
An Object-Oriented Approach to the
Rapid Prototyping of Courseware:

Instructional Design Considerations and Method

by

Toh Seong Chong
Centre for Educational Technology and Media,

Universiti Sains Malaysia
11800 Penang, Malaysia

Tel: 604-6577888 ext 3431; Fax: 604-6576749;

E-mail: tohsc@usm.my

Paper presented at :
6th World Conference on Computers in Education
(WeeE 95)
Birmingham, United Kingdom
(23 - 28 July, 1995)

* This project is funded by grants from t.he Chancellery, Universiti Sains Malaysia

Abstract

The object-oriented programming paradigm (OOP) has revolutionized the

software developJnent process. This paper dicllsses the instl1lctional design

considerations in the developJnent of a shell using the OOP paradignl to enable

courseware autho~s to create courseware rapidly through rapid prototyping. This

shell has been successfully developed at the Centre for Educational Technology

and Media, Universiti Sains Malaysia. It has the flexibility of incorporating a

variety of cOlnputer-based learning modes ranging from. tutorials which are

essentially "frame-oriented" representation style, to simulations which basically

use "model-oriented" representation style. This paper further describes the

instnlctional design considerations in developing this shell and the various

courseware that have been developed by reachers using this method.

Theme: Software; Infonnation Technology

Secondary Education; Higher Education

Design; Educational Technology

Level:

Topic:

Secondary topics: Authoring Systems; Computer-Assisted Instructions

Introduction

In the last ten years, advances in the microelectronics technologies have successfully achieved

more computing power and data storage at increasingly low cost. These advances have led to a

rapid proliferation of microcomputers amongst all sectors in the society, including the use of

. microcomputers for computer-based learning. This has led to a scenario where is an urgent

need for trained instructional developers to develop quality courseware. Unfortunately trained

instruction developers are in short supply.

Issues and Challenges

Instructional Systems Development (IS D) , especially for computer-based courseware, is too

labour intensive usually requiring more than 200 hours of development for a single hour of

instruction. Moreover the traditional ISD model is not adequate for computer-based interactive

courseware instructional development because it provides little guidance for interaction and it ·

does not specify an adequate syntax for knowledge representation [1].

Teachers find it hard pressed for time to learn a programming language or software engineering

principles because they find it almost impossible to squeeze precious time from their already

hectic teaching schedule. In order to encourage teachers to develop courseware on their own,

there is a need to reduce the development of courseware to delivery ratio by at least an order of

magnitude -- from 200: 1 to 20: 1. In order to meet this challenge, there is a need to provide

tools which empower subject matter experts to do effective computer-based instructional

development without requiring them to have extensive training in instructional design or

authoring systems.

I

The Instruct.ional Systems Development (IS D) Approach in courseware production

The instructional systems deve~opment (ISD) is the most widely used and oldest paradigm for

courseware production. It starts with the planning phase, needs analysis, design, development

and implementation [2]. Each of the earlier phases produces intermediate outcomes that are

used in the succeeding phases. For example, analysis produces job/task descriptions, design

produces an objectives hierarchy, an early stage of development produces a learning activities

description, and later stages produce storyboards, scripts and computer code.

The ISD approach is based on an assumption that no concrete product will be available until late

in the process, yet there is a need to manage and control the development to ensure that the

process stays on track; hence the well-defined phases, steps and succession of intermediate

outcomes characteristic of ISD. Two additional assumptions are implicit in this approach. First

is the assumption that an adequate evaluation of the progress of the design is' possible using the ..

abstract, intermediate products of the early phases. Second is the assumption that the phased of

ISD are relatively independent, with outputs of one phase being inputs to the next, allowing

development to be stabilized at break points between phases.

However, over the years, criticism of the paradigm has caused even active supporters to

question its applicability in all situations [3] .. This is because the paradigm deals with problems

in a sequential and linear fashion which real life software projects rarely follow [4].Another

problem of the ISD approach is that the software designer (usually the teacher) is actually

introduced to the product only after the implementation so that change requests are likely to

build up from that point. See Fig. 1. Thus more often than not, a significant gap exists

between the software (or the teacher's) expectations and the product capabilities.

2

< insert Fig. 1 here >

Developnlent of a flexible authoring Systenl

What is a possible solution? We suggest the development of a flexible authoring system that

incorporates an instructional transaction shell with the following important features:

* Carers for different levels of authoring expenise -

The authoring system should be adaptable to authors having different levels of authoring

expertise. Three levels of authoring could be assumed: low, middle and high level.

