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Abstract

High Dynamic Range (HDR) imaging techniques potentially allow for the cap-
ture and storage of the full information of light in a scene. However, common
display devices are limited in terms of their contrast and brightness capabilities,
thus HDR images must be tone mapped before presentation on a display device
to ensure that the original appearance of the scene is reproduced.
In this thesis, we take two approaches to the tone mapping problem. First, we
develop a general framework for improving any tone mapped image by reducing
the distance with the corresponding HDR image in terms of a non-local percep-
tual metric. The distance is minimized by means of a gradient descent algo-
rithm. Second, we develop a real-time Tone Mapping Operator (TMO) that is
well suited to the statistics of natural scenes, and is in keeping with new psy-
chophysical findings and neurophysical data. We determine the adequate non-
linear adjustments needed for our tone mapping results to look best in different
viewing conditions through a psychophysical experiment and develop an auto-
matic method that can predict the experimental data. Our TMO produces results
that look natural, without any spatio-temporal artifacts. User preference tests
show that our method outperforms state of the art approaches. The TMO is fast
and could be implemented on camera hardware. It can be used for on-set moni-
toring of HDR cameras on regular displays, as a substitute for gamma correction,
and as a way of providing the colorist with content that is both natural looking
and has a crisp and clear appearance.
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Resum

Les tècniques d’imatge d’alt rang dinàmic (HDR) potencialment permeten la
captura i l’emmagatzematge de tota la informació de llum en una escena. No
obstant això, els dispositius comuns de visualització són limitats en termes de
les seves capacitats de contrast i brillantor, per tant, les imatges HDR han de ser
mapejades tonalment abans de presentar-les en un dispositiu de visualització per
assegurar que es reprodueix l’aspecte original de l’escena. En aquesta tesi, es
prenen dos enfocaments del problema de mapeig tonal. En primer lloc, es desen-
volupa un marc general per a la millora de qualsevol imatge mapejada tonalment
mitjançant la reducció de la distància a la corresponent imatge HDR en termes
d’una mètrica perceptiva no local. La distància es redueix al mı́nim per mitjà
d’un algoritme de descens de gradient. En segon lloc, es desenvolupa un oper-
ador de mapeig tonal (TMO) en temps real que s’adapta bé a les estadı́stiques
d’escenes naturals, i concorda amb els nous descobriments psicofı́sics i dades
neurofı́siques. Determinem les correctes adaptacions no lineals necessàries per
als nostres resultats de mapeig tonal per tal d’obtenir l’aparença òptima en difer-
ents condicions de visualització, a través d’experiments psicofı́sics i desenvolu-
par un mètode automàtic per poder predir dades experimentals. El nostre TMO
produeix resultats d’aspecte natural, sense cap tipus d’artefactes espacials o tem-
porals. Els tests de preferència dels usuaris mostren que el nostre mètode obté
millors resultats en comparació amb les tècniques més recents. El TMO és ràpid
i podria ser implementat en el hardware de la càmera. Pot ser utilitzat per al
monitoratge de càmeres HDR en pantalles regulars, com a substitut de la correc-
ció gamma, i com una manera de proporcionar al colorista amb contingut que té
alhora un aspecte natural i una aparença nı́tida i clara.

viii



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page ix — #9

Contents

Glossary xiii

List of Figures xviii

List of Tables xix

1 INTRODUCTION 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Publications and Patent . . . . . . . . . . . . . . . . . . . . . . 8

2 HUMAN VISUAL SYSTEM 9
2.1 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Optics of the Eye . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Rods and Cones System . . . . . . . . . . . . . . . . . 12
2.2.3 Photoreceptor Response . . . . . . . . . . . . . . . . . 16
2.2.4 Receptive Fields . . . . . . . . . . . . . . . . . . . . . 16

2.3 Psychophysical Studies of Visual Sensitivity . . . . . . . . . . . 18
2.3.1 Dark and Light Adaptation . . . . . . . . . . . . . . . . 20
2.3.2 Contrast Sensitivity Function . . . . . . . . . . . . . . . 21

2.4 Limitation of Vision Models . . . . . . . . . . . . . . . . . . . 22
2.5 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Color and Color Space . . . . . . . . . . . . . . . . . . . . . . 23

ix



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page x — #10

3 DIGITAL CAMERAS AND HIGH DYNAMIC RANGE IMAGING 29
3.1 Camera Imaging Pipeline . . . . . . . . . . . . . . . . . . . . . 29
3.2 High Dynamic Range Capture . . . . . . . . . . . . . . . . . . 35
3.3 Encoding and Storage . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Linear Encoding Standards . . . . . . . . . . . . . . . . 38
3.3.2 Non-linear Encoding Standards . . . . . . . . . . . . . 39

4 DISPLAY AND TONE MAPPING 43
4.1 Display and Dynamic Range . . . . . . . . . . . . . . . . . . . 43
4.2 Tone Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Global TMOs . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Local TMOs . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Global + Local TMOs . . . . . . . . . . . . . . . . . . 54
4.2.4 Tone Mapping in Videos . . . . . . . . . . . . . . . . . 55
4.2.5 Color Reproduction in Tone Mapping . . . . . . . . . . 57
4.2.6 Tone Mapping for HDR Display . . . . . . . . . . . . . 60

4.3 Evaluation of Tone Mapping Results . . . . . . . . . . . . . . . 62
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 OPTIMIZING TONE MAPPED IMAGES 69
5.1 General Framework for Improving Tone Mapping Results . . . . 70

5.1.1 Distance between Images as a Non local Operator . . . . 70
5.1.2 Reduction of the Distance between an HDR Image and

its Tone Mapped Version . . . . . . . . . . . . . . . . . 72
5.2 Discrete Functional Derivatives in the case of Perceptual Metrics 75

5.2.1 Approximation of the JND in the Luminance Space . . . 75
5.2.2 Computation of the terms ε1, ε2,d . . . . . . . . . . . . 76

5.3 Tests with the Perceptual Metric DRIM . . . . . . . . . . . . . 78
5.3.1 Reducing a Dynamic Range Independent Perceptual Dis-

tance between an HDR Image and its Tone Mapped Version 79
5.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 TONE MAPPING BASED ON VISUAL PERCEPTION MODELS 97
6.1 Tone Mapping: Algorithm 1 . . . . . . . . . . . . . . . . . . . 98

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 98

x



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xi — #11

6.1.2 Stage 1: Constrained Histogram Equalization based on
Psychophysical Data . . . . . . . . . . . . . . . . . . . 98

6.1.3 Stage 2: Contrast Enhancement based on a Neural Model 102
6.1.4 Implementation . . . . . . . . . . . . . . . . . . . . . . 105
6.1.5 Experiments and Results . . . . . . . . . . . . . . . . . 107

6.2 Tone Mapping: Algorithm 2 . . . . . . . . . . . . . . . . . . . 113
6.2.1 Stage 1: Non-linear Adaptation based on Natural Image

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 Stage 2: Contrast Normalization . . . . . . . . . . . . . 115
6.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . 117
6.2.4 Extension to Videos . . . . . . . . . . . . . . . . . . . 121
6.2.5 Experiments and Results . . . . . . . . . . . . . . . . . 122

Psychophysical experiment . . . . . . . . . . . . . . . . 123
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 TONE MAPPING DEPENDENT ON VIEWING CONDITION 133
7.1 Brightness Perception and Viewing Condition Dependency . . . 133
7.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 Psychophysical Experiment . . . . . . . . . . . . . . . . . . . . 136
7.4 Contrast Measurement . . . . . . . . . . . . . . . . . . . . . . 137
7.5 Model to Predict the Experiment Result . . . . . . . . . . . . . 138
7.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 138
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 APPLICATIONS 143
8.1 Substitute for In-camera Gamma Correction . . . . . . . . . . . 143
8.2 Use at Several Stages of the Production Chain in the Media Industry145
8.3 Cascaded Linear and Nonlinear Neural Models . . . . . . . . . 146
8.4 Dehazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.4.1 Model in Operation . . . . . . . . . . . . . . . . . . . . 151
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9 CONCLUSION 157

Appendix A PARAMETER OPTIMIZATION 179
A.1 Parameter Optimization: MAD Competition . . . . . . . . . . . 179
A.2 Slider Optimization . . . . . . . . . . . . . . . . . . . . . . . . 182

xi



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xii — #12

A.3 Comparison between MAD and Slider Optimization . . . . . . . 182
A.4 Optimization based on TID2008 Dataset . . . . . . . . . . . . . 183

xii



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xiii — #13

Glossary

CCD charge-coupled device.
CFA color filter array.
CGI computer-generated imagery.
CMOS complementary metal-oxide- semiconductor.
CSF contrast sensitivity function.

DCT discrete cosine transform.
DLP digital light processing.
DMD digital micro-mirror device.
DR dynamic range.
DRIM dynamic range independent metric.

EOTF electro-optical transfer function.

HDR high dynamic range.
HLG hybrid log gamma.
HVS human visual system.

JND just noticeable difference.
JPEG joint photographic experts group.

LCD liquid crystal display.
LCoS liquid crystal on silicon.
LDR low dynamic range.
LED light emitting diode.
LGN lateral geniculate nucleus.

xiii



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xiv — #14

LUT look up table.

MAD maximum differentiation.
MOS mean opinion score.
MSE mean square error.

OETF opto-electrical transfer function.
OOTF opto-optical transfer function.

PQ perceptual quantizer.
PSF point spread function.
PSNR peak signal-to-noise ratio.

QD quantum dot.

SDR standard dynamic range.

TMO tone mapping operator.
TMQI tone mapping quality index.

xiv



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xv — #15

List of Figures

1.1 Camera output with decreasing exposure time . . . . . . . . . . 2
1.2 Linear representation of an HDR image. . . . . . . . . . . . . . 3
1.3 Comparison between default camera output and manual grading 3
1.4 Tone Mapping results and distortion maps for different operators 5

2.1 The general plan of the human eye. . . . . . . . . . . . . . . . . 10
2.2 Human retina . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The ciliary corona and lenticular halo . . . . . . . . . . . . . . 12
2.4 Point spread function . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 The luminance range of the real world and associated visual pa-

rameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 CIE spectral luminous efficiency curve for photopic and scotopic

vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Normalized cone sensitivity. . . . . . . . . . . . . . . . . . . . 15
2.8 Photoreceptor response curves for several values of the semi-

saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Illustration of center-surround receptive fields . . . . . . . . . . 17
2.10 Illustration of spectral opponency in receptive fields . . . . . . . 17
2.11 Threshold vs intensity curve. . . . . . . . . . . . . . . . . . . . 19
2.12 The time course of dark adaptation. . . . . . . . . . . . . . . . 20
2.13 The time course of light adaptation. . . . . . . . . . . . . . . . 21
2.14 Contrast sensitivity function. . . . . . . . . . . . . . . . . . . . 22
2.15 CIE RGB color matching function. . . . . . . . . . . . . . . . . 24
2.16 CIE xy chromaticity diagram. . . . . . . . . . . . . . . . . . . . 26

3.1 Camera imaging pipeline. . . . . . . . . . . . . . . . . . . . . . 30
3.2 Absorption coefficient of light in silicon. . . . . . . . . . . . . . 31

xv



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xvi — #16

3.3 RAW image filtered by Bayer pattern. . . . . . . . . . . . . . . 31
3.4 RAW sensor image and final camera output. . . . . . . . . . . . 32
3.5 Gamma correction on a CRT. . . . . . . . . . . . . . . . . . . . 33
3.6 Linear and gamma corrected image. . . . . . . . . . . . . . . . 34
3.7 Camera output with decreasing exposure time . . . . . . . . . . 35
3.8 Schematic drawing of the camera arrangement in the multiple

sensors with beam splitter. . . . . . . . . . . . . . . . . . . . . 37
3.9 Comparison of quantization errors of logarithmic and gamma en-

coding approaches. . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Display setting to measure ANSI contrast. . . . . . . . . . . . . 44
4.2 The luminance range of currently available displays. . . . . . . 46
4.3 Tone mapping result of [Reinhard and Devlin, 2005]. . . . . . . 49
4.4 Tone mapping result of [Drago et al., 2003a]. . . . . . . . . . . 49
4.5 Tone mapping result of [Mantiuk et al., 2008] (left) and [Eilert-

sen et al., 2015] . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Parameter values of a TMO over the frames of a video sequence. 55
4.7 Tone mapped results of two consecutive frames after applying a

TMO frame by frame. . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Result of different color corrections in tone mapping. . . . . . . 58
4.9 Result of color correction by [Mantiuk et al., 2009] in tone map-

ping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 Result of different color corrections in tone mapping. . . . . . . 60
4.11 The non-linear transformations for various displays with differ-

ent luminance range. . . . . . . . . . . . . . . . . . . . . . . . 61
4.12 Distortion map illustration. . . . . . . . . . . . . . . . . . . . . 66

5.1 Evaluation of preprocessing stage for [Ferradans et al., 2011]. . 87
5.2 Comparison of output with different k values. . . . . . . . . . . 88
5.3 Comparison between the output of preprocessing stage and the

final stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Visual comparisons between the output images of the different

stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Comparison between the final output with 50×50 and 200×200

neighborhoods. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 The final output. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xvi



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xvii — #17

6.1 Block diagram of the proposed TMOs. . . . . . . . . . . . . . . 97
6.2 Relation ship between the median luminance and the dynamic

range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Comparison of complete histogram equalization and constrained

histogram equalization. . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Relationship between average perceived image quality vs the de-

gree of flatness of histogram. Figure from [Kane and Bertalmı́o,
2015]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 (a) The luminance histogram of the original HDR image. . . . . 101
6.6 Illustration of lightness assimilation and contrast. . . . . . . . . 104
6.7 Illustration of the importance of clipping. . . . . . . . . . . . . 106
6.8 Comparison between the output of first and second stage. . . . . 108
6.9 Comparison of TMOs. . . . . . . . . . . . . . . . . . . . . . . 110
6.10 Another comparison of TMOs. . . . . . . . . . . . . . . . . . . 111
6.11 Results of our method for several HDR images . . . . . . . . . 112
6.12 Average histogram of natural scenes, in log-log coordinates. . . 114
6.13 Comparison of the result of the first stage of the Algorithm 1

(left) with the first stage of Algorithm 2 (right). . . . . . . . . . 115
6.14 A schematic of the contrast normalization. . . . . . . . . . . . . 116
6.15 Illustration of the proposed contrast normalization step. . . . . . 116
6.16 Cumulative histogram and histogram for a single natural image

and our estimated parameters . . . . . . . . . . . . . . . . . . . 117
6.17 Cumulative histogram and histogram for a single natural image

with bi-modal distribution and our estimated parameters . . . . 118
6.18 Cumulative histogram and histogram with a spike for a single

natural image and our estimated parameters . . . . . . . . . . . 119
6.19 Comparison of the result of our TMO without clipping (left) and

with clipping (right). . . . . . . . . . . . . . . . . . . . . . . . 121
6.20 Parameter values without temporal filtering. . . . . . . . . . . . 122
6.21 Parameter values with temporal filtering. . . . . . . . . . . . . . 123
6.22 Results of our method applied to RAW images. . . . . . . . . . 124
6.23 Results of our method applied to HDR images . . . . . . . . . . 125
6.24 Psychopysical experiment one setup. . . . . . . . . . . . . . . . 127
6.25 Average subject selected values from 7 observers plotted against

model estimated parameter values for γH . . . . . . . . . . . . . 128

xvii



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xviii — #18

6.26 Average subject selected values from 7 observers plotted against
model estimated parameter values for γL. . . . . . . . . . . . . 129

6.27 Result of experiment two. Pairwise comparison of 3 TMOs . . . 129

7.1 Brightness perception according to [Bartleson and Breneman,
1967] for different viewing conditions. . . . . . . . . . . . . . . 134

7.2 Block diagram of the complete model. . . . . . . . . . . . . . . 135
7.3 Psychophysical experiment setup. . . . . . . . . . . . . . . . . 137
7.4 Plot of projector system contrast vs sequential contrast with dif-

ferent level of white content. . . . . . . . . . . . . . . . . . . . 139
7.5 Results of our method for three different viewing conditions . . 140

8.1 Comparison of our result with default camera output . . . . . . 144
8.2 Comparison of our result with manual output by a skilled colorist. 145
8.3 Cascaded Linear and Nonlinear Neural Models. . . . . . . . . . 147
8.4 The plot shows the behavior of the model in predicting the per-

ception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.5 Comparison between a fog and a non-fog image in the HSV space.152
8.6 An example of artifacts appearing in current image dehazing

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.7 Dehazing applied to standard images. . . . . . . . . . . . . . . 154
8.8 Dehazing applied to challenging images . . . . . . . . . . . . . 155

A.1 A screenshot of a MAD optimization trial. . . . . . . . . . . . . 181
A.2 Comparison between MAD and slider approaches of parameter

optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.3 Scatter plot between the user-selected value of γL and γH from

the slider experiment for a high, medium and low dynamic range
image in clockwise order. . . . . . . . . . . . . . . . . . . . . . 183

xviii



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xix — #19

List of Tables

5.1 Distance with different k values. . . . . . . . . . . . . . . . . . 89
5.2 Distance at the final stage of our method with 50×50 and 200×

200 neighborhoods. . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Quantitative evaluation of images in Fairchild dataset [Fairchild,

2007] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Quantitative evaluation using the Fairchild dataset [Fairchild, 2007].130

7.1 Sequential contrast measurement. . . . . . . . . . . . . . . . . 140
7.2 ANSI contrast measurement. . . . . . . . . . . . . . . . . . . . 140
7.3 Comparison between user-chosen and model-predicted gamma

adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xix



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page xx — #20



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page 1 — #21

Chapter 1

INTRODUCTION

Light intensities in the real world span from around 10−6cd/m2 for starlight to
109cd/m2 for direct sunlight covering a large range. Moreover, the dynamic
range (ratio between the darkest and brightest values) within a single scene can
easily go above four orders of magnitude. Even though the simultaneous Dy-
namic Range (DR) of the Human Visual System (HVS) is only about three to
four orders of magnitude, nonetheless it is capable of handling intensities from
that vast range [Pattanaik et al., 2000], due to the fact that it has multiple adap-
tation mechanisms that continuously adjust according to the light in any viewed
scene.

Traditional imaging technologies fail in capturing and storing all the details and
contrast that we perceive with the naked eye. The problem comes from the lim-
ited dynamic range captured by cameras and stored by standard formats, see
Figure 1.1. With a short exposure time setting a camera captures well the details
in the brightest parts of a high dynamic range scene, but fails to render details
in the dark regions. On the other hand, with a long exposure time setting we
can capture information of the dark regions but at the cost of clipping the bright
intensity values. And there is no single exposure value that allows to properly
capture the entire scene.

High Dynamic Range (HDR) imaging techniques overcome this limitation by
capturing and storing potentially the full range of light information of a scene.
The capturing techniques include: using HDR-capable imaging sensors or us-
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Figure 1.1: Camera output with decreasing exposure time from left to right.

ing standard cameras and capturing multiple exposures of the same scene and
then merging them [Debevec and Malik, 1997] [Gil Rodrı́guez et al., 2015]. The
captured values are generally stored in floating point numbers, providing much
higher accuracy that even exceeds the capabilities of the HVS [Reinhard et al.,
2010]. The RAW camera sensor data, even though it may not capture the entire
dynamic range of a scene, provides a wider dynamic range and higher bit preci-
sion (12-14 bits) when compared to the final default output of a camera.

Common display devices are unable to reproduce the range of luminances found
in the real world, their dynamic range is only about two orders of magnitude.
Even though currently available HDR displays provide a significant improve-
ment in this direction, their capabilities are still far from matching the real world
appearance. Therefore, when HDR or RAW images are linearly represented on
display devices the details and contrasts are not accurately reproduced (see Fig-
ure 1.2), so an operation called tone mapping is performed on the image to scale
down the dynamic range to match the display capability. A successful tone map-
ping algorithm should produce in anyone watching the display a perception of
details and color that matches as much as possible to the perception of the real
world scene [Larson et al., 1997].

In digital cameras, tone mapping is achieved by applying automatic non-linear
transformations to the RAW sensor data. The non-linearity applied in most dig-
ital cameras is well approximated by a simple power law, and is called gamma
correction. While this may perform well on average, in general when dealing
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Figure 1.2: Linear representation of an HDR image (left), false color image of
the HDR image (right).

Figure 1.3: Comparison between default camera output (left) and manual grading
(right). Image courtesy Harald Brendel, ARRI.

with HDR scenes it is sub-optimal [Petit and Mantiuk, 2013]. In professional
filmmaking, a skilled technician (colorist) non-linearly corrects the HDR image
or the RAW sensor data in post-production to optimize image appearance for a
specific viewing condition. Figure 1.3 compares the default camera output pro-
duced by a simple gamma correction with that of the result of manual grading.
Even though both operations receive the same image content as input, the default
camera operation over-saturates the outdoor regions resulting in loss of details,
whereas the manual grading preserves well the overall appearance of the scene.

The literature provides a number of image-dependent automatic and semi-automatic
non-linearities, some based on models of the HVS, see [Ferradans et al., 2011]
and references therein. Additionally, there are more complex, local tone map-
ping algorithms that could, in theory, transform the sensor data, but these tend to
be computationally more expensive, sensitive to image fluctuations, and harder
to tune for a specific application. As a result, manual grading is always preferred
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in professional filmmaking even though it is a time-consuming process.

The metrics that compare an HDR image with its tone mapped version allow
us to estimate the degree of distortion introduced by tone mapping operators
(TMOs). Figure 1.4 shows the results of different TMOs with their pixel-wise
distortion map computed with the perceptually-based metric of [Aydin et al.,
2008]. The color red indicates a reversal of contrast, green is for loss of visible
contrast and blue represents amplification of invisible contrast. The distortion
maps in this example clearly indicate that the TMOs introduce a certain amount
of distortion. The quality of the tone mapped images can be improved by mini-
mizing the detected distortions.

The advancement in display technologies in the past decade resulted in a whole
new variety of displays in the market. They greatly vary in terms of contrast
and brightness. For example, in the low end there are LCD displays that can
produce a peak brightness of 100 cd/m2 with a contrast ratio of 100:1, and in
the high end there are currently available HDR displays that can produce a peak
brightness of more than 5000 cd/m2 with a contrast ratio greater than 5000:1.
Also, with the arrival of portable display devices, the surround and the viewing
environment in which the display is watched greatly vary. For instance, a tablet
can be viewed in a sun-lit outdoor environment or in a dark room. This varia-
tion in the display capabilities and viewing conditions significantly affects the
perceived image quality. Therefore, for an optimal visual experience, the input
image content should be transformed by taking into account the viewing condi-
tion and display capabilities.

The main aim of this thesis is to develop a real-time tone mapping algorithm that
ensures that the displayed content appears realistic and appealing to the viewers
in terms of detail and contrast visibility. In addition, the algorithm should be
of low complexity so that it can easily be implemented with limited hardware
resources, for example in a camera. To achieve this aim, we look into neural and
psychophysical models of the visual system, natural image statistics, and also
the effect of display capabilities and the viewing environment on perception.
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Figure 1.4: Tone Mapping results (top row) and distortion maps (bottom row)
for different operators, from left to right: [Drago et al., 2003a], [Reinhard and
Devlin, 2005], [Ferradans et al., 2011], [Mantiuk et al., 2008].

1.1 Contributions

The main contributions of this thesis are listed below.

• Optimizing tone mapped images. The evaluation with the perceptually-
based metric [Aydin et al., 2008] showed that even the best-performing
TMOs introduce a certain amount of distortion. Considering this problem,
we develop a general framework for optimizing tone mapped images with
respect to a non-local perceptual metric. The approach reduces the dis-
tance between the HDR image and its tone mapped version by means of a
gradient descent algorithm. We test our method with the metric of [Aydin
et al., 2008] for different tone mapped images provided by several TMOs.
Results show that our method improves the tone mapped images tested by
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substantially reducing their perceptual distance with the HDR source im-
age. On average, an improvement of more that 25% is obtained for several
state of the art TMOs.

• We develop a TMO based on visual perception models that is well suited to
the statistics of natural scenes, and is in keeping with new psychophysical
findings and neurophysical data. The method finds, for a given image, a
transform which ensures that the output values are more evenly distributed
over the available range. The TMO consists of two stages, a global adap-
tive non-linear transform followed by a local contrast enhancement step.
We optimize the parameters of the first stage through psychophysical ex-
periments in an office surround setup. The method produces results that
look natural, without any spatio-temporal artifacts. Psychophysical tests
based on users’ preference confirm that our approach outperforms other
state of the art algorithms. In addition, the method has low complexity
and can potentially be executed in real time.

• Tone mapping dependent on viewing condition. The viewing conditions
and the display’s contrast and brightness capabilities can significantly af-
fect the perceived image quality. As a result, the image that appears op-
timal in one display and surround setup may not look best in some other
setup. We conduct a psychophysical experiment to determine the ade-
quate non-linear adjustments needed for the images to look best in differ-
ent viewing conditions. We also develop a mathematical model to predict
the experimental data from some luminance measurements of the display.
The non-linear adjustment predicted by the model allows us to automat-
ically map the results produced by our TMO on to any given display by
taking into account the viewing environment.

The application of the contributions covers the following areas:

• the proposed TMO can be implemented in-camera as a substitute for gamma
correction.

• our TMO can provide the colorist with a fast and automatic graded content
that is both natural looking and has a crisp and clear appearance.
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• the developed TMO can also be used as an off-line tone mapping method
for converting HDR images into LDR ones, with applications to cinema
shoots (on-set use of LDR monitors with an HDR camera), television
broadcast (making HDR signals compatible with LDR equivalents), and
rendering in computer graphics (for video games, 3D animation, the inte-
gration of CGI onto real footage, etc.)

• the model developed for tone mapping can be used for dehazing applica-
tion. The results compare well with that of the state of the art approaches
in the case of standard images, whereas our results out-perform the state
of the art in the case of challenging images by keeping the artifacts to
minimum.

• the developed tone mapping model is used as the first layer of a four-
layer vision model, with application to image quality assessment. The
results show that the model correlates well with the psychophysical data
on subjective distance.

1.2 Chapter Overview

This thesis is organized as follows: Chapter 2 discusses some fundamentals of
human visual perception which are relevant to the topics in this thesis. Chapter
3 summarizes the characteristics of digital cameras and describes various tech-
niques involved in HDR image capture and storage. In Chapter 4 we describe
various display technologies, explain the tone mapping literature and look into
different tone mapping evaluation approaches. We present a general framework
to optimize any tone mapped image by taking into account an evaluation metric
in Chapter 5. In Chapter 6 we explain our proposed TMO that is based on visual
perception models, natural image statistics and psychophysical data. We detail
the proposed viewing condition dependent mapping that optimizes the perceived
image quality of the tone mapped image in each viewing condition in Chapter 7.
In Chapter 8 we show some applications of the proposed model. We conclude
the thesis and suggest some future works in Chapter 9.
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1906.
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Chapter 2

HUMAN VISUAL SYSTEM

This chapter introduces the basic physical and perceptual properties of the human
visual system. The specific aspects and models of the visual system incorporated
in the tone mapping algorithms greatly determine the quality of their results.

