the data must be captured as early as possible once the Out signal

of the SenAmp corresponding to the state 0̄1̄ crosses the working point of the latch. In all cell

structures, we refer to the SenAmp latency as the time period from the SenAmp starts to function

until the Out signal reaches the 0.1Vdd when sensing ‘0’ (0̄1̄).

Fig. 37(a) shows the Monte-Carlo results of the distributions of the SenAmp latency of different

cell structures. At the same sensing current of 60µA, which achieves the lowest read error rate of

the 1T1J cell and the RDAMS cell in Fig. 36(b), both the ADAMS cell and the RDAMS cell

demonstrate a better sensing latency distribution compared to the 1T1J cell due to the enhanced

sense margin. The RDAMS cell has a SenAmp latency slightly shorter than the ADAMS cell

though it suffers from a much higher combined read error rate. We can increase the sensing current

in the ADAMS cell from 60µA to 70µA to significantly improve the SenAmp latency while still

maintaining a combined read error rate 463.2× and 302.2× lower than that of the 1T1J cell and the

RDAMS cell, respectively, at a sensing current of 60µA, as shown in Fig. 36(b).

In the ADAMS cell, successfully sensing the invalid states 0̄0̄ and 1̄1̄ requires the timing coor-

dinations between the SenAmp and the latch. Hence, we simulate the SenAmp and latch latencies

of in the ADAMS cell at 3σ corner when the sensing current sweeps, as shown in Fig. 37(b). Fol-

lowing the increase in sensing current, the SenAmp latency decreases while the latch latency grows

as the working point of the latch deviates farther from Vdd
2 . The optimal working point happens

when the sensing current equals 65µA, leading to a total read latency of 266.7ps. In the RDAMS

cell and the 1T1J cell, the latch latency is only about 20 ps. Nonetheless, the 3σ total read latency

of the ADAMS cell (266.7ps) is shorter than that of the 1T1J cell (477.6ps) and the RDAMS cell

(321.8ps) by 44.2% and 17.1%, respectively. The corresponding combined read error rate of the

1T1J cell, the RDAMS cell and the ADAMS cell are 5.14 × 10−5, 3.35 × 10−5, and 2.66 × 10−8,

respectively.
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Figure 37: (a) Latency distribution of SenAmps. (b) SenAmp latency, latch latency and total read

latency of the ADAMS cell.
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6.0 OTHER PROPOSED STT-RAM IMPROVEMENT WORKS

In Chapter 5, we present a purely design improvement of STT-RAM. In this Chapter, we will

introduce two improvement, based on a novel alternative operation scheme, and a new structure of

the MTJ device.

6.1 BASIC CONCEPT OF FA-STT

The read operations of STT-RAM require a sufficient distinction (sense margin) between the MTJ

resistance states and the reference signal. However, the variations of the MTJ resistance can sig-

nificantly degrade the sense margin or even cause a false detection of the resistance state. Also,

process variations and thermal fluctuations introduce a distribution of STT-RAM write speed. A

sufficient margin, for example, a write pulse width longer than the nominal value, must be reserved

to cover the distribution.

In this work, we propose a field-assisted STT-RAM design (FA-STT) to enhance the read and

write reliability of STT-RAM simultaneously. Figure 38(a) illustrates the FA-STT design by using

a row of memory cells that share the same word-line control. An extra metal wire is placed above

the memory row. Applying a current through the metal wire will generate an external magnetic

field orthogonal to the magnetization orientation of the MTJ reference layer. As a result, the

magnetization of the MTJ free layer is deviated from the original orientation that is parallel or

anti-parallel to that of the reference layer, as shown in Figure 38(b).
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Figure 38: (a) 3D view of FA-STT scheme. (b) MTJ intermediate resistance state generation.

FA-STT leverages this phenomenon to assist the read and write operations:

Read operations: MTJ resistance is determined by the relative angle between the magnetization

of two ferromagnetic layers θ. The angular dependence of the magneto-resistance in an in-plane

MTJ can be described as [32]:

R(θ) = R(0) + ∆R
1 − cos θ

2 + λ(1 + cos θ)
, (6.1)

where λ is a fitting parameter. The deviation of the magnetization of the free layer from parallel

(θ = 0) or anti-parallel (θ = 180) position generates an intermediate resistance state between RH

and RL of the MTJ. The relative resistance change between the intermediate state and the initial

state of the MTJ can be used to determine the data stored in the STT-RAM cell.