Low-level authors will be able to develop courseware by selecting one of the predefined

instructional templates and carrying out prompt-driven or menu-driven conversation

with the system. Middle-level authors will be enabled to adapt instructional strategies

by using the build-in authoring language in the system. The high-level authors will be

facilitated to reorient the application of the system by creating or modifying the domain­

related knowledge-base.

* Domain knowledge representation -

The authoring system should be flexible enough to cater for vanous domains of

knowledge representation formalisms ranging from the traditional frame-oriented

representations formalisms to model-oriented simulations. This transaction shell

approach [5] underlain by the second generation instnlctional design theory [6] standsfor

an effort towards this goal.

* Capable of rapid prototyping of courseware -

The authoring system should provide tools to enable courseware developers to have

sufficient functionality and usability to get the developers started. The prototype should

3

"work" from the start in order to deliver value to the users as soon as possible. Hence

providing users with a prototype which works right from the start, helps focus their

attention on task-related issues first and overall appearance of the system second. By

quickly providing the developers with a basic shell to start with, this will enable them to

apply their experiences to iteratively evolve the system.

Rapid Prot.otyping

Prototyping is a process of creating a model of the software by the developer. This prototype is

just an executable version of a product which has the key elements of the final version but

which is incomplete in many respects, for example, in terms of functionality and robustness.

With a prototype, software designers and developers can actually see what is possible and how

their requirements translate into software.

Rapid prototyping [7, 8] is a process of quickly building and evaluating a series of prototypes. -

This method of courseware development requires the availability of tools that offer modularity

[9]. It allows one to create and test input designs, output designs, and simple procedures. See

Fig. 2.

<insert Fig. 2 here>

The advantage of rapid prototyping is that the designer may experiment with and evaluate a

number of design approaches before committing to one for further development. In order for

rapid prototyping to be practically useful, it may be possible to generate the prototypes with

minimal investment. Thus the primary advantage of prototyping is that it provides the designer

with concrete feedback in terms of final product, as compared to the more abstract feedback

provided by the conventional products of analysis and design.

4

The ID2 Rapid Prototyping Development Model

An instructional design model proposed by Merrill [6], also known as second-generation

instructional model (ID2) serves as underpinnings for rapid prototyping. The model comprises

of seven steps (see Fig. 3). Knowledge analysis is the acquisition and representation of the

subject matter content using a knowledge representation model [11]. Audience and environment

analysis identifies general characteristics of the learners and the instnlctional setting. Strategy

analysis selects and sequences transactions to instruct the content. Transaction configuration

involves setting parameters for transactions to customize their behaviour. These four steps are

highly interactive in that they all use a single representation of the content, and each step

responds to and creates requirements for the other steps.

< insert Fig. 3 here>

Transaction detailing is the generation of graphics, animation, voice and text screens as required

by the transaction shells and the content. The implementation and evaluation phase is the actual

delivery and assessment of the courseware.

Thus the step in ID2 development model roughly parallel those in lSD. The key differences are

the products and the interaction between the steps. The products developed in the early phases

are precisely those products that will be carried all the way through the development cycle,

including the delivery of instnlction. This is in sharp contrast to the progression of abstract

intermediate products, translated one into another, that is seen in lSD. These products, and the

concrete feedback they provide early in the developm~nt process as a result of the rapid

prototyping approach they support, are the key differences between ID2 and ISD.

5

The CETM, USM Research Project

At the Centre for Educational Technology and Media, USM we attempted to create a

transaction shell that allows development of courseware through rapid prototypng. We called

this transaction shell the Tohl Abdul Rahim (TAR) Authoring [12]. This transaction shell is

created in DOS environment using "object-oriented" programming of C+ +. Within the shell

is a knowledge base which may be in the form of text, graphics, sound and animations.

"Objects" in this knowledge based is linked together immediately from one part of the

information to another. This user-friendly environment allows quick prototyping of classroom

software by educators who do not possess knowledge of computer language such as Pascal,

BASIC or C+ +.