2.1 Light

Light is electromagnetic radiation with wavelength (λ) between 380 nm and 740
nm. The flow of light (radiant energy) measured per unit time is radiant flux.
Irradiance is the radiant flux per unit area. Spectral irradiance (I(λ)) describes
the properties of a light source by giving the irradiance for each wavelength (λ).
The reflectance (R(λ)) describes the light absorption properties of a surface.
Radiance is the measure of flux per unit area per unit solid angle. The spectral
radiance of a surface with reflectance R(λ), illuminated by a light source of
spectral irradiance I(λ), is given by:

E(λ) = I(λ)×R(λ) (2.1)

2.2 The Eye

The human eye is an organ of approximately spherical shape in a protective en-
velope. The protective envelope has three pairs of extrinsic muscles that allow
the eye to move in the eye socket providing a change of the point of fixation in
the external field [Wyszecki and Stiles, 1982]. Figure 2.1 shows the physical
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Figure 2.1: The general plan of the human eye. Image from Wikimedia Com-
mons.

construction of the eye which can be divided into two main parts: optical and
sensory. The optical part mainly consists of cornea, pupil, lens, aqueous humor,
and vitreous body. The cornea is a transparent outermost layer through which
the light enters the eye. The pupil is an opening in the eye that contracts and re-
laxes to regulate the amount of light entering the eye. The lens focuses the light
entering the eye onto the fovea in the retina. The accommodation process adjusts
the shape of the lens, allowing it to focus on various distances. The aqueous hu-
mor, a transparent liquid, fills the chamber between the lens and the cornea. The
space between the lens and the retina is filled with a transparent jelly called the
vitreous body.
The sensory part of the eye consists of the retina (see Figure 2.2). The retina
is a thin multi-layered neural tissue that lines the eye, it can be subdivided into
three layers based on the functional properties of the neural network: 1) layer
of photoreceptor cells, 2) layer of intermediate neurons and 3) layer of ganglion
cells [Wyszecki and Stiles, 1982]. Several neighboring photoreceptor cells are
connected to a common bipolar cell and also to a common horizontal cell in the
intermediate neurons layer. The horizontal cell is further connected to a number
of photoreceptor cells in other areas of the retina, but it is not connected to the
ganglion cells. Whereas, the bipolar cells are further connected to the ganglion
cells. The amacrine cells connect the neighboring bipolar and ganglion cells gov-
erning lateral process. The ganglion cells provide the only retinal output signals.
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Light

Rod

Cone

Figure 2.2: Human retina. Figure from [Fairchild, 2013].

The photoreceptor cells, both rods and cones, contain the light-sensitive pig-
ments that when absorb photons, evoke neural signals. These signals are passed
through the intermediate layer of the retina and result in a coded signal emerging
from the ganglion cells. The axons of the ganglion cells form an optic nerve that
is connected to the brain [Wyszecki and Stiles, 1982]. About 90% of the fibers
in the optic nerve pass through the lateral geniculate nucleus (LGN) where they
relay neural signals to the primary visual cortex (V1). However, the LGN most
certainly functions also as a center for visual processing since it receives nu-
merous reciprocal input from the visual cortex that could serve as an adaptation
feedback mechanism [Fairchild, 2013].
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Figure 2.3: The ciliary corona and lenticular halo for a small white light source.
Figure from [Spencer et al., 1995].

2.2.1 Optics of the Eye

The optical part of the human eye, like any other optical systems, is imperfect,
thereby distorts the light that passes through it. The distortion can be due to the
absorption and scattering in the optic media, and the reflections at the surfaces
between the media, and results in a glare effect. Glare effect is composed of two
major components: flare and bloom. The flare is mainly caused by the lens and
is observed as radial streaks (ciliary corona) originating from the center of the
light source, and as a set of colored, concentric rings (lenticular halo) surround-
ing the light source [Spencer et al., 1995] (Figure 2.3). Bloom, also referred to
as veiling luminance, is caused by the light scattering from the cornea, the lens,
and the retina. It is observed as a glow around the bright light sources resulting
in a contrast loss or blur. The blurring effect can be modeled as a point spread
function (PSF). This function depends on the angular distance, eccentricity (dis-
tance from the foveal region) and pupil size of the eye. An example of PSF is
shown in Figure 2.4.

2.2.2 Rods and Cones System

Rods are functional from very low light levels to around 10 cd/m2. On the
other hand, cones are insensitive at very low light levels; the functional range
is from 10−1 to 108 cd/m2. This operational characteristic of rods and cones
determines three vision modes of the HVS: when only rods are active is called
scotopic, when only cones are active is called photopic, and when both rods and
cones are active is called mesopic (see Figure 2.5).
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Figure 2.4: An example of the Point Spread Function. Figure from [Kane and
Bertalmio, 2015].

Figure 2.5: The luminance range of the real world and associated visual param-
eter. Figure from [Ferwerda et al., 1996].

The scotopic vision mode occurs under dark and dim illumination conditions.
At this mode, only rods are active because the cones are insensitive to very low
light levels. The rods cannot distinguish colors, so in scotopic mode, vision is
achromatic. Also, the visual acuity is reduced with the decrease in the illumina-
tion as the neural response is collected over larger groups of rods to increase the
effective sensitivity of the visual system.

The vision is in photopic mode under well-lit illumination conditions. Only
cones are active at this mode because the rods get saturated by too strong illumi-
nations. The photopic mode allows good color vision and higher visual acuity
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Figure 2.6: CIE spectral luminous efficiency curve for photopic and scotopic
vision. Figure from http://www.cvrl.org/.

than in scotopic mode.

The mesopic vision mode is a transition mode between scotopic and photopic
vision and occurs under dim lighting conditions. At this mode, both rods and
cones are active, allowing for color vision.

The spectral sensitivity of rod and cone photoreceptors varies for different wave-
lengths of light. Rods are most sensitive at around 505 nm, whereas the sensitiv-
ity of the cone system peaks at around 555 nm. The luminous efficiency function
shows the relation between the wavelength of a light and its relative efficiency
as a visual stimulus. The sensitivity differences between rod and cone photore-
ceptors lead to separate luminous efficiency functions in scotopic and photopic
vision mode. Figure 2.6 shows the normalized scotopic and photopic luminous
efficiency curves V (λ) developed by CIE.
Luminance is the integral of the spectral radianceE(λ) over the visible spectrum
with V (λ) as follows:

Y =

∫ 740

380
V (λ)E(λ)dλ (2.2)

and is measured in cd/m2 (or nits). This measurement of light is the most used
in terms of imaging systems, especially for high dynamic range imaging.
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Figure 2.7: Normalized cone sensitivity. Figure from [Stockman and Sharpe,
2000].

The perception of color in human vision is possible because of the three types
of cone photoreceptors: L, M and S. The spectral sensitivity of these cones
varies for different wavelength of light and were first experimentally measured
by König [König and Dieterich, 1892]. It is found to be as shown in Figure
2.7. The L-cones are most sensitive to long wavelengths, M-cones to medium
wavelengths and S-cones to short wavelengths. With the colorimetric approach,
the response of cones to a light spectrum of spectral power distribution φ(λ) is
determined by a triplet of values, called the tristimulus values, given by:

L =
∫ 740nm

380nm l(λ)φ(λ)dλ

M =
∫ 740nm

380nm m(λ)φ(λ)dλ

S =
∫ 740nm

380nm s(λ)φ(λ)dλ,

(2.3)

where l(λ),m(λ) and s(λ) are the spectral sensitivity of L, M and S cones, re-
spectively.
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Figure 2.8: Photoreceptor response curves for several values of the semi-
saturation constant σ.

2.2.3 Photoreceptor Response

Photoreceptors transform the incident light into neural signals. However, this
transformation is non-linear [Hunt, 1995] and can be approximated by the Michaelis-
Menten equation:

R(Y )

Rmax
=

Y n

Y n + σn
. (2.4)

This equation was devised from a neuroscience experiment on a single photore-
ceptor response to pulses of light with intensity Y on a uniform background.
The above equation is called Naka-Rushton equation when n = 1. The semi-
saturation value σ is the value of Y at which the response R is half of the
maximum response. Figure 2.8 shows the modeled response of photoreceptors
for different semi-saturation values. The photoreceptors respond successfully
to a luminance range of about four orders of magnitude under constant ambi-
ent illumination. However, the luminance range in nature can go from 10−6 to
109 cd/m2. The operational range of the photoreceptors is changed according to
the average light level facilitating visual adaptation.

2.2.4 Receptive Fields

The receptive field is the area in the sensory space to which a neuron responds.
For example, the receptive field of a photoreceptor is the area in the visual field
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Figure 2.9: Illustration of center-surround receptive fields: on-center (left) and
off-center (right).

in which light alters the response of that cell. In the case of a ganglion cell, the
receptive field is formed by all the photoreceptors that connect with this ganglion
cell through bipolar cells, horizontal cells and amacrine cells. The receptive field
of ganglion cells is organized into a center-surround arrangement as illustrated
in Figure 2.9. There are mainly two types of ganglion cell receptive fields: on-
center (Figure 2.9 left), and off-center (Figure 2.9 right). An on-center cell fires
when the center of its receptive field is stimulated, whereas it is inhibited when
the surround is stimulated. An off-center cell has the opposite behavior. These
receptive field arrangements of the ganglion cells allow them not to respond to
uniform fields but to changes in the visual world. Thus, the contrast informa-
tion is transmitted. Ganglion cells, in addition to spatial opponency (Figure 2.9),
often show spectral opponency as illustrated in Figure 2.10. These cells can be
categorized into two groups: one that responds to the difference between the
firing of L and M cones (red-green opponency), the other that responds to the
difference between the firing of S cones and combined L and M cones (yellow-
blue opponency).

Figure 2.10: Illustration of spectral opponency in receptive fields: reg-green
opponency (left) and yellow-blue opponency (right).
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The LGN cells have receptive fields similar to those of the ganglion cells. The ex-
citation and inhibition within the LGN receptive field allow to enhance the con-
trast across the borders and increase the dynamic range of the message relayed
to the visual cortex [Martinez et al., 2014]. The receptive fields of visual cor-
tex neurons are much more complex as they combine and compare various LGN
cells and also interact with many other cortical regions. In the early 1990s, divi-
sive normalization was proposed to model the activity of neurons in the V1 area
of the cortex. According to the model, the neurons compute a linear weighted
average of the input (both in space and time) and the result is further normalized
by the response of nearby neurons [Carandini and Heeger, 2012]. There are cells
in V1 that are found to respond selectively to the stimuli based on its orientation,
spatial frequency, temporal frequency, and spatial location.

The visual processing becomes increasingly more complex as the signal moves
along the visual pathway. This makes it extremely difficult to explain the behav-
ior of a single cell at the cortical level. In addition, understanding the function of
a single cell may not explain completely the visual response and perception, be-
cause collections of cells interact with each other to form the response [Fairchild,
2013]. The following section describes the psychophysical properties of the vi-
sual system.

2.3 Psychophysical Studies of Visual Sensitivity

In perception, the foundational psychophysical experiments were conducted by
E. H. Weber in the mid-nineteenth century. His experiments with hand-held
weights showed that the minimum amount of weight that makes a noticeable
difference when added to the initial weight is proportional to the initial weight.
Later visual experiments showed a fairly similar relationship, i.e., the smallest
noticeable luminance difference ∆L on a uniform surround is linearly propor-
tional to the luminance of the surround L:

∆L

L
= k, (2.5)

and is called Weber’s law, where k is a constant called the Weber fraction and
∆L is called just noticeable difference (JND). The plot of JND versus L in log-
log scale is called a threshold versus intensity (t.v.i.) curve (see Figure 2.11).
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Figure 2.11: Threshold vs intensity curve. Figure from [Massof et al., 1988].

The above model does not hold for all conditions. In order to overcome the
inconsistency in low luminance values, G. Fechner proposed a correction,

∆L

L+m
= k, (2.6)

where m is a small positive value. By adding the new term, the slope of the t.v.i.
curve becomes close to zero at low-intensity values and that matches with the
experimental data. Eq. 2.6 is now known as Weber-Fechner’s law.

Stevens law: Weber’s law is based on a detection threshold experiment and
may not generalize to real world stimuli, where contrast is mostly higher than
the detection threshold. In [Stevens and Stevens, 1963], the authors proposed a
model to relate the perceived magnitude (brightness) to the luminance based on
a magnitude estimation experiment, in which subjects rate the brightness of the
stimuli on a 0-10 scale. The model relates the brightness to the luminance by a
power function, with an exponent close to 1

3 .

The detection threshold or JND not only depends on the background luminance
level but also on several other factors like the state of adaptation of the HVS, and
the spatial frequency and orientation of the signal. Following sections look into
these aspects.
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Figure 2.12: The time course of dark adaptation both in the rod and cone systems.
Figure from [Ferwerda et al., 1996].

2.3.1 Dark and Light Adaptation

Visual adaptation is achieved by a collection of mechanisms that serves to op-
timize the visual response to a particular illumination condition. These mech-
anisms include: bleaching and regeneration of the photo-pigments in the pho-
toreceptors, difference in the sensitivity and operational range of rod and cone
photoreceptors, neural processes, and the contraction and dilation of the pupil
[Ferwerda et al., 1996]. The adaptation due to neural processes is very fast and
happens in a few seconds. On the other hand, the chemical processes of pigments
in the photoreceptors are much slower and take several minutes. Threshold ex-
periments can be used to measure the time course of visual adaptation. In such
experiments, the observers are initially exposed to a particular light level un-
til they are completely adapted. Then, the background luminance is suddenly
changed to another fixed level and from that moment forward, the JND is mea-
sured. Figure 2.12 and 2.13 show the measured time course of light and dark
adaptations of both rod and cone systems. The detection threshold is initially
high with the sudden change in illumination and decreases asymptotically over
time. Figure 2.12 shows the time course of dark adaptation as measured by
[Hecht, 1934]. According to the plot, in the first five minutes, the detection
threshold decreases rapidly and then remains at a relatively high level. At this
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(a) (b)

Figure 2.13: The time course of light adaptation in the rod system (a) and in the
cone system (b). Figures from [Ferwerda et al., 1996].

stage, the cones reach its maximum sensitivity whereas the rods have still not re-
covered from the initial strong illumination. Then, after about seven minutes, the
detection threshold starts to drop further until the minimum threshold is reached.
Figure 2.13 shows the time course of light adaptation of both rod and cone sys-
tems. The light adaptation in the scotopic range is extremely fast and about 75
% of the process happens in the first 200 ms because rods adapt quickly to light.
Cones adapt relatively slower to light and take around 3 minutes to reach the min-
imum threshold. After about 4 minutes, the threshold level is slightly increased
[Ferwerda et al., 1996].

2.3.2 Contrast Sensitivity Function

The contrast sensitivity function (CSF) describes the sensitivity of the HVS as
a function of spatial frequency [Barten, 1999]. The CSF peaks at medium spa-
tial frequencies at around 3 -5 cycles per degree and decreases for higher and
lower spatial frequencies(see Figure 2.14). This effect results in increasing the
detection threshold for low and high frequencies and decreasing the detection
threshold for medium frequencies.
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Figure 2.14: An illustration of change in contrast sensitivity with spatial fre-
quency. Contrast sensitivity chart after [Campbell and Robson, 1968].

2.4 Limitation of Vision Models

There is a substantial gap in our knowledge about the operations in the vision
system. As pointed out in [Olshausen and Field, 2005], approximately 85% of
the V1 functions are still unexplained. Our knowledge of the the visual system is
mainly derived from experiments using reduced stimuli (e.g., spots, white noise,
or sine wave gratings). The rationale behind the use of such stimuli is that the
experimenter wants to (a) have complete control over the stimulus characteris-
tics and (b) wants to isolate a given property of the visual system and study this
without the influence of other visual processes. But this poses problems, first
because the use of real world stimuli in experiments is difficult, as defining even
the most basic characteristics of such a stimulus such as the orientation requires
assumptions, and second because the visual system is capable of using multiple
different cues to solve a problem and these cues may be difficult or impossible
to isolate.

It is an open question to what extent visual models developed using simple stim-
uli generalize to complex real world scenes of the type that the visual system is
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exposed to in natural environments and has evolved to cope with. For a debate on
the advantages and disadvantages of using simplistic stimuli, refer to [Olshausen
and Field, 2005] and [Rust and Movshon, 2005]. In image processing, when
these visual models are used, one should consider that there remain some doubts
as to whether models developed using simple stimuli do generalize to complex
scenes.

2.5 Dynamic Range

The dynamic range of a scene is defined as the ratio between its highest and the
lowest luminance. Figure 2.5 shows the range of luminances that can exist from
a starlit scene to bright sunlight. So the maximum dynamic range that can occur
is 1014 : 1, even though it is very unlikely that such extremes co-exist in a scene.
The range can go easily over a ratio of 104 : 1 in a scene. Dynamic range is often
specified in orders of magnitude by taking the logarithmic base 10 of the above
ratio. So the ratio 104 : 1 is 4 orders of magnitude.

The dynamic range over which the HVS can operate at any given time is called
simultaneous dynamic range. This range is much lower than the range of lumi-
nance values that can exist in a scene due to several reasons: light scattering in
the optics of the eye; limit of the photoreceptors action potential; limited band-
width of the neurons in the visual pathway [Kunkel and Reinhard, 2010]. In
the literature, there is no clear agreement about the actual simultaneous dynamic
range of the HVS. It varies from 2 orders [Myers, 2003], 3 orders [Purves and
Lotto, 2003], 3.5 orders [Normann and Perlman, 1979] and even more than 3.7
orders of magnitude [Kunkel and Reinhard, 2010].

2.6 Color and Color Space

Colorimetry is the field of color science concerned with assigning numbers to the
colors of physically defined stimuli such that stimuli with the same specification
look alike, (i.e., are in complete color match) [Wyszecki and Stiles, 1982]. The
foundation of colorimetry is the principle of trichromacy, i.e., any color can be
matched by mixing three fixed primary stimuli and adjusting each of its amounts.
The amount of each of the three primaries was determined through color match-
ing experiments [Guild, 1932] [Wright, 1929]. In the experiment, the observers
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Figure 2.15: CIE RGB color matching function. Figure from
http://www.cvrl.org/.

were asked to match the color of a monochromatic light by adjusting the inten-
sity of the three monochromatic lights: red, green, and blue. The experiment
was repeated over different wavelengths of test light and the intensity of each of
the matching red, green, and blue primaries was collected and is given in Figure
2.15. The CIE RGB primaries of a light source with power spectral distribution
E(λ) is computed with the color matching functions r(λ), g(λ), and b(λ) as:

R =
∫ 740

380 r(λ)E(λ)dλ

G =
∫ 740

380 g(λ)E(λ)dλ

B =
∫ 740

380 b(λ)E(λ)dλ

(2.7)

The drawback of the color matching function is that it produces negative values.
CIE XYZ primaries were proposed to overcome this problem by introducing
new color matching functions, x(λ), y(λ) and z(λ), which are obtained by a
linear combination of r(λ), g(λ), and b(λ) with some constraints. Mainly, the
color matching function should be positive and y(λ) should match with the CIE
standard luminosity function V (λ).

24



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page 25 — #45

The XYZ primaries of a light source with power spectral distribution E(λ) is
computed as:

X =
∫ 740

380 x(λ)E(λ)dλ

Y =
∫ 740

380 y(λ)E(λ)dλ

Z =
∫ 740

380 z(λ)E(λ)dλ

(2.8)

Since there is a linear relationship between the CIE RGB and CIE XYZ color
matching functions, a 3-by-3 matrix multiplication converts RGB colors into
XYZ colors.

The primaries of CIE XYZ are not physically realizable (they would require
light of “negative” intensity) therefore they are called virtual primaries and used
mainly as a reference in color conversion formulas.

To provide a convenient two-dimensional representation of colors, chromaticity
coordinates are often used. The transformation from (X,Y, Z) to the chromatic-
ity coordinates are given by:

x = X
X+Y+Z

y = Y
X+Y+Z .

(2.9)

Figure 2.16 shows the CIE xy chromaticity coordinates.

The CIE XYZ color space is not perceptually uniform, i.e., the perceived dif-
ference between two colors is not proportional to the distance between the points
corresponding to the colors in the XYZ color space or in the xy chromaticity
diagram. To overcome this problem, in 1976 the CIE introduced two new color
spaces that are approximately perceptually uniform. They are CIE 1976 L∗a∗b∗

(abbreviated CIELAB) and CIE 1976 L∗u∗v∗ (abbreviated CIELUV), where L∗

is the lightness and both a∗, b∗ and u∗, v∗ are the chromaticity coordinates. The
coordinates a∗, b∗ are designed to make the perceptual difference between two
colors proportional to the distance between the points corresponding to the col-
ors in CIELAB [Bertalmı́o, 2014]. The coordinates u∗, v∗ are designed to make
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Figure 2.16: CIE xy chromaticity diagram. Figure from wikimedia commons.

the just noticeable different colors approximately equi-spaced. The color space
CIELAB is defined by:

L∗ =


(29

3 )3 Y

Yn
if

Y

Yn
≤ 0.008856

116

(
Y

Yn

) 1
3

− 16 if
Y

Yn
> 0.008856

(2.10)

a∗ = 500
(
f
(
X
Xn

)
− f

(
Y
Yn

))
b∗ = 200

(
f(
(
Y
Yn

)
− f

(
Z
Zn

)) (2.11)

where

f(x) =


x

1
3 if x > 0.008856

1
3

(
29

6

)2

x+ 4
29 otherwise

(2.12)
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In, CIELUV, the lightness L∗ is the same as in CIELAB and the chromaticities
is defined by:

u∗ = 13L∗(u′ − u′n)

v∗ = 13L∗(v′ − v′n)
(2.13)

where
u′ = 4X

X+15Y+3Z

v′ = 9Y
X+15Y+3Z

(2.14)

In these equations (Xn, Yn, Zn) are the tristimulus values of the reference white,
u′n and v′n are the (u′, v′) chromaticity coordinates of the white point.
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Chapter 3

DIGITAL CAMERAS AND
HIGH DYNAMIC RANGE
IMAGING

This chapter introduces the image processing steps in the camera imaging pipeline
(Figure 3.1). Then we discuss various methods for capturing and encoding high
dynamic range images and videos.

3.1 Camera Imaging Pipeline

A digital camera sensor is a semiconductor device formed by an array of sensor
elements (pixels) that convert photons into electric signals using the photoelec-
tric effect [Nakamura, 2005]. The sensor response is linear to the number of
absorbed photons, but the proportion of absorption decreases with the wave-
length of incoming light as shown in Figure 3.2. Since the sensor is sensitive up
to 1100 nm, it is necessary to place an infrared filter in the optical path so that
only visible light reaches the sensor. The electric charge generated in the pixels
is transferred for subsequent steps through a scanning process. Based on the way
the scanning is performed the sensor devices are classified into two groups: a
charged coupled device (CCD) and complementary metal-oxide semiconductor
(CMOS). In CCD, the pixels are scanned row-wise and charge in each of the
pixels in a row is transferred sequentially and converted into voltage at one am-
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Figure 3.1: Camera imaging pipeline. Figure from [Ramanath et al., 2005].

plifier. Whereas in CMOS, at each pixel the charge is converted into voltage.

The sensors of the camera are unable to distinguish between the wavelength
bands and hence cannot produce a color image. To produce a color image, a
color filter array (CFA) following a Bayer pattern (see figure 3.3, left) is placed
in front of the sensor 1. With this arrangement each cell of the sensor responds
only to a particular wavelength band hence measuring the amount of one of the
red, green or blue components (see Figure 3.3, right).

Many cameras provide an option to record the sensor values without doing any
further processing. Those are called RAW images and should be processed of-
fline to get an image that looks visually pleasant. Therefore, both in-camera and
offline the RAW sensor values must pass through a number of image processing
steps to produce the final displayable image (see Figure 3.4). The offline pro-
cessing allows for using more sophisticated methods to provide better results,
methods that are too computationally intensive to be implemented in-camera.
Camera manufacturers do not disclose the details about the in-camera process-
ing algorithms used in their models, but in general they have the steps shown
in Figure 3.1: white balance, demosaicing, color conversion, gamma correction,

1Other options are possible, like having three sensors and a beam-splitter, but this is much less
common.
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Figure 3.2: Absorption coefficient of light in silicon. Figure from [Nakamura,
2005].

Figure 3.3: Bayer pattern (left). RAW image filtered by Bayer pattern along with
a zoomed in crop (right). Image transformed for display purpose.
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Figure 3.4: RAW sensor image (left) and final camera output (right).

enhancement (noise removal, contrast enhancement, etc.), and compression.

White balance: The human visual system has an important property of color
constancy that allows us to perceive the color of an object to remain approx-
imately the same under changes in illumination. White balance is the image
processing technique that tries to maintain the color of an object irrespective of
the changing illuminants. In camera, it is performed by an automatic process
that initially estimates illumination [Buchsbaum, 1980] [Cardei and Funt, 1999]
which is then used to normalize the sensor values [Lam and Fung, 2008].

Demosaicing: We have seen above that camera sensors record only one of the
red, green or blue color components. In most cameras, for each pixel we only
get a single color channel. The full-color image is then reconstructed by an in-
terpolation technique called demosaicing [Menon and Calvagno, 2011].

Color conversion: The (R,G,B) sensor values are converted into (X,Y, Z)
tristimulus values by multiplying it with a colorimetric matrix. The 3-by-3 col-
orimetric matrix is pre-computed in a least square minimization approach [Hung,
2005] during the camera calibration such that the converted (X,Y, Z) values
match with actual measured (X,Y, Z) values for several color patches. The
(X,Y, Z) values are further transformed into some standard color space (e.g.
BT.709, DCI P3) by multiplying by another 3-by-3 matrix.

Gamma correction: Gamma correction was introduced initially for compensat-
ing the non-linear response of cathode ray tube (CRT) displays. The luminance
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Figure 3.5: Gamma correction on a CRT. Figure from [Bertalmı́o, 2014].

produced by a CRT display is non-linear with respect to the device’s voltage in-
put. It can be approximated with a gamma non-linearity with a value of around
2.5 and is called decoding gamma or electro-optical transfer function (EOTF).
Due to this reason, when providing a CRT with a linear input proportional to the
light intensity captured by a camera, the reproduced image looks darker and un-
pleasing (see Figure 3.6, left). To overcome this issue the image is non-linearly
corrected with an encoding gamma or opto-electrical transfer function (OETF),
before feeding it to the CRT (see Figure 3.5). This process is called gamma
correction and helps in producing images that look closer to the real scene (see
Figure 3.6, right).

Even though CRTs became obsolete and the later display technologies are ca-
pable of producing luminance linear to the input signal, the technique of gamma
correction has continued to be used by incorporating a decoding gamma similar
to that of the CRT by means of a look-up table (LUT) mainly due to following
reasons.