Write operations: The external magnetic field introduce another spin torque component that can

accelerate the magnetization switching of the MTJ free layer in write operations.
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6.2 FA-STT READ SCHEME

6.2.1 Self-reference Sensing Scheme in FA-STT
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Figure 39: (a) Self-reference circuit design. (b) MTJ resistance during read operation.

Because the intermediate resistance state of the MTJ generated by the external magnetic field is

in the middle of the the low- and high-resistance states of the MTJ, we can conduct a two-step

sensing scheme to detect the data stored in the MTJ by comparing the relative change between the

intermediate and the original resistance states of the MTJ. The conceptual design of FA-STT read

circuit is illustrated in Fig. 39(a) and the procedure of the corresponding self-reference sensing

scheme can be summarized as follows:

1. First read: A read current IR is applied on the STT-RAM cell to generate a BL voltage V1,

which is stored in a capacitor C1. V1 = V1L or V1H when the MTJ is at the low- or high-resistance

state, respectively;

2. Intermediate state generation: The transistor Ren2 that is connected to the metal wire Wgen is

turned on. The external magnetic field is generated by the current passing through WIREgen.

As the generated magnetic field is orthogonal to the magnetization orientation of the free layer

of the MTJ, it will force the magnetization orientation of the free layer to deviate from the

original position, putting the MTJ into the intermediate state;
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3. Second read: The same read current IR is applied on the BL again and generates another

BL voltage V2. V2 = V2L or V2H if the initial state of the MTJ is low- and high-resistance,

respectively. V2 could be also stored in capacitor C2. Since the Intermediate state is between

the low- and high-resistance state, we have: V2H < V1H and V2L > V1L;

4. Sensing: The data will be readout by comparing the voltages on two capacitors, i.e., ‘0’ (V2 >

V1) or ‘1’ (V1 > V2).

5. Remove magnetic field: The external magnetic field must be removed once the sensing step

completes. The magnetization orientation of the MTJ will go back to its original position.

Fig. 39(b) shows an example of the MTJ resistance change during our proposed self-reference

sensing scheme. When the magnetic field is applied, the resistance decreases from the high-

resistance state and gradually reaches a stable resistance lower than R1H. After the sensing step

completes, the applied magnetic field is removed and the MTJ resistance will go back to the origi-

nal value.

Table 5: Design Parameters

Parameter Mean 1σ deviation

RA (Ωµm2) 8.1 7%

Surface Area (nm2) 45 × 90 5%×technode

Oxide Thickness (nm) 2.2 2%

TMR ratio 1 5%

High Resistance (RH)(Ω) 2000 design dependent

Low Resistance (RL)(Ω) 1000 design dependent

Reading Current(µA) 20 design depdendent

Transistor Size (nm2) 45 × 180 5%×technode
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6.2.2 Read Operation Analysis

6.2.2.1 Read disturbance A major error in STT-RAM read operations is read disturbance,

which denotes that the read current may flip the resistance of the MTJ under the impact of thermal

fluctuations. In FA-STT sensing scheme, the probability of MTJ state flipping could be aggravated

by the externally applied magnetic field.
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Figure 40: (a) Intermediate state generation. (b) Read disturbance of intermediate state.

We simulated the dynamic MTJ resistance change during FA-STT self-reference sensing pro-

cess. Table 5 depicts the statistic information of the parameters adopted in our simulations [4].

The RH and RL are set at 2000Ω and 1000Ω, respectively. To avoid a large disturbance from the

reading current, a relatively small current (20µA) is selected.

As shown in Fig. 40(a), after applying external magnetic field, the MTJ resistance (and the

magnetization orientation of the free layer) experiences an oscillation before it reaches a stable

state. A large oscillation momentum will increase the possibility of flipping the resistance state

of the MTJ under the impact of the applied read current and thermal fluctuations, that is, the

angle between the biased magnetization orientation of the free layer and the original position of

the magnetization orientation permanently crosses 90◦. Fig. 40(b) shows the case that the applied

magnetic field is so large that when the read current is applied, the MTJ flips to the low resistance

state.
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Figure 41: (a) MTJ resistance changes in reading ‘0’. (b) MTJ resistance changes in reading ‘1’.