The Architecture of The Toh/ Abdul Rahim (TAR) Authoring

The Toh/Abdul Rahim (TAR) Authoring consists of 4 components, namely the text editor, the

graphics editor, the quiz generator and the courseware organizer. It is a flexible authoring

environment comprising of three levels of interface namely the author interface, the -instructor

interface and the user interface. The author interface refers to the environment which enables

the access to the source code to customize special needs of the instructional designer or

instructor. For example modifications can be made to the source codes for special simulations,

animations etc. The instructor interface refers to the platform where the instructor can make use

of the existing shell to design a courseware based on the storyboard created. Three main

components are automatically generated by the TAR Authoring, namely menu design, buttons

and text layout. The user interface refers to the final product of the courseware where the user

6

could use it to learn a particular topic. This consists of the lesson presentation, formative

evaluation and sumative evaluation. See Fig. 4

< insert Fig. 4 here>

The Text Editor

The text editor in the TAR Authoring enables the instnlctor to open a new text file in the shell,

or edit an existing text file. Up to 10 files can be opened at anyone time. The courseware

designer coul~ move from one file to another by clicking the appropriate window-text. Another

feature of the text editor is that the instnlctor can highlight the key words in the text by putting

attributes to the word with the symbol symbols { }. The text begins with Topic 1 follow by

Topic 2 and so on. Subsume under Topic 1 will be sub-topics given the names Topic 11, Topic

12 and so on. The same applies to Topic 2, where subsume under it will be sub-topic Topic

21, Topic 22 and so on. See Fig. 5

<insert Fig. 5 here>

The Graphic Viewer

Graphics can be created using DOS-based Graphics programme such as Harvard Graphics, PC

PaintBrush or Corel Draw and subsequently screen-captured as PCX files by using any

transient-stay-resident (TSR) graphics programma such as GRAB in WordPerfect or

CAPTURE in Harvard Graphics. The Graphic Viewer will enable the author to view the

graphics PCX files captured.

The Course Organizer

This program automatically manages the maIn menu display, the sub-menu display, the

placement of graphics and text files. It also organize the formative evaluation questions. By'

7

arranging the text and graphic files in the sequence required by the instnlctor, the course

organizer will automatically generate the courseware. Answers to the formative evaluation

specified here is automatically incorporated into the courseware.

The Courseware generated by the TAR Authoring

The courseware generated by the TAR Authoring has a motivation opening screen to arouse

learner's interest (Fig. 6); a main menu (Fig. 7), and sub-menu with navigation buttons

(Fig.8). Simulations are inserted in the courseware as and when required (Fig. 9). It has also

formative evaluation question (Fig. 10) and dynamic database comparison (Fig. 11)

< insert Fig. 6 to Fig. 11 here >

Using this authoring tool created, over 40 different colirware have been successfully created at

the CETM, USM with topics ranging from English Language, Science , Mathematics and

Living Skills. Every couse~are incorporates instnlctional strategies necessary to enhance

learning.

Conclusion

This paper identifies some of the issues and challenges 10 the developtnent of quality

courseware. It also discuss the limitations of the ISD model in designing courseware It also

discuss how instructional design principles of the ID2 model which can be used for rapid

prototyping of courseware. Development of an authoring tool that allows rapid prototyping

represents a new generation of authoring tool, which is expected to have a higher degree of

flexibility than traditional authoring tools. The TAR Authoring tool developed in the CETM,

USM stands for a pilot effort towards this flexible authoring tool. It has the flexibility of

incorporating instnlctional strategies pertaining to the tutorial line which is a "frame-based"

8

representation style as well as other instnlctional strategies pertaining to the simulation line

which basically use a "model-based" representation style.

We do not yet dare to conclude that flexible authoring tools will be the major stream of

authoring environments in the near future. Nevertheless, we beli'eve that further research into

flexible authoring tools could contribute significantly to the development of more powerful and

useful environments to produce quality courseware and to a wider of computer-based learning.

Reference

[1] Merrill, M. D, and ID2 Research Group, (1994). Automated InstJ1lctional Design and
Development, Paper presented at the Asia Pacific Information Technology in
Training and Education Conference and Exhibition, Brisbane, Australia. 28 June
- 2 July, 1994

[2] Branson, R. (1975). Interservice procedures for instructional .!Jysrems development:
Tallahassee, FI: Florida State University_

[3] Wong, Simon. C.H. (1993), Quick prototyping of educational software: an object­
Oriented Approach. Journal a/Educational Technology Systen1s, 22:2, pp. 155-172.

[4] Silver, G.A. and Silver M.L, (1989). Systems analysis and design, Addison - Wesley,
Reading, Massach llsetts.

[5] Zonghmin, Land Merill, M. D (1990) Transaction shells: a new approach to
courseware authoring. Journal a/Research-on Computing in Education, 23, 1, 72 - 86.

[6] Merrill, M. D., Zonghmin, L. and Jones, J. K. (1990) The second generation
instructional design research program. Educational Technology, 30, 26 - 31.