When coding signals with a limited number of bits, quantization artifacts are
less likely to be visible if we code gamma corrected signals instead of linear
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Figure 3.6: Linear image (left) and gamma corrected image (right).

signals. This is because, gamma correction allows to allocate more bits at dark
regions where the HVS is more sensitive to luminance changes, and fewer bits
to bright regions where the HVS is less sensitive to luminance changes.

The encoding gamma is not exactly the inverse of decoding gamma so that the
combined effect of encoding and decoding is a gamma non-linearity and is called
system gamma or opto-optical transfer function (OOTF). By setting the system
gamma depending on the viewing condition we can adapt the image to give sim-
ilar appearance in different viewing environment.

Image enhancement: Camera manufacturers incorporate image enhancement
steps in the camera imaging pipeline to make the final image look more appeal-
ing and also to reduce the distortions introduced during the image capturing and
processing step. The edge enhancement process sharpens the edges in the im-
ages which were blurred due to the optics of the camera. The most common
in-camera edge enhancement technique is unsharp masking, in which a scaled
edge map (the difference between the original image and its smoothed version)
is added to the original image to get a sharpened image. Another enhancement
step is noise reduction, in which the noise introduced during the image acquisi-
tion and processing is reduced through a denoising process. For example coring,
a common in-camera denoising technique, thresholds the high spatial frequency
DCT coefficients that are usually associated with noise, thus reducing the noise.

Compression: For efficient storage the images are compressed. In the case of
RAW images, lossless compression is often used. The data is stored using either
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Figure 3.7: Camera output with decreasing exposure time from left to right.

TIFF/EP format or using the proprietary format of the camera manufacturers (for
example NEF in Nikon and CR2 in Canon). Some professional cinema formats
like REDCODE and DCI X’Y’Z’ perform lossy compression based on wavelet
transform. In the case of processed images and videos, lossy compression is
normally used and the most common compression formats used in consumer
cameras are JPEG (for images) and MPEG-4 (for videos).

3.2 High Dynamic Range Capture

The dynamic range of the camera sensor is most often measured by the peak
signal-to-noise ratio (PSNR), defined as the ratio of the luminance at which the
sensor saturates to the minimum luminance recorded above the noise level of the
sensor. It is expressed in decibels (dB) as:

PSNR = 20× log10

(
Ypeak
Ynoise

)
. (3.1)

The dynamic range of a conventional camera is less than 70 dB, that is around
3.5 orders of magnitude. Whereas, the dynamic range of a scene with a light
source can go easily above 7 orders of magnitude. Therefore, when capturing
high dynamic range scenes, based on the exposure setting, the dark and/or bright
regions get clipped (see Figure 3.7). To overcome this limitation HDR capture
techniques were proposed and are detailed below:

Multiple exposure fusion technique: A sequence of varying exposure images
of a scene is taken so that details from the darkest to the brightest regions are
captured in multiple images. If the images have been non-linearly corrected like
in the processed JPEG files, then they are linearized by applying the inverse of
the camera response function [Debevec and Malik, 1997]. The linear images
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are further multiplied by the exposure time to get the absolute scene luminance.
These images are then weighted averaged to form a single HDR image [Debevec
and Malik, 1997] [Mann and Picard, 1995] [Gil Rodrı́guez et al., 2015]. This
technique has been incorporated in many mobile phones and commercial cam-
eras. But, in general, instead of an HDR image, they produce a single JPEG
image with details from multiple exposures.
The multiple exposure fusion technique can produce some misalignment and
ghosting artifacts in the final HDR image, due to camera or object movement.
Additional processing like image alignment based on global homography [Tomaszewska
and Mantiuk, 2007] [Granados et al., 2013] and object motion compensation
based on optical flow [Zimmer et al., 2011] are used to overcome these issues.

An alternative approach is to reconstruct HDR images from dual-ISO images
[Gil Rodrı́guez and Bertalmı́o, 2016] [Hajsharif et al., 2014] [Gu et al., 2010].
The dual-ISO images are captured by alternating ISO values between consecu-
tive image rows so that the bright and dark image regions are recorded well in low
and high ISO rows respectively. The dual-ISO capture is possible in some Canon
camera models using the Magic Lantern (ML) [MagicLantern, 2014] camera
software add-on.

Multiple sensors with beam splitters: Instead of capturing multiple exposed
images at different instances of time, images are captured at once using a beam
splitter that directs light to multiple sensors [Aggarwal and Ahuja, 2004]. The
dynamic range of the final HDR image depends on the number of sensors used.
This approach overcomes the problem of motion but requires high precision op-
tics. The HDR video dataset of [Froehlich et al., 2014] is created using this
technique. The schematic of the camera arrangement is shown in Figure 3.8. A
semitransparent mirror transmits about 94% of the incoming light onto one sen-
sor and reflects about 6% of light onto another sensor. This arrangement captures
two different exposures at once and allows to create HDR content.

Solid state sensors: The sensors in this category can be of two types:

1 The sensor response is similar to that of the standard sensors but the ex-
posure time varies spatially [Ginosar and Gnusin, 1997] [Brajovic et al.,
1998].
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Figure 3.8: Schematic drawing of the camera arrangement in the multiple sen-
sors with beam splitters HDR capture technique used in [Froehlich et al., 2014].
Figure from [Froehlich et al., 2014].

2 The sensor response is logarithmic and records the logarithm of the irradi-
ance [Dierickx et al., 1996].

These sensors are used in commercial HDR video cameras (e.g., HDRC VGAx
[IMS-CHIPS, 2002]) to capture dynamic scenes with strong light fluctuations.
They also allow to capture wider dynamic range, but the pixel resolution tends
to be low.

Computer graphics: Realistic computer graphics rendering based on modeling
physics of light interaction in the rendered scenes provides a good approxima-
tion of the actual luminance distribution of the scenes [Pharr and Humphreys,
2004]. These rendered images are a good source of HDR content. The rendering
process is computationally intense, but with the arrival of graphics processing
units (GPU) the CGI rendering is increasingly used in real-time applications like
computer games.

3.3 Encoding and Storage

HDR images encompass a wide range of luminances with high precision which
would impose a huge memory demand if stored without compression. The en-
coding schemes try to minimize the storage demands of HDR images while pre-
serving sufficient information for specific applications. A number of encoding
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approaches mainly based on the properties of the visual system and HDR image
statistics have been proposed, and they can be broadly classified into linear and
non-linear encoding methods.

3.3.1 Linear Encoding Standards

OpenEXR: Is an HDR image format proposed by Industrial Light and Magic
(ILM) in 2003. The files are recognized by the “.exr” extension. OpenEXR
supports 16 and 32-bit floating point, and 32-bit integer. However, 16-bit floating
point is generally used to encode each color channel and the formula to decode
is given as:

H =


0 if (M = 0 ∧ E = 1)

(−1)S2E−15 + M
1024 if E = 0

(−1)S2E−15 +
(
1 + M

1024

)
if 1 6 E 6 30

∞ if (E = 31 ∧M = 0)
NAN if (E = 31 ∧M >= 0)

(3.2)

where S is the sign (1 bit), M the mantissa (10 bits) and E the exponent (5 bits).
This format is widely used, especially in computer graphics.

Radiance RGBE: It is an HDR image format, recognized by the “.hdr” file ex-
tension, proposed by Ward in 1998. It is a 32-bit per pixel custom floating point
representation with 8-bit mantissa (R,G and B) for each color channel (r, g and
b) and an 8-bit common exponent E (a common exponent is used considering
the strong correlation between all color channels). The encoding is as follows:

E =

{
dlog2 (max {r, g, b}) + 128e if (r, g, b) 6= 0

0 if (r, g, b) = 0
(3.3)

(R,G,B) =

⌊
256(r, g, b)

2E−128

⌋
(3.4)

The decoding is given by:

(r, g, b) =

{
(R,G,B)+0.5

256 2E−128 exposure
Ew

if E 6= 0

(0, 0, 0) if E = 0
(3.5)

The main limitation of the RGBE format is that when encoding highly saturated
colors some color information is lost. This problem can be solved by encoding
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in the CIEXYZ color space, using XYZE instead of RGBE.

Encoding in floating point numbers is not ideal for image compression algo-
rithms mainly because: separately encoding mantissa and exponent requires
more bits than encoding single integer values; the precision error of floating point
number is not proportional to the sensitivity of the visual system. Non-linear en-
coding based on models of the visual system in integer numbers provides better
compression.

3.3.2 Non-linear Encoding Standards

The sensitivity of the HVS to light is highly non-linear: at low luminance levels
the visual system is highly sensitive to luminance changes, whereas the sensi-
tivity is relatively low at high luminance levels. Therefore, when encoding lu-
minance values in integer formats with limited bits, quantization error is more
likely to be visible in the low luminance regions. The non-linear encoding meth-
ods consider the non-linear behavior of the visual system and transform the lu-
minance values into an approximately perceptually uniform space in which the
visual system is equally sensitive to changes throughout the entire range. As a
result, banding artifacts are less likely to be visible when these transformed val-
ues are quantized into a limited bit integer format when compared to quantizing
luminance values.

The quality of the encoding greatly depends on the efficiency of the non-linear
transform to approximate the HVS response. The simple gamma correction that
works well in encoding LDR images (with 8 bits) fails to provide reliable re-
sults with HDR images even with 12 bit representation. Figure 3.9 shows that
the quantization error for 12-bit gamma encoding of luminance range of 0.01 to
10000 cd/m2 is above the detection threshold (Schreiber threshold model men-
tioned in ITU BT.2246) in the low luminance region, indicating that the quanti-
zation artifacts might be visible. By encoding the logarithm of the luminance in
integer format, the quantization rate is approximately proportional to the sensi-
tivity of the HVS. Hence this encoding can provide a better representation with
fewer bits. As shown in Figure 3.9, the quantization error for 12-bit logarithmic
encoding is below the Schreiber threshold.
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Figure 3.9: Comparison of quantization errors of logarithmic and gamma encod-
ing approaches.

LogLuv: It uses 16-bits to encode the logarithm of the luminance and 16-bits
to encode the chrominance (CIE 1976 Uniform Chromaticity Scales u’ v’). The
LogLuv encoding has a 24-bits per pixel variant with 10 bits to encode lightness
and 14 bits to encode the merged u/v chrominance.

In addition, camera manufacturers introduced their own encoding quasi-log curves
which include: Log C from ARRI, Canon Log from Canon, S-Log from Sony
and Panalog from Panasonic.

The encoding approach proposed by [Mantiuk et al., 2004] is based on a more
accurate model of the HVS response than the one used in the logarithmic en-
coding. The encoding of the luminance into integer values was derived from the
threshold vs. intensity function [Ferwerda et al., 1996] in such a way that the
quantization error is kept below the detection threshold. Chrominance compo-
nents u’ and v’ are encoded similar to LogLuv encoding with 8 bits per channel.
In [Mantiuk et al., 2005], the authors improved the above encoding by using a
more accurate threshold vs. intensity function derived from the contrast sensitiv-
ity function (CSF) of [Daly, 1992].

A similar encoding approach is proposed in [Miller et al., 2013] using the CSF
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developed by Barten [Barten, 2003]. Unlike the above approaches, this encoding
is display referred, that is the code values correspond to the absolute luminance
produced by a reference display. This allows faithful reproduction of images on
displays similar to that of the reference display, but the signal has to be adapted
to be viewed on other displays (detail explanation in Section 4.2.6). A modified
Naka-Rushton cone response fits the proposed decoding and this functional form
is called perceptual quantizer (PQ) curve:

Y = L

(
V

1
m − C1

C2 − C3V
1
m

) 1
n

(3.6)

where Y is the display luminance; V (0 6 V 6 1) is the input signal; L =
10000;m = 78.8438;n = 0.1593;C1 = 0.8359;C2 = 18.8516;C3 = 18.6875.
This encoding has been standardized by the Society of Motion Picture Engineers
as SMPTE ST 2084 [SMPTE, 2014] and is supported by International Telecom-
munication Union (ITU) recommendation BT.2100. The PQ is part of two HDR
formats that are supported by the recent Super Ultra High Definition (SUHD)
TVs: HDR10 and Dolby vision. Both the above HDR formats include metadata
in the encoded signals allowing for efficient bit allocation depending on the im-
age content and also allowing for mapping the signals according to the display
capabilities. This imposes additional complexity in the production processes as
the image sequence has to be analyzed before the start of the encoding and also
makes it not directly suitable for live broadcast. The experiments in [Miller et al.,
2013] reported that the PQ encoding with 10 bits shows no quatization artifacts
for test images, but 11 bits were needed for a JND test pattern.

The Hybrid Log Gamma (HLG) curve [Borer and Cotton, 2016], jointly pro-
posed by BBC and NHK, is an encoding combining a gamma non-linearity
for lower luminances and a logarithmic function for higher luminance values
as given below:

E′ =

{
r
√
E if 0 6 E 6 1

a× log(E − b) + c if 1 < E
(3.7)

where E is the signal normalized by the reference white-level and E′ is the
resulting nonlinear signal, r = 0.5, a = 0.17883277, b = 0.28466892, and
c = 0.55991073. This is based on the observation that the HVS response has
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approximately logarithmic behavior at higher luminance levels and has approx-
imately a square root behavior at low luminance levels (De Vries-Rose Law).
The use of a gamma non-linearity at the lower luminance levels makes the HLG
signal compatible with standard dynamic range signals. In addition, HLG does
not use metadata, making it a good candidate for encoding in live HDR broad-
casts. HLG is also supported by BT.2100 with a peak display luminance of 1000
cd/m2. The HLG encoded content is adapted for various displays by applying a
system gamma depending on the peak luminance of the display. The experiments
in [Borer and Cotton, 2016] reported that when encoding artificial images, in the
low luminance levels, the 10 bit HLG shows slightly more banding artifacts than
the 10 bit PQ. The authors also pointed out that, for natural images, the 10 bit
HLG provides reliable results to the end users.
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Chapter 4

DISPLAY AND TONE
MAPPING

This chapter introduces various display technologies and looks into their contrast
ratios (dynamic range) and the perceived display qualities. Then we discuss
tone mapping techniques that allow for improving the perceived quality of the
reproduction on a given display. We also show the limitations of the current tone
mapping approaches and discuss some methods to evaluate the tone mapping
operators (TMOs).

4.1 Display and Dynamic Range

The dynamic range or the contrast ratio of a display is generally measured by the
ratio between the brightest and the darkest luminance it can produce:

contrast ratio =
peak luminance

minimum luminance
(4.1)

and the logarithm of the ratio is expressed in orders of magnitude. Based on the
way it is measured, the contrast ratio can be classified into sequential and ANSI
contrast.

Sequential contrast: The minimum luminance is measured while displaying
a full black image, and the peak luminance is measured while displaying a full
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Figure 4.1: Display setting to measure ANSI contrast.

white image. This contrast measurement is the one usually given by manufactur-
ers in the display specifications, but can rarely be achieved in real scenarios.

ANSI contrast: The minimum and maximum luminances are measured simul-
taneously while displaying the checkerboard pattern shown in Figure 4.1. This
value is generally much smaller than the sequential contrast mainly because of
the ambient illuminant and the reflection from the screen. This measurement
gives a more reliable estimate of the perceived contrast in a real world scenario.
In general, the ANSI contrast is measured by displaying 50% white content, but
the amount of white content can be modified to suit the specific application.

In home TVs and computer monitors, the first major technology was the cathode
ray tube (CRT). It has a vacuum tube with an electron gun and phosphor-coated
screen. The electron gun focuses the beam onto the phosphors to generate pho-
tons. The maximum display luminance of a standard CRT is limited to around
100 cd/m2 due to the limitations of the phosphorescent material and safety con-
cerns. The minimum luminance while displaying the checkerboard pattern is
around 0.5 cd/m2 which may increase depending on the image content and am-
bient illuminant. This limits the ANSI contrast of the CRT display to about 2
orders of magnitude [Soneira, 2005].

Later came the Liquid Crystal Display (LCD) technology which works based
on the fact that liquid crystals can transmit and change polarized light under the
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effect of an electric current. That is, by controlling the voltage applied across the
liquid crystal more or less light is allowed to pass and in effect produce different
shades of gray (or color). The liquid crystal can only modulate the light and
cannot produce light by itself, hence an external light source is required for LCD
displays to produce an image. There are many techniques for the external light
source arrangement, also called backlight [Baker, 2010]:

• fluorescent lamps placed at the edges of the display or an array of parallel
fluorescent lamps in case of larger displays.

• light emitting diodes (LEDs) placed at the edges of the display or an array
of LEDs placed behind the display.

• a digital light processing (DLP) projector.

As there is no potential limit on the amount of light the LCD can transmit,
the maximum luminance it can produce depends on the backlight. In conven-
tional LCDs, maximum luminance is limited to around 100-500 cd/m2, mainly
because more powerful single backlight considerably increases the minimum
achievable luminance, also increases the power consumption and the complexity
of the design. Thus the dynamic range achieved on standard LCDs is still around
2 orders of magnitude.
Better contrast ratio, about 3-4 orders of magnitude, can be achieved by sepa-
rately controlling the light intensity of the LEDs in the grid or by using a DLP
projector, rather than using a single backlight [Seetzen et al., 2004]. This tech-
nique is currently used in many HDR displays.

Another popular technology in HDR display is the organic light emitting diodes
(OLED). OLEDs, unlike LCDs, emit light under the effect of an electric current,
thus avoiding the need for an external backlight. The OLEDs can be individually
controlled to produce deeper black levels and higher dynamic range in a low light
condition when compared to an LCD-based HDR display [Mandle, 2010]. But
their maximum achievable luminance is relatively low. Therefore, in a well-lit
condition the dynamic range of OLED displays can be lower that those of LCD-
HDR displays because of the black level increase with an increase in ambient
lighting.

A recent advancement in home TV displays is the quantum dots (QD) technol-
ogy. The QDs, depending on their size, emit light of different wavelengths under
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Figure 4.2: The luminance range of currently available displays.

the effect of electric current or external light source [Soneira, 2014]. The current
QD displays, which are essentially LCD displays, use QD only to filter the light
from the LED backlights. The QD converts the blue light from the LED into
saturated red, green and blue lights so that there is no need to use a color filter
like the one used in normal LED-LCD displays. Thus, avoiding the light loss at
the color filter and producing displays with better peak luminance and dynamic
range.

In general, the maximum ANSI contrast generated by standard displays is around
2 orders of magnitude and by improved displays is around 3 orders and in ex-
treme cases is 4 orders of magnitude (see Figure 4.2).

The most widely used technology in digital cinema projection is Digital Light
Processing (DLP). The DLP projectors use adjustable micro-mirrors to reflect
the backlight. Depending on the orientation of the mirror the light is reflected
either towards the screen through a lens or to a heat sink. The ratio of time
between the two mirror orientations in a given time interval determines the in-
tensity of the projection [Dudley et al., 2003]. Each mirror generally represents
one image pixel so to form a complete image several million micro-mirrors are
arranged in a matrix on a chip, known as Digital Micro-mirror Device (DMD).

Other light modulation technologies in projectors are based on Liquid Crystal
on Silicon (LCoS) and LCD. The LCoS reflects light using liquid crystal chips
on top of a mirrored back-plane. The intensity of the reflection is controlled by
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the liquid crystal. LCD based projectors, similar to LCD displays, use LCD pan-
els to modulate and transmit the backlight towards the lens.

A three-chip projection technique is usually used in digital cinema to produce
color images. Each of these chips is separately illuminated by either red, green
or blue primary light so that they control the intensity of one of the primary col-
ors. The reflected light (transmitted in the case of LCD) from the chips is then
recombined to form a complete color image. The minimum achievable black
level by a projector is determined by its ability to minimize the internal light
scattering. And the peak luminance greatly depends on the effective illumina-
tion at the chips.

The backlight illumination in the projectors can be either from a Xenon arc lamp
unit, LEDs or laser emitting sources. In the case of Xenon arc lamp, the light is
split using a prism and then the primary colors are directed to the particular chip
and the rest are disposed of. As a result the effective illumination on the chip is
considerably reduced. Laser illumination overcomes this problem by providing
the backlight of specific colors. In addition, the maximum luminous flux pro-
duced by the lasers is almost double than that of the Xenon arc lamp. These
factors allow laser projectors to provide higher peak brightness and better dy-
namic range than the lamp-based projectors [Belle, 2016]. The peak brightness
can further be increased by a dual-projection technique: projecting overlapping
images from two projectors. But, this setup leads to an increase in the minimum
luminance so that the effective dynamic range is not further improved [Damera-
Venkata and Chang, 2009]. The following section discusses the achievable con-
trast by projectors.

The actual dynamic range achieved in a cinema projection depends not only on
the dynamic range of the projector but also on the auditorium reflectivity and the
light scattering at the projector optical and port window. In [Tydtgat et al., 2015],
the authors showed that a projector with a sequential contrast of 1 million to 1
can provide an ANSI contrast of only 2400:1 when displaying an image with
1.5% white content in an average theater. The ratio goes even lower to about
700:1 when displaying an image with 5% white content. Thus, the maximum
achievable effective dynamic range of current cinema projection is limited to
around 3 orders of magnitude.
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4.2 Tone Mapping

Tone mapping is the process of mapping the contrast and brightness of an HDR
image onto that of a display. We saw in the previous chapter that a linear map-
ping or a simple gamma correction does not provide reliable results. There are
varieties of TMOs in the literature and their goals vary depending on the specific
application in which they are used:

• produce in viewers a perception of details as close as possible to the one
he/she would have had by observing the original scene directly.

• produce a pleasing image according to subjective preference or artistic
intent.

Tumblin and Rushmeir [Tumblin and Rushmeier, 1993] formally introduced the
problem of tone mapping to the computer graphics field. Since then, many TMOs
have been proposed and can be broadly classified as global or local approaches.
An excellent review of various TMOs can be found in [Reinhard et al., 2010]
[Banterle et al., 2011].

4.2.1 Global TMOs

Most of the global TMOs consist in applying a compression curve to the image
levels, based on psychovisual laws. Besides [Tumblin and Rushmeier, 1993]
who use Stevens’ law, the Naka-Rushton formula is used in ([Pattanaik et al.,
2000], [Reinhard and Devlin, 2005], [Kuang et al., 2007]), Ferwerda’s model in
[Ferwerda et al., 1996], and Weber-Fechner’s law in ([Ashikhmin, 2002], [Lar-
son et al., 1997]) to name a few.

The TMO proposed in [Reinhard and Devlin, 2005] is based on the idea that
tone mapping is similar to the adaptation process in the HVS, and used a modi-
fication of the Naka-Rushton equation:

Id =
I

I + σ(Ia)
, (4.2)

where I is the input HDR image, Ia is the adaptation level generally computed
by a weighted sum of the luminance and the intensity of a color channel, and
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Figure 4.3: Tone mapping result of [Reinhard and Devlin, 2005] when applied
on medium DR image (left) and very HDR image (right). Original HDR image
from [Fairchild, 2007].

Figure 4.4: Tone mapping result of [Drago et al., 2003a]. Original HDR image
from [Fairchild, 2007].

the semi-saturation constant σ(Ia) = (fIa)
m depends on two parameters f and

m. Figure 4.3 shows the result of the method generated with default parameters.
The overall appearance of the scene is not preserved in the image shown on the
right. This happens mainly because the default parameter values are not optimal.
Also, a global tone curve may not preserve well the details when mapping a very
high dynamic range image.

An adaptive logarithmic curve proposed in [Drago et al., 2003b] uses a collection
of logarithmic functions ranging from log2 to log10, the choice of the logarithm
base depending on the luminance values. It tends to over-enhance the contrast in
some regions, also the image might appear unnatural (see Figure 4.4).

The TMO proposed in [Larson et al., 1997] performs a histogram adjustment
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Figure 4.5: Tone mapping result of [Mantiuk et al., 2008] (left) and [Eilertsen
et al., 2015] (right). Original HDR image from [Froehlich et al., 2014].

technique. The tone mapping curve is the normalized cumulative histogram of
the density image (log intensities) that is modified by perceptual constraints. The
method expects absolute scene luminance as the input and provides a sub-optimal
result when provided with relative luminance, which is the most common situa-
tion.

A piece-wise linear tone curve is used in [Mantiuk et al., 2008] to achieve dy-
namic range compression. The parameters of the tone curve are chosen so as to
minimize the difference between the estimated response of the HVS model for
the resultant image and the original image. The method can adapt to the particu-
larity of the display and the viewing condition. If the input HDR image is noisy,
there is a high chance of noise becoming apparent in the result as the method
tries to reproduce as much detail as possible (see Figure 4.5, left). In [Eilertsen
et al., 2015], they try to overcome this issue by adapting the tone curve by mod-
eling the image noise (see Figure 4.5, right).
By simplifying the visual model considered in [Mantiuk et al., 2008] a piece-
wise tone curve which is very similar to integrating the cube root of the image
histogram is proposed in [Mai et al., 2011]. The main aim of this approach is to
encode HDR images efficiently to reproduce on HDR displays and also to pro-
vide a backward compatible version which can be displayed on SDR displays.
The drawback of the method is that the SDR version is not always a reliable re-
production.

A histogram equalization based tone mapping is proposed in [Duan et al., 2010].
Initially, a logarithmic function maps the input luminance into a display lumi-
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nance range. Then a contrast adjustment step, depending on a weighting value,
controls the image transformation between complete histogram equalization and
linear mapping. There may not be a single weighting value that preserves the lo-
cal image details while not making the image appear unnatural. Thus, the authors
extend the method by dividing the image into blocks and applying the contrast
adjustment locally on each block after imposing additional constraints to avoid
halos and blocking artifacts.

In [Singnoo and Finlayson, 2010], tone mapping is achieved by means of a
gamma transform (γtmo) that is derived from the gamma transform that maxi-
mizes the image entropy. The gamma value that maximizes image entropy is
given by:

γ = − 1

mean(log(I))
(4.3)

where I is the HDR image, and γtmo = 0.62× γ + 0.38.

Global TMOs are in general very fast and do not introduce halos or artifacts,
but tend to produce lower contrast images.

4.2.2 Local TMOs

Local TMOs achieve dynamic range compression by modifying each pixel based
on its neighborhood. They are computationally more expensive than global ap-
proaches, but they produce higher contrast images.

In [Reinhard et al., 2002] the luminance of the image is initially linearly scaled
considering the log-average luminance of the image, which is similar to setting
the exposure of a camera. Then it is passed through a global stage to map to the
displayable range:

Ld(x) =
L(x)

(
1 + L(x)

L2
white

)
1 + L(x)

, (4.4)

where x is the pixel position, L is the scaled luminance and Lwhite is the small-
est luminance in L mapped to white. This global version is recommended in
the case of medium dynamic range images, but a local TMO that enhances the
contrast of the image based on the photographic “dodging and burning” [Adams,
1983] technique is used for very high dynamic range images. This local TMO
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allows setting a different exposure for each part of the image. For each pixel, the
operator finds the largest surrounding area (σmax) without large contrast differ-
ences by iteratively increasing the size (σ) of a Gaussian kernel and computing
an average until the difference between the average of consecutive iterations is
greater than a threshold. Then the local operation is applied by considering the
largest surround area:

Ld(x) =
L(x)

1 + Lσmax(x)
, (4.5)

where Lσmax(x) is the local average at x computed with the Gaussian kernel of
width σmax.

