

TILE-LEVEL PARALLELISM FOR H.264/AVC

CODEC USING PARALLEL DOMAIN

DECOMPOSITION ALGORITHM ON SHARED

MEMORY ARCHITECTURE

MOHAMMED F. EESSA

UNIVERSITI SAINS MALAYSIA

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/83541376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TILE-LEVEL PARALLELISM FOR H.264/AVC

CODEC USING PARALLEL DOMAIN

DECOMPOSITION ALGORITHM ON SHARED

MEMORY ARCHITECTURE

By

MOHAMMED F. EESSA

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

October 2015

ii

ACKNOWLEDGMENTS

 بســـــم الله الرحمن الرحيــــــم

فأما الزبد فيذهب جفاء وأما ما ينفع الناس فيمكث في الأرض كذلك يضرب الله الأمثال

 صدق الله العظيم

All Praise is to Allah for giving me the courage to complete this thesis. I will

like to express my gratitude to my parents, my wife Dr. Khansaa and all members of

my family for their support during my study. I would also like to thank my son Elias

and my daughter Misk, since their smile gives me that raging energy to keep going

forward with my study to reach that wonderful goal.

I especially want to thank my supervisor, Prof Rosni Abdullah, for her

guidance during my research at the National Advanced IPv6 Centre (NAV6)/

Universti Sains Malaysia (USM). Her perpetual energy and enthusiasm in research

has motivated all her students, including me. In addition, she was always accessible

and willing to help her students with their research. As a result, research life became

smooth and rewarding for me

This thesis would not be possible without the support of my co-supervisor Dr.

Ali Kattan. For that I say “thank you very much” for your help and encouragement

and I should confess that it has been a joyful experience working with you.

iii

I would like also to thank my Malaysian parents Syed Mohd Bakar and

Natrah bt. Mohd Nazir for their support during my study and for their helps also in

many situations here in Malaysia. It is really an amazing thing to be close or part

from such a wonderful family.

Moreover, I am very grateful to the Institute of Postgraduate Studies (IPS)

for offering the USM Fellowship as the financial support for my study

Last but not least, I am so grateful to Universti Sains Malaysia (USM) for

the support, if it was not for their support this research would not have seen the light.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS………………………………………………….. ii