Fig. 41(a) and (b) depict the simulation results of the MTJ resistance change under different

external magnetic field magnitudes in reading ‘0’ and ‘1’, respectively. The magnitude of magnetic

field sweeps within the range that the MTJ state will not be flipped even considering the worst-case

thermal fluctuations. Here we assume the control transistor Ren2 in Fig. 39(a) is turned on sharply

by a step signal. The difference between the stable intermediate state of the MTJ resistance and the

original resistance state (i.e., 1000Ω in Fig. 41(a) and 2000Ω in Fig. 41(b), respectively) reflects the

sense margin under specific magnetic field magnitude. However, the sense margins in both cases

are severely limited (< 200Ω) by the high read disturbance rate incurred by the large momentum

of MTJ resistance oscillation.
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Figure 42: MTJ resistance change under different magnetic field applying speed.
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Figure 43: (a) Sensing margin distributions. (b) Memory yields under different sensing margins.

To minimize the oscillation momentum generated in FA-STT sensing, we propose to slowly

turn on the transistor Ren2 with a gradually increased control signal, as shown in Fig. 42. By

extending the slope of the Ren2 control signal to 3ns, the sense margin of FA-STT sensing scheme

can be safely raised to 350Ω. Note that sharpening the slope of Ren2 control signal may shorten the

convergence time of the MTJ resistance oscillation and improve the read performance but it also

increases the read disturbance rate by raising the oscillation momentum of the MTJ resistance.

6.2.2.2 Sensing margin To evaluate the impact of read error rates in different sensing schemes

on memory array yield, Monte-Carlo simulations are conducted to obtain the sense margin distri-

bution of three sensing schemes – FA-STT sensing (FA-STT), conventional nondestructive self-

reference sensing (CN) [29], and conventional STT sensing (CS), which directly compares the

MTJ resistance with a reference of (RL + RH)/2. An 64*64 (4Kb) STT-RAM array is simulated

while every sense amplifier is shared by eight columns. Read current as 20µA is adopted in all

three sensing schemes to ensure a negligible read disturbance rate.

The sense margin distributions of different sensing schemes are shown in Fig. 43(a). Negative

sense margins appear in the distribution of CS sensing as the RL (RH) of some MTJs are higher

(lower) than the reference value, resulting in false detections of the STT-RAM cell data. CN and

FA-STT sensing schemes, however, always produce positive sense margin for all STT-RAM cells

because of the nature of self-referencing. Although FA-STT sensing has a wider sense margin

distribution than CN sensing, it still offer better read reliability due to the significantly improved

sense margin.
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Fig. 43(b) shows the memory yields of different sensing scheme under different minimum

sense margin requirements. CS sensing has the lowest memory yield among all sensing schemes.

Both CN and FA-STT sensing schemes demonstrate a high yield when the required sense margin

is small. The yield of CN sensing, however, drops quickly when sense margin requirement raises

beyond 10mV. As a comparison, FA-STT can tolerate a minimum sense margin requirement of

more than 20mV, which is doubled from the one of CN sensing scheme, for a memory yield of

99.99%.

6.3 FA-STT WRITE SCHEME

6.3.1 Field-assisted MTJ Switching

As aforementioned in Section 6.1, the external magnetic field introduced in FA-STT design can

also accelerate the MTJ switching during the write operation of STT-RAM cells. Figure 45(a),

(b) and (c) show the magnetization motion of the MTJ free layer when a standard STT-RAM

cell switches from ‘1’ to ‘0’, a FA-STT cell switches from ‘1’ to ‘0’ and ‘0’ to ‘1’, respectively.

Here the external magnetic filed is applied on the FA-STT cell during the write operations. By

comparing these three figures, it can be easily observed that the external magnetic field accelerates

the convergence of the magnetization oscillation and speeds up the MTJ resistance switching:
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In our simulation, all ‘1’→‘0’ switching’s start at coordinate (x, y, z) = (0, 0, 1). The ‘1’→‘0’

switching of the standard STT-RAM cell ends at (0, 0,−1). The ‘1’→‘0’ switching of the FA-STT

cell, however, ends at (0, 0.3,−0.95) under the influence of the applied external magnetic field.

The magnetization orientation of the MTJ free layer in the FA-STT cell goes back to (0, 0,−1)

only when the external magnetic field is removed after the write operation completes. A similar

scenario happens in the ‘0’→‘1’ switching too.

The external magnetic field accelerates the MTJ switching by turning the magnetization orien-

tation of the free layer toward 90◦ relevant to its initial position, no matter if it is initially parallel

or anti-parallel to the magnetization orientation of the reference layer. However, after the magneti-

zation orientation of the free layer crosses over 90◦, the external magnetic field starts to hinder the

stabilization of the new MTJ resistance state. Hence, applying the external magnetic field through-

out the entire write operation might not be necessary. Based on the MTJ switching theory, after the

magnetization orientation of the free layer crosses over 90◦, a small amount of switching current is

sufficient to retain the switching momentum and complete the switching. Thus, the external mag-

netic field may be removed earlier than the write current pulse to improve the write performance

and save the write energy.