The method in [Ashikhmin, 2002] consists of three steps. First, local adapta-
tion luminance is calculated at each point of the image by averaging luminance
of nearby pixels similar to the method in [Reinhard et al., 2002]. Then, a simple
function based on the linearly approximated threshold versus intensity curve is
applied to these values to compress them to the displayable range. The image
details that might have been lost during the above process are re-introduced by
considering the detail layer given by the ratio of pixel luminance to the corre-
sponding average luminance.

A fast bilateral filter approach for tone mapping is proposed in [Durand and
Dorsey, 2002]. Bilateral filtering performs a smoothing operation that blurs an
image while preserving the edge details. The operator considers two different
spatial frequency layers: a base layer and a detail layer. The base layer, which
encompasses high contrast edges, is compressed and added to the detail layer,
which is the difference between the original image and the base layer in logarith-
mic scale. The bilateral filtering might result in spurious edges in high gradient
and high curvature regions and also might over-smooth ramp edges and ridge-
like features.

In order to overcome the limitations of bilateral filtering, a trilateral filter ap-
proach is used in [Choudhury and Tumblin, 2005]. The algorithm initially com-
putes the logarithm of a luminance image, and then the image gradients. These
gradients are smoothed and used as an indicator of the amount by which the bi-
lateral filter [Tomasi and Manduchi, 1998] should be tilted to adapt to the local
region.
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A local adaptive bilateral filtering method [Wang et al., 2010] takes into account
the luminance value to decide the base value, so that the contrast and details are
preserved in dark areas while the luminance is compressed in highlight areas.
These different bases in logarithmic domain are taken as an input for the bilat-
eral filter.

The TMO in [Eilertsen et al., 2015] also works by initially separating the image
into a base and detail layer using an edge-aware filtering. Then the base layer
is split into blocks of five visual degrees each. And for each block, the method
computes a piece-wise linear tone curve that minimizes the contrast distortion
between the HDR and its tone mapped image, while considering the noise level
in the image. The tone curve values of the neighboring blocks are interpolated to
avoid discontinuity at block boundaries. Then the detail layer, after discounting
for the noise visibility, is added to the transformed base layer to obtain the final
tone mapped image.

The TMO in [Banterle et al., 2012] uses existing TMOs to selectively tone
map different image luminance zones. The best performing TMO in each lu-
minance zone is previously determined through a psychophysical experiment.
The method segments the HDR image into luminance zones and applies the best
performing TMO to each zone. Then the nearby zones are fused using Laplacian
blending to get the final image.

In [Ma et al., 2015], the tone mapping is defined as an optimization problem,
searching for an image in the LDR image space that optimizes the tone mapping
quality index (TMQI) [Yeganeh and Wang, 2013]. The optimization is achieved
by a gradient ascent method in which the initial tone mapped image is iteratively
modified in the direction of optimal TMQI.

The main drawback of local TMOs apart from being computationally more ex-
pensive than global approaches is that they have the tendency to produce artifacts
and halos around the edges.
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4.2.3 Global + Local TMOs

Ferradans et al. [Ferradans et al., 2011] proposed a two-stage TMO. The first
stage is a global operation that implements visual adaptation. It is a combination
of the Naka-Rushton equation and Weber-Fechner’s law:

c(I) =


k̂log(I +m) + s0 if I ≤ IM

In

In+Ins
if I > IM

(4.6)

where c is the tone mapping curve, I is the intensity of the HDR image, Is is
the semi-saturation radiance, IM is the inflection point of the radiance value
(approximately Is ∗ 102) and s0 is a constant to ensure continuity of c at IM .
The second stage performs local contrast enhancement, based on a variational
model inspired by color vision phenomenology. An iterative gradient descent
method is applied to minimize the following energy:

E(I) = −1

4

∫ ∫
Ω2

w(x, y)|I(x)−I(y)|dxdy+

∫
Ω

(I(x)−µ)2dx+

∫
Ω

(I(x)−I0(x))2dx,

(4.7)
where Ω is the image domain, x and y are the pixel positions, w is a Gaussian
kernel with its value decreasing with the increase in the distance between x and
y, and µ is the average value of I0, the output of first stage.

An adaptive local TM based on Retinex was proposed in [Ahn et al., 2013].
It is also a two stage operation with global and local adaptation steps. The global
adaptation compresses the HDR image globally:

Lg(x, y) =
log(Lw(x,y)

Lw+1
)

log(Lwmax
Lw+1

)
(4.8)

where Lg(x, y) is the global adaptation output, Lwmax is the maximum of the
input world luminance Lw(x, y), and Lw(x, y) is the log-average luminance.
In the second stage, that performs the local adaptation process, an edge preserv-
ing guided filter is used. The weights of the guided filter depend not only on the
Euclidean distances but also on the luminance differences. To guarantee good
rendition and dynamic range compression, a contrast enhancement factor based
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on luminance values of the scene is used. In addition, an adaptive non-linearity
offset is introduced to deal with the strength of the logarithm function’s non-
linearity.

4.2.4 Tone Mapping in Videos

Most of the TMOs in the literature are proposed to operate with still images and
it is not recommended to apply them directly to video sequences on a frame-by-
frame basis. This is mainly to avoid flickering or temporal inconsistencies due
to the sudden change in the parameter values of the TMO between consecutive
frames. Figure 4.6 shows for some TMO the parameter values over the frames
of a video sequence and Figure 4.7 shows the tone mapped result of two consec-
utive frames.

Global tone mapping algorithms are easy to extend to videos, mainly because
of their simplicity, low computational complexity, and ease of applying temporal
coherency. In order to achieve temporal coherence between consecutive frames
a temporal filter is applied to the parameter values of the tone curve and it can be
done in mainly two ways. The first approach filters the initial parameter values

Figure 4.6: Parameter values of a TMO over the frames of a video sequence.
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Figure 4.7: Tone mapped results of two consecutive frames after applying a TMO
frame by frame. The overall brightness of the left image is less than the right one.
Original HDR image from [Froehlich et al., 2014].

by averaging them with the corresponding parameter values of either a single
previous frame [Kiser et al., 2012] or multiple previous frames [Ramsey et al.,
2004]. The second approach is usually a two-pass procedure in which the initial
parameter values are averaged with the corresponding parameter values of both
previous and coming frames. For example, the method in [Mantiuk et al., 2008]
is adapted for video by performing two passes. In the first pass, the nodes of the
piece-wise linear tone curve are computed for all the frames, and in the second
pass those nodes are adjusted to restrict any temporal variation above 0.5 Hz be-
tween the tone curves of nearby frames.

Global temporal filters as the ones just explained above cannot be used in the
case of local TMOs, as they are spatially varying. A spatio-temporal domain
filter can be used instead. For example, a video extension of the algorithm in
[Fattal et al., 2002] is proposed in [Lee and Kim, 2007]. The method estimates
a pixel-wise motion vector using block matching and tries to maintain the tem-
poral coherence between the pixel values that represent the same object point in
consecutive frames. This temporal coherence is achieved by introducing a new
cost term to the original formulation so that flickering artifacts can be reduced.

In [Aydin et al., 2014], a more accurate spatio-temporal filter utilizing the op-
tical flow is used to maintain the temporal consistency in a video. The filter
decomposes each video frame into a base and a detail layer. Then, by using a
graphical user interface, a user-interactive tone mapping is performed in which,
the base and detail layers are adjusted and combined according to the user choice.
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Due to the high computational complexity, the spatio-temporal filtering cannot
be performed in real-time. Therefore, the base and detail layers of all the frames
should be pre-computed before the user interactive editing. In order to allow
real-time operation, [Croci et al., 2016] replaced the spatio-temporal filter with
a spatial filter. Then to ensure temporal consistency, the parameter values of the
tone curve applied to the base layer are smoothed in the temporal domain, as
performed in [Kiser et al., 2012].

In addition, there are some post-processing techniques that allow to adapt a
global TMO for video processing. One of these techniques is the brightness co-
herence approach [Boitard et al., 2012] that operates in two steps. In the first step
the tone mapped video frames are analyzed to find an anchor frame (a best ex-
posed frame determined based on the geometric mean of the image luminance),
then in the second step the tone mapped images are adjusted to preserve the
brightness coherence with the anchor frame. The brightness coherence approach
is a global operation and may not handle well local fluctuations. A zonal bright-
ness coherence method [Boitard et al., 2014] tries to overcome this limitation by
dividing image frames into different brightness zones and processing each zone
separately.

4.2.5 Color Reproduction in Tone Mapping

Tone mapping operators generally focus on reliably mapping the luminance of
the HDR image on to the display luminance range, and then extend this mapping
to color channels. This approach often causes changes in color appearance. The
common approaches found in the literature for color treatment in tone mapping
are:

1) Preserving the color ratio [Schlick, 1995]: The color component of a tone
mapped image Cout is given by:

Cout =
Cin
Lin

Lout, C = {R,G,B} , (4.9)

where Cin represents one of the color channels of the input image, and Lin and
Lout represent the luminance value before and after tone mapping respectively,
that is

Lout = TMO(Lin). (4.10)
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Figure 4.8: Result of different color corrections in tone mapping. Left image:
preserving color ratio in tone mapping (Eq. 4.9, same as Eq. 4.11 with s = 1)
over-saturates the image. Right image: Eq. 4.11 with s = 0.36 ( s computed
using Eq. 4.13). Saturation can be adjusted by tuning s in Eq. 4.11 but can alter
the luminance of highly saturated pixels (see the apple and grapes). Original
HDR image from [Fairchild, 2007].

This simple approach tends to produce over-saturated images (see Figure 4.8,
left), thus a saturation control term s is used as follows [Tumblin and Turk,
1999]:

Cout =

(
Cin
Lin

)s
Lout, C = {R,G,B} (4.11)

When s > 1 the saturation is increased, and when s < 1 saturation is decreased.
With this approach, adjusting the saturation can alter the luminance of highly sat-
urated pixels (see Figure 4.8) and [Mantiuk et al., 2009] proposed an alternative
technique to overcome this drawback:

Cout =

((
Cin
Lin
− 1

)
s+ 1

)
Lout, C = {R,G,B} , (4.12)

but this method may produce hue shifts (see Figure 4.9).

In [Mantiuk et al., 2009], the authors conducted a subjective study and deter-
mined the adequate value of s needed for a contrast compression c when applied
to an image:

s =
(1 + k1)ck2

1 + k1ck2
, (4.13)

where k1 and k2 are constants, and for Eq. 4.11 k1 = 1.6774 and k2 = 0.9925 ,
and for Eq. 4.12 k1 = 2.3892 and k2 = 0.8552. The contrast compression c of
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Figure 4.9: Result of color correction by [Mantiuk et al., 2009] in tone mapping
(Eq. 4.12). The image has hue shifts (see the zoomed-in cropped region). Here
s is computed by Eq. 4.13. Original HDR image from [Fairchild, 2007].

a tone curve is its slope in a log-log plot.

2) Independently tone map the three channels, that is

Cout = TMO(Cin), C = {R,G,B} (4.14)

where TMO can be different for different channels, although in this case the
resulting image may have hue shifts (see Figure 4.10, left).

3) Applying the same tone curve to all three channels:
A single tone curve, generally derived by considering the luminance component,
is applied to all three channels. This technique works well for medium dynamic
range images but can produce desaturated results for very high dynamic range
images (see Figure 4.10, right).

Alternatively, the TMO in iCAM06 [Kuang et al., 2007] uses an image color
appearance model for color reproduction. Rather than working in the RGB color
space, each operation in iCAM06 is performed in a color space that best suits that
operation. Initially, the input image is converted into a base and detail layer. The
CIE XYZ base image is converted to a spectrally sharp RGB image by the for-
mula in CIE CAM02, passed through linear von Kries normalization to account
for chromatic adaptation, converted into Hunt-Pointer-Estevez fundamentals us-
ing the CIE CAM02 formula, and non-linearly transformed with a generalized
form of the Michaelis-Menten equation. The modified base layer is added to
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Figure 4.10: Result of different color corrections in tone mapping. Independently
tone map the three channels (left), applying the same tone curve to all three
channels (right). Original HDR image from [Fairchild, 2007].

the adjusted detail layer and is converted into the IPT color space [Ebner and
Fairchild, 1998] to perform color and surround adjustments. As a final step, an
inverse output model is applied to obtain the final result.

In addition, [Preiss et al., 2014a] proposed an approach that performs tone map-
ping as a gamut mapping procedure in HDR color space. For this, the HDR color
space HDRLAB2000HL is employed, which can simultaneously represent both
the HDR and LDR images as well as the gamut boundaries of the devices. The
method iteratively minimizes the distance between the original HDR image and
its tone mapped (gamut mapped) image in HDRLAB2000HL space using the
iCID metric [Preiss et al., 2014b] as the objective function. This method allows
transforming the HDR images into the gamut of the output devices.

4.2.6 Tone Mapping for HDR Display

One might think that HDR content can be linearly reproduced on a HDR display
to get reliable results. But in practice, it is never the case. Even though advanced
HDR displays can provide a simultaneous contrast close to that of the simultane-
ous contrast of the human visual system, the input HDR content should still be
tone mapped taking into account visual adaptation, viewing conditions and the
brightness level the display can produce.

The PQ HDR encoding (HDR10 and Dolby Vision formats) is display referred,
that is, the encoded data value corresponds to the absolute display luminance
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Figure 4.11: The non-linear transformations for various displays with different
luminance range. Figure from [ITU, 2016].

when that image is reproduced on the target display. Currently, a target display
with a peak luminance of 1000 cd/m2 is considered in HDR10 and 4000 cd/m2

in Dolby Vision. When those encoded contents are viewed directly on a display
with different peak brightness the results are sub-optimal. A proprietary map-
ping technique is used in Dolby Vision whereas HDR10 uses a simple non-linear
transform with a toe and knee to map the data for better visual quality. Based
on the available display dynamic range the shadow and/or highlight details are
‘gracefully rolled off’ by the toe and knee (ITU-R BT.2390). Figure 4.11 shows
the different non-linear mappings of the encoded content from a target display
luminance range of 0-10000 cd/m2 to various other ranges.

The HLG encoded HDR data is adjusted for a particular display by applying
a system gamma (γsys) depending on the peak display luminance (Lw), where
(γsys) is given by:

γsys = 1.2 + 0.42× log10 (Lw/1000) (4.15)
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The TMOs that take into account the display characteristics and viewing condi-
tion can also be used to map the HDR images onto the HDR displays. The TMO
of [Mantiuk et al., 2008] is one such example. The display model incorporated
in the method allows to determine the absolute display luminance of an image,
depending on the particularities of the display and viewing conditions. The TMO
adapts the tone curve so as to minimize the difference between the HVS response
to the HDR image and the tone mapped image after passing through the display
model. Thus, the approach can be used for tone mapping for HDR displays.

4.3 Evaluation of Tone Mapping Results

Despite being researched extensively over many years, the problem of tone map-
ping evaluation is still open. Some of the reasons that make the evaluation com-
plex are:

• There isn’t an image reference to which the tone mapped image should be
matched.

• Tone mapping intent varies based on the application in which it is used.

• Tone mapping operators generally adapt to the input image, and it is not
possible to evaluate an operator with all possible image content.

• The quality of an image is determined by multiple, sometimes contradict-
ing, image attributes. For example, an image might look unnatural by
over-enhancing the contrast.

• The complexity of the human visual system and our limited understanding
of its functioning.

This latter problem can be mitigated by using the human visual system itself for
the evaluation, i.e., human observers judge the quality of the tone mapped im-
age. Then, the possible references to which the human observers could match the
tone mapped image are: the real world scene (fidelity with reality), the image on
an HDR display (fidelity with HDR display) or a memory image (no reference)
[Eilertsen et al., 2013].
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Fidelity with reality: This approach was used in a number of studies [Yoshida
et al., 2005], [Ashikhmin and Goyal, 2006], [Yoshida et al., 2006], [Čadı́k et al.,
2008] and [Cerdá-Company et al., 2016]. The experiment setup with a real world
reference is extremely complex because both the physical scene and the display
should be visible from the same place. This limits the range of scenes that can
be considered. Also, the difference in the dynamic range, field of view, range of
colors and depth information between the real scene and the tone mapped image
make the task very difficult for the observers.

Fidelity with HDR display: The dynamic range produced by currently avail-
able HDR displays is considerably low when compared to the dynamic range
that can exist in the real world. As a result, HDR images with dynamic range
greater than that of the HDR display should be tone mapped. Also, the viewing
condition of the experiment setup will also greatly affect the perception of the
image on the HDR display. All these factors might introduce noise to the re-
sult. This method is less complex. Some studies that have used this approach are
[Ledda et al., 2005] and [Kuang et al., 2010].

No reference: In this approach, subjects are asked to evaluate the tone mapped
image without providing a reference image. The arrangement of this evaluation
method is simple and easy to setup. Many studies have used this approach, e.g.
[Delahunt et al., 2005], [Čadı́k et al., 2008], [Ashikhmin and Goyal, 2006] and
[Yoshida et al., 2006]. This method is completely based on user preferences and
additional measures have to be taken to deal with large inter-subject variability.

None of the above approaches is perfect. Subjective evaluation is limited in
many ways: firstly, it is often time consuming and expensive; secondly, it is dif-
ficult to incorporate it in the design of tone mapping algorithms. This points out
the importance of objective evaluation of TMOs. An accurate objective evalu-
ation should mimic the subjective evaluation described above, so it requires the
use of a perceptual metric between images of different dynamic range.

The first tone mapping metric was proposed in [Smith et al., 2006], where the
authors estimated the local and global contrast changes present in a tone mapped
image when compared to the HDR original. The global contrast change is esti-
mated by analyzing the tone mapping curve, which may be computed by linear
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regression in the brightness domain. The local contrast change is estimated by
identifying the visible details in both the HDR and LDR images and by comput-
ing the magnitude of the visibility difference between them.

The Dynamic range independent metric (DRIM) [Aydin et al., 2008] com-
pares in a perceptual manner images of any dynamic range. It aims at predicting
details (contrast) changes between two images. More precisely, the purpose of
this metric is to consider the perception that a viewer would have of both images
relying on psychophysical data, and to estimate at each pixel the probabilities of
distortions between the two images. The metric considers three types of distor-
tions:

• Loss of Visible Contrast (LVC), meaning that contrast is visible in one
image (called the reference image) and not in the second one (called test
image).

• Amplification of Invisible Contrast (AIC), when details that were not in
the reference image appear in the test image.

• Contrast reversal (INV), meaning that contrast is visible in both reference
and test images but with different polarity (i.e. the same contour has the
gradient in opposite directions in the two images.)

The metric first considers the two input images separately and estimates the
pixel-wise probability of contrast to be visible (P k,l./v) and the probability of con-

trast not to be visible (P k,l./i ) for each image for each of several bands of orien-
tation l and spatial frequency k, using models for processes in the human visual
system [Mantiuk et al., 2005, Watson, 1987, Daly, 1992].

Then the distortions LVC, AIC and INV are estimated for each pair of bands as:

P k,lLV C = P k,lr/v×P
k,l
t/i P k,lAIC = P k,lr/i×P

k,l
t/v P k,lINV = P k,lr/v×P

k,l
t/v×R

k,l.
(4.16)

The subscript r/. and t/. indicate reference and test images. If the polarity of
contrast in the test and reference images is the same then R is set to 1, else to 0.
The final LVC output of the metric is the probability of detecting a LVC dis-
tortion in any band, and is obtained by combining the probabilities over all the
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bands, according to the formula

LV C = 1−
N∏
k=1

M∏
l=1

(1− P k,lLV C)

where N and M are the number of orientations and spatial bands, respectively.
AIC and INV are computed in a similar way.
Note that for applications to tone mapping evaluation, the reference image is the
luminance map of an HDR image and the test image is the luminance map of its
LDR tone mapped version.
The metric also provides a “distortion map” (a color image) to visualize pixel-
wise distortions with the following color code: green hue represents LVC, blue
hue stands for AIC and red hue indicates INV, the saturation encoding the mag-
nitude of the corresponding distortion, whereas the intensity corresponds to the
intensity of the reference image. At each pixel, the maximum of the three distor-
tions is computed, and the corresponding color is displayed. If the maximum is
lower than 0.5, then the saturation is set to 0.
These three types of distortions estimated by the metric DRIM are illustrated on
Figure 4.12. On the left column, we show two LDR gray-level images. We apply
some filters to these images in order to create distortions. To the image located
in the top row, we apply a Gaussian smoothing on its top-right part and unsharp
masking on its top-left part in order to obtain respectively a contrast reduction
and a contrast enhancement. To the image located in the bottom row, we apply
some contrast reversal technique on the pattern in the chair. The images resulting
from these filters are shown in the middle column. Then, we compute the metric
DRIM where the reference images are the original images on the left column and
the test images are their distorted versions in the middle column. The distortion
maps, shown in the right column, are consistent with the artificial distortions we
created.

Tone mapping quality index (TMQI) [Yeganeh and Wang, 2013] is a tone
mapping metric inspired by the Structural Similarity Index (SSIM) [Wang et al.,
2004]. The structural fidelity (S) measure between the HDR and its tone mapped
version is computed in the same way as in SSIM, but with a modification of the
contrast comparison component in order to allow comparison between images of
different dynamic range; also, the luminance component is removed. The con-
trast comparison component penalizes only if the contrast is visible in the HDR
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Figure 4.12: Distortion map illustration. Left: reference images. Middle: test
images. Right: distortion maps.

image and is invisible in the tone mapped version, or the other way around. The
metric provides a single overall quality score of the tone mapped image as well
as a multi-scale quality map.

The metric also yields a naturalness measure (N) based on the similarity of the
histogram of the tone mapped image with the histogram of 3,000 LDR images of
a database that they consider to evaluate statistics of images. The overall quality
(Q) is computed as a weighted average of S and N, thus the higher the values,
the better the tone mapping result is.

4.4 Conclusion

In this chapter, we have briefly explained various display technologies and their
dynamic ranges. The dynamic range of displays varies from 2 orders of mag-
nitude in the case of standard displays up to 4 orders of magnitude for HDR
displays. We then discuss about various tone mapping techniques and classify
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them into global, local and global + local methods. We later describe various
approaches to adapt TMOs for videos and also for faithful color reproduction.
Finally, we discuss about various tone mapping evaluation approaches and their
limitations.
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Chapter 5

OPTIMIZING TONE MAPPED
IMAGES

In this chapter we present our approach for the improvement of tone mapped im-
ages that takes into account the given metric that will be used for the evaluation.
In such a way, we are able to improve an existing TMO with respect to a given
metric. The aim of this work is two-fold:

1. We develop a general framework for improving any tone mapped image
by reducing the distance with the corresponding HDR image. More precisely,
assuming that the metric met is designed to compare images of different dy-
namic range, our approach for reducing the distance between an HDR image
H : Ω −→ R and its tone mapped version L0 ∈ LDR(Ω) is to minimize func-
tionals of the form

arg min
L∈LDR(Ω)

∫
Ω

Φ(met(L,H)(x)) dx (5.1)

where Φ: Rn −→ R+, through a gradient descent algorithm of initial condition
L0. Then the main task to implement the algorithm is to construct a discrete
approximation of the functional derivative

∂met(L,H)(x)

∂L(y)
(5.2)

2. We apply the general framework described in Eq. 5.1 in the context of the
perceptual metric DRIM [Aydin et al., 2008]. More precisely, we consider the
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following particular cases of Eq. 5.1

arg min
L∈LDR(Ω)

∫
Ω
‖DRIM(L,H)(x)‖k dx (5.3)

where k is a strictly positive constant. We evaluate our method by comparing in
a two-fold way the initial condition with the steady-state of the gradient descent
algorithm. Our tests show that we are able to improve the tone mapping results
of several state of the art approaches by a significant amount.

This chapter is organized as follows. We initially present our general framework
for improving any tone mapped image as a gradient descent algorithm associated
to a non local variational problem. In particular, we give the expression of the
gradient of the functional to minimize. We then consider the case of perceptual
metrics and detail the computation of the discrete functional derivative Eq. 5.2
from which derives the discrete gradient of the functional Eq. 5.1. At last, we
test the corresponding gradient descent algorithm on several tone mapped images
dealing with the perceptual metric DRIM. The content of this chapter is derived
from the work published in [Cyriac et al., 2014] [Cyriac et al., 2013].

5.1 General Framework for Improving Tone Mapping
Results

5.1.1 Distance between Images as a Non local Operator

Many tasks in image processing and computer vision require a validation by
comparing the result with the original data, e.g. optical flow estimation, image
denoising, tone mapping. Whereas measures based on pixel-wise comparisons
(e.g. MSE, SNR, PSNR) are suitable to evaluate algorithms for problems such
as image denoising and optical flow estimation, they are not relevant to evaluate
tone mapping results, because the ground truth is not known. Indeed, tone map-
ping results are evaluated by comparisons with the original HDR images, where
pixel-wise comparisons are not suitable since the images compared are of dif-
ferent dynamic range. This leads us to the following definitions, where we first
remind the concept of functional differentiation.

Definition 5.1.1 (functional derivative) Let X be a Banach space of scalar-
valued functions defined on some domain Ω. The derivative of F : X −→
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Rn, n ≥ 1, with respect to the function I ∈ X at the point y ∈ Ω is the quantity

∂F (I)

∂I(y)
: = lim

ε→0

F (I + εδy)− F (I)

ε
(5.4)

where δy is the Dirac delta function concentrated at the point y.

The differential of F in the direction ϕ ∈ X is then

δF (I;ϕ) : =

∫
Ω
ϕ(y)

∂F (I)

∂I(y)
dy (5.5)

From now on, we consider the set of gray-level images defined on a domain
Ω ⊂ R2 as the Banach space X : = C∞(Ω; [0, 1]).

Definition 5.1.2 (metric) Let Y be the Banach space of vector-valued smooth
functions defined on Ω. We call metric an operator met : X ×X −→ Y .
For x ∈ Ω, we consider F : X × X −→ Rn, n ≥ 1, defined by F (L,H) =
met(L,H)(x) and the partial derivatives of F with respect to L and H at the
point y ∈ Ω, i.e.

∂met(L,H)(x)

∂L(y)
: = lim

ε→0

met(L+ εδy, H)(x)−met(L,H)(x)

ε
(5.6)

∂met(L,H)(x)

∂H(y)
: = lim

ε→0

met(L,H + εδy)(x)−met(L,H)(x)

ε
(5.7)

where δy is the Dirac delta function concentrated at the point y ∈ Ω.
We say that met is
(i) pixel-wise if ∀L,H ∈ X , ∀x, y ∈ Ω, y 6= x, the quantities Eq. 5.6 and Eq.
5.7 vanish.
(ii) non local if ∀L,H ∈ X , ∀x ∈ Ω,∃Ω ⊃ N (x) 3 x,N (x) 6= {x},∃y 6∈
N (x) s.t. the quantities Eq. 5.6 and Eq. 5.7 do not vanish.