TABLE OF CONTENTS…………………………………………………… iv

LIST OF TABLES………………………………………………………….. x

LIST OF FIGURES………………………………………………………… xi

LIST OF ABBREVIATIONS………………………………………………. xvi

LIST OF PUBLICATIONS………………………………………………… xviii

ABSTRAK…………………………………………………………………… xix

ABSTRACT…………………………………………………………………. xxi

CHAPTER 1: INTRODUCTION

1.1 Introduction………………………………………………………………. 1

1.2 Parallel Approaches of the H.264/AVC, a Brief……..………………….. 3

 1.2.1 Task-Level Approach………………………………………………. 3

 1.2.2 Data-Level Approach………………………………………………. 4

1.3 Problem Statement……………………………………………………….. 6

1.4 Motivation………………………………………………………………... 8

1.5 Research Objectives……………………………………………………… 8

1.6 Thesis Contribution………………………………………………………. 9

1.7 Scope and Limitation…………………………………………………….. 10

v

1.8 Thesis Organization………………………………………………………. 10

CHAPTER 2: BACKGROUND AND LITERATURES REVIEW

2.1 Introduction………………………………………………………………. 12

2.2 Digital Video……………………………………………………………... 12

2.3 The Importance of Video Compression………………………………….. 13

2.4 Block-Based Hybrid Video Coding……………………………………… 14

2.5 The H.264/AVC Standard…………………………………….………….. 15

 2.5.1 Prediction…………………………………………………………... 16

 2.5.2 Transform and Quantisation………………………………………... 17

 2.5.3 Rate-Distortion Optimisation (RDO)………………………………. 18

 2.5.4 Deblocking Filter…………………………………………………… 19

 2.5.5 Entropy Coding…………………………………………………….. 20

 2.5.6 Profiles and Levels of the H.264/AVC Standard………………….. 21

 2.5.7 Dependencies of H.264/AVC Standard……………………………. 21

 2.5.8 Common H.264/AVC Coding Software…………………………… 24

 2.5.8.1 Overview to the JM Reference Encoder……………………. 25

 2.5.8.2 JM Encoder Configuration File (encoder.cfg)……………… 27

 2.5.8.3 JM Encoder Output File…………………………………….. 27

2.6 Parallel Computing……………………………………………………….. 28

 2.6.1 Level of Parallelism………………………………………………... 29

 2.6.2 Types of Parallelism………………………………………………... 29

vi

 2.6.2.1 Task Decomposition……………………………………….. 29

 2.6.2.2 Domain Decomposition…………………………………….. 30

 2.6.3 Parallel Hardware Architectures…………………………………… 33

 2.6.4 Parallel Programming languages…………………………………… 36

 2.6.4.1 POSIX Threads……………………….…………………..... 35

 2.6.4.2 Open Multiprocessing……………………………………… 36

 2.6.4.3 Message Passing Interface……………………….………… 39

 2.6.4.4 CUDA and OpenCL…………………………….………….. 40

2.7 Parallel Approaches for H.264/AVC……………………….……………. 41

 2.7.1 GOP-Level………………………………………….……………… 42

 2.7.2 Frame-Level………..…………………………….………………… 44

 2.7.3 Slice-Level……………………………………….………………… 45

 2.7.4 MB-Level…..……………………………………………………… 49

 2.7.5 Tile-Level of other Video Encoders……………………………….. 51

 2.7.6 Summery of the Related Work…………………………………….. 53

2.8 Chapter Summary………………………………………………………… 56

CHAPTER 3: METHODOLOGY

3.1 Introduction………………………………………………………………. 57

3.2 Research Framework..…………………………………………………… 57

3.3 Key Points of Native Parallel Algorithms……………………………….. 59

3.4 The Design of the Natively-Parallel Domain Decomposition Algorithm... 59

vii

3.5 Tile-Level Parallel H.264/AVC Encoder………………………………… 60

3.6 Implementation, Results, and Evaluation………………………………… 60

 3.6.1 Setting up The Encoding Parameters………………………………. 61

 3.6.2 Experimental Setup………………………………………………… 61

 3.6.3 Video Test Sequence……………………………………………….. 63

 3.6.4 Video Quality Measurements………………………………………. 66

 3.6.5 Evaluation Criteria for Parallel Video Encoders…………………… 67

3.7 Chapter Summary………………………………………………………… 69

CHAPTER 4: THE NATIVELY-PARALLEL DOMAIN DECOMPOSITION

ALGORITHM

4.1 Introduction………………………………………………………………. 70

4.2 The Inherently-Parallel 2D Domain Decomposition Algorithm…………. 71

 4.2.1 Preliminaries………………………………………………………... 72

 4.2.2 Formal Problem Definition of Serial UBD ……………………….. 73

 4.2.3 Block Size (Dimensions)…………………………………………… 73

 4.2.4 Explicit Parallel Decomposition……………….…………………… 76

 4.2.4.1 One-Dimensional Domain…………….……….…………… 77

 4.2.4.2 Two-Dimensional Domain…………………………………. 78

 4.2.4.2 Three-Dimensional Domain………………………………... 80

4.3 Algorithmic Optimisations.....…………………………………………… 81

4.4 The Generalised Mathematical Formula for the Parallel UBD Algorithm. 82

viii

4.5 Time Complexity of the Natively-Parallel UBD Algorithm…………….. 86

4.6 Working Examples……………………………………………….............. 90

4.7 Chapter Summary………………………………………………………… 91

CHAPTER 5: THE PARALLEL TILE-LEVEL H.264/AVC ENCODER

5.1 Introduction………………………………………………………………. 93

5.2 Data Flow of the Tile-level Parallel H.264/AVC Encoder………………. 94

5.3 Framework of the Tile-level Parallel H.264/AVC Encoder……………… 95

 5.3.1 Defining Tiles (Blocks)…………………………………………….. 97

 5.3.2 Tile-Level H.264/AVC Parallel Encoding…………………………. 101

 5.3.2.1 Intra-Prediction…………………………………………….. 101

 5.3.2.2 Inter-Prediction…………………………………………….. 103

 5.3.2.3 Other Encoding Stages……………………………………... 106

5.4 Pros and Cons of the Parallel Tile-Level…………………………............ 107

5.5 High-Level Parallelism and the Future of Multicore…………………….. 109

5.6 Chapter Summary………………………………………………………… 110

CHAPTER 6: IMPLEMENTATIONS, RESULTS, AND EVALUATIONS

6.1 Introduction………………………………………………………………. 112

6.2 Implementation Details of: Parallel Slice-Level and Parallel Tile-Level

H.264/AVC Encoders...………………………………………................ 113

 6.2.1 Parallel Tile-Level (without Overlapping)………………………… 114

ix

 6.2.2 Parallel Tile-Level (with Overlapping)……………………………. 115

 6.2.3 Parallel Slice-Level………………………………………………... 116

 6.2.4 Code Verification (Conformance Testing)………………………… 116

6.3 Results and Evaluations………………………………………………….. 117

 6.3.1 Encoding Time……………………………………………………... 118

 6.3.2 Parallel Speedup……………………………………………………. 122

 6.3.3 Parallel Efficiency………………………………………………….. 127

 6.3.4 Parallel Scalability………………………………………………….. 131

 6.3.5 PSNR……………………………………………………………….. 133

 6.3.6 Bit Rate…………………………………... 137

6.4 Comparisons with other H.264/AVC Parallel Approaches………………. 141

6.5 Chapter Summary………………………………………………………… 142

CHAPTER 7: CONCLUSION AND FUTURE WORKS

7.1 Conclusion………………………………………………………………... 144

7.2 Future Work……………………………………………………………… 145

REFERENCES……………………………………………………………… 146

APPENDICES……………………………………………………………..... 160

APPENDIX A: INDEXES OF BLOCKS DIMENSIONS………………... 161

APPENDIX B: NUMERICAL RESULTS FOR PARALLEL AND

VIDEO QUALITY METRICS…………………………… 164

x

LIST OF TABLES

 Page

Table 2.1 Evaluation of the related work 55

Table 3.1 Encoding parameters 61

Table 3.2 Full HD Video test sequences (1080p) 64

Table 3.3 HD Video test sequences (720p) 64

Table 4.1 Scenarios for one, two, and three dimensions parallel

partitioning 91

Table 5.1 MB-equivalent of tile sizes 100

Table 6.1 Average speedup of overlapping and non-overlapping 132

Table 6.2 Speedup comparison with previous parallel approaches 142

xi

LIST OF FIGURES

 Page

Figure 1.1 H.264/AVC data structure (Gu, J. and Sun, Y., 2011) 5

Figure 2.1 Block-based hybrid encoder block diagram (Ziyi, H. et

al., 2011) 15

Figure 2.2 Variant block sizes of inter & intra predictions 17

Figure 2.3 4 x 4 H.264/AVC transform matrix 18

Figure 2.4 Horizontal and vertical edges filtering in a MB 20

Figure 2.5 Inter frame dependency (IBBPBBP sequence) 23

Figure 2.6 Inter frame dependency (IBPBP sequence) 23

Figure 2.7 Deblocking filter across the slice boundaries 24

Figure 2.8 JM encoder software operation (Richardson, I. E.,

2010b) 26

Figure 2.9 JM reference encoder’s output (Hameed, 2013) 28