6.3.2 Write Performance Evaluation

Figure 44(a) shows the mean of the MTJ switching time under different magnetic field magni-

tudes. As the magnetic field increases, the MTJ switching time decreases first and then becomes

saturated. The variations of the switching time is measured by the standard deviation over mean

ration (SDMR), which is shown in Figure 44(b). In general, the variation of the MTJ switching

time in writing ‘1’ keeps constant while that in writing ‘0’ decreases slightly as the magnetic field

increases. Also, writing ‘1’ has a smaller SDMR than writing ‘0’, mainly because writing ‘0’

has a smaller nominal value of MTJ switching time. Considering both write performance and its

variation, we choose 1.26 × 103A/m as the optimal magnitude of the external magnetic field in the

following simulations.
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Figure 46: The write time distributions.

Figure 46 shows the distributions of STT-RAM write time obtained from Monte-Carlo sim-

ulations. We assume that the select transistor in the STT-RAM cell has a dimension of W/L =
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180nm/45nm and include both process variations and thermal randomness. Three designs were

compared, including: (a) the standard STT-RAM, (b) the FA-STT with 8ns of magnetic field, and

(c) the FA-STT with 4ns of magnetic field. The write time is defined as the time period for the free

layer completely switches its magnetization to the parallel or anti-parallel state. In the figure, the

distributions of writing ‘0’ and writing ‘1’ are given separately.

Compared with the standard STT-RAM design, the magnetic field in FA-STT dramatically im-

proves the write speed as well as reduces the variations in write time. Furthermore, the asymmetric

writes in the standard STT-RAM design (i.e., writing ‘1’ is much harder and requires longer time

than writing ‘0’) is relaxed in FA-STT. For example, as shown in Figure 46(b1) and (b2), writing

‘1’ and ‘0’ in FA-STT with 8ns assisting field have the similar write time and the corresponding

distributions. Reducing the assisting field to 4ns makes writing ‘1’ and ‘0’ in FA-STT a little un-

balanced, as shown in Figure 46(c1) and (c2). This is because the duration of the magnetic field

occupies smaller portion of the total write time, resulting less contribution to the MTJ switching.

Nonetheless, the small difference between the results of 4ns and 8ns magnetic field indicates that

4ns is sufficient for MTJ switching assistance.

Table 6: Comparison of write error rates under 10ns write period.

Writing ‘1’ Writing ‘0’

Standard STT-RAM 0.42 2.05 × 10−5

FA-STT with 8ns Assist Field 3.68 × 10−4 9.60 × 10−5

FA-STT with 4ns Assist Field 2.29 × 10−9 5.45 × 10−14

6.3.3 Write Error Rate

Table 6 compares the write error rates of the above three STT-RAM designs, assuming a fixed 10ns

write period and a NMOS select transistor of W/L = 180nm/45nm. In the standard STT-RAM,

the errors of writing ‘1’ dominates the write errors, i.e., a 42% error rate that is unaffordable in

real design [34]. Raising the transistor size and/or prolonging the write period become necessary

to ensure a reliable write with an acceptable error rate. Compared with the standard STT-RAM,
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FA-STT with 8ns magnetic field reduces the error rate by three-orders-of-magnitude in writing

‘1’. The writing ‘0’ error rate slightly increases because the assist field lasts too long. Decreasing

the magnetic field to 4ns dramatically reduces the error rates in writing ‘1’ and writing ‘0’ down

to 2.29×10−9 and even lower. Relaxing the write error requirement can further improve the write

speed or reduce the STT-RAM cell area.

6.4 LAYOUT DESIGN CONSIDERATION

In FA-STT design, a metal wire is placed above the STT-RAM cells to generate the external mag-

netic field. The amplitude of the generated external magnetic field can be calculated by Biot-Savart

law as [16]:

dH = 1
4π

Idl×~r0
|r|2 . (6.2)

Here ~r0 and r is the unit vector and the distance between the metal wire and the MTJ. dl is a vector

of which the magnitude is the length of the differential element of the wire. H and I is the generated

magnetic field and the applied current, respectively.