Definition 5.1.3 (distance) A distance associated to the metric met is a func-
tional E : X ×X −→ R+ of the form

E : (L,H) 7−→
∫

Ω
Φ(met(L,H)(x)) dx (5.8)
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for some map Φ: Rn −→ R+.
We say that the distance E is pixel-wise, resp. non local, if the associated metric
is pixel-wise, resp. non local.

Note that we only require the distance (Eq. 5.8) to satisfy the non-negativity
property among the classical properties of a distance function (zero for L = H ,
symmetry, triangle inequality).

In this context, we can classify image quality measures into several categories.
The set of pixel-wise distances includes MSE, PSNR and SNR measures, where
the function Φ in Eq. 5.8 is the Euclidean norm ‖ ‖2. Indeed, the correspond-
ing terms met(L + εδy, H)(x) − met(L,H)(x) and met(L,H + εδy)(x) −
met(L,H)(x) in Eqs. 5.6, 5.7 vanish for y 6= x since such quantities only de-
pend on the values L(x) and H(x).
The second category gathers the metrics that are non local. This category can ac-
tually be divided into two sub-categories: the set of metrics that compare images
of same dynamic range (see e.g. [Daly, 1992] for LDR images and [Mantiuk
et al., 2005],[Mantiuk et al., 2011] for HDR images), and the set of metrics com-
paring images of different dynamic range (see e.g. [Smith et al., 2006]). The
metric DRIM [Aydin et al., 2008] belongs to both sub-categories since it is inde-
pendent of the dynamic range of the images it compares.
At last, there exist image quality measures that are neither metrics nor distances
according to the definitions 5.1.2 and 5.1.3. This includes for instance the SSIM
metric [Wang and Bovik, 2002].

5.1.2 Reduction of the Distance between an HDR Image and its
Tone Mapped Version

In practice, LDR images are usually encoded in 8 bits whereas HDR images are
often encoded in 16 bits. This leads us to define the functional spaces LDR(Ω)
and HDR(Ω) as follows

HDR(Ω) = {f ∈ C∞(Ω; [1/65536, 1])} (5.9)

LDR(Ω) = {f ∈ C∞(Ω; [1/256, 1])} (5.10)

In particular, we have LDR(Ω) ⊂ HDR(Ω).
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We consider the following problem: given an HDR image H and a metric met,
we aim at constructing the LDR image L∗ minimizing the distance with H , i.e.
we aim at solving the following variational problem

L∗ : = arg min
L∈LDR(Ω)

E(L,H) (5.11)

Proposition 5.1.4 Assuming that met is continuous, bounded, and Φ is contin-
uous, the variational problem (Eq. 5.11) has a solution.

Proof. Under the assumption of the Proposition, the energy E is bounded since
the domain Ω of an image is a compact subset of R2. Moreover, the set LDR(Ω)
being closed, we deduce that there exists a function L∗ ∈ LDR(Ω) (not neces-
sarily unique) solution of the variational problem Eq. 5.11.

Proposition 5.1.5 Assuming that met and Φ are differentiable, the functions L
which are critical points of the energy

EH : L 7−→ E(L,H) (5.12)

satisfy ∫
Ω
δΦ

(
met(L,H)(x);

δmet(L,H)(x)

δL(y)

)
dx = 0 ∀y ∈ Ω

Proof. The functional EH being differentiable on the whole set LDR(Ω), its
critical points are the functions L where its gradient∇EH vanishes.
Let ψ : Ω −→ R be a compact support function. We compute the differential
δEH of the energy EH at a function L in the direction ψ. We have

δEH(L;ψ) = δE((L,H); (ψ, 0))

=

∫
Ω
δ (Φ ◦ met) ((L,H); (ψ, 0))(x) dx

=

∫
Ω
δΦ (met(L,H)(x); δ met ((L,H); (ψ, 0))(x)) dx

=

∫
Ω2

δΦ

(
met(L,H)(x);

δmet(L,H)(x)

δL(y)

)
ψ(y) dx dy
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The last equality results from Eq. 5.5. At last, as ψ has compact support,
δEH(L;ψ) = 0 =⇒∫

Ω
δΦ

(
met(L,H)(x);

δmet(L,H)(x)

δL(y)

)
dx = 0 ∀y ∈ Ω (5.13)

The gradient of the functional EH at the function L is the map

∇EH(L) : y 7−→
∫

Ω
δΦ

(
met(L,H)(x);

δmet(L,H)(x)

δL(y)

)
dx (5.14)

Due to the complexity of the metrics that compare images of different dynamic
range, the non local operatorsmet encoding the metrics lack mathematical prop-
erties like convexity. As a consequence, it is hard to prove the uniqueness or not
of the solution and establish accurate numerical schemes for reaching the solu-
tion(s) of the variational problem Eq. 5.11.
For this reason, we adopt the following approach: instead of constructing the
best tone mapped image(s) of a given HDR image H with respect to the metric
met by constructing solution(s) of the variational problem Eq. 5.11, we improve
existing tone mapping results by the use of a gradient descent algorithm where
the initial condition L0 is a tone mapped version of H .
Even if the gradient descent algorithm might converge towards critical points L∗
that are not global minima, we have EH(L∗) < EH(L0) meaning the LDR im-
age L∗ is an improvement of the tone mapping result L0.

The main task to compute a discrete approximation of the gradient Eq. 5.14 in
order to perform the gradient descent algorithm is to compute accurate discrete
approximations of the functional derivative

∂met(L,H)(x)

∂L(y)
: = lim

ε→0

met(L+ εδy, H)(x)−met(L,H)(x)

ε

where δy is the Dirac delta function concentrated at the point y ∈ Ω.
Our proposal is to make use of central differences of the form

∂metD(L,H)(a, b)

∂L(i, j)
: =

met(L+ ε1 δ(i,j), H)(a, b)−met(L− ε2 δ(i,j), H)(a, b)

d(L+ ε1 δ(i,j), L− ε2 δ(i,j))
(5.15)
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for some well-chosen ε1, ε2, and where d(L+ ε1 δ(i,j), L− ε2 δ(i,j)) measures a
difference between the two images L+ ε1 δ(i,j) and L− ε2 δ(i,j).
A straightforward choice would be to impose ε1, ε2 to be constant and indepen-
dent of both the intensity values L(i, j) and the metric met.

5.2 Discrete Functional Derivatives in the case of Per-
ceptual Metrics

We argue that the increments ε1, ε2 in Eq. 5.15 should be dependent on the nature
of the metric. In particular, dealing with perceptual metrics, we claim that ε1, ε2
should be chosen to make the difference between the images L and L + ε1δ(i,j)

be perceived equally to the difference between the images L and L− ε2δ(i,j).
Our proposal is to make use of the concept of Just Noticeable Difference (JND)
in order to compute perceived differences between images. However, percep-
tual metrics do not necessarily compare images in perceptually uniform spaces,
meaning that we need to express the JND into the space in which the metric is
operating, which is the luminance space in most of cases.

5.2.1 Approximation of the JND in the Luminance Space

The luminance space Y is not perceptually uniform in the sense that the differ-
ence between two luminance values is not proportional to the difference of light
intensity observed. In 1976, the CIE introduced a measure of the perception of
the light, called lightness, as the quantity

L∗ =


903.3

Y

Yn
if

Y

Yn
≤ 0.008856

116

(
Y

Yn

)1/3

− 16 if
Y

Yn
> 0.008856

(5.16)

where Yn is the highest luminance value of the scene. The quantity Y/Yn is
called relative luminance. The space L∗ is approximately perceptually uniform
since a difference of 1 in the space L∗ approximates pretty well 1 JND (see the
book of Poynton [Poynton, 2012] for details about this and other of the following
technical concepts).
Formula (Eq. 5.16) makes the lightness have a range of 0 to 100. When scaled
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to the range [0, 1], L∗ can be approximated by the 0.4-power of the relative lu-
minance, i.e. we have the relation

0.01L∗ '
(
Y

Yn

)0.4

(5.17)

When shooting a scene, a digital camera captures the light intensity from which
it encodes R,G,B values. Standard digital cameras also perform gamma cor-
rection:

R′ = R
1
γ G′ = G

1
γ B′ = B

1
γ (5.18)

Assuming that these values are encoded in the sRGB color space (which is the
standard color space used in the broadcast and computer industries), γ is approx-
imately 2.2.
Then the relative luminance Y/Yn of an image displayed by a monitor is given
by

Y

Yn
' 0.2126R′

γ
+ 0.7152G′

γ
+ 0.0722B′

γ (5.19)

From Eq. 5.19 and Eq. 5.17, we end up with the formula

L∗ ' (0.2126R′
γ

+ 0.7152G′
γ

+ 0.0722B′
γ
)0.4 (5.20)

(assuming that the lightness is normalized to the range [0,1]).

Finally, using the formula (Eq. 5.20) and the perceptual uniformity of the light-
ness L∗, we can express the JND for the light intensity of a color (R′, G′, B′)
displayed at a screen. An alternative approach to approximate the JND in lumi-
nance space can be found in [Reinhard et al., 2010] (Chapter 10, Section 10.4.2)

5.2.2 Computation of the terms ε1, ε2,d

We assume that the metric met in Eq. 5.15 is operating in the luminance space
(e.g. the metric DRIM [Aydin et al., 2008]).
In order to relate the increments ε1, ε2 as well as the measure d in Eq. 5.15 to the
JND, we have to face the following issue: the JND is determined on a uniform
background whereas expression ( Eq. 5.15) deals with image pixels. In order that
the computation of the JND at an image pixel makes more sense, our proposal is
to compute it using a smoothed version of the image L

L̃ := L ∗Gσ (5.21)
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whereGσ is the Gaussian kernel associated to some variance σ. Indeed, convolv-
ing an image with a Gaussian kernel reduces its variations, making the smoothed
image be locally closer to a uniform patch than the original image.
We can then express the JND for the light intensity perceived at the pixel (i, j)
of the image L using the Eq. 5.17 and the smoothed version L̃ of L as follows.
As a difference of 0.01 in the (normalized) lightness space approximates pretty
well 1 JND, we aim at solving the two functional equations

(L̃+ ε1)0.4 − L̃0.4 = 0.01 (5.22)

L̃0.4 − (L̃− ε2)0.4 = 0.01 (5.23)

whose solutions are
ε1 = (L̃0.4 + 0.01)2.5 − L̃ (5.24)

ε2 = L̃− (L̃0.4 − 0.01)2.5 (5.25)

However, defining ε1, ε2 as in Eq. 5.24, 5.25 yields an extra issue: we might
have L(i, j) + ε1(i, j) > 1 or L(i, j) − ε2(i, j) < 0. In such a case, the image
L+ε1(i, j)δi,j orL−ε2(i, j)δi,j and consequently Eq. 5.15 would not be defined.
We then relax this perceptual uniformity paradigm in order to stay in the range
[0, 1]. We end up with the following two extensions of Eq. 5.22 and Eq. 5.23

(L̃+ ε1)0.4 − L̃0.4 = min(0.01, 1− L̃0.4) (5.26)

L̃0.4 − (L̃− ε2)0.4 = min(0.01, L̃0.4) (5.27)

whose solutions are

ε1 : = (L̃0.4 + min(0.01, 1− L̃0.4))2.5 − L̃ (5.28)

ε2 : = L̃− (L̃0.4 −min(0.01, L̃0.4))2.5 (5.29)

Hence, the image L+ ε1(i, j)δi,j never exceeds 1 since L̃ ≤ L by construction.
For the same reason, L− ε2(i, j)δi,j never gets negative.
Finally, we set

d = min(0.01, 1− L̃0.4) +min(0.01, L̃0.4) (5.30)
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where min(0.01, 1 − L̃0.4) can be viewed as a perceptual distance between the
images L and L+ε1(i, j)δi,j andmin(0.01, L̃0.4) a perceptual distance between
the images L and L − ε2(i, j)δi,j . The summation of the two terms makes the
quantity d represent a perceptual distance between the images L + ε1(i, j)δi,j
and L− ε2(i, j)δi,j .

5.3 Tests with the Perceptual Metric DRIM

As discussed in Section 4.3, the metric DRIM [Aydin et al., 2008] compares in
a perceptual manner images of any dynamic range. It aims at predicting details
(contrast) changes between two images. More precisely, the purpose of this met-
ric is to consider the perception that a viewer would have of both images relying
on psychophysical data, and to estimate at each pixel the probabilities that dis-
tortions between the two images appear.
As the output of the metric DRIM encodes at each pixel the probabilities of de-
tecting the distortions LVC, AIC, INV between two images, we reinterpret the
metric DRIM as follows.

Definition 5.3.1 (Dynamic range independent perceptual metric) LetL,H : Ω −→
R be two images of any dynamic ranges, the perceptual metric DRIM between L
and H is the map

Ω −→ [0, 1]3

DRIM(L,H) : x 7−→ (LV C(L,H)(x), AIC(L,H)(x), INV (L,H)(x))
(5.31)

From the perceptual metric (Eq. 5.31) we define a set of perceptual distances
between images of any dynamic range.

Definition 5.3.2 (Dynamic range independent perceptual distances) Let k be
a strictly positive number. The perceptual distance Ek(L,H) between L and H
is

Ek(L,H) : = ‖DRIM(L,H)‖Lk (5.32)
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In others words, we have

Ek(L,H) =

∫
Ω

(LV C k(L,H)(x)+AIC k(L,H)(x)+INV k(L,H)(x))1/k dx

(5.33)

Note that both definitions of metric and distance are coherent with the definitions
5.1.2 and 5.1.3 in Section 5.1.1.
Moreover, the distances Ek are symmetric since LV C(L,H) = AIC(H,L)
and INV (L,H) = INV (H,L) according to Eq. 4.16.

5.3.1 Reducing a Dynamic Range Independent Perceptual Distance
between an HDR Image and its Tone Mapped Version

In this Section, we detail the gradient descent algorithm mentioned in the end of
Section 5.1.1 in the context of the distances (Eq. 5.32).

Expression of the gradient of the distance

We first show the existence of a solution of the minimization problem related
with the distances (Eq. 5.32).

Proposition 5.3.3 Let H be an HDR image. Assuming that the metric DRIM of
definition 5.3.1 is continuous, the variational problem

arg min
L∈LDR(Ω)

Ek(L,H) (5.34)

has a solution.

Proof. Each distortion being in the range [0, 1], the Lk norms being continuous,
and the space LDR(Ω) being closed, Proposition 5.3.3 appears to be a particular
case of Proposition 5.1.4.

Proposition 5.3.4 Assuming that H is non constant and the metric DRIM is
differentiable on the space LDR(Ω), the critical points of the energy

EkH : L −→ Ek(L,H) (5.35)
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satisfy∫
Ω

LV Ck−1 ∂LV C
∂L(y) +AICk−1 ∂AIC

∂L(y) + INV k−1 ∂INV
∂L(y)

(LV Ck +AICk + INV k)1−1/k
dΩ = 0 (5.36)

∀y ∈ Ω.

For the sake of brevity, we drop the terms in the parenthesis (i.e., LV C instead
of LV C(L,H)) from here on.
The proof of the Proposition relies upon the following postulate: the metric
DRIM only vanishes when the inputs are two identical constant images.
Even if the postulate is counter-intuitive, it holds because the metric DRIM first
treats the two images separately. More precisely, it estimates the probabilities
that the contrast is visible or not in each image and then combines the results
in order to determine the distortions LV C,AIC, INV between the two images.
Hence, even if the images are identical, the fact that the images are first treated
separately makes the distortions be 0 only if the probability that the contrast is
visible is 0 at each pixel of both images, i.e. if both images are constant. All the
experiments we have run confirm this analysis.

Proof. The energy EkH is differentiable on the whole set LDR(Ω) since the
metric DRIM does not vanish for non constant images (postulate). Then, ac-
cording to Prop. 5.1.5, the critical points of Eq. 5.35 satisfy∫

Ω
δ‖ ‖k

(
DRIM(L,H)(x);

δDRIM(L,H)(x)

δL(y)

)
dx = 0 ∀y ∈ Ω

(5.37)
Finally, expression (Eq. 5.36) follows from Eq.5.37 and

δ‖ ‖k((u1, u2, u3); (v1, v2, v3)) =
uk−1

1 v1 + uk−1
2 v2 + uk−1

3 v3

‖(u1, u2, u3)‖kk−1

The term ∇EkH(L) : y 7−→∫
Ω

LV Ck−1 ∂LV C
∂L(y) +AICk−1 ∂AIC

∂L(y) + INV k−1 ∂INV
∂L(y)

(LV Ck +AICk + INV k)1−1/k
dΩ (5.38)

is the gradient of the energy EkH at the function L.
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The discrete gradient descent algorithm

The discrete approximation of the gradient descent algorithm in the context of
the distances (Eq. 5.32) is of the form

Ln+1 = Ln − αn∇DEkH(Ln), L0 = TMO(H) (5.39)

In what follows, we detail the expressions of the discrete gradient ∇DEkH , the
initial condition L0 and the steps αn.

The discrete gradient operator We express the discrete gradient∇DEkH as

∇DEkH(L) : (i, j) 7−→
(5.40)∑

(a,b)∈Ω

LV Ck−1 ∂LV CD

∂L(i,j) +AICk−1 ∂AICD

∂L(i,j) + INV k−1 ∂INV D

∂L(i,j)

(LV Ck +AICk + INV k)1−1/k

Note that we have omitted the dependence of the terms on the pixels (a, b) for
the sake of brevity.
The discrete functional derivatives of the distortions LV C,AIC, INV with re-
spect to L at the pixels (i, j) are computed using Eq. 5.15. For instance, dealing
with the distortion LV C, we have

∂LV CD

∂L(i, j)
: =

(5.41)LV C(L+ ε1(i, j) δ(i,j), H)− LV C(L− ε2(i, j) δ(i,j), H)

d(L+ ε1(i, j) δ(i,j), L− ε2(i, j) δ(i,j))

and the values ε1, ε2, d are determined by Eq. 5.28, Eq. 5.29 and Eq. 5.30 re-
spectively.

The step The images produced at each iteration of the gradient descent (Eq.
5.39) are not necessarily LDR images, but as the metric DRIM is designed for
images of any dynamic range, the numerical scheme is well defined if the values
of Ln+1 are in the range [0, 1] at each iteration which can be achieved if αn is
chosen small enough.
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We then determine αn through a line search strategy that will force the values of
the image to be in the range [0, 1]. The pseudocode for the computation of αn is
the following

Pseudocode 1 computation of αn
Initializations: λ = 0, Enew = EkH(Ln), Eold = EkH(Ln) + 1, Ltemp = Ln

while Enew < Eold and Ltemp(i, j) ∈ [0, 1]∀(i, j) ∈ Ω do
λ = λ+ 0.001
Eold = Enew
Ltemp = Ln − λ∇DEkH(Ln)
Enew = EkH(Ltemp)
end while
αn = λ− 0.001

Initial condition and output image of the gradient descent As the perceptual
metric involved is the metric DRIM, the function L0 should be the light intensity
produced by a screen when displaying the tone mapped image TMO(H), which
can be obtained as follows.
Denoting by R0, G0, B0 the inverse gamma corrected components (see Section
5.2.1) of the tone mapped image TMO(H) in the sRGB color space, we trans-
form TMO(H) into XYZ color coordinates with the formula

X0

Y0

Z0

 =


0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9502




R0

G0

B0

 (5.42)

As mentioned in Section 5.2, the component Y0 is an approximation of the light
intensity produced when displaying a color image on a monitor. Hence, we take
Y0 as the initial condition L0 of the gradient descent (Eq. 5.39).

In order to make to final output of our algorithm be an LDR image, we project
the steady-state L∗ of the gradient descent onto the discrete space of LDR im-
ages LDR(Ω) as follows.
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Assuming that the domain Ω of the HDR image H is of size M ×N , we define
the discrete spaces HDR(Ω) and LDR(Ω) as matrices of the form

HDR(Ω) = {A ∈M(M,N), Ai,j =
k

65536
, k ∈ [1, 65536] ∩ N} (5.43)

LDR(Ω) = {A ∈M(M,N), Ai,j =
k

256
, k ∈ [1, 256] ∩ N} (5.44)

Then, the projection PD onto the set LDR(Ω) consists, forA ∈M(M,N) with
values in the range [0, 1], in clipping and quantizing into the usual 8 bits domain
as

PDA i,j =


1

256
if Ai,j ≤

1

256
b256×Ai,jc

256
if

1

256
≤ Ai,j ≤ 1

(5.45)

where b c is the floor function.
Finally, the output of the algorithm is the color image of components (R∗, G∗, B∗)
defined by

R∗

G∗

B∗

 =


0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9502


−1

X0

PDL∗

Z0


Preprocessing

To increase the chance that the gradient descent algorithm (Eq. 5.39) does not
stop at a local minimum of the energy EkH too close to the initial condition L0,
we apply a preprocessing on L0 in order to get an initial condition Lnew of the
algorithm (Eq. 5.39) that is closer (in terms of perceptual distance) toH than L0.
The method we propose relies on the intuition that high values of LVC might be
reduced by application of local sharpening whereas high values of AIC might be
reduced by local Gaussian blurring. Hence we perform local Gaussian blurring
and unsharp masking (Eq. 5.46) (see [Adams et al., 2012] for details) to L0
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depending on the values of the function LV C(L0, H) − AIC(L0, H). More
precisely, denoting by Lsmooth a blurred version of L0 and defining Lsharp as

Lsharp = L0 + α (L0 − Lsmooth) (5.46)

for some constant α, we define the image Lnew as

Lnew(i, j)=


Lsharp(i, j) if LV C(L0, H)−AIC(L0, H)(i, j) > 0

(1− β)L0(i, j) + βLsmooth(i, j) if LV C(L0, H)−AIC(L0, H)(i, j) < 0
(5.47)

Experiments on different tone mapped images described in the next Section show
that the distance with H is indeed reduced as well as the errors in the distortions
map.

Numerical scheme

We summarize in this Section the different steps of our algorithm.

1 Let H be an HDR image and L0 be a tone mapped version of H . As
the metric DRIM only takes into account the luminance information of
the input images, we first convert them into luminance maps: we apply
the transformation (Eq. 5.42) on the LDR image L0 and extract the lumi-
nance channel Y0, and use the function pfs read luminance[Mantiuk and
Heidrich, 2009] to extract the luminance information of H .

2 We perform the preprocessing described in Section 5.3.1 on the image Y0

with the following parameters: the variance σ of the Gaussian smoothing
kernel is set to 0.62, and the constants α, β are respectively 0.7 and 0.5.
These values provide good results and have been fixed for all the experi-
ments in this chapter.

3 We apply the gradient descent algorithm (Eq. 5.39) where the initial con-
dition is the output of the preprocessing. We test different values for k
and different domains for the summation in the expression of the discrete
gradient operator (Eq. 5.40). Indeed, because the variational problem we
propose is non local, the gradient operator is an integral operator, mean-
ing that its computation might be very time-consuming. In order to de-
crease the execution time of the algorithm, we adopt the following two
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approaches: we consider 50×50 and 200×200 neighborhoods, and make
use of computers equipped with multiple cores to compute the gradient op-
erator over the whole image domain. The algorithm stops when the energy
does not decrease anymore, i.e. when we reach a local or global minimum.

The pseudocode of the gradient descent algorithm is given below.

Pseudocode 2 Gradient descent for optimizing tone mapped images
while Enew < Eold do

for each pixel p do
L+
n = Ln + ε1(p)δp

L−n = Ln − ε2(p)δp, . ε1, ε2 from Eq. 5.28 and Eq. 5.29

(LV C+/−, AIC+/−, INV +/−) = DRIM(L
+/−
n , H),

Diff type = (type+ − type−)/d(p), type ∈ Type =
{LV C,AIC, INV } . d from Eq. 5.30
gradient(p) =

∑
X(
∑

Type type
k−1 ×Difftype)/(

∑
Type type

k)1−1/k

. X is either 50× 50 or full image domain
end for

Ln+1 = Ln − αn × gradient, . αn determined in Section 5.3.1
(LV C,AIC, INV ) = DRIM(Ln+1, H)

Eold = Enew
Enew =

∑
X(LV Ck +AICk + INV k)1/k

end while
L∗ = Ln . L∗ steady-state of the gradient descent
Return PDL∗ . PD from Eq. 5.45

4 The final output LDR color image is then obtained by combining the X0

and Z0 components of the output of the preprocessing with the output
PDL∗ of the gradient descent algorithm.

5.3.2 Experiments

We test our algorithm dedicated to optimize tone mapped images on different
HDR images taken from the MPI [MPI, 2004] and Fairchild [Fairchild, 2013]
databases, and tone mapped images produced by the TMOs [Ferradans et al.,
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2011], [Drago et al., 2003b], [Reinhard and Devlin, 2005], and [Mantiuk et al.,
2008].

The evaluation of our algorithm is two-fold: global and pixel-wise. As a pixel-
wise measure, we consider the distortion maps given by the metric DRIM and
compare the initial condition and final output. As a global measure, we compare
their averaged perceptual distance with H , making use of the following energy

E(L,H) =
1

|Ω|
∑

(a,b)∈Ω

‖DRIM(L,H)(a, b)‖2 (5.48)

The first experiment we propose consists in evaluating the preprocessing. In
Figure 5.1, we show the input tone mapped image, output color image of the
preprocessing, as well as their distortion maps. We have applied the Eq. 5.47
to the luminance channel of tone mapped image obtained with the method of
[Ferradans et al., 2011]. The HDR source image is taken from the MPI database
[MPI, 2004]. We observe that the LVC distortion has been reduced, whereas the
INV distortion has increased a bit. As we can see in Eq. 5.47, the preprocessing
is only devoted to reduce the LVC and AIC distortions, and does not take into
account the INV distortion. Hence, some choices of the parameters α, β might
yield an increase of the INV distortion.

On Table 5.1, we present results of the preprocessing (amongst other results)
tested on images of the Fairchild database [Fairchild, 2013] for the TMOs afore-
mentioned. Note that the images have been rescaled to 200×200 pixels in order
to speed up the gradient descent algorithm. Average results have been computed
over 10 images of the dataset. The results confirm that the preprocessing reduces
the perceptual distance with respect to the HDR source image.

In the second experiment, we evaluate the final output of our method described
above for different perceptual distances (Eq. 5.32) parametrized by a strictly pos-
itive number k. Table 5.1 shows the distance (Eq. 5.48) of the initial tone mapped
images and output images with a given HDR image for the following values of
the parameter k : 0.8, 1, 1.2, 2, 5 and 50. The summation for the computation
of the gradient operator (Eq. 5.40) has been done on 50 × 50 neighborhoods.
The results show that the minimum distance is always reached for k close to 1
(k = 0.8 in most of the cases), and the distance increases when k gets away from
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Figure 5.1: Evaluation of preprocessing stage for [Ferradans et al., 2011] TMO.
Top row: input tone mapped image, output of preprocessing stage. bottom row:
distortion map of the input and preprocessed image.

this optimal k value. Note that the same behavior occurs when k is lower than
the optimal value but we do not show the result in this chapter. We would like to
point out that these results were not expected.