Figure 2.10 Generalised block distribution (GBD) approaches 31

Figure 2.11 Non-overlapping versus overlapping domain

decomposition 32

Figure 2.12 Distributed/shared memory architecture 34

Figure 2.13 Threads interaction (Barney, B., 2014) 36

Figure 2.14 Fork-join model of OpenMP 37

Figure 2.15 Syntax of parallelism of OpenMP 37

Figure 2.16 Syntax of for loop parallelism using OpenMP 38

Figure 2.17 CUDA grid, blocks and threads. 40

Figure 2.18 Hierarchical H.264/AVC parallel encoder 43

Figure 2.19 Adaptive slice number selection for parallel H.264/AVC

encoding 47

Figure 2.20 Strip-wise parallel H.264/AVC encoding 48

xii

Figure 2.21 MB region partitioning of a frame 50

Figure 2.12 MB-level parallelism using wavefront method 51

Figure 3.1 Research Framework 58

Figure 3.2 Sequence diagram of the evaluation 63

Figure 3.3 Full HD Video test sequences (1080p) 65

Figure 3.4 HD Video test sequences (720p) 65

Figure 4.1 Block diagram of the natively parallel UBD algorithm 72

Figure 4.2 Determining the size of subdomains (blocks) 75

Figure 4.3 One-dimensional decomposition 77

Figure 4.4 Parallel UBD of one-dimensional space 77

Figure 4.5 Thread accessing memory beyond the array size 78

Figure 4.6 Parallel UBD of one-dimensional space with memory

accessing treatment 78

Figure 4.7 Two-dimensional decomposition 79

Figure 4.8 Parallel UBD of two-dimensional space with memory

accessing treatment 80

Figure 4.9 Three-dimensional decomposition 81

Figure 4.10 Parallel UBD of three-dimensional space with memory

accessing treatment 81

Figure 4.11 Different scenarios of 2D space partitioning 82

Figure 4.12 Ranking of nested loops 83

Figure 4.13 Pseudocode of the Serial UBD Algorithm 88

Figure 4.14 Pseudocode of the Natively-Parallel UBD Algorithm 89

Figure 5.1 Data flow of the tile-level parallel H.264/AVC encoder 94

Figure 5.2 Tile-level H.264/AVC parallel framework 96

Figure 5.3 Different video resolutions (approximated) 99

Figure 5.4 4-tile scenario 99

xiii

Figure 5.5 8-tile scenario 99

Figure 5.6 Parallel intra encoding, 4-tile scenario (HD resolution) 102

Figure 5.7 Parallel intra encoding, 8-tile scenario (HD resolution) 102

Figure 5.8 Inter and intra prediction switching 103

Figure 5.9 2 x 2 Overlapped Tiles 105

Figure 5.10 2 x 4 Overlapped tiles 105

Figure 5.11 Motion estimation beyond the tile boundaries 106

Figure 5.12 Slice-level versus tile-level 108

Figure 6.1 Bitstream conformance testing 116

Figure 6.2 Encoding time of 720p video sequences (p = 2) 118

Figure 6.3 Encoding time of 720p video sequences (p = 4) 118

Figure 6.4 Encoding time of 720p video sequences (p = 6) 119

Figure 6.5 Encoding time of 720p video sequences (p = 8) 119

Figure 6.6 Average encoding time of 720p video sequences 120

Figure 6.7 Encoding time of 1080p video sequences (p = 2) 120

Figure 6.8 Encoding time of 1080p video sequences (p = 4) 121

Figure 6.9 Encoding time of 1080p video sequences (p = 6) 121

Figure 6.10 Encoding time of 1080p video sequences (p = 8) 121

Figure 6.11 Average encoding time of 1080p video sequences 122

Figure 6.12 Parallel speedup of 720p video sequences (p = 2) 123

Figure 6.13 Parallel speedup of 720p video sequences (p = 4) 124

Figure 6.14 Parallel speedup of 720p video sequences (p = 6) 124

Figure 6.15 Parallel speedup of 720p video sequences (p = 8) 124

Figure 6.16 Parallel Speedup of 1080p video sequences (p = 2) 125

Figure 6.17 Parallel Speedup of 1080p video sequences (p = 4) 125

Figure 6.18 Parallel Speedup of 1080p video sequences (p = 6) 125

xiv

Figure 6.19 Parallel Speedup of 1080p video sequences (p = 8) 126

Figure 6.20 Average parallel Speedup of 720p video sequences 126

Figure 6.21 Average parallel Speedup of 1080p video sequences 127

Figure 6.22 Parallel efficiency of 720p video sequences (p = 2) 128

Figure 6.23 Parallel efficiency of 720p video sequences (p = 4) 128

Figure 6.24 Parallel efficiency of 720p video sequences (p = 6) 128

Figure 6.25 Parallel efficiency of 720p video sequences (p = 8) 129

Figure 6.26 Parallel efficiency of 1080p video sequences (p = 2) 129

Figure 6.27 Parallel efficiency of 1080p video sequences (p = 4) 129

Figure 6.28 Parallel efficiency of 1080p video sequences (p = 6) 130

Figure 6.29 Parallel efficiency of 1080p video sequences (p = 8) 130

Figure 6.30 Average parallel efficiency of 720p video sequences 131

Figure 6.31 Average parallel efficiency of 1080p video sequences 131

Figure 6.32 Predicted speedup of tile non-overlapping (p = 16) 132

Figure 6.33 Predicted speedup of tile overlapping (p = 16) 133

Figure 6.34 PSNR of 720p video sequences (p = 2) 134

Figure 6.35 PSNR of 720p video sequences (p = 4) 134

Figure 6.36 PSNR of 720p video sequences (p = 6) 134

Figure 6.37 PSNR of 720p video sequences (p = 8) 135

Figure 6.38 PSNR of 1080p video sequences (p = 2) 135

Figure 6.39 PSNR of 1080p video sequences (p = 4) 135

Figure 6.40 PSNR of 1080p video sequences (p = 6) 136

Figure 6.41 PSNR of 1080p video sequences (p = 8) 136

Figure 6.42 Average PSNR of 720p video sequences 136

Figure 6.43 Average PSNR of 1080p video sequences 137

Figure 6.44 Bit rate of 720p video sequences (p = 2) 138

xv

Figure 6.45 Bit rate of 720p video sequences (p = 4) 138

Figure 6.46 Bit rate of 720p video sequences (p = 6) 139

Figure 6.47 Bit rate of 720p video sequences (p = 8) 139

Figure 6.48 Bit rate of 1080p video sequences (p = 2) 139

Figure 6.49 Bit rate of 1080p video sequences (p = 4) 140

Figure 6.50 Bit rate of 1080p video sequences (p = 6) 140

Figure 6.51 Bit rate of 1080p video sequences (p = 8) 140

Figure 6.52 Average bit rate of 720p video sequences 141

Figure 6.53 Average bit rate of 1080p video sequences 141

xvi

LIST OF ABBREVIATIONS

API Application programming interface

ASIC Application specific integrated circuit

AVC Advanced video codec

B-frame Bidirectional predicted frame

CABAC Context-based adaptive binary arithmetic coding

CAVLC Context-adaptively switched sets of variable length codes

CEAA Co-exploration between algorithm and architecture

CIF Common intermediate format

CPU Central processing unit

CUDA Compute unified device architecture

dB Logarithmic decibel

DCT Discrete cosine transform

FPGA Field programmable gate array

FPS Frames per second

GBD Generalised block distribution

GHz Gigahertz

GOP Group-of-picture

GPGPU General-purpose computing on graphics processing units

GPU Graphical processing unit

HD High definition

HEVC High efficiency video coding

HPC High performance computing

HVS Human visual system

IDE Integrated development environment

I-frame Intra-coded frame

xvii

IPTV Internet protocol television

JM Joint model

JPEG Joint photographic experts group

JVT Joint video team

MB Macroblock

ME Motion estimation

MPEG Moving picture experts group

MPI Message passing interface

MV Motion vector

NP Nondeterministic polynomial time

OpenCL Open computing language

OpenMP Open multiprocessing

OS Operation system

P-frame Predicted frame

PMV Predicted motion vector

PSNR Peak signal-to-noise ratio

Pthreads POSIX threads

QCIF Quarter common intermediate format

QP Quantisation parameter

RDO Rate-distortion optimisation

RGB Red, green, and blue

SD Standard definition

thread ID Thread identification

UBD Uniform block distribution

VCEG Video coding experts group

xviii

LIST OF PUBLICATIONS

Published Mohammed Faiz Aboalmaaly, Adel Nadhem Naeem, Hala A.