To minimize the required magnitude of the current, the metal wire should be placed close to the

MTJ. Fig. 47(a) and (b) show two options of the wire placement by assuming the MTJ is fabricated

between metal 1 and metal 2: (1) the metal wire is placed at metal 1 between the source and the

drain of the transistor; and (2) the metal wire is placed at metal 3 on top of the MTJ. Based on

Eq. (6.2) The magnitude of the current required to generate a magnetic field of 1.26 × 103A/m is

782µA in Fig. 47(a) and 2.6mA in Fig. 47(b), respectively, assuming 10% variation tolerance.

However, according to the design rule of 45nm technology, there is not enough space to place a

sufficiently wide metal wire for the required current magnitude with a W/L = 180nm/45nm select

transistor in option (1). Hence, option (2) is chosen in our FA-STT design and the corresponding

layout is shown in Fig. 47(c). According to wire width requirements of ITRS [14], we are able to fit

a sufficiently wide metal wire into this layout structure to carry a current of 2.6mA. This structure,

however, requires at least 4 metal layers in the STT-RAM array area by reserving one metal layer

solely for the wires generating the magnetic field. Note that although option (2) is selected in our
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FA-STT design, option (1) may be still utilized for read/write energy reduction if a wide transistor

size is adopted in STT-RAM cell designs, e.g., a multi-level cell structure.
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Figure 47: 3D View of External Metal Placing.

6.5 GSHE SPIN LOGIC STRUCTURE

6.5.1 Basic Logic Functions

Since the switching threshold of GSHE MTJ can be changed by manufacturing without using other

material, it is possible to build device with various threshold. This property makes such a device

possible to achieve basic logic functions, (such as ‘AND’, ‘OR’, ‘NAND’, and ‘NOR’). Fig. 48

illustrates the circuit design of basic two inputs logic gates and corresponding truth table. The

logical operation performed by each of these GSHE MTJ elements is determined by appropriate

connecting direction of input nodes A and B, as well as selecting of input nodes (n) and switching

threshold (m). The input currents of each device are determined by the output resistance states

of upper level devices (d1 and d2). With different resistance states (either RH or RL) of two input

devices, the current I1+I2 will present approximately in three region: RH,RH(0, 0), RH,RL(0, 1), and

RL,RL(1, 1) under the same supply voltage. Devices will be switched once the current is larger than

the threshold. If the threshold is near RH,RL, the device will perform as an ‘OR’ gate. Otherwise,

if the threshold is around RL,RL, the device will then perform as an ‘AND’ gate. ‘NAND’ and
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‘NOR’ gates can be achieved by an opposite connection of ‘AND’ and ‘OR’ device. Truth tables

of these four types of logic gates are shown in fig. 48 (a).

OR

1/2

AND

2/2

NOR

1/2

NAND

2/2

I2

I1
d 1

d 2

I1 I2 S
0 0 0
1 0 1
0 1 1
1 1 1

I1 I2 S
0 0 0
1 0 0
0 1 0
1 1 1

I1 I2 S
0 0 1
1 0 0
0 1 0
1 1 0

I1 I2 S
0 0 1
1 0 1
0 1 1
1 1 1

Vdd

Vdd

1/2
2/2

1/2
2/2

I2

I1
d 1

d 2

(a )

(b)

Figure 48: Examples of Basic Logic Functions. (a) Serial Connection, (b) Parallel Connection.

For more detail, although the resistance of GSHE strip is much smaller than that of MTJ, it still

needs to be considered when calculating the required threshold. We assume that MTJ resistance is

RL = 1
2RH = R. Then the relationship between two resistance states and writing current IXY = I1+I2

can be as follow:
I00 = 4V

4R+(4N+1)RS

I01 = I10 =
V(3R+RS )

(2R+
RS
2 )(R+

RS
2 )+NRS (3R+RS )

I11 = 2V
R+(2N+1)RS

(6.3)

Where RS is the equivalent resistance of GSHE strip, and N is the number of elements that con-

nected on the output path. As aforementioned, the switching threshold for ‘AND’ gate and ‘OR’

gate should be placed between I11, I10, and I10, I00, respectively. In order to tolerate more process

variation effect, the margin between the charging and threshold current should be both maximized.