In Figure 5.2, we show a region of the output color images obtained with k =
0.8, 1 and 5 along with their distortion maps. The HDR source is the image

87



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page 88 — #108

Figure 5.2: Comparison of output with different k values. Top left: final output
with k = 0.8. Top middle: final output with k = 1.2. Top right: final output
with k = 5. Bottom row: corresponding distortion maps

“snow” from the MPI database [MPI, 2004]. The input tone mapped image is
provided by the TMO [Mantiuk et al., 2008]. Taking a close look, we can see
in the distortion maps that there is an increase in AIC (blue patches) and INV
(red patches) with the increase in k value, which is coherent with the fact that the
distance increases with the value of k. However, visual differences are almost
impossible to perceive for such close values of k.

In the third experiment, we compare the output of the preprocessing stage
with the final output of our method using 50× 50 neighborhoods and parameter
k = 0.8, as well as their distortions maps (see Figure 5.3). The HDR source is the
image “PeckLake” from the Fairchild database, and the input tone mapped image
is provided by the TMO [Drago et al., 2003b]. Its corresponding distortion map
reveals a great loss of contrast (green patches). We observe that the preprocess-
ing stage reduces such a distortion, and the gradient descent algorithm applied to
the output of the preprocessing reduces it to even greater extent. These improve-
ments are confirmed when computing the perceptual distances (Eq. 5.48) at each
stage with the HDR source image: initial (0.64), preprocessing (0.51), and final
(0.39). There is a 23% reduction in distance in the final image compared to the
preprocessed image. From this result and the ones shown in Table 5.1 we can
claim that applying the gradient descent algorithm to the output of the prepro-
cessing provides much better results than applying only the preprocessing.

Figure 5.4 shows some regions of images on Figure 5.3 and “BarHarborPre-
sunrise” from the Fairchild database. We observe that the preprocessing and the
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Table 5.1: Distance with different k values.
XXXXXXXXXImage

TMO Drago Reinhard Mantiuk Ferradans

AmikBeav
DamPM1

Initial 0.73 0.74 0.76 0.75
Preprocess 0.57 0.61 0.66 0.71

Final (k = 0.8) 0.46 0.52 0.59 0.55
Final (k = 1) 0.47 0.52 0.59 0.55

Final (k = 1.2) 0.47 0.52 0.59 0.55
Final (k = 2 ) 0.49 0.53 0.6 0.56
Final (k = 5 ) 0.54 0.57 0.62 0.56
Final (k = 50) 0.56 0.59 0.64 0.60

Barharbor
Presun

Initial 0.66 0.67 0.53 0.56
Preprocess 0.53 0.55 0.49 0.51

Final (k = 0.8) 0.42 0.45 0.45 0.46
Final (k = 1) 0.42 0.45 0.44 0.46

Final (k = 1.2) 0.42 0.45 0.44 0.45
Final (k = 2) 0.43 0.47 0.45 0.46
Final (k = 5) 0.47 0.51 0.47 0.49

Final (k = 50) 0.50 0.53 0.48 0.50
Average
(10 images)

Initial 0.65 0.66 0.57 0.59
Preprocess 0.53 0.58 0.52 0.54

Final (k = 0.8) 0.42 0.46 0.46 0.46
Final (k = 1) 0.42 0.46 0.46 0.46

Final (k = 1.2) 0.43 0.46 0.46 0.46
Final (k = 2 ) 0.44 0.48 0.47 0.47
Final (k = 5) 0.48 0.51 0.48 0.49

Final (k = 50) 0.49 0.53 0.50 0.51

final output have higher contrast than the original tone mapped images which
means that the LVC distortion has been reduced. Note that the results on top-row
are coherent with the distortion maps in Figure 5.3.

At last, we analyze the impact of modifying the neighborhood size used for the
summation in the expression of the gradient operator (Eq. 5.40). We test our
algorithm for 50 × 50 as well as 200 × 200 neighborhoods (the whole image
domain). The parameter k has been set to 0.8, which is the value giving the
best results in the case of 50 × 50 neighborhoods according to the second ex-
periment. In Figure 5.5, we show the output color images obtained with the two
neighborhood sizes along with their distortion maps. The HDR source images
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Figure 5.3: Comparison between the output of preprocessing stage and the final
stage. Top left: input tone mapped image of [Drago et al., 2003b]. Top middle:
output of preprocessing stage. Top right: final output with k = 0.8. Bottom row:
corresponding distortion maps.
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Figure 5.4: Visual comparisons between the output images of the different
stages. Top left: “PeckLake” tone mapped by [Drago et al., 2003b]. Bottom
left: “BarHarborPresun” tone mapped by [Drago et al., 2003b]. Middle: output
of preprocessing stage. Right: final output with k = 0.8.

are “BarHarborPresunrise” and “PeckLake” from the Fairchild database. The in-
put tone mapped image is provided by the TMO of [Reinhard and Devlin, 2005]
and [Drago et al., 2003b]. The distortion maps show that using the whole im-
age domain substantially reduces the LVC distortion (less green patches appear
in the distortion map), and reduces (in less proportion) the INV distortion (less
red patches). This improvement is due to the fact that the metric DRIM uses the
information of the whole image to estimate the distortions at each pixel. Then,
restricting the domain where we compute the gradient operator yields some in-
formation loss.

Table 5.2 compares the distance between the final output images (using the afore-
mentioned domains) with the HDR source image. We can see that the results
obtained by using a 200× 200 neighborhood have smaller error than the results
achieved by using a 50 × 50 neighborhood, and this numerical behavior is con-
sistent with the visual distortion maps presented in Figure 5.5.

In Figure 5.6, we show some results of our algorithm with a 200×200 neighbor-
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Table 5.2: Distance at the final stage of our method with 50× 50 and 200× 200
neighborhoods. Percentile improvement at each stage with respect to the original
tone mapping result is given in brackets.

XXXXXXXXXImage
TMO Drago Reinhard Mantiuk Ferradans

AmikBeav
DamPM1

Initial 0.73 0.74 0.76 0.75
Preprocess 0.57 (21%) 0.61 (13%) 0.66 (14%) 0.70 (6%)

Final (50× 50) 0.46 (36%) 0.52 (31%) 0.59 (23%) 0.55 (27%)
Final (200× 200) 0.26 (64%) 0.36 (52%) 0.47 (38%) 0.39 (48%)

Barharbor
Presun

Initial 0.66 0.67 0.53 0.56
Preprocess 0.53 (20%) 0.55 (17%) 0.49 (7%) 0.51 (9%)

Final (50× 50) 0.42 (37%) 0.45 (32%) 0.45 (16%) 0.46 (18%)
Final (200× 200) 0.21 (69%) 0.25 (63%) 0.35 (34%) 0.34 (39%)

hood tested on the different TMOs mentioned above applied to the same HDR
image. By a close observation of the output images, we can notice an enhance-
ment of details of the initial tone mapped images which is confirmed by compar-
ing the corresponding distortion maps (reduction of LVC distortion).

5.4 Conclusion

Based on perceptual metrics that measure distortions between images of differ-
ent dynamic range, we propose in this chapter a method to improve tone mapped
images based on a non local variational problem. We tested this approach with
the metric DRIM [Aydin et al., 2008] for different tone mapped images provided
by several TMOs. The experiments show that our approach improves the tone
mapped images tested in the sense that it reduces their perceptual distance to
their HDR source. Our method provides an average reduction of the distance by
more than 25%.

Further work will be devoted to apply the proposed framework to contexts where
minimization of a perceptual distance could also be useful. One such application
may be to optimize gamut mapping methods by considering a perceptual metric
that measures color distortions between images. We are also investigating im-
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Figure 5.5: Comparison between the final output with 50 × 50 and 200 × 200
neighborhoods. First row left: input tone mapped image of [Reinhard and De-
vlin, 2005], third row left: input tone mapped image of [Drago et al., 2003b].
Middle: final output with 50 × 50 neighborhood and their distortions maps.
Right: final output with 200× 200 neighborhood and their distortions maps.
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Figure 5.6: The final output. First column: input tone mapped images (TMOs
from top to bottom: [Drago et al., 2003b], [Reinhard and Devlin, 2005], [Man-
tiuk et al., 2008], [Ferradans et al., 2011]). Second column: final output images
with a 200 × 200 neighborhood. Third column: distortion maps of input tone
mapped images. Fourth column: distortion maps of final outputs. See Table. 5.2
(image “BarharborPresun”) for the corresponding distances.
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provements of our mathematical model. Indeed, we were using in this chapter
a gradient descent approach in order to reduce perceptual distances between im-
ages. However, this approach suffers from two main issues when dealing with
tone mapping: first, the gradient descent algorithm might stop at local minima
that are not global and that are close to the initial condition; second, the repre-
sentation of LDR and HDR images as smooth functions is not very realistic since
we are not taking into account the specificity of their dynamic ranges: the use of
other functional spaces might be more appropriate and lead to better algorithms.
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Chapter 6

TONE MAPPING BASED ON
VISUAL PERCEPTION
MODELS

In this chapter we propose two TMOs that are based on models of visual per-
ception. Both TMOs have a global first stage followed by a local contrast en-
hancement stage. Figure 6.1 shows the simplified block diagram of our proposed
methods.

The chapter is organized as follows: we introduce our tone mapping Algorithm
1 in Section 6.1. Then in Section 6.2 we present the details of our tone mapping
Algorithm 2. Each section includes implementation details, experiments and re-
sults. The content of this chapter is derived from the work published in [Cyriac
et al., 2015a] [Cyriac et al., 2015b] [Cyriac et al., 2016b].

Figure 6.1: Block diagram of the proposed TMOs.
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6.1 Tone Mapping: Algorithm 1

6.1.1 Overview

The first stage applies an optimal gamma non-linearity that best equalizes the
lightness histogram [Kane and Bertalmı́o, 2016]. The second stage adopts the
neural model [Bertalmı́o, 2014], which is an extension of the contrast and color
enhancement method [Bertalmı́o et al., 2007] used in [Ferradans et al., 2011],
with larger capabilities in terms of redundancy reduction and the ability to re-
produce assimilation phenomena. Both [Bertalmı́o, 2014] and [Bertalmı́o et al.,
2007] are closely related to the Retinex theory [Land and McCann, 1971] of
color vision and to the perceptually inspired color correction approach of [Rizzi
et al., 2003]. We validate the method with two image quality metrics DRIM [Ay-
din et al., 2008] and TMQI [Yeganeh and Wang, 2013] that incorporate a model
of human vision.

6.1.2 Stage 1: Constrained Histogram Equalization based on Psy-
chophysical Data

Natural scenes tend to have a low-key luminance distribution. This means that
low luminance values occur much more frequently than high luminance values.
This is especially true for HDR images such as a picture taken directly into sun-
light. In Figure 6.2, we show the relationship between the median luminance
and the dynamic range of each of the images from the Fairchild HDR dataset
[Fairchild, 2007]. The median luminance is calculated after the luminance range
has been normalized between 0 and 1. As the dynamic range increases the me-
dian luminance decreases. This result indicates that, when HDR images are pre-
sented linearly on low dynamic range media, they are dominated by dark, low
contrast regions (see Figure 6.3, top). This problem can be mitigated by a process
called histogram equalization that flattens the luminance distribution of an im-
age. This technique is well established and is effective at increasing the contrast,
and in turn, the detail visible in an image. Complete histogram equalization is
achieved by computing the cumulative histogram of an image and applying this
as a pointwise non-linearity as follows, where H is the normalized cumulative
histogram, I the original normalized image and x a pixel location:

Ieq(x) = H(I(x)). (6.1)
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Figure 6.2: Relation ship between the median luminance and the dynamic range
of each of the images from the Fairchild HDR dataset. Figure from [Kane and
Bertalmı́o, 2016].

Although complete histogram equalization is highly effective at increasing im-
age contrast, it can lead to very sharp changes in contrast and frequently produces
unnatural looking images (see Figure 6.3, bottom left). Thus some form of con-
strained histogram equalization is necessary (see Figure 6.3, bottom right). One
approach is to apply a smooth function that approximates the cumulative his-
togram.

A recent psychophysical study [Kane and Bertalmı́o, 2016] investigated image
quality scores for images presented with different system gammas, where sys-
tem gamma is the end-to-end pixel-wise exponent that describes the relationship
between the relative luminance values in the original scene and the displayed
image (i.e. the product of the decoding gamma of the monitor and a variable
encoding gamma set by the experimenter). The stimuli were images from the
Fairchild HDR dataset [Fairchild, 2007] and spanned a broad range of dynamic
ranges from two to seven orders of magnitude. The images were displayed with
a system gamma of between 1/16 to 4 using a logarithmic sampling. Subjects
were asked to rate the perceived quality of each image using a sliding scale. Fig-
ure 6.4 shows the major finding, that image quality scores could be predicted by
the degree of flatness in the perceived lightness distribution, where lightness was
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Figure 6.3: Comparison of complete histogram equalization and constrained his-
togram equalization. Top row: linearly scaled HDR image. Bottom row: result
of complete histogram equalization of the HDR image and result of constrained
histogram equalization (first stage of Algorithm 1) applied on the HDR image.

modeled as gamma function of on-screen luminance. Accordingly, the optimal
system gamma is the one which produces the flattest lightness histogram.

γopt = arg min
γ
F (γ) (6.2)

where

F (γ) = 1− 1

N

√√√√ N∑
i=1

(H ((Lγ)γpsy)i − i)
2 (6.3)

F is the flatness of the cumulative histogram H , N is the number of bins for
the histogram (we fix that to be 216) and L is the on-screen luminance. We as-
sume that the perceived lightness of the displayed luminance can be modeled as
a gamma function γpsy and we fix it as 0.4 in our method. Figure 6.5 shows the
schematic of the model.
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Figure 6.4: Relationship between average perceived image quality vs the degree
of flatness of histogram. Figure from [Kane and Bertalmı́o, 2015].

Figure 6.5: (a) The luminance histogram of the original HDR image after nor-
malization between the range 0 and 1. (b) The onscreen luminance histogram
after being passed through the system gamma γsys (γopt in optimal case) of the
imaging pipeline. (c) The estimated perceived lightness distribution after being
passed through γpsy. (d) We compute the flatness of a distribution as the root
mean square difference between the cumulative lightness distribution and the
identity line (Eq. 6.3). Figure from [Kane and Bertalmı́o, 2015].
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We model the first stage of our TMO based on the above psychophysical study
as follows:

I1 = (Ihdr)
γenc (6.4)

where γenc = γopt/γdec, γdec = 2.2 and Ihdr is the input HDR image normalized
to [0,1] range by linear scaling and clipping (implementation details in Section
6.1.4)

6.1.3 Stage 2: Contrast Enhancement based on a Neural Model

The first stage of our TMO applies an ‘optimal’ gamma non-linearity. However,
this approach alone is not always sufficient to produce a high quality image. In
particular, those images with a high DR tend to have a flat, low contrast appear-
ance. Also a global approach is not able to model the spatially variant operation
of the human visual system.

In [Ferradans et al., 2011], they showed that by using the color enhancement
model of [Bertalmı́o et al., 2007] as a second stage, the local contrast and color
constancy properties of the human visual system can be approximated. The fol-
lowing energy functional proposed by [Bertalmı́o et al., 2007] is an improve-
ment from the energy functional proposed by [Sapiro and Caselles, 1997] (that
performs histogram equalization when it is minimized) by incorporating basic
visual perception principles, such as locality, color contrast and white patch:

E(I) =
α

2

∑
x

(I(x)−1

2
)2dx−γ

∑
x

∑
y

w(x, y)|I(x)−I(y)|dxdy

(6.5)

+
β

2

∑
x

(I(x)− I0(x))2dx

where α, β, γ > 0, I is a color channel (R,G, or B) of an image which is in
the range [0, 1] and x, y are pixel positions. The first term measures the average
difference of the image pixels with the mid-value of 1/2. The average value of
the original image is used in [Ferradans et al., 2011] instead of 1/2. The second
term calculates the local contrast, where w is a Gaussian kernel with standard
deviation σ and I(x) and I(y) are intensity values at pixel positions x and y
respectively. The last term measures the average departure of the new image
from the original image (I0). Now, by minimizing E(I) one could maximize the
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contrast without departing too much from the original image and mid-value, and
this can be achieved by a gradient descent approach, with

It(x) = −α(I(x)− 1

2
)+γ

∑
y

w(x, y)sign(I(x)−I(y))dy−β(I(x)−I0(x)).

(6.6)
The Wilson-Cowan equations [Wilson and Cowan, 1972] [Wilson and Cowan,
1973] that describe the temporal evolution of the neural activity in the V 1 region
of the visual cortex, could be a gradient descent of certain energy and Eq. 6.6
is closely related to it [Bertalmı́o et al., 2007] [Bertalmı́o and Cowan, 2009].
Also [Bertalmı́o, 2014] showed that [Bertalmı́o et al., 2007] always produces
local contrast enhancement but not assimilation, and proposed a modification
that incorporates all the features of [Bertalmı́o et al., 2007] along with lightness
induction. The modified gradient descent function is

It(x) = −α(I(x)−µ(x))+γ(1+(σ(x))c)
∑
y

w(x, y)sign(I(x)−I(y))dy

(6.7)

−β(I(x)− I0(x)),

where the mid-value of the first term is no longer global but the local mean of
the original image computed with a Gaussian kernel: µ(x) = (G ∗ I0)(x) and
a constant weight for the second term is replaced by a spatially and temporally
varying one, based on the local standard deviation σ, while c is a constant.

The image illustrated in the top row left of Figure 6.6 has equally spaced gray
bars either superimposed on a dark or a light background. The observer will
perceive the bars as darker on a dark background and vice versa. However, in
the original formulation [Bertalmı́o et al., 2007], lightness contrast is predicted
where the bars are perceived as lighter on a dark background and vice versa
(second row). The adaptation of [Bertalmı́o, 2014] correctly predicts lightness
assimilation (third row).

If we use a linear combination of two Gaussian kernels to compute the local
mean, we can drop the term (1 + σc(x)) from Eq. 6.7 but still produce assim-
ilation, as Figure 6.6 (bottom row) shows. Accordingly the modified gradient
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Figure 6.6: Illustration of lightness assimilation and contrast. First column , from
top to bottom: input image, result of applying [Bertalmı́o et al., 2007] to input
image, result of applying [Bertalmı́o, 2014], result of gradient descent by Eq.
6.8. Second column, shows the profile of line from the corresponding images.
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descent function is:

It(x) = −α(I(x)−µ(x))+γ
∑
y

w(x, y)sign(I(x)−I(y))dy−β(I(x)−I0(x)).

(6.8)
where I0 is one of the color channels of the output image from first stage,
α, β, γ = 1, w is a normalized 2D Gaussian kernel of standard deviation σw.
We fix σw as 200. We compute the local mean µ(x) by convolving the image
with a kernel K: K = n1 × G1 + n2 × G2, where n1 = 1, n2 = 0.5, the
standard deviation of Gaussian kernel G1 is 10 and that of G2 is 250.

We develop the second stage based on the above neural model as a gradient
descent method by iterating:

In+1(x) = In(x) + ∆t(Int (x)) (6.9)

where at the start (when n = 0) In is the output of the first stage, ∆t = 0.15,
and the iteration stops when the difference between the current and the previous
result is less that 0.005.

6.1.4 Implementation

In this section we present the implementation details. Our method consists
of two stages, one global operation (Eq. 6.4) and a local operation (iterating
Eq. 6.9), and are applied separately to each of the red (R), green (G) and blue
(B) color channels of the image. Initially, the input image is linearly scaled
to [0,1] range and the luminance component L is computed using the formula
L = 0.2126×R+ 0.7152×G+ 0.0722×B.

Then, we clip L,R,G and B values that are above 99 percentile of the L chan-
nel. In Figure 6.7, we show the importance of clipping to get an image with more
contrast. The left image is obtained by applying our algorithm without clipping.
This image looks darker and is of low contrast. On the other hand the right im-
age obtained by first applying clipping has more contrast and more details of the
scene are visible.

Now, we estimate the optimal system gamma (γopt) from the L channel and com-
pute the encoding gamma γenc. Then the R,G and B values are non-linearly
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Figure 6.7: Illustration of the importance of clipping. Left image is the final
output of our TMO without clipping, and right image is the final output of our
TMO with clipping.

transformed by Eq. 6.4. The pseudocode of the complete first stage is given
below:

Pseudocode 3 First stage
Input: R,G,B channels of an HDR image
Result: R1, G1, B1 LDR image
L = 0.2126×R+ 0.7152×G+ 0.0722×B
γsys = 0.4; γpsy = 0.4 ; Fold = 0; γdec = 2.2;

While diff > 0 and γsys < 2
γsys = γsys + 0.1
L∗ = (L)γpsy×γsys

F = 1− 1
N

√
N∑
i=1

(
H(L∗)i − i

)2
(Eq. 6.3)

diff = F − Fold
Fold = F

γenc =
γsys
γdec

R1 = Rγenc ; G1 = Gγenc ; B1 = Bγenc

The second stage takes as input the result of the first stage and apply the gradient
descent by iterating Eq. 6.9.
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6.1.5 Experiments and Results

In order to evaluate the performance of our TMO, we use two quantitative met-
rics: DRIM [Aydin et al., 2008] and TMQI [Yeganeh and Wang, 2013]. Both
metrics are explicitly designed to compare the original HDR image to the tone-
mapped LDR counterpart.

The metric DRIM estimates three types of distortions for each pixel: loss of
visible contrast (LVC), amplification of invisible contrast (AIC), and reversal of
visible contrast (INV). The output of the metric is visualized using a color coded
distortion map. Green represents LVC, blue indicates AIC, red indicates INV
and the saturation of each color indicates the magnitude of distortion. Detailed
explanation of DRIM is given in Section 4.3. The metric DRIM does not provide
a single global quality score. To generate a single output we average across space
the estimated loss, amplification and reversal of contrast:

GS =
1

N

∑√
LV C2 +AIC2 + INV 2. (6.10)

A low GS indicates less contrast distortions. We note that this formulation of
GS does not differentiate between the distortion types and their spatial distribu-
tions. These factors can affect the perceived quality of the image. Hence GS
has to be considered along with the distortion map to get a clear indication of the
image quality.

The TMQI metric has three terms: structural fidelity (S), Naturalness (N ) and
overall quality (Q) obtained by a weighted average of S and N (details in Sec-
tion 4.3).

We estimate the performance of the first and second stages of the model using
the metric DRIM and illustrate this in Figure 6.8. The top left image is the output
of the first stage and the top right image is the output of the second stage of our
algorithm. We can see considerable improvement of contrast in the output of the
second stage. The bottom left image shows the distortion map of the first stage
and the bottom right image shows the distortion map of the second stage. The
LVC (green color) is considerably reduced in the distortion map of the second
stage. For a numerical comparison we use GS. The reading for the first stage is
GS = 0.589 and for the second stage is GS = 0.554. The results confirm that the
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Figure 6.8: Comparison between the output of first and second stage. Top row,
output of the first stage and output of the second stage. Bottom row, correspond-
ing distortion map.

second stage produces an output with less error than the first stage.

To estimate how our model compares to contemporary approaches we apply the
DRIM and TMQI metrics to the following TMOs: [Mantiuk et al., 2008], [Drago
et al., 2003b], [Reinhard and Devlin, 2005] and [Ferradans et al., 2011]. We use
the tone mapping functions provided by pfstools [Mantiuk and Heidrich, 2009]
to generate tone mapped LDR images from HDR images, except for [Ferradans
et al., 2011] for which the author has supplied the code. We also use the default
parameters for all TMOs. In Figure 6.9 and 6.10, the HDR images are ‘Bloom-
ingGorse2’ and ‘CemeteryTree1’ from the Fairchild dataset [Fairchild, 2007].
According to DRIM, for both examples our algorithm produces less contrast dis-
tortions than the other methods, except for [Mantiuk et al., 2008] to which we
are equal in terms of the GS (see Table 6.1). In the first example, our method
has less LVC (green color) in the bright regions but the result of [Mantiuk et al.,
2008] has less LVC in the dark regions. And in the second example, our algo-
rithm results in low INV (red color) but has higher LVC (green color) in the dark
regions. We refer to Table 6.1 for the numerical global error for these two ex-
amples. The TMQI gives different result with that of DRIM. For instance in the
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Table 6.1: Quantitative evaluation

Images TMO DRIM (GS)
TMQI
Q S N

BloomingGorse2

Algorithm 1 0.55 0.92 0.94 0.60
[Mantiuk et al., 2008] 0.55 0.90 0.93 0.48
[Ferradans et al., 2011] 0.58 0.91 0.91 0.56
[Drago et al., 2003b] 0.61 0.92 0.94 0.60
[Reinhard and Devlin, 2005] 0.58 0.95 0.91 0.80

CemeteryTree1

Algorithm 1 0.64 0.95 0.95 0.73
[Mantiuk et al., 2008] 0.64 0.92 0.95 0.59
[Ferradans et al., 2011] 0.70 0.93 0.93 0.64
[Drago et al., 2003b] 0.72 0.83 0.93 0.13
[Reinhard and Devlin, 2005] 0.76 0.92 0.93 0.61

Table 6.2: Quantitative evaluation of images in Fairchild dataset [Fairchild,
2007]

Images TMO DRIM (GS)
TMQI
Q S N

Average of
41 images for DRIM
105 images for TMQI

Algorithm 1 0.48 0.89 0.92 0.50
[Mantiuk et al., 2008] 0.46 0.9 0.92 0.51
[Ferradans et al., 2011] 0.5 0.89 0.89 0.50
[Drago et al., 2003b] 0.54 0.87 0.87 0.42
[Reinhard and Devlin, 2005] 0.51 0.87 0.88 0.44

first example, TMQI rates our method equal to [Drago et al., 2003b] in terms of
S but ranks bests the method of [Reinhard and Devlin, 2005] in terms of Q due
to its high score of N . In Figure 6.11 we show more results of our tone mapping
approach.

In Table 6.2, we show the global error with DRIM and TMQI for the above
considered TMOs over 41 images (in the case of DRIM) and 105 images (in the
case of TMQI) from the Fairchild dataset [Fairchild, 2007]. According to the
GS of DRIM our algorithm outperforms all the other compared approaches ex-
cept [Mantiuk et al., 2008]. The TMQI rates our algorithm lower than [Mantiuk
et al., 2008] and equal to [Ferradans et al., 2011] in terms of overall quality (Q).
Whereas rates our method equal to [Mantiuk et al., 2008] in terms of S.
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Figure 6.9: Comparison of TMOs. TM results (first column) and distortion maps
(second column) for these TMOs from top to bottom: our method (Algorithm 1),
[Mantiuk et al., 2008], [Drago et al., 2003b], [Reinhard and Devlin, 2005] and
[Ferradans et al., 2011].
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Figure 6.10: Another comparison of TMOs. TM results (first column) and dis-
tortion maps (second column) for these TMOs from top to bottom: our method
(Algorithm 1), [Mantiuk et al., 2008], [Drago et al., 2003b], [Reinhard and De-
vlin, 2005] and [Ferradans et al., 2011].
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Figure 6.11: Results of our method for several HDR images obtained from the
Fairchild database [Fairchild, 2007].
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6.2 Tone Mapping: Algorithm 2

The above approach (Algorithm 1) is constrained to use a simple gamma non-
linearity in the first stage. This non-linearity is not enough in many cases, espe-
cially with images of higher dynamic range (see Figure 6.8 and 6.13, left). The
result looks less contrasty with washed out blacks. Also the gradient descent op-
eration in the second stage is computationally expensive and the execution time
is around 18 seconds for a full HD image. Hence the Algorithm 1 is not suitable
for real time operation.