Albaroodi, Sureswaran Ramadass, "Parallel H.264/AVC Encoder: a

Survey", International Journal of Advancements in Computing

Technology (IJACT), Vol 5, No. 9, pp. 334-341, 2013 (Scopus)

Published Mohammed Faiz Aboalmaaly, Ali abdulrazzaq khudher, Hala A.

Albaroodi, Sureswaran Ramadass, “Performance Analysis Between

Explicit Scheduling And Implicit Scheduling Of Parallel Array-Based

Domain Decomposition Using Openmp”, Journal of Engineering

Science and Technology, Vol. 9, No. 5, pp. 522-532, 2014 (Scopus)

Published Mohammed Faiz Aboalmaaly, Rosni Abdullah, Ali Kattan. “New

Domain Decomposition Method for Quality-Aware Parallel H.264

Video Coding”, Malaysian Journal of Computer Science, Vol. 27, issue

3, 2014 (ISI Impact Factor 0.5)

Published Mohammed Faiz Aboalmaaly, Rosni Abdullah, Ali Kattan, “Data-Level

Parallel Approaches for the H.264 Coding: A Review”, First

International Engineering Conference (IEC2014), Ishik University,

Erbil, Kurdistan, Iraq, November 24-26, (2014)

Accepted

Jun 2014

Mohammed Faiz Aboalmaaly, Sureswaran Ramadass, Mohammed

Anbar, Hala A. Albaroodi “A New Parallel Algorithmic Design for a

Uniform Block Distribution (UBD) Problem”, INFORMATION,

(Scopus)

Presented

Aug 2014

Mohammed F Eessa, Rosni Abdullah, Ali Kattan, “H.264 Tiling: A

New Parallel and Quality-Aware Approach For Parallelizing H.264

Codec”, Poster Presentation in the Computer Science Postgraduate

Colloquium, 26-27 August, Pusat Latihan Zakat (PULAZA) Balik

Pulau, Pulau Penang, Malaysia, (2014)

Accepted

Jan 2015

Mohammed Faiz Aboalmaaly, Rosni Abdullah, Ali Kattan, "Data-Level

Parallel Approaches for the H.264/AVC: A Review From Encoder and

Decoder Perspectives", International Journal of Informatics and

Communication Technology (IJ-ICT).

xix

PENSELARIAN PERINGKAT-JUBIN UNTUK KODEKS

H.264/AVC MENGGUNAKAN ALGORITMA PENGURAIAN

DOMAIN SELARI PADA SENI BINA MEMORI YANG

DIKONGSI

ABSTRAK

Tema tesis ini adalah berdasarkan kepada penggunaan ciri-ciri model selari

dalam fasa reka bentuk algoritma untuk mengurangkan kerumitan pengiraan dalam

perbandingan dengan algoritma bersiri. Dengan menganggap bahawa seni bina selari

membentuk majoriti pengiraan nod dalam peranti digital, cadangan bagi algoritma

selari-inheren adalah sesuai. Dalam karya ini, proses atau pengenalan bebenang

didaftar dalam satu formula matematik untuk mengurai domain satu, dua, dan

domain tiga dimensi. Penyelesaian senario ruang dua dimensi seterusnya disesuaikan

sebagai tahap baru keselarian untuk pengekodan piawaian H.264/AVC kerana

kerumitan pengiraan yang lebih tinggi daripada pengekodan video ini berbanding

dengan piawaian sebelumnya. Tahap baru keselarian untuk pengekod H.264 / AVC

ini telah direka untuk mempertimbangkan beberapa metrik pengekodean video dan

berorientasikan selari. Kaedah selari peringkat-jubin H.264/AVC yang dicadangkan

dibandingkan dengan pendekatan selari tahap kepingan dan tahap blok makro.

Perbandingan dibuat berhubungkait dengan pelaksanaan garis dasar (bersiri).

Kecepatan, kecekapan selari, kadar bit, dan kadar signal puncak kepada ganggu

(PSNR) digunakan sebagai metrik untuk semua pendekatan. Hasil kajian pada selari

peringkat-jubin H.264 /AVC yang dicadangkan mengatasi tahap kepingan yang

sebelum ini dikenali sebagai pendekatan yang paling sesuai untuk seni bina memori

yang dikongsi. Berbanding dengan kaedah pendekatan selari tahap kepingan,

xx

cadangan kaedah tahap jubin mencapai kelajuan yang lebih sebanyak 14%,

pengurangan PSNR sebanyak 67% dan pengurangan kadar bit sebanyak 56.5%.

xxi

TILE-LEVEL PARALLELISM FOR H.264/AVC CODEC USING

PARALLEL DOMAIN DECOMPOSITION ALGORITHM ON

SHARED MEMORY ARCHITECTURE

ABSTRACT

The theme of this thesis is based on the utilisation of features of the parallel

model in the design phase of an algorithm in order to reduce the computational

complexity in comparison with the serial algorithm. By assuming that parallel

architectures are forming the vast majority of computing nodes in digital devises,

proposing inherently-parallel algorithms are no more an overstatement. In this work,

the process or thread identification is used in a mathematical formulation to

decompose a one-, two, and a three-dimensional domain. Then, the solution of the

scenario of two-dimensional space is further customized to serve as a new level of

parallelism for the H.264/AVC coding standard due to the higher computational

complexity of this video coding in comparison with previous standards. This new

level of parallelism for the H.264/AVC encoder has been designed in a way to

consider several video coding and parallel- oriented metrics. As a further step, the

proposed tile-level parallel H.264/AVC is compared with the slice-level and the

macroblock-level parallel approaches. Comparisons are made with regards to the

baseline implementation (serial). Speedup, parallel efficiency, bitrate, and peak-

signal-to-noise-ratio (PSNR) are used as metrics for all of the approaches. Empirical

results of the proposed tile-level parallel H.264/AVC encoder outperformed the slice-

level which is previously known to be the most suitable approach for shared memory

architecture. In comparison with the slice-level parallel encoder, the proposed tile-

xxii

level method achieved speedup of 14%, PSNR reduction of 67% and bit rate

reduction of 56.5%.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Due to the ongoing revolution in the digital era, the spectrum of multimedia

services is continuously expanding. Digital video, for instance, is being used in a

wide range of applications areas including education and training, leisure and

entertainments, virtual reality and simulations, and many more. The delivered quality

of these digital video applications over networks, such as the Internet, relies on the

advances in the computing and communication technologies as well as the efficiency

of the video compression algorithms (Woods, 2012).