Therefore, the switching current threshold of ‘AND’ gate (IAND) and ‘OR’ gate (IOR), could be:

IOR =
V[10R2+(12N+6.5)RRS +(4N+1)R2

S ]

[4R+(4N+1)RS ][(2R+
RS
2 )(R+

RS
2 )+NRS (3R+RS )]

IAND =
V[3.5R2+(3N+6.5)RRS +(N+0.75)R2

S ]

[R+(2N+1)RS ][(2R+
RS
2 )(R+

RS
2 )+NRS (3R+RS )]

(6.4)

We assume that R = 2.5kΩ, RS = 100Ω, and the fan-out number N is 4, thus, the switching

threshold ratio between IAND and IOR is approximately: IOR
IAND
≈ 0.7745. The ratio could be changed
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with a even large number of N, since the threshold is fixed after fabrication, it can not be changed

based on different fan-out, thus, the number of fan-out is limited. However, the fan-out number is

still much larger than the input elements number, with proper design, it is possible to achieve any

combination logic based on the basic logic gates.

To further reduce the affect from fan-out device, a parallel structure is designed as shown in

fig. 48 (b). As load resistance of writing devices is reduced by parallel structure, the current is

mainly determined by MTJ resistance. However, such a structure will distribute charging current

through each strip, the current will largely reduced depends on how many output elements there is.

Thus to reduce the dynamic power consumption, the serial structure will mostly be adopted, the

parallel structure will be a better candidate when a large enough power supply is provided.

6.5.2 GSHE Logic Operation Scheme

In GSHE logic device, performing a logic function determined by what resistance state the input

device stored, it requires that these input devices should be stable with its data. The devices in a

path cannot be all written at the same time. To write one device, the data stored in both its upper

and under level devices cannot be changed at the same time. It makes that, in a complex circuit

structure, the devices cannot be written all together. Another issue is that each device could be

both input device and writing target element, the supply voltage should be able to apply on each

of these device in the circuit. To achieve such a writing scheme, a multi-step writing should be

applied in GSHE logic device writing. On the other hand, since writing of these device depends

on the direction of charging current, once a device has been written, it cannot perform the same

function again. Once the device has been switching, it cannot be switched back under the same

direction writing. Thus, a preset step is required before each operation, an opposite current is

applied to ensure that every device is at the initial state before it can perform a correct function.

Therefore, an unique multi-stage structure is designed to achieve GSHE logic functions. In the

scheme, input devices and target devices are assigned into different stage to avoid writing conflict.

As an example, a three-step structure is shown in fig. 49 (a). Three control lines (Φ1, Φ2, and Φ3)

are applied to separate these three stages. Since GSHE device has three terminals, for each device,

its input is connected with one or two outputs of upper stage devices depends on its corresponding
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function, the output is connected with inputs of several under stage devices, and its third terminal

is connected with the control line of its own stage. Writing/control signal of such a circuit is shown

as fig. 49 (b). For each writing stage, there are two steps: preset step and set step. In the preset step

of stage M, control line Φ(M − 1) is connected to supply power 2Vdd, control line ΦM is grounded,

and the rest lines are all floated. Therefore, the charging current will only apply through GSHE

strip of the target devices and the power supply can be large enough to write all these devices

back to their initial states. On the other hand, switching control line ΦM to Vdd and grounding

line Φ(M − 1) will perform a writing in set step. During the writing step, the floating lines can

isolate none used devices from input and target device, so that the performed functions will not be

disturbed.

Ф1
Ф2
Ф3

1 12 3 2 3(a)

Ф1

Ф2

Ф3

Preset Set Preset Set Preset Set Preset Set Preset Set Preset Set

H L L H Z Z H L L H Z Z

Z Z H L L H Z Z H L L H

L H Z Z H L L H Z Z H L

(b)

Figure 49: (a) Circuit of Three-stage Operation Scheme, (b) Control Signal Diagram.

The proposed control line writing scheme is a sequenced writing. Under such a scheme, the

timing performance of all these devices are all controlled by the control lines, no extra clocks are

necessary in the design. At the same time, by leveraging the non-volatility property of GSHE MTJ,

data can stored in these device, thus, the requirement of latches or flip-flops can also be reduced.

Besides that, since the writing is divided to several steps, the same output data can be readout from

the output in each step, when the logic devices haven’t catch a new input. The accuracy of a circuit

can be verified by comparing these output data, which largely increase the reliability of GSHE

combination logic.
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6.6 DIODE-GSHE STRUCTURE

6.6.1 Sneak Path Issues

Ф 1
Ф 2

1 2 3 1

Ф 3

A B C D E F G H

Figure 50: An example of a real case where current sneaks through undesired paths.