To overcome the limitation caused by using a simple gamma non-linearity, we
modeled the non-linearity as a function γ estimated using some key features
of the cumulative histogram of the input image based on natural image statis-
tics. The second stage performs a contrast normalization operation that repli-
cates efficient coding behavior that occurs both in the retina and cortical areas of
the human visual system. The method is automatic (no need for user-selected
parameters) and has low computational complexity. We validate the method
through psychophysical tests that confirm that it outperforms other state of the
art algorithms in terms of users’ preference. Algorithm 2 can be used in the in-
camera image processing pipeline for the non-linear transformations, and also
can be used as an off-line tone mapping method for converting HDR images into
LDR ones, with applications to cinema shoots (on-set use of LDR monitors with
an HDR camera), cinema post-production (color grading), television broadcast
(making HDR signals compatible with LDR equipment), and rendering in com-
puter graphics (for video games, 3D animation, the integration of CGI onto real
footage, etc.)

6.2.1 Stage 1: Non-linear Adaptation based on Natural Image Statis-
tics

In the vision science community the prevailing view is that the visual system
transforms the input image to ensure an efficient representation (see [Olshausen
and Field, 2000] and references therein). The human visual system has evolved
so as to adapt best to the statistics of natural images. Several works on natural
image statistics (e.g. [Ruderman, 1994, Huang and Mumford, 1999]) report that
the average shape of the luminance histogram for a natural image is triangular
in log-log coordinates: it increases linearly up to a peak, obtained for an image

113



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page 114 — #134

Figure 6.12: Average histogram of natural scenes, in log-log coordinates. Figure
from [Huang and Mumford, 1999].

intensity value of M (related to the average of the intensity), and then decreases
linearly with a slightly different slope, see Figure 6.12. This implies that the
cumulative histogram, being simply the integral of the histogram, will also be a
piece-wise linear function in log-log coordinates, increasing linearly with some
slope γL until the intensity value M , then increasing linearly with a different
slope γH . In our method we use this insight from the above-mentioned results
on natural image statistics to estimate, for the input image, the particular values
of M , γL and γH that best fit the specific histogram of the image. That is,
instead of using fixed values of M , γL and γH that may adequately represent the
average statistics of natural images, we tailor these values to the particular image
at hand, obtaining an image-dependent and smooth sigmoid curve γ(I) such that
γ(I) ' γL for small intensities, γ(I) ' γH for large intensities, and Mlin is the
exponential of M :

γ(I) = γH − (γL − γH)(1− In

In +Mn
lin

). (6.11)

Then, the cumulative histogram of the image can be approximated in log-log
coordinates by

H(I) = γ(I)(I), (6.12)
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Figure 6.13: Comparison of the result of the first stage of the Algorithm 1 (left)
with the first stage of Algorithm 2 (right).

and in linear-linear coordinates the cumulative histogram has the form

H(I) = (I)γ(I). (6.13)

From this we introduce our first stage that performs constrained histogram equal-
ization:

I1 = (I)γ(I) (6.14)

Figure 6.13, compares the result of the first stage of the Algorithm 1 with that
of the current method. We can see that the non-linear function based on natu-
ral image statistics provides more reliable result in terms of contrast and detail
visibility.

6.2.2 Stage 2: Contrast Normalization

In the neuroscience literature there is abundant neurophysiological evidence (see
[Brenner et al., 2000, Carandini and Heeger, 2012] and references therein) that
the visual system is performing an operation called contrast normalization, in
which the contrast (the difference between light intensity and its mean value)
is divided by a factor depending on the standard deviation of the light intensity
(see Figure 6.14). This re-scaling already occurs at the retina and optimizes
information transmission and coding efficiency [Brenner et al., 2000, Kastner
and Baccus, 2014]. Given that contrast normalization is a key element of the
human visual system we have incorporated it to our method with the following
second and final stage:

O(x) = µ(x) + (I1(x)− µ(x))× k/σ, (6.15)
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Figure 6.14: A schematic of the contrast normalization. Figure from [Carandini
and Heeger, 2012].

where x is a pixel position, I1 is the output of the first stage of our Algorithm
2, µ(x) is the local mean of I1, k is a constant, σ is the standard deviation of
I1, and O is the final output. Figure 6.15 illustrates the various components
and the operation of Eq. 6.15. A simple stimulus I1 (top left), is smoothed by
applying a Gaussian kernal to get µ (top right). The difference of the above two
signals provides the contrast (bottom left) which is further added to µ to yield
the contrast enhanced signal (bottom right).

Figure 6.15: Illustration of various component and the operation of the proposed
contrast normalization step. A simple stimulus I1 (top left), smoothed version
µ (top right), contrast (bottom left) and final contrast enhanced signal (bottom
right).
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6.2.3 Implementation

Our TMO (Algorithm 2) consists of two stages, one global operation (Eq. 6.14)
followed by a local operation (Eq. 6.15), and are applied separately to each of the
red (R), green (G) and blue (B) color channels of the image. Initially, the lumi-
nance component L is computed using the formula L = 0.2126×R+ 0.7152×
G+ 0.0722×B.

In the first stage, we initially compute the non-linear function γ(I) in Eq. 6.11
using the parameter values of γH , γL and Mlin. The parameter values are es-
timated from the cumulative histogram (H) in log-log coordinates (see Fig-
ure 6.16) to correlate well with the subject-chosen parameters in the psychophys-
ical experiment in Section 6.2.5. We compute Mlin as the exponential of M ,
where M is the average of the intermediate values Lm and LM on the horizontal
axis (log luminance), which respectively correspond to the values of 1 and 90%
in the vertical axis (log cumulative histogram).

To compute γH and γL we distinguish 3 cases depending on the shape of the
histogram.
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Figure 6.16: Example of a cumulative histogram and histogram for a single nat-
ural image (in log-log axes) and our estimated parameters γL, γH and M .
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Figure 6.17: Example of a cumulative histogram and histogram for a single nat-
ural image (in log-log axes) with a bi-modal distribution and our estimated pa-
rameters γL, γH and M .

Case 1: The histogram of the input image has roughly a triangular shape in
log-log coordinates(see Figure 6.16). This is the general case and the majority of
images fall in this category. The values of γH and γL are estimated with respect
to med = log(median(L)) and x = log(

√
median(L)× trm(L)) respec-

tively, where trm(L) is the mean(L) after removing 1% of the extreme values.

Case 2: The histogram of the input image has a bi-modal distribution in log-log
coordinates (see Figure 6.17). Our estimate of γH and γL are with respect to the
log ofmedian of the upper half of L (denoted by y) and temp = log(mean(L))
respectively.

Case 3: The bin of the histogram near to the median is over-populated, re-
sulting in a spike in the histogram (see Figure 6.18). We estimate γH and γL
with respect to v, the intensity value just lower than those high frequent intensi-
ties.
More detailed explanations and an algorithm for the parameter estimation are
given below. In all the cases, we set the slope value n equal to γL.
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Figure 6.18: Example of a cumulative histogram and histogram with a spike for
a single natural image (in log-log axes) and our estimated parameters γL, γH and
M .

Pseudocode 4 Parameter estimation
Input: Image I
Result: γL and γH
L: Luminance channel of I normalized to [0,1].
H(L): Cumulative histogram of L in log-log domain.
S(a, b): Slope of line joining point on H corresponding to a and b; where a, b
∈ log(L)
trm(L): Mean of L after removing 1% of extreme values.
1. γH = S

(
med, 0

)
; med = log(median(L))

γL = S
(
x,H−1

(
H(x

)
− 1)

)
; x = log(

√
median(L)× trm(L))

2. If γH < S
(
temp, 0

)
then temp = log(mean(L))

2.1. γH = S
(
y, 0
)

; y = log
(
median

(
L > median(L)

))
2.2. γL = S

(
temp,H−1

(
H(temp)− 1

))
3. If dH

d(log(L)) > Te, for some v ∈ log(L) and within unit distance from med, then

3.1. γH = S
(
v − δ, 0

)
3.2. γL = S

(
v − δ,H−1

(
H(v − δ)− 1

))
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Initially, γH and γL are computed by step 1 of the Pseudocode 4, as illustrated in
Figure 6.16. γH is the slope of the line joining the point in H that corresponds
to med = log(median(L)) and the top end of H and γL is the slope of the line
joining the point in H corresponding to x = log((sqrt(median(L)× trm(L)))
and the point in H that is 1 unit lower than the above point in the vertical axis.

If the condition in step 2 of the Pseudocode 4 is satisfied, i.e., γH is less than the
slope of the line joining the point inH corresponding to temp = log(mean(L))
and the top end of H , then γH and γL are computed as in step 2.1 and 2.2 re-
spectively. This condition is an indication of the bi-modality of the distribution
of the luminance histogram. Then a new median is computed by excluding all
the luminance value below the original median, and γH is recomputed. γL is
recomputed as the slope of the line joining the point inH corresponding to temp
and the point in H that is 1 unit lower than the above point in the vertical axis.

But if the condition in step 3 of the Pseudocode 4 is satisfied, i.e., the slope
of H is greater than a threshold Te in some region around the median(L) due
to a high concentration of some luminance values, then γH and γL are computed
as in step 3.1 and 3.2 respectively and explained in what follows. Select a value
v ∈ log(L) that satisfies the condition in step 3 and is within a unit distance
from med, then γH is the slope of the line joining the point in H corresponding
to v − δ and the top end of H and γL is the slope of the line joining the same
point and the point in H that is 1 unit lower than the above point on the vertical
axis. We set threshold Te = 4 and δ = 0.1.

Adaptive clipping We added an adaptive clipping term C to the first stage to
preserve the global contrast of the image. The new first stage is given by:

I1 = (I(x))γ(I(x))C(I(x)) (6.16)

where C is also a smooth curve with C ' CL for small intensities, C ' CH for
large intensities, and with a smooth transition at Mlin with a slope m as follows:

C(I) = CL + (CH − CL)
( Im

Im +Mm
lin

)
, (6.17)

where CLand CH are also computed from the cumulative histogram of the input
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Figure 6.19: Comparison of the result of our TMO without clipping (left) and
with clipping (right).

intensity image as follows:

CL = ea−γLLowx ; a = log
( 1

255

)
CH = eb−γHHighx ; b = log

(
1− 1

255

) (6.18)

where Lowx and Highx correspond to (1/255) × 100 and (1 − 1/255) × 100
percentile of L in the log domain.

Figure 6.19 compares the result of stage one with and without adaptive clip-
ping. It is clear that the clipping improves the global contrast of the image.
The output of the first stage is passed to the second stage. For the second stage
(Eq. 6.15), the local mean µ(x) is computed by the convolution of a kernel W
with image I1, where W is generated by the linear combination of two Gaussian
kernels with standard deviations σ = 5 and σ = 25 and the kernels are weighted
by 0.9 and 0.1 respectively. The constant k determines the contrast level of the
image, larger k values give images with higher contrast. We set the value of
k = 0.33 that produces final images that have a natural appearance and good
contrast.

6.2.4 Extension to Videos

The proposed method if applied separately to each frame of a video then may
produce flickering artifacts due to sudden changes in the parameter values. Fig-
ure 6.20 shows the fluctuation of the parameter values of the first stage and also
the average luminance of the resulting frames. We overcome this problem by in-
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Figure 6.20: Parameter values and average luminance of the result, when the first
stage of our TMO is applied to each frame of a video sequence independently
without any temporal filtering.

corporating temporal coherence between the parameter values of the consecutive
frames as in [Kiser et al., 2012]:

Pi =
(
P̂i + 15× Pi−1

)
/16 (6.19)

where P̂i is the initial parameter value of the ith frame and Pi is the temporal
coherent parameter value. Figure 6.21 shows the smooth change of parameter
values and the average frame luminance across the frames of the video sequence
after incorporating temporal coherence. The resultant video sequence is with no
flickering artifacts. Video results can be downloaded from the following link:
http://ip4ec.upf.edu/tonemapping

6.2.5 Experiments and Results

In this section we first show the potential of the Algorithm 2 to be used as a
method for in-camera non-linear processing and also to be used as a TMO. Then
we validate our approach through psychophysical tests in 2 experiments.

In Figure 6.22 we illustrate the advantage of our method over the conventional
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Figure 6.21: Parameter values and average luminance of the result, when the first
stage of our TMO is applied to each frame of a video sequence with temporal
filtering.

non-linearity applied in a camera imaging pipeline. Three sample images are
shown each from a consumer camera, smart phone and cinema camera, along
with the results of applying the Algorithm 2 on the corresponding RAW sensor
values. Our results look natural in appearance, with enhanced overall contrast
and without any visual artifacts.

In Figure 6.23 we show some results of applying the Algorithm 2 to HDR im-
ages. Our method when applied to HDR video sequences from the ARRI dataset
[Froehlich et al., 2014] produces results that are natural looking with no vis-
ible flicker and without any sort of spatio-temporal artifacts. Video results:
http://ip4ec.upf.edu/tonemapping

Psychophysical experiment

Now we discuss the setup of two psychophysical experiments that we performed
to validate our method.

Subjects: Seven subjects completed both experiments. All had corrected to
normal vision. Ethics was approved by the Comité Etico de Investigacion Clin-
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(a) (d)

(b) (e)

(c) (f)

Figure 6.22: First column: original JPEG images as recorded by the camera, with
the exception of image (b) which is generated by applying a S-shaped curve to a
LogC image. Second column: results of applying our method to the correspond-
ing RAW images. Camera models: top, Nikon D3100 consumer photography
camera; middle, ARRI Alexa digital cinema camera [Andriani et al., 2013]; bot-
tom, Nexus 5 smartphone camera.
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Figure 6.23: Results of our method applied to HDR images from the Fairchild
dataset (top row) [Fairchild, 2007] and to video frames from the ARRI dataset
(bottom row) [Froehlich et al., 2014].
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ica, Parc de Salut MAR, Barcelona, Spain, and all procedures complied with the
declaration of Helsinki.

Apparatus: Both experiments were conducted on an ASUS VS197D LCD mon-
itor set to ‘sRGB’ mode with a luminance range from 0.1cdm−2 to 106cdm−2,
with spatial and temporal resolutions of 1366 by 768 pixels and 50 ∼ 75 Hz.
The display was viewed at a distance of approximately 70 cm so that 40 pix-
els subtended 1 degree of visual angle. The full display subtended 33 by 18
degrees. The decoding nonlinearity of the monitor was recorded using a Kon-
ica Minolta LS 100 photometer and was found to be closely approximated by a
gamma function with an exponent of 2.2. Stimuli were generated under Ubuntu
12.04 LTS running MATLAB (MathWorks) with functions from the Psychtool-
box[Brainard, 1997, Pelli, 1997].

The experiment was conducted in an office environment and the ambient lumi-
nance levels were recorded with a Sinometer LX1010B which could record the
incoming light from 180 degree angle. The results indicated the average ambient
illumination was 147 lux. The surround luminance of the display as measured
by the photometer was 65 cd/m2.

Stimuli:
Experiment one: 20 base images were taken from the Fairchild HDR dataset
[Fairchild, 2007] including indoor and outdoor scenes, night time images and
landscapes. Images were resized to a quarter of the original areas using Matlabs
imresize and the setting nearest which performs a simple subsampling of
pixel value. Each image then covered approximately 80% of the viewing area.
The remaining area was presented with a surround luminance of 65 cd/m2 cor-
responding to the average luminance of the surrounding area.

Experiment two: 30 base images were taken from the Fairchild HDR dataset
[Fairchild, 2007], excluding the 20 used in experiment one. Tone mapped ver-
sions of the original HDR images were produced by the Algorithm 1 (Section
6.1), Algorithm 2 (Section 6.2) and the TMO of [Mantiuk et al., 2008] created
using pfstools [Mantiuk and Heidrich, 2009] using the parameters of ‘lcd -
office’ display type except for ambient illumination which is set to 147 lux. The
images were viewed side by side and each image was presented over 14 by 10
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Figure 6.24: Psychopysical experiment one setup.

degrees.

In both the experiments the images were presented without correcting for the
decoding non-linearity of the monitor.

Procedure:
Experiment one: A screenshot of the experiment procedure is shown in Fig-
ure 6.24. Subjects manipulated the parameter γH and γL of Eq. 6.11 via two
scrollbars. The subject interacted with the scrollbar via a mouse and a press of
the space key initiated the next image. The range of values corresponding to the
scrollbar location was fixed at 0 to 1 for γH and 0 to 3 for γL. The initial position
of the scrollbar was the midway point and the scaling was linear. The parameter
values, dynamically and in real time, updated the displayed image by applying
Eq. 6.16 to the original HDR image. The subject was asked to manipulate the
scrollbars until the most pleasing image was achieved. No further instruction
was provided. Subjects had unlimited time to choose the appropriate values.

Experiment two: Subjects were asked to select which of the two simultaneously
presented images they preferred. Given the 30 base images and 3 tone-mapped
versions for each image, the total number of comparisons was 30× 3 = 90. Sub-
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Figure 6.25: Average subject selected values from 7 observers plotted against
model estimated parameter values for γH .

jects had unlimited time to make the comparison.

Figure 6.25 and 6.26 shows that for both parameters γH and γL there is a strong
correlation, correlation coefficient R = 0.83 and R = 0.88, between the auto-
matically estimated and user chosen parameters. This result indicates that the
parameters estimated by the proposed Algorithm 2 match well with the users’
choice.

In Figure 6.27 we show the result of experiment two, in which the subjects eval-
uated three TMOs: [Mantiuk et al., 2008], Algorithm 1 and Algorithm 2. We
choose these TMOs as they were the ones performing best according to DRIM.
We compute the accuracy score from the experimental data using the method in
[Morovic, 1998] which is based on Thurstone’s law of comparative judgments
[Thurstone, 1927]. The experiment shows that subjects have a preference for
the results of the Algorithm 2 over the other operators. This order is different
according to the prediction of the tone mapping metrics DRIM and TMQI (see
Table 6.3). According to metrics, the Algorithm 2 increases the contrast errors
in the reproduced image, relative to those of Algorithm 1 and [Mantiuk et al.,
2008]. Both the DRIM and TMQI metrics estimate threshold differences in per-
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Figure 6.26: Average subject selected values from 7 observers plotted against
model estimated parameter values for γL.

Figure 6.27: Result of experiment two. Pairwise comparison of 3 TMOs: [Man-
tiuk et al., 2008], Algorithm 1 and Algorithm 2.
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TMO DRIM
TMQI
Q S N

Algorithm 2 0.51 0.89 0.9 0.54
Algorithm 1 0.48 0.89 0.92 0.50
[Mantiuk et al., 2008] 0.46 0.90 0.92 0.51

Table 6.3: Quantitative evaluation using the Fairchild dataset [Fairchild, 2007].

ceived contrast and thus, if accurate, provide a metric that can determine whether
image details are lost or in the case of DRIM whether contrast artifacts have been
introduced. However, it is not clear to what extent image preference judgment
are related to detail reproduction. Other factors such as global contrast, color
vibrancy, etc may play a key role in determining the perceived quality of an im-
age. Also, the reproduction of suprathreshold contrast levels may be important
but DRIM and TMQI only consider threshold contrast.

6.3 Conclusion

In this chapter, we have proposed two image dependent TMOs with a global first
stage and a local second stage.

The first TMO (Algorithm 1) is based on psychophysical and neural models
of visual perception. The first stage performs range compression by a gamma
transform, where the gamma curve is the one that best equalizes the lightness
histogram. The second stage performs local contrast enhancement using neural
activity models for the visual cortex. We compared our method to other contem-
porary TMOs using two computation metrics that estimate either the perceived
contrast differences between high and low DR images (DRIM) or produce es-
timates of the perceived image quality (TMQI). The metrics indicate that our
method compares well with the state of the art. The advantage of using a com-
putational assessment is that many TMOs and base images can be tested in a
short space of time, however we acknowledge that this analysis relies heavily
upon the reliability of the metrics. Indeed, if the metrics are to be considered as
ground truth, then the aims and motivations of any TMO should ultimately be to
optimize the metric outputs (e.g. method discussed in Chapter 5). In the opinion
of the author, our approach produces realistic images with no noticeable color
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artifacts for all images tested.

The novelty of the results stems from the use of a perceptually derived model
for estimating the preferred system gamma. This is an area of ongoing research
and there are two research directions that could improve the model. The first is
to develop a model of lightness perception so that it adapts precisely to the end
viewing conditions and to the image in question. The second is to try different
non-linearities. The gamma function is chosen because of its simplicity, but it is
not optimized for the statistics of natural scenes.

The second TMO (Algorithm 2) operates in real time and overcomes the lim-
itation of the previous TMO by adapting the non-linearity of the first stage based
on natural image statistics. The second stage performs a simple contrast en-
hancement operation that mimics the contrast normalization process in the visual
system. The results look natural, without halos. We optimized the automated pa-
rameter estimation method in an office viewing environment based on the users’
parameter choice . The method works for video sequences and produces no
flicker or spatio-temporal artifacts of any kind. We conducted a pairwise com-
parison experiment to compare our method with other state of the art TMOs.
Results confirms that the proposed TMO (Algorithm 2) outperforms the state of
the art in terms of user’s preference.
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Chapter 7

TONE MAPPING
DEPENDENT ON VIEWING
CONDITION

It is well known that viewing conditions and the display’s capabilities in terms
of contrast and brightness can significantly affect the perceived image quality.
This happens mainly because the brightness perception of the HVS varies based
on the viewing condition. The parameters of the first stage of the Algorithm 2
in the Chapter 6 are optimized based on a psychophysical experiment conducted
on a LCD display in an office environment. Therefore, the result is ideal to be
viewed in that condition and may be sub-optimal in other viewing conditions.
This chapter proposes a method to adapt the result of our TMO depending on
viewing condition. The content of this chapter is derived from [Cyriac et al.,
2016a].

7.1 Brightness Perception and Viewing Condition De-
pendency

The effect of background and surround on the perception of brightness has been
studied extensively for many decades.

In a classical work in imaging science, [Bartleson and Breneman, 1967] con-
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Figure 7.1: Brightness perception according to [Bartleson and Breneman, 1967]
for different viewing conditions.

ducted experiments on brightness scaling and matching, with various elements
of pictures viewed with different levels of luminance and surround lighting. They
found that the surround luminance and the overall luminance level significantly
affect the perceived brightness and proposed a simplified formula to predict the
relative brightness [Bartleson, 1975]. The formula is similar to the CIELAB L∗

with exponent 0.33 for dark, 0.41 for dim and 0.5 for light surrounds respectively
(see Figure 7.1). And the ratio of the exponent is 1.5 : 1.25 : 1.

Liu and Fairchild [Liu and Fairchild, 2007] later conducted a pair comparison
experiment to find the optimal gamma value that compensates for the surround
effect. The experiment considered four tone mapped HDR images, six differ-
ent surround conditions from total black to 125% of image white and eleven
different gamma values. They proposed a simple linear formula to predict the
experimental data:

γ = −0.1356Ls + 1.137 (7.1)

where Ls is the luminance of the surround proportional to the image white. By
this equation, the ratio of the exponent is 1.14 : 1.1 : 1. This ratio is consider-
ably less when compared to that of [Bartleson, 1975]. They also point out that
the image content plays an important role in determining the optimal gamma.
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Figure 7.2: Block diagram of the complete model.

Recently, [Pindoria and Thompson, 2016] conducted a pair comparison exper-
iment to determine the optimal system gamma for displays with different peak
luminance (Lpeak). They tested it for the peak luminance levels of 500, 1000,
2000 and 4000 cd/m2 on a SIM2 HDR display. They proposed a formula to
predict the experiment data:

γ = 1.2 + 0.42log10

(
Lw

1000

)
(7.2)

The experiment considered only the effect of change in display brightness and
did not take into account the change in surround and background luminance.

All the above studies are limited in terms of the different display types they used
and/or in terms of the background and surround luminance condition they con-
sidered. Also, the advancement in the display technologies in the recent years
has made available many new varieties of displays in the market. This all makes
very relevant the further study of optimal gamma adjustment to compensate for
the surround effect.

7.2 Proposed Approach

Figure 7.2 shows the block diagram of the complete proposed model. The first
two stages are already explained in the previous chapter. The last stage performs
the viewing condition dependent mapping that aims to adapt our tone mapped
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result to each particular display and viewing environment in terms of luminance.
We follow the approach of the related works in the previous section and pro-
pose the last stage as a simple gamma non-linear transform. In order to develop
a general model that determines the necessary non-linear adjustment value γadj
needed for our tone mapping results to look optimal under some given condi-
tions, we perform the following steps:

1 Conduct psychophysical experiments to determine the optimal non-linear
adjustment the subjects prefer for different surround conditions and dis-
plays.

2 Record several physical measurements including minimum and maximum
luminance of the display, surround luminance, and ambient illuminance.

3 With the above data in hand we develop a general formula to predict the
subject’s choice of non-linearity value for a specific surround environment
and display type.

7.3 Psychophysical Experiment

In this section we discuss the setup of the psychophysical experiment.

Seven subjects completed the experiment. All had corrected to normal vision.
Ethics was approved by the Comité Etico de Investigacion Clinica, Parc de Salut
MAR, Barcelona, Spain and all procedures complied with the declaration of
Helsinki.

The viewing conditions that we consider are
Two surround environments:

• Office room: ambient illuminant of 47 nits and average near surround lu-
minance of 65 nits

• Dark room: ambient illuminant of 0.3 nits and average near surround lu-
minance ≈ 0 nits

and three display types:

• LCD: ASUS VS197D LCD monitor set to sRGB mode
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Figure 7.3: Psychophysical experiment setup.

• OLED: Sony Trimaster PVM

• HDR: SIM2 HDR47ES4MB monitor set to HDR mode

The stimuli for the experiment are 20 tone mapped versions of the HDR images
from the Fairchild HDR dataset [Fairchild, 2007]. The images were chosen to
cover a variety of scenarios: night images, indoor scenes, bright outdoor scenes,
landscapes, etc. The HDR images were tone mapped by the tone mapping Algo-
rithm 2 discussed in Chapter 6.

Experiment procedure: A schematic of the experiment setup is shown in Fig-
ure 7.3. Subjects were asked to adjust the gamma non-linearity via a scrollbar
such that the image achieves an optimal appearance. Table 7.3 shows the average
subject choice for γadj , for seven observers (two observers in the case of HDR
display), 20 images, 3 display types and two surround environments.