With an increasing number of multimedia services and a growing popularity

of high definition HD video contents and beyond, the need for a video compression

standard, capable of a higher coding efficiency by occupying lower data rates

became evident. The standard MPEG-4 Part10 (also known as H.264/AVC) has,

compared to former standards, achieved such a need (Dhanani and Parker, 2013).

The H.264/AVC is one of the most popular video codec today (Ozer, 2015). The

standard H.264/AVC is an outcome of a joint work made by the Moving Picture

Experts Group (MPEG) and the Video Coding Experts Group (VCEG) (Ostermann

et al., 2004). When compared against previous standards, the H.264/AVC is capable

of encoding a video sequence with higher quality using the same data rate or same

quality using significant lower data rate due to the utilisation of sophisticated

techniques that reduce video size by combining prediction, transform coding, and

statistical compression (Puri et al., 2004). As a consequence, the computational

2

complexity of the encoder has grown significantly in comparison with older

standards. Thus, encoding real time video, with 30 frames per second (fps), using

standard quality options and normal resolution has become very difficult to achieve

with traditional uniprocessor platforms.

 Due to the high computational complexity of the H.264/AVC video

encoding H.264/AVC standard, complexity reduction algorithms as well as parallel

computing approaches have been employed to lessen the encoding time of the

uncompressed videos (Horowitz et al., 2003; Choi and Jang, 2012). As the names

imply, complexity reduction algorithms are done by skipping or by early terminating

of some of the encoding features of the video compression algorithms which could

subjectively deemed as redundant. As a result, the complexity of video compression

will be reduced. On the other hand, the parallel computing approaches are fulfilled

on a video codec, such as H.264/AVC standards, by the simultaneous processing of

the standard’s video compression components using a number of computing

resources.

However, the preference of the parallelised video encoding algorithms over

the complexity reduction video encoding algorithms is possible to be emphasised by

the wide-spreading of parallel models such as shared, distributed, and data-parallel

memory models. Therefore, the use of parallel computing has become no more

optional but actually a necessity for resource demanded applications such as video

coding (Chi et al., 2012).

3

Parallel video encoder implementations, however, are expected to take

advantage of the full potential of the parallel hardware architectures. Yet, special

care must be taken that a parallelised video encoder does not compromise low

encoding delay, quality of video, accuracy of bit rate control, and error resilience due

to modifications introduced by the parallelisation approach. Thus, there is a strong

demand for research work addressing design and implementation issues related to

low latency and high quality parallel video encoding (Lehtoranta, 2007).

1.2 Parallel Approaches of the H.264/AVC, a Brief

In general, parallel video codecs are possible to be categorised according to

the flavours of the parallel computing itself. Hence, data (domain) and task

(functional) decompositions are two types of video coding parallelisation methods.

In the following sections (section 1.2.1 and section 1.2.2), a brief review to the

H.264/AVC video codec parallelisation techniques based on these two types is

presented.

1.2.1 Task-Level Approach

In the task-level approach, the functional stages of the video compression are

assigned to different processing units at the same time. Thus, these stages have to be

independent in order to achieve parallelism. However, pipelining is an alternative,

but less efficient approach (Feng et al., 2009), among dependent stages. Generally,

Task-level decomposition requires significant communication between tasks in order

to move the data from one processing stage to the other, and this could become a

performance bottleneck.

4

However, in terms of the H.264/AVC standard, the main drawbacks of task-

level decomposition are the non-scalability and load imbalance (Jo et al., 2012)

Scalability is hard to achieve in terms of H.264/AVC due to limited number of

independent tasks, wherein the different computational load of each task results in

load imbalance among processing node. Moreover, in terms of H.264/AVC,

pipelining is hard to achieve scalability as the number of stages is limited to few.

1.2.2 Data-Level Approach

Generally, video sequences can be expressed as a series of two dimensional

arrays where each frame is one single two dimensional array (Choi and Jang, 2012).

In a holistic view, paralleling H.264/AVC encoder based on the data-level approach

has featured into different types based on the relative size of the parallel unit (see

Figure. 1.1). From coarsest to the finest, Group-of-Picture (shortly GOP-level),

frame-level, slice-level, macroblock-level (shortly MB-level), and block-level, are

different possible granularities that can be chosen to parallelise H.264/AVC encoder

(Fan, 2012).

Typically, GOPs are used for synchronisation purposes because there are no

temporal dependencies among them. Each GOP is composed of a set of frames.

These frames are possibly having temporal dependencies based on their types due to

the motion prediction among frames. Each frame is further divided up into one or

more slices. The slice is a standalone unit for encoding and decoding and there are no

spatial dependencies between slices. Moreover, each slice is further composed of a

set of MBs. MBs are the basic units of prediction. H.264/AVC allows variable sizes

5

of each MB. Additionally, MBs are composed of few blocks wherein each block is

composed of picture samples, and these samples can be processed in parallel.

Figure 1.1: H.264/AVC data structure (Gu and Sun, 2011)

GOPs are a coding-independent unit. Therefore, the GOP level is easy to

implement; however, it has long latency (Fernandez and Malumbres, 2002) and large

memory requirements (Jo et al., 2012). Thus, paralleling the GOP level is

inappropriate for shared memory architecture because of limited on-chip memory

(Zrida et al., 2011). Frame-level coding does not increase bit rate. However, the

complex interdependencies in the H.264/AVC standard, which are caused by very

flexible usage of reference pictures, limit its parallel scalability (Yen-Kuang et al.,

2004; Jung and Jeon, 2008; Roitzsch, 2007b). Moreover, this level of coding is

6

associated with large memory requirements. Slice-level coding has been associated

with minimal synchronization cost, normal memory requirements, and good

performance scalability (Jo et al., 2012). The only drawbacks associated with this

level are the increasing bit rate and degradation of visual quality when the number of

slices increases (Yen-Kuang et al., 2004). MB-level and block-level coding incur no

bit rate degradation; nevertheless, both are associated with high synchronization

costs because of the small-sized parallel unit, dependency among them (Lili et

al., 2012), and poor scalability (Jo et al., 2012), which render them incompatible

with the current trend of multicore.