Same as many other resistive device, sneak path could always be an issue that high-resistance cells

being ”short-circuited” by paths of devices in low-resistance state. Fig. 50 shows an example of

a real case of current sneaks in GSHE logic. The current flows through some sneak paths (blue

line) beside the desired one (red line). These paths contains uncontrolled parallel resistance, with

various data stores in device A to H, the charging current of the desired path will be heavily im-

pacted. The added resistance of sneak paths significantly narrows the operation current margin. To

reduced the affects of sneak paths, a much larger number of writing stages is required to operation

GSHE logic. As a matter of fact, to avoid overwriting these undesired devices, at least 7 stages

are required in the writing scheme. More stages will leads to more non-used stages during each

operation stage, and its throughput will also be largely reduced with these unoccupied stages.
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6.6.2 Proposed Diode-GSHE Structure

W2
W1

1 2

1 2 3 4

P 1

5

9
6 7 8

Figure 51: Proposed Diode-GSHE Structure.

The sneak path issue can be eliminated by the proposed diode-GSHE structure. By using a non-

linear device as a function of diode [31, 12], the current flow would be limited only within desired

direction. Fig. 51 shows our proposed design. With applying non-linear diode on the connection

of each blocks, the current can only go through the direction from input device to target device,

and undesired sneak current will be largely reduced. Since the writing stage can be blocked by

the non-linear devices, no more then two stages are necessary in the desire. With a diode-GSHE

structure, there are only two operation steps: when the first stage is used as inputs, the second stage

will be programmed; on contrary, writing the first stage is based on the data stored in the second

stage. During the whole process, devices in the circuit are always occupied. With the same logic

structure, the throughput of Diode-GSHE structure can be further improved.

Table 7: Control Signal of Diode-GSHE Structure

Control
Lines

P W1 W2

Preset1 0 Vlow Z

Set1 Z 0 Vhigh

Preset2 0 Z Vlow

Set2 Z Vhigh 0
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Since only two stages are used, two control lines are required. However, in Diode-GSHE

structure, there are an extra control line which is used for preset step. Thus, in Diode-GSHE, the

preset will go through a preset line, instead of going back through the writing path. Apparently,

there are two mainly advantages as the preset control line is designed. First, since the preset path

only go through a single GSHE strip, the supply voltage for preset can be very small to provide

a large enough switching current. With a much lower preset voltage, power consumption of the

whole system can also be reduced. More important, if the preset current doesn’t go through the

input device, the input device will not be disturbed by preset control. The preset line design, will

also improve the reliability of the whole system. To achieve a two step programming, the input

signal will be designed as shown in TABLE 7.

By leveraging non-linear devices, and extra preset line, such a scheme is able to limit the di-

rection of each current flow, so that the sneak path in both preset stage and programming stage will

be reduced. Meanwhile, both power consumption and programming throughput can be improved

by such a structure.

6.7 CASE STUDY

6.7.1 Full Adder Design

As an example, a full adder has been build based on Diode-GSHE logic structure. Fig 52 shows

the structure of 1 bit full adder. Since every GSHE strip comes with its intrinsic resistance, it is

not easy to control the current flow compare with relatively precise switching threshold of each

device. Thus, in Diode-GSHE design, the fan-out is limited in 1∼3. Another rule is that input

devices can’t be shared with multiple devices, they also can not be connect to a same output if they

are in different stages. To follow this rule, a buffer has been introduced in the design, a buffer is an

one input node GSHE device, that will pass the upper stage data to the under stages. Although it

will cost some power and more design area, it makes a combination logic easier to design.
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Figure 52: Example of Diode-GSHE Based Full Adder.

Leveraging the property of non-volatility and its self-sequential control, an N-bits adder can

be achieve by one single-bit full adder that has a carry-out connected with carry-in (as shown in

fig. 53). Since the higher bit shall always wait the carry-out signal from lower bit, such a structure

doesn’t need to sacrifice the operation latency. It is possible to design an N-bit adder by only one

single-bit full adder without any extra overheads. Thus, the adder can largely reduce the design

area and power consumption while maintain almost same throughput.

A
B

Cin
Cout

SUM1-Bit
AdderA[0],A[1],...A[n],

B[0],B[1],...B[n], S[0],
...S[n],S[n],S[n],

S[0],S[0],S[1],...

Figure 53: N-bit Adder Structure basd on 1-bit Adder.