[7] Institute of Electronic and Electronic Engineers (IEEE), (1989). Rapid prototyping
of software development, Computer, 22:5 [special Issue]

[8] Luqi (1988). Knowledge-based support for rapid software prototyping. IEEE Expert,
3 (4), 9-19

9

[9] Tripp, S.D. and Bichelmeyer, B., (1990). Rapid prototyping: An alternation"
instructional design strategy. Educational Technology Research and Development,
38: 1, p. 31-44

[10] Tah, S. C., & Abdul Rahim M. S., (1994). The Design and Construction ojan
Authoring Tool to enhance Learning. Paper presented at EDUCOMP '94, Universiti
Sains Malaysia, penang. 14 - 16 June, 1994

[11] Jones, M. K. Zonghmin, L. and Menll, M. D. (1990) Domain knowledge
representation for instructional analysis. Educational Technology, 30, 10, 7 - 32.

[12] Schwen, T. M., Goodnm, D. A., &DorseyL. T. (1993). On the design of an
enriched learning and information environment (ELIE). Educational
Technology, 1993, 33 (11), p. 5 - 20

10

T:b.c in~lru\;tiun ~Y"'lelll'l tJ'~"yclulolrn-c'nl (ISOt -t.--ydE'

8------..... - ----

Fig 1. The ISO cycle

Knowledge Anlllysl'l) ~=::.-; .. ---- -----p!!i:L-----
--S-~-~~I~~-YY~A-II-a-IY-~-iS-- ~.r_------~
-----~_r---------~

Trllnsnction Conflgurlltlon ~ --- ~f_='=_
~s"ction Detailing ") - ------~

Duild Prototype -~ --
"d4pled from Jones. Li,§ Merrill!! -"gg J

Fig. 3. ID2 Model for Rapid
Prototyping

Organization of text files in the courseware
produced by tsC/arms authoring

TOPICl TOPIC2 . __ . ___ TOPIC7

sUbtopics

TOPIC11 TOPlC21 TOPIC71
TOPIC12 TOPIC22 TOPIC72
TOPIC13 TOPIC23 TOPIC73
TOPIC14 TOPIC24 TOPIC7"
TOPIC15 TOPIC25 TOPIC75

Fig.S. The structure of the text
in the courseware

11

I1~ralj\"l! Dl'~i~ nu-uu~h Rapid Pl'UIUrypini

U~'~$er-:-est

/ _ cJnc~/~~
9uddJ

lIer.l>~n I

. U~., T~X'I '-I~tr)pnu.~ :h. pctOll'1=t:n rnltuk
:;nn:.plu.Ui::.o .idil:o)r. ~d "1' ,,,.r.L

!!>.IlI" ~ • .ucir.~ tr. •• dditicns .d rofikemenLs III 4FPIi'abOll P[otCLYPI
w,ItQ h", llUlIlI,U ~{. Sclnou a al. (J 991)

Fig. 2. Rapid Prototyping "vith
iteration

The TAR Autholing

author interface

data base
comparator

knowledge base

course
organizer

learner interface

_instructor
interface

Fig. 4 Different Interfaces in the
TAR Authoring

Fig. 6 Motivational Opening Screen

DUU.'\ .. ~." .. 'W_._ ..
............... tJII: r·u-w..

::i! .~--.... [is ',.
]II -.. "- ...
~ ... ,=r.,

..
C ... --.

.~.~ -
l:.l_4~ __ .. _11 __ ~

............. _-......... - ,.
Il10-__ ._ "_01 1'_ _ _ ... _

.... JM:!....,. L ~"-"\III...w._,-- \.
1"1 _ ~ U • .fINo ", J 11. ... __ ~S~ •
... _ _" 1 ... __ _.,. ___ I _____ 10_ _ 1.11. -. "_

Fig. 8. Sub-Menu with
navigation buttons

.............. -, "' ~..-.. ~ ~ _.J-........ _ , ..,..." .. .
• ,..-t ,.....I ... ',...... ... ~
............. _ WYV

..... "'.1 _ ,.... ...
.. n6J.""lao •

..!I \,)· t.U

:iii U.

1I1GW .. kt)"

11 ~ •. ," • ..t"

12

Fig. 7. Main Menu

Fig. 9 .. Model-based simulation

• , u
••• _ ... _ H'''-

, -....
~ i __ 1.t

............... "'MP. 11-
~ __ ot -----

"-
::=.::::=:":=:::::::::=:=:=:=:::. ..

• 1-. ... -
ra._-'
1 .. A '

I,

r 1 '

, ----& --- ...---., --.

Fig. 11. Dynamic database