In general, each one of these granularities has different constraints, would be

suitable for particular platform, and could require different parallelisation

methodologies.

1.3 Problem Statement

Technically, for the same video sequence, the H.264/AVC encoder requires

computations that are about one order of magnitude more compared to previous

video encoding standards and about two to four times more computations compared

to earlier video decoding standard, due to the higher computations of its inter and

intra prediction processes (Saponara et al., 2004; Tu et al., 2012). This remarkable

increase has motivated the adoption of parallelism.

However, due to the diversity of the parallel memory models such as shared,

distributed, and data-parallel, it is clear now, that the hardware models should play a

decisive role in the decision making of the suitable parallel methodology for a video

7

codec. For instance, the co-exploration between algorithm and architecture (CEAA)

(Choi and Jang, 2012), is a new trend in computing which takes into consideration

the architecture features during the design phase of an algorithm in order to

significantly utilise the full potential of that architecture with no or minimum

compromise on the purpose of the algorithm. The H.264/AVC lacks to adopt such a

trend. However, the upcoming high efficiency video coding (HEVC) standard has

addressed such a remark by its support to parallelisation, but because of the scope of

standard (bit stream and the decoder processes) addressing such a limitation with a

new video compression algorithm cannot be directly backward compatible and a

dedicated research work need to be conducted. Moreover, instant moving to a newer

video coding standard is not always possible. This explains the existence of several

video transcoders (Peixoto and Izquierdo, 2012; Peixoto et al., 2013; Shen et al.,

2013), which implicitly motivate research works as the one in this thesis regardless

of the technologies achieved with other video coding.

Considering the shared memory architecture from a CEAA point of view for

current and new algorithms is vital, due to the considerable horizontal scaling in the

number of cores per a single processing die as well as its affordability and wide-

spread. In terms of parallel efficiency, the slice-level parallelism is the most suitable

level for such architecture and it is a trade-off level based on its associated

granularity. Moreover, it is the most universal parallelisation method employed to

parallelise the H.264/AVC codec (Lili et al., 2012). Hence, it is the preference

selection for parallelism for this parallel architecture. Unfortunately, this level, with

respect to its parallel suitability, has been associated with few limitations.

Technically, increase in bit rate, degradation in visual quality, and possibly load

8

imbalance are noticed upon the employment of this parallel method (Franche and

Coulombe, 2012).

Considering the above, the introduction of an alternative level which has the

same suitability level as the slice-level but with fewer disadvantages is remained as

unanswered question for the H.264/AVC standard.

1.4 Motivation

Unfortunately, as it is happening for the parallel slice-level H.264/AVC

encoder, lessening the complexity of algorithms by using parallelism has not to be at

the expense of the purpose of these algorithms. This drawback has to be strongly

avoided if the expense is getting higher as the number of parallel partitions is

increased. However, as we have entered the multicore era, ignoring parallel

computing as an effective solution in computing cannot be overlooked. Thus, a new

bridge need to be established in a way that ensures a better utilisation of parallel

computing along with no or little expense to the purpose of the algorithms seeking

parallelisation.

1.5 Research Objectives

1. To design a natively parallel domain decomposition algorithm for uniform

multi-dimensional domains.

2. To customise the proposed algorithm to serve as a new level of parallelism

for the H.264/AVC tailored for shared memory architectures, which would

has the same parallel suitability as the slice-level approach, but with minimal

penalties on the bit rate and the visual quality.

9

3. To validate and evaluate the proposed parallel approach for the H.264/AVC

video coding.

1.6 Thesis Contribution

In order to achieve the objectives of this thesis, a new method to seamlessly

employ parallel computing in encoding videos using H.264/AVC without

compromising the objectives that this video codec was designed for is proposed. In

particular, a new parallel granularity is proposed in this thesis. This new granularity

is based on decomposing the video frame using a 2D domain decomposition

algorithm instead of the 1D domain decomposition method that is typically used in

the slice-level parallelism.

 Adding to the proposed parallel granularity, named tile-level, is a new data-

level parallelism in terms of H.264/AVC codec; the algorithmic design is also new.

We have considered using the facilitation of the parallel libraries in the design phase

of the algorithm (natively-parallel) rather than making the utilisation as an

optimisation or a post stage since parallel hardware is forming the vast majority, if

not all, of the processing units in all digital devises. This enrolment has significantly

simplified the mathematical formula for the proposed 2D domain decomposition

algorithm when compared to other general-purpose 2D domain decomposition

algorithms.

Further, a generalised mathematical modelling has been made to the

algorithmic design of the proposed parallel domain decomposition algorithm.

10

Finally, real implementation test results for the proposed mathematical-based

method show improvement in the parallel-oriented metric such as speedup.

Moreover, on the same pace, video quality metrics has been remarkably improved

compared to the slice-level parallelism on shared memory architectures.

1.7 Scope and Limitations

In the folds of this work, the scope is identified from the architecture and

software perspectives. In terms of architecture, shared-memory architecture has been

selected as an environment, while other types of parallel architecture have not been

considered. Further, the H.264/AVC is selected as an example of array-based

application for the new designed algorithm.

1.8 Thesis Organisation

This thesis is organised into seven chapters. The content is arranged to

emphasise the flow of the presented knowledge. In Chapter 1 (Introduction), a

brief introduction to the thesis’s area of research, problem statement, objectives,

motivation, and the thesis contribution are stated.

In Chapter 2 (Background and Literature Review), a general background

to the video compression is given. This is followed by detailed description of the

H.264/AVC video encoding components. Then, an informational background to the

parallel computing was also added. Finally a review of previous works that have

been done on making video encoding faster, by using parallelism, is presented at the

end of the chapter.

11

In Chapter 3 (Methodology), the research procedure of this study is

described. Chapter 3 is the part where the research framework, the used data set,

and the experimental environments are specified.

Chapter 4 (Natively-Parallel Domain Decomposition Algorithm) is

discussing the algorithmic description of the proposed natively-parallel domain

decomposition algorithm. In particular, it shows how this algorithm was designed

and defines the assumptions behind the introduction of this algorithm. Moreover, a

proper logical testing for the algorithm to inspect it correctness is also made.