On the other hand, as shown in fig. 52, there are three circles from lower bit carry-in input to

the outputs, thus, for each bits operation, there will be three same results provided to the output,

these two more results that calculated by the same progress, can be used to verify the correction of

first result. This scheme can largely increase the GSHE logic reliability which is one of the biggest

issue in resistive devices.
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6.7.2 Experimental Results

A verilog-A GSHE MTJ model was created for our proposed design. The single bit full adder has

been built with such a verilog-A model. With the same function, CMOS based full adder has also

been simulated with PTM 22nm, 32nm, and 45nm technology model [3]. All simulations were

conducted under Cadence Spectre Analog environment.
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Figure 54: Dynamic Power Consumption Under 22nm, 34nm, and 45nm tech nodes.

The summary of GSHE MTJ performance has been provide in TABLE 8 [23]:

Table 8: Summary of GSHE MTJ Parameters

Parameter Values

Critical Current (I0) 50µA

Switching Latency (t0) 5ns

High Output Resistance (Rhigh) 5000Ω

Low Output Resistance (Rlow) 2500Ω

GSHE Strip Resistance (RS ) 100Ω

Surface Area (S A) 110 × 65nm2

In order to estimate the advantages of the present circuit, the comparison of evaluated perfor-

mance has been given between CMOS based and Diode-GSHE based full adder. Fig. 54 compares

the simulation results of total power consumptions of 16 bits full adder at 500MHz based on 1)
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3-stage GSHE-logic structure, 2) Diode-GSHE logic structure, 3) conventional CMOS structure.

GSHE based configurations reduce total power by 2.0×, and 3.16× over CMOS, respectively, when

maintains the same bit size. Compare with 3-stage structure, diode-GSHE has extra power con-

sumption in diode using, however, it saves even more power with a much lower preset current. As

a result, Diode-GSHE logic has a 36.6% lower power dissipation then 3-stage GSHE structure. No

to mentioned, to maintain a high enough reliability, 6 or 7 stages may used in multi-stage GSHE

logic, which will comes with a even higher power consumption. When scales down the technol-

ogy nodes from 45nm to 22nm, power consumption of all three designs will decrease. For both

GSHE based logic structure, the power reduction is proportional to the technology nodes. How-

ever, the reduction of CMOS tech is slower than GSHE logics. It proves that GSHE could be a

better candidate for technology scaling.

Table 9: Comparison of Full Adders between CMOS Circuit and Proposed Diode-GSHE Circuit.

CMOS Diode-GSHE

Dynmaic Power 49.4µW 15.6µW

Write Time 1ns/bit 10ns/bit

write Energy 2pJ/bit[21] 20pJ/bit

Static Power 1.5nW 0.3nW

Area
42MOSs

14 GSHE MTJ
(Device Counts) + 20 Diodes

Besides dynamic power consumption, TABLE 9 summarizes the comparison between CMOS

circuit and our proposed structure circuit, under 22nm tech nodes: except the reduction of dynamic

power, the static power is also largely reduced. The leakage power in our proposed structure circuit

comes from the control line, GSHE device doesn’t have ability to float the line, thus, there is one

pass-gate applied on each control line to switch the control line from supply voltage, ground, and

floating state. Even though, the usage of CMOS transistor is much less than conventional CMOS

based circuits, thus, its static power consumption will be much smaller.

The proposed non-volatile logic circuits make it possible not only to eliminate the power con-

sumption, but also to reduce the chip area. With a full adder, a CMOS based full adder with steam

bit structure (which has a latch connect with the carry-out output) will cost around 42 MOSs, while

GSHE logic requires only 14 GSHE MTJ + 20 diodes, even by using with conventional diodes in
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this structure, the total area of GSHE based logic is still much smaller than CMOS circuits. Write

time is one of the most important disadvantage in GSHE logic, it also dominates the write energy

when updating stored data. GSHE logic has already had a larger update progress comparing with

conventional spin-logic utilizing STT-RAM. We can expect that it is possible to further improved

the operation speed.
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7.0 CONCLUSION

It has been four decades since the discovery of tunneling magnetoresistance effect by Julliere.

Since then, the improving technologies and new discoveries have pushed spin-transfer torque mem-

ory (STT-RAM) to become one of the leading candidate for future non-volatile memory technol-

ogy. As we mentioned in this thesis, STT-RAM has huge benefits like non-volatility, high operation

speed, and high integration density. However, the benefits can be greater if not for the conflicting

design requirements that STT-RAM needs to overcome to meet read, write and reliability design

targets. In this thesis, we systematically analysed these requirements, and discuss the advantage

and disadvantage of both single level cell and multi level cell STT-RAM, and follow with several

improvement design to overcome the disadvantages. With all the researches, we may prove that

STT-RAM can fulfill its potential as the truly universal next-generation memory technology.
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