7.4 Contrast Measurement

For each combination of display type and surround condition we measured both
the sequential and ANSI contrasts. A Konica Minolta LS 100 photometer was
used to measure the luminance and the reading was taken at the distance at which
observers view the display (approximately 3 times the display height). Results
are shown in Tables 7.1 and 7.2.
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7.5 Model to Predict the Experiment Result

Analyzing the results of the psychophysical experiment and the contrast mea-
surement, we found that the subject-preferred non-linear adjustment value γadj
can be predicted from the ANSI contrast and the maximum brightness of the
display by the following formula:

γadj = (1 + 0.2|C|)sign(C) (7.3)

where

C = log10

(
Lpeakvc

Lpeakgrad

)
+ log10 (ANSIvc)− log10 (ANSIgrad) , (7.4)

Lpeakvc andANSIvc are the peak brightness and the ANSI contrast of the intended
display in which the image is to be viewed. Lpeakgrad and ANSIgrad are the peak
brightness and the ANSI contrast of the grading display: an LCD display in an
office environment in our experiments, since the parameter values for the first
stage of our model were selected to optimize image appearance in that scenario.
Table 7.3 shows that the model predicts well the result of the psychophysical
experiment.

7.6 Results and Discussion

In Tables 7.1 and 7.2, we show the luminance and contrast measurements taken
under the different display-surround setups designed above (unfortunately, for
the HDR display we could only collect data from the office room condition). In
general, the ANSI contrast is substantially smaller than the sequential contrast
in the dark surround condition. This is mainly because some of the light emit-
ted by the display is reflected back onto the screen by objects in the surround,
resulting in raising the effective minimum value of the display. For example, the
minimum luminance measured on the OLED is 0.001 cd/m2 in a dark surround
when the full screen is black, whereas the measured luminance is 0.3 cd/m2

when a checkerboard pattern is displayed. This result is consistent with the re-
sults of [Schuck and Lude, 2015], [Tydtgat et al., 2015], where they measured
both sequential contrast and the effective contrast by varying the image white
content on cinema projectors (see Figure 7.4). We may interpret from these
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Figure 7.4: Plot of projector sequential contrast vs system contrast with different
level of white content. Figure from [Schuck and Lude, 2015].

measurements that the effective contrast produced by a display depends not only
on its maximum contrast ratio but also on the surround and the reproduced image
content.

In Figure 7.5 we show the result produced by our method for three different
viewing conditions. As the effective contrast of the display (ANSI contrast) in-
creases, our method tries to compensate it by decreasing the contrast of the lower
mid-intensities of the input image. Note that these images will look optimal only
under the intended viewing conditions and display type.

7.7 Conclusion

Viewing conditions and the display’s capabilities can significantly affect the per-
ceived image quality. We recorded luminance measurements of several display
types and surround conditions and showed that the effective contrast (ANSI con-
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Table 7.1: Sequential contrast measurement.
Dark room Office room

Min
luminance

Max
luminance

Sequential
contrast

Min
luminance

Max
luminance

Sequential
contrast

LCD 0.35 170 486 2.3 170 74
OLED 0.001 97 97000 1.2 97 80
HDR - - - 1.7 2700 1588

Table 7.2: ANSI contrast measurement.
Dark room Office room

Min
luminance

Max
luminance

ANSI
contrast

Min
luminance

Max
luminance

ANSI
contrast

LCD 0.7 170 242 2.6 170 65
OLED 0.3 97 323 1.3 97 74
HDR - - - 2 2700 1350

Table 7.3: Comparison between user-chosen and model-predicted gamma ad-
justment.

Dark office
subject model subject model

LCD 1.11 1.12 1 1
OLED 1.1 1.1 0.99 0.98
HDR - - 1.5 1.51

Figure 7.5: Results of our method applied to an HDR video frame from the ARRI
dataset [Froehlich et al., 2014] for three different viewing conditions. ANSI
contrast given in parenthesis.
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trast) produced by a display depends not only on its maximum contrast capability
but also on the surround and the reproduced image content. We have conducted
psychophysical experiments and developed a mathematical model to predict the
users’ chosen non-linear adjustment for the results produced by our TMO to look
best in each viewing condition.
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Chapter 8

APPLICATIONS

In this chapter we present potential applications of the tone mapping model (Al-
gorithm 2) presented in Chapter 6.

8.1 Substitute for In-camera Gamma Correction

The non-linearity applied in most digital cameras is well approximated by a sim-
ple power law, and while this type of method is very fast and may perform well
on average, in general it is suboptimal because it is not tailored to the specificity
of each image. Existing apps for smartphones do increase the visible contrast,
but at the expense of introducing noticeable artifacts when there is motion in the
scene, or needing a considerable amount of user interaction. By implementing
our model in-camera as a substitute for gamma correction, we can capture bet-
ter, more realistic and natural-looking pictures and videos on our smartphones
and cameras. See Figure 8.1 for a comparison between the result of our method
and the default camera output and the result of highly rated mobile app proHDR
[EyeApps, 2013].
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Figure 8.1: Left column from top to bottom: output of Nikon D3100 camera,
output of Samsung S6 mobile phone, output of Nexus 5 mobile phone, output of
highly rated mobile app proHDR. Right column from top to bottom: results of
applying our method to RAW sensor data, with better contrast, natural appear-
ance and no artifacts.
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8.2 Use at Several Stages of the Production Chain in the
Media Industry

In photography and cinema the contrast transforms are applied off-line, in post-
production, but not automatically but manually by a skilled technician: still, the
artistic work most often starts only after the original image has been manually
corrected so as to emulate the visual perception of the contrast of the scene at
the shooting location, therefore in the context of professional post-production
there is also a need for an automated, good-quality, perceptually-consistent con-
trast transform like our method provides. Figure 8.2 shows that the result of our
method (bottom right) is similar to that of the manual output by a skilled colorist
(bottom left), whereas conventional non-linear transform results in loss of visible
details (top).

For the media industries, our model can also be used at several stages of the
production chain, allowing for better and faster work during shoots and a lesser

Figure 8.2: Top: conventional non-linear transform of a frame from a video se-
quence captured by an ARRI- Alexa professional digital cinema camera. Bottom
left: manual output by a skilled colorist. Bottom right: result of our method. No-
tice visibility of details in background. Image courtesy of ARRI.
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need for post-production time:

• on the set, for cinema and TV shoots that use state-of-the-art extended
dynamic range cameras, allowing correct monitorization of video signals
on standard displays;

• during post-production (both for photography and cinema), automatically
emulating the results produced manually by skilled technicians;

• for distribution, exhibition and broadcast, providing real-time conversion
of a high contrast video signal (of the original content or coming from the
TV control room) to the standard dynamic range of regular displays and
projection systems.

8.3 Cascaded Linear and Nonlinear Neural Models

In the article ”Derivatives and Inverse of Cascaded Linear and Nonlinear Neural
Models” [Martinez et al., 2017] we present a specific four-layer vision model
that accounts for brightness perception, contrast computation, local masking,
and orientation/scale masking. The first layer is based on the model (Algorithm
2) presented in Chapter 6, the second and third layers were previously intro-
duced in [Malo and Simoncelli, 2015], and the fourth layer performs a multi-
scale/orientation image decomposition and divisive normalization. Each of the
four layers consists of a linear and a non-linear part. We optimize the parameters
of each of these layers. The second and third layers are optimized through the
Maximum Differentiation (MAD) competition methodology [Wang and Simon-
celli, 2008] as in [Malo and Simoncelli, 2015]. But this methodology was not
suitable for the first layer because of the large inter-subject variability in choos-
ing the parameter settings. Therefore, we optimize the parameters through a
brute force approach by searching in the parameter space for values that maxi-
mize the correlation between the model response and the average subject rating
of the image distortions in the TID2008 dataset [Ponomarenko et al., 2009] (de-
tails in Appendix A). A pictorial illustration of the complete model is given in
Figure 8.3 and is explained below.
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+      =

   Fig_1_vert_b página 1    

Figure 8.3: Cascaded Linear and Nonlinear Neural Models. Figure from [Mar-
tinez et al., 2017]. 147
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First layer: luminance to brightness mapping

The linear part of the first stage accounts for the spectral integration at the pho-
toreceptors and the separate processing of achromatic and opponent chromatic
information. It applies a linear spectral integration of the input signal (x0) in
each spatial location and then a transform to an opponent color space:

y1 = A.T λ.x0, (8.1)

where T λ contains the spectral sensitivities (or color matching functions) for
each spatial location, (e.g. functions tuned to long, medium and short wave-
lengths, LMS), and the matrix A performs the LMS-to-opponent color space
transform.

Then, the non-linear part transforms the luminance to brightness using the method
developed in Section 6.2.1 (the current implementation considers only the lumi-
nance channel):

x1 = (L1)γ1(L1) , (8.2)

where L1 is the luminance linearly scaled to [0,1], and

γ1(L1) = γH − (γL − γH)(1− Lm1
Lm1 + µm

). (8.3)

The exponent γ1 has value γL for low luminance and γH for high luminance,
with a smooth transition at L1 = µ. The slope of the transition is controlled
by the exponent m. The optimal parameter values are: γL = 0.2, γH = 0.3,
µ = 0.018 and m = 1.12. The details of the parameter optimization are given in
Appendix A.

Second layer: local brightness and local contrast

The second layer accounts for local brightness and local contrast estimation.
The linear part computes the local brightness by convolving the brightness im-
age with a Gaussian kernel gA:

y2 = gA � x1. (8.4)

In the non-linear part the local contrast is estimated through divisive normal-
ization [Carandini and Heeger, 2012], where the brightness is subtracted and
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normalized by the local average brightness:

N (x1) =
x1 − gB � x1

b2 + gC � x1
, (8.5)

where gB and gC are Gaussian kernels and b2 a constant. The output of the
second layer is a weighted average of the local brightness and local contrast:

x2 = α1y2 + α2N (x1). (8.6)

The parameters of this stage are optimized as in [Malo and Simoncelli, 2015]
and are as follows: the spatial width (in degrees) of the Gaussian kernels gA, gB
and gC is 0.066, α1 = 1, α2 = 180 and b2 = 30.

Third layer: frequency sensitivity and local masking

The third layer accounts for the frequency-dependent sensitivity (through the
Contrast Sensitivity Function, CSF [Mullen, 1985] [Campbell and Robson, 1968])
and the local masking. The linear part applies a CSF filter [Watson and Malo,
2002], LCSF to the output of second layer:

y3 = LCSF � x2. (8.7)

The non-linear part performs a divisive normalization to the result of the linear
part:

x3 = sign(y3)
|y3|γ3

b3 + g3 � |y3|γ3
, (8.8)

where γ3 = 1.5, b3 = 0.04 and the width (in degrees) of the Gaussian kernel g3

is 0.02.

Fourth layer: masking in wavelet domain

The fourth layer accounts for the band-pass local orientation filters in V1 [Marĉelja,
1980] [Watson, 1987] and their mutual inhibitory interactions responsible for fre-
quency dependent masking [Watson and Solomon, 1997]. The linear part applies
linear multi-scale, multi-orientation image decomposition [Simoncelli and Free-
man, 1995] of the output of the third stage, to which a divisive normalization is
applied to get the final output of our vision model

x4 = sign(y4)
|y4|γ4

b4 + g4 � |y4|γ4
, (8.9)
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Figure 8.4: The subjective image distortion problem consists in predicting the
opinion of human observers on the perceived difference between pairs of images,
xA, and xB = xA + ∆x. This may be thought as assessing the visibility of the
distortion ∆x when put on top of xA. The TID database [Ponomarenko et al.,
2009] includes the experimental visibility of 1700 deviations ∆x of different
nature and energy put on top of a set of images of different content. These
plots show the behavior of two models (abscesses) in predicting the perception
(ordinates): a widely used model in engineering, SSIM [Wang et al., 2004] (at
the left); and the model we propose in [Martinez et al., 2017] (at the right).
Pearson, Spearman and Kendall correlations between predictions and perception
are given on top.

where y4 is the output of the linear stage, b4 = 0.6, γ4 = 0.6 and the width (in
degrees) of the Gaussian kernel g4 is 0.24.

In order to see how well the proposed four-layer framework models the human
visual system response, we compare the model predicted result with that of the
psychophysical data of rating the perceived distortions between pairs of images.
We found that the proposed model correlates well with the psychophysical data
on subjective distance [Ponomarenko et al., 2009] and outperforms the prediction
of SSIM (see Figure 8.4).
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8.4 Dehazing

The presence of light scattering substances such as fog, haze or smoke can
greatly reduce the visibility of the objects in a scene and results in producing
an image with low contrast and faded colors (see Figure 8.5, top middle). The
dehazing problem tries to recover the details and color of a hazy image (see Fig-
ure 8.5, top left), and has gained much attention in the recent years. The main
limitation of the current dehazing approaches is that they tend to produce images
with a considerable amount of artifacts (see Figure 8.6).

In [Vazquez-Corral et al., 2016], we show that by adapting the tone mapping Al-
gorithm 2 explained in Chapter 6, we can perform dehazing with a very limited
amount of image artifacts (see Figure 8.6). We operate in the HSV color space
based on the observation that when an image of a haze-free scene is compared
with an image of the same scene with haze, the hue remains almost constant,
the saturation is always higher in the haze-free image and the value is always
greater in the hazy image. We illustrate the above observation in Figure 8.5. To
have a better understanding of the difference between the corresponding HSV
components of the two images we also show the histogram of their differences
in the third column. Note that as the hue component is circular, and normalized
between 0 and 1, having a distance of 1 is equivalent to having the same hue. The
saturation difference is always positive while the value difference is always neg-
ative. Another point to note is that the histogram of the V component of a hazy
image is more skewed towards 1. Distributing these values uniformly would help
in increasing the contrast and visibility.

8.4.1 Model in Operation

The input hazy image I is initially converted into the HSV color space. We ap-
ply our two-stage model only to the value (V ) component while the saturation
(S) component is scaled based on the modified V . The channel V is linearized
by applying the inverse of the encoding gamma (assumed to be gamma = 2.2)
and is passed through the two-stage model. The first global stage (Section 6.2.1)
performs a constrained histogram equalization resulting in a uniform distribution
of the intensity values and hence produces better contrast. The second stage per-
forms a local contrast enhancement (Section 6.2.2) resulting in recovering local
image details.
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Figure 8.5: Comparison between a fog and a non-fog image in the HSV space.
First two columns, from top to bottom: Original image, hue, saturation and value.
Last column: Histogram of differences between the fog and the non-fog image.
We can see that hue stays the same, while saturation is always higher for the
non-fog image, and value is always higher for the fog image.
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Figure 8.6: An example of artifacts appearing in current image dehazing meth-
ods. From left to right: Original image, result of [He et al., 2011], result of
[Meng et al., 2013], result of the method we propose in [Vazquez-Corral et al.,
2016].

The S component is modified based on the observation that subjects tend to
perceive the same level of colorfulness in a scene independent of the quantity
of haze present [Mizokami et al., 2016] [Mizokami et al., 2015]. The measure
of colorfulness can be related to the HSV-Chroma, i.e., the product of S and V .
Now, to keep the chroma of the hazy and dehazed images similar we modify the
saturation of the hazy image Sin, taking into account the modification that we
made to the value of the hazy image Vin as follows:

Sout =

(
Vin
Vout

Sin

)α
(8.10)

where α controls the amount of saturation (set to 0.8 in our experiment) and Vout
is the output value component.

Figure 8.7 shows the comparison of our result with some state of the art dehazing
methods. We can see that for standard hazy images our results are comparable
with the results of the state of the art.

Figure 8.8 shows the result of popular dehazing algorithms applied to challeng-
ing images. Other methods tend to produce considerable amount of artifacts
while enhancing the contrast, whereas the proposed method produces reliable
results while keeping the artifacts to a minimum.
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Figure 8.7: Dehazing applied to standard images. From top to bottom: Original,
[Choi et al., 2015], [Meng et al., 2013], [Tarel and Hautiere, 2009], [He et al.,
2011] and result of the method we propose in [Vazquez-Corral et al., 2016].
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Figure 8.8: Challenging images. From top to bottom: Original, [Choi et al.,
2015], [He et al., 2011], [Meng et al., 2013], [Tarel and Hautiere, 2009] and
result of the method we propose in [Vazquez-Corral et al., 2016].
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8.5 Conclusion

We have presented several applications of the proposed tone mapping model in
this chapter: for the media industry, as the first layer of a state-of-the art vi-
sion model, and for dehazing. For the media industry, our model can be used
for on-set monitoring on regular displays, as a substitute for gamma-correction,
and as a way of providing the colorist with content that is both natural look-
ing and has a crisp and clear appearance. We showed that the response of the
four layer vision model with the first layer based on the proposed tone mapping
method (Algorithm 2) correlates well with the psychophysical data of rating the
perceived distortions between pairs of images. We also showed that our tone
mapping model can be used for a dehazing application and the result competes
well with the state of the art for standard images, and clearly outperforms them
when dealing with challenging images.
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Chapter 9

CONCLUSION

The main goal of this thesis was to propose tone mapping algorithms that en-
sure that the displayed content appears realistic and appealing to the viewers in
terms of detail and contrast visibility. To this end, we looked into neural and
psychophysical models of the visual system, natural image statistics, and also
the effect of display capabilities and the viewing environment on perception.

State of the art TMOs are still unable to produce LDR images that perfectly
match the perceived contrast of the HDR images. In Chapter 5, we presented a
general framework for improving any tone mapped image by reducing the dis-
tance with the corresponding HDR image in terms of a non-local perceptual
metric. The distance is minimized by means of a gradient descent algorithm.
Dealing with the dynamic range independent metric DRIM, we tested the frame-
work for different tone mapped images provided by several TMOs. Experiments
confirmed that our method substantially reduces the perceptual distance with the
HDR source image, providing an average improvement of more than 25% for
several state of the art TMOs. The proposed gradient descent method might stop
in local minima. Therefore, when provided with an input tone mapped image
that is closer, in terms of the quality metric, with the corresponding HDR image
our method might provide a better result.

In Chapter 6, we proposed two TMOs based on the visual perception models.
The efficient coding hypothesis and neuroscience experiments indicate that the
visual system, when presented with natural scenes, transforms input signals to
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ensure a uniform distribution of the output levels. In addition, a psychophysical
study showed that subjects tend to prefer images with a flat lightness histogram,
however, complete histogram equalization may produce results with unnatural
appearance due to sharp changes in contrast. The proposed TMOs consist of
two stages, a global adaptive non-linear transform followed by a local contrast
enhancement step.

In the first TMO (Section 6.1), the non-linear transform is achieved by means
of a simple gamma curve that best flattens the lightness histogram. Contrast en-
hancement is performed by a variational method that models the neural activity
of the visual cortex. We compared the proposed method with other TMOs using
two image quality metrics that incorporate a model of human vision. The results
showed that our method compares well with the state of the art.

In the second TMO (Section 6.2), we improved the first stage by replacing the
simple gamma transform by a function γ estimated using some key features of
the cumulative histogram of the input image based on the natural image statis-
tics. We replaced the second stage with a simple contrast enhancement step that
is based on the neuroscience studies showing that the visual system is performing
an operation called contrast normalization that normalizes the local contrast by
a factor depending on the standard deviation of the light intensity. These mod-
ifications allow executing the proposed tone mapping in real time. The method
also ensures that the results look natural and are without any spatio-temporal ar-
tifacts. The parameters of the first stage were optimized through psychophysical
experiments in an office viewing environment. We validated our method through
psychophysical tests that confirm that proposed approach outperforms other state
of the art algorithms in terms of users’ preference.

The viewing condition in which the display is viewed greatly affects the per-
ceived image quality. This happens mainly because of the difference in the hu-
man brightness perception in different surround condition and also because the
effective display contrast (ANSI contrast) varies depending on the surround en-
vironment. As a result, the image produced by our tone mapping method, which
is optimized for office condition, may not be ideal for viewing in other surround
conditions. In Chapter 7, we conducted a psychophysical experiment to deter-
mine the adequate gamma non-linearity needed for the result produced by our

158



“Thesis˙Cyriac” — 2017/2/8 — 12:51 — page 159 — #179

TMO to look best in each viewing condition. We also developed a mathematical
model to predict the experimental data from the ANSI contrast and peak lumi-
nance of the display.

The applications of the proposed approach include: providing a fast and auto-
matic graded content to the colorist, replacing the gamma correction stage in
the camera image processing pipeline for reliable results, use as a TMO, on-set
monitoring of HDR cameras, real time grading of HDR content for television
broadcast, and dehazing.

Future work

The tone mapping method developed in this thesis is based on the natural image
statistics derived from photographs and not from HDR images. Further research
into image statistics of HDR images (real world luminance) would allow us to
improve our model.

We also recognize that the proposed method does not take into account the artis-
tic intent when tone mapping HDR contents. We would like to investigate into
the manual color grading process and try to adapt it into our model.

The mathematical model developed in Chapter 7 performs viewing condition de-
pendent mapping based on the psychophysical experiment conducted with lim-
ited number of display types, viewing conditions and subjects. We would like to
extend the psychophysical experiment to see if we can improve the model.
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Appendix A

PARAMETER
OPTIMIZATION

The parameters of the second and third layers of the neural models in Chap-
ter 8 are optimized through the Maximum Differentiation (MAD) competition
methodology [Wang and Simoncelli, 2008] as in [Malo and Simoncelli, 2015].
In the following sections, we explain the MAD competition methodology for pa-
rameter optimization and look into its applicability for optimizing the parameters
of the first layer. Then, we fit the parameters of the first layer to maximize the
correlation with the psychophysical data on subjective distance [Ponomarenko
et al., 2009].

A.1 Parameter Optimization: MAD Competition

This is a methodology for optimizing parameters of a perceptual model using
synthesized images that can optimally distinguish the model behavior with differ-
ent parameter settings. For a parameter setting of the model, an image pair is syn-
thesized from an image Iorg in such a way that these images maximize/minimize
the model response while keeping the mean square error (MSE) with Iorg fixed.
The image pair is synthesized based on the second-order approximation of the
model response distance [Malo et al., 2006]. The image regions in Iorg, which
upon distorting maximize/minimize the model response, are given by the sub-
space corresponding to high/low eigenvalues of the transformed Riemannian
metric [Malo and Simoncelli, 2015]. Therefore, we synthesize the image pair
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by adding a fixed amount of noise to the corresponding image regions. This
pair of images is the most perceptually different according to the model with the
given parameter setting. By varying the parameter values, different image pairs
are synthesized. The best parameter setting should be the one that produces the
most perceptually distinguishable pair. Through a psychophysical experiment,
subjects can select the most distinct pair indicating the best parameter setting.

We follow the approach of [Malo and Simoncelli, 2015] and optimize the pa-
rameters of the first layer by keeping the parameters of other layers fixed. Our
model operates only on the luminance channel, so we directly give the display
luminance (Ldisp) as input to the nonlinear part of the first layer. Due to the
unavailability of an HDR display we optimize the parameters based on LDR im-
ages displayed on an LDR display.

We optimize the parameters γL and γH of Eq. 8.3 while keeping the semi-
saturation µ and slope m fixed per image:

µ = exp (mean (log(Ldisp))) (A.1)

m = −4.5/log(µ). (A.2)

This formulation to compute m makes sure that the γ function (Eq. 8.3) has
the value γL and γH for lowest and highest luminance values respectively. The
parameter space considered for γL and γH is: γL ∈ {0.3, 0.405, 0.548, 0.74, 1}
and γH ∈ {0.1, 0.1565, 0.245, 0.3834, 0.6}.

In the MAD competition (psychophysical experiment), five image pairs are shown
in each trial, where those images are generated by keeping one parameter fixed
and varying the other. Subjects are asked to choose the most distinct pair. The
order in which the parameters are optimized is randomized. Therefore, in the
second trial, if the parameter being optimized is different from the first trial, then
five new image pairs are generated by keeping the selected parameter value from
the previous trial and varying the other, else the same image pairs as in the first
trial are displayed. This process is repeated for 10 trials. The order of displaying
the image pairs in each trial is also randomized. The final parameter values of
γH and γL after 10 trials are recorded. A screenshot of the image pairs displayed
in a trial is shown in Figure A.1.
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Figure A.1: A screenshot of a MAD optimization trial.
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Figure A.2: Comparison between MAD and slider approaches of parameter op-
timization.

A.2 Slider Optimization

Alternatively, we consider the slider experiment, similar to the approach used in
the Experiment one of Section 6.2.5, to optimize the parameters of the first layer.
The output of the first layer is given as input to the display. Subjects manipulate
the parameters γH and γL via two scrollbars until the most pleasing image is
achieved. The range of values for γH is from 0 to 1 and for γL is from 0 to 3. µ
and m are computed as in the MAD optimization case.

A.3 Comparison between MAD and Slider Optimization

Figure A.2 shows the scatter plot between the subject selected optimal value for
γL and γH for an image. The three different symbols correspond to three sub-
jects and the green color for the slider optimization and the red color for the
MAD optimization. Each subject performs both experiments twice. We can see
in the figure that, for the MAD optimization, the subject-selected optimal param-
eter values vary considerably between different subjects and also with the same
subject in different trails. The slider optimization also shows a similar trend but
the variability within the subjects is lower.

Now, we look into the psychophysical data from the tone mapping parameter
optimization experiment (Experiment one of Section 6.2.5) to see the relation-
ship between the dynamic range and the inter-subject variability. In Figure A.3,
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Figure A.3: Scatter plot between the user-selected value of γL and γH from the
slider experiment for a high, medium and low dynamic range image in clockwise
order.

we show the scatter plots between the user-selected value for γL and γH for a
high, medium and low dynamic range image in clockwise order. We can see
that as the dynamic range of the image decreases the inter-subject variability in-
creases. The large inter-subject variability in choosing the parameter settings for
LDR images makes the optimization process difficult, and the MAD or slider
optimization approaches may not provide an efficient solution.

A.4 Optimization based on TID2008 Dataset

The TID2008 dataset [Ponomarenko et al., 2009] consists of 25 original LDR
images along with their distorted images. Seven different types of distortions in
four different levels were used to generate 28 distorted images for each original
image. Subjects’ Mean Opinion Score (MOS) consisting of the average subjects
rating (0 -100 scale) of the distorted images with respect to the original images
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is also provided along with the dataset.

We extend our model into a quality metric to take advantage of the MOS and
the TID2008 dataset to optimize the parameters of the first layer. The metric
takes both the original and the distorted images as inputs and processes them
separately through the four-layer model and then computes the mean square er-
ror. If the four-layer model is a good approximation of the HVS response, a
simple mean square error between the two outputs of the model should give a
good approximation of the subject ratings of the distortions.

In order to optimize the parameters of the first layer (γH , γL and µ), we fol-
low a brute force approach and search in the parameter space to find the value
that maximizes the correlation between the output of the developed quality met-
ric and the MOS. The best correlation is obtained for γH = 0.3, γL = 0.2 and
µ = 0.018.
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