As the parallel algorithm proposed in Chapter 4 is general in its purpose,

application-oriented customisations to the new algorithm to serve as a new parallel-

level for the H.264/AVC encoder are presented in Chapter 5 (The Parallel Tile-

Level H.264/AVC Encoder) in order to cope with this video coding standard. Issues

related on how the tiles are added to the standard as a new syntax element have also

been given.

Chapter 6 (Implementations, Results and Evaluations) is where the

implementation of the parallel H.264/AVC tile-level and its evaluation with regard to

the serial and other H.264/AVC parallel encoders is placed.

Finally, Chapter 7 (Conclusion and Future Works) covers the

conclusions of the thesis, as well as recommendations for further research

directions.

12

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

This chapter introduces some of the background information related to the

areas of digital video and video compression. Colour spaces, underlying motivation

for video compression, measuring the quality of compressed videos, and the theme

behind hybrid video coding algorithms are presented and explained. Moreover, the

standard H.264/AVC, as an example of hybrid video coding and as a part of the work

presented in this thesis is explained in detail. A part, a background of parallel

computing is found to be necessary followed by a presentation and a discussion of

several related works that have adopted parallel computing to lessen the complexity

of the H.264/AVC standard.

2.2 Digital Video

Digital video refers to the capturing, manipulation, and storing of moving

images that can be displayed on computer screens. This requires that the moving

images be digitally handled by the computer. The word digital refers to a system

based on discontinuous events (sampling), as opposed to analogue, a continuous

event. Visual pixels are the basic unit in digital video, where each colour component

sorted digitally in each pixel.

Visual information at each sample pixel is representing by the values of three

basic colour components: Red (R), Green (G), and Blue (B). This is called the RGB

colour space (Tkalcic and Tasic, 2003). Each value is stored in a few bits number.

13

For example, an 8-bit number can store 256 levels to represent each colour

component. In the RGB colour space, the light intensity (luminance) of each

component is stored correspondingly in each of the three colour components.

However, it has been proved that the human visual system (HVS) has less

sensitivity to colour information (chromosomes) than luminance information.

Therefore, with the separation of luminance (aka luma) information from the

chromosomes (aka chroma) information, it is possible to represent chromosomes

information with a less resolution than the luminance information, and hence

less number of bits will be needed to represent each pixel.

This separation has been achieved by the introduction of the YCrCb colour

space (Tkalcic and Tasic, 2003). YCrCb is another widely used colour space to

represent digital visual contents. The luminance component ‘Y’ is extracted using

mathematical equations of the three colour components R, G and B. The components

Cr and Cb are the chrominance (or colour difference) components. Cr is the red

chrominance component and the blue chrominance component is Cb. H.264/AVC

standard uses the YCrCb colour space.

2.3 The Importance of Video Compression

Image and video compression is an area with much ongoing research. New

demands for higher quality and higher resolution video have increased the needs for

better compression. One reason is that bandwidth capacity has not scaled with the

new demands for HD-video. In order to better understand how huge the data rate of

videos of different resolution; two standard video resolutions are compared. In the

standard definition (SD, 720 x 480) video size, the uncompressed form (raw) size of

14

this resolution of one second requires number of bits that can be obtained by

multiplying the dimension of frame, frame rate, and the bits per pixel all together. By

proposing the frame rate to be 30 frame per second (fps), and the bits per pixel is 16

(YCrCb format) the uncompressed size will be equalled to 16 x 720 x 480 x 30 =

165888000 bits (for one second video clip only), which is approximately equivalent

to 158 megabits. The total size of one hour video will be equal to 568800 megabits,

which approximately equals to 555 gigabits (about 69 GB) of storage. However,

when the resolution further increases to Full HD (1920 x 1080), the uncompressed

video requires about 949 megabits to play one second of video. An hour of video

using this resolution requires about 3336 gigabits (about 417 GB).

Considering current standards, the average user has nowhere near this kind of

storage space for watching neither a full length movie nor enough bandwidth to

stream such size of videos across Internet in uncompressed form. Thus, with the

continuing trend towards higher resolution and higher quality video, compression is

still needed, perhaps more than ever.

2.4 Block-Based Hybrid Video Coding

In the block-based hybrid video coding (see Figure 2.1) that uses the YCrCb

colour space, the basic unit of coding are blocks of n x n (e.g. 16 x 16) array size of

luma sample and corresponding chroma samples. The frame is divided into a number

of blocks based on the size of the frame and processed sequentially in raster scan

order (Jian-Wen et al., 2006). It is hybrid video coding because the particular video

coding system involves prediction as well as transformation stages. Generally, in

such video coding system, the encoder has two data flow paths; forward and reverse.

15

The forward path represents the encoding process of coding units and the reverse

path (decoder path) shows the decoding (reconstruction) of the coded units

within the encoder that used for motion estimation. In general, major components of

block based encoding are inter and intra prediction, transformation and quantisation,

and entropy coding processes. The entropy coding process produces the bit stream

which can be used for transmission or storage.

Figure 2.1: Block-based hybrid encoder block diagram (Ziyi et al., 2011)

2.5 The H.264/AVC Standard

Similar to several formers video encoders, the H.264/AVC video encoder

carries out prediction, transformation and entropy encoding processes to produce a

compressed H.264/AVC bit stream. While the H.264/AVC video decoder carries out

the complementary processes of entropy decoding, inverse transformation and

reconstruction to produce a decoded playable video sequence. Better compression

efficiency and network-friendliness were the two goals behind the introduction of the

H.264/AVC (Zrida et al., 2009).

Although H.264/AVC has similar coding features captured from earlier video

coding standards, it has also introduced several new features such as variable block

size, multiple reference frames and quarter-pixel accuracy (Jian-Wen et al., 2006).

16

These main processes along with other features of the H.264/AVC video coding

standard are explained in the sections (2.6.1-2.6.5). Moreover, the profiles and levels

of the H.264/AVC, the common dependencies of the standard, and an overview to a

number of industry and academic-based H.264/AVC software are stated in sections

(2.6.6-2.6.8) respectively.

2.5.1 Prediction

The prediction in the encoder is formed of a current MB based on previously-

coded MBs, either from the same frame (intra prediction) or from other previously

coded frames (inter prediction). The encoder subtracts the prediction from the current

MB to form a residual.

Prediction models of the H.264/AVC are more sophisticated compared to

previous video coding standards as they enable accurate prediction. In terms of intra

prediction, two block sizes are supported: 16 x 16 and 4 x 4 to predict the MB from

surrounding and previously coded MBs within the same frame. For the 4 x 4 intra

prediction, nine different prediction modes are supported while four different

prediction modes are supported for the 16 x 16 block (Ostermann et al., 2004).

 On the other hand, more variable block sizes are supported for the inter

prediction mode, 16 x 16, 16 x 8, ….., down to 4 x 4 block sizes can be used to

predict current MB from similar regions of previously coded MBs of previous coded

frames (You and Jeong, 2010). It is worth mentioning that the coding MB in inter

prediction mode can be predicted from a frame which is after the current frame in

terms of the display order. This leads that in terms of H.264/AVC the display order

17

differs from the encoding order of frames. Figure 2.2 shows all of the possible

modes for inter and intra predictions supported by the H.264/AVC standard (Wu et

al., 2013). In terms of the computational complexity, this process is empirically

proved to occupy most of the computation of the H.264/AVC video encoder

(Milicevic and Bojkovic, 2011a).

Figure 2.2: Variant block sizes of inter & intra predictions

2.5.2 Transform and Quantisation

A block of residual samples is then transformed using a 4 × 4 integer

transform (8 x 8 in limited scenarios), which is a simplified version of the well-

known Discrete Cosine Transform (DCT) (Ahmed et al., 1974) used in most of the

former video coding standards. The transform results in a set of coefficients, each of

which is a weighting value for a standard basis pattern. When combined, the

weighted basis patterns recreate the block of residual sample. Figure 2.3 shows the

4x4 transformation matrix mostly used by the H.264/AVC standard.

18

Figure 2.3: 4 x 4 H.264/AVC transform matrix

Each block of transform coefficients, is further quantised. Quantisation

divides the transform coefficients by an integer value (0-51). To achieve the targeted

bitrate, this step reduces the precision of the transform coefficients according to a

quantisation parameter (QP). However, in general, the higher value of QP, the better

compression efficiency, but the poorer image quality (lower bit rate). While selecting

lower value of QP, leads to better image quality (high bit rate) but also less

efficiency in compression.

2.5.3 Rate-Distortion Optimisation (RDO)

The RDO is a technique of improving video quality during the video

compression. This method refers to the optimisation of the amount of distortion (the

loss of video quality) to the amount of data required to encode the video (the video

rate) (Li-Chuan et al., 2011). The typical method of making encoding decisions for

the video encoder is to choose the result which yields to the highest quality output

image. However, this selection would be associated with a disadvantage represented

by more bits while giving comparatively little quality benefit. For instance, in motion

estimation, adding the extra precision (half and quarter pixel accuracy) to the motion

19

of a block during motion estimation might increase quality. But in some cases that

extra quality isn't worth the extra bits necessary to encode the motion vector to a

higher precision. Hence, the role of RDO would be probably to neglect such further

precision and settle for normal pixel accuracy. It is worth mentioning that RDO

works at the MB-level and examine the candidates with regard to their availability to

the encoder (Zhou and Yuan, 2012).

2.5.4 Deblocking Filter

Deblocking Filter plays a vital role in block-based video coding systems.

Since The H.264/AVC video coding standard uses blocks DCT-like coding

techniques, this propagates blocking artefacts. Blocking artefacts can be defined as

discontinuities occurring at the block boundaries. Hence, in such scenario, it is

preferable to eliminate as much as possible of such visual annoying artefact at the

boundaries of the MBs to enhance the quality of the video. H.264/AVC applies the

deblocking filter at the encoder and decoder sides. The filtering is done first from left

to right vertically and then from top to bottom on the horizontal boundaries of each

block. Moreover, luma and chroma components are separately processed. The

deblocking filter of the H.264/AVC can achieve substantial objective and subjective

quality improvements (Choi and Ho, 2008). Figure 2.4 illustrates the process of

deblocking filter which ordered alphabetically.

20

Figure 2.4: Horizontal and vertical edges filtering in a MB

2.5.5 Entropy Coding

The video coding process produces a number of values that must be encoded

to form the compressed bit stream. These values along with the encoding parameters

and the syntax elements are converted into binary codes using variable length coding

or arithmetic coding. Each of these encoding methods produces an efficient, compact

binary representation of the information for transmission or storage. H.264/AVC

uses two methods of entropy coding: a low-complexity technique based on the usage

of context-adaptively switched sets of variable length codes (CAVLC), and the

computationally more demanding algorithm of context-based adaptive binary

arithmetic coding (CABAC) (Zhan et al., 2008). Both methods represent major

improvements in terms of coding efficiency compared to the techniques of statistical

coding that are traditionally used in former video coding standards (Ostermann et al.,

2004). This stage is typically known to be serial, as it scans in raster-scan order in a

frame basis.

21

2.5.6 Profiles and Levels of the H.264/AVC Standard

In the first release of the H.264/AVC standard, three profiles were defined;

baseline, main and extended profile. A year later another group of profiles have

been also introduced to form a total of seven profiles. The H.264/AVC intended to

serve wide range of multimedia applications on numerous architectures. Moreover,

in each profile there are levels to specify options and tools to suit a particular

multimedia application on specific architecture such as maximum stored frames,

maximum frame size and maximum video bit rate.

It is important to know that not all of the encoding/decoding features are

supported in all profiles. As an example, the baseline profile which targets real-time

conversational services does not support B-frame in its coding process. Additionally,

as stated in the previous section, H.264/AVC defines two schemes of entropy coding

which are Context-Adaptive Binary Arithmetic Coding (CABAC) and Context-

Adaptive Variable Length Coding (CAVLC). These two schemes differ in terms of

the complexity-performance trade-off. The CAVLC is associated with lower

computational complexity than CABAC (Tung et al., 2012; Sze and Chandrakasan,

2012). Hence it is the preferable choice for real-time applications (Wiegand et al.,

2003).

2.5.7 Dependencies of H.264/AVC Standard

When the H.264/AVC was designed, there was no realistic consideration to

natively support parallelism. This limitation explains the various types of

dependencies in H.264/AVC codec. This section discusses these dependencies with

22

regard to the different possible data-level parallel units discussed previously (section

1.2.2) and the encoding stages.

Since GOPs are the coarsest syntax element to the H.264/AVC standard,

there is no data dependency between GOPs. However, with some exceptions, it is

possible that a GOP can depend on a previous GOP. For example, slices of a key

picture can be either intra predicted or inter predicted according to the H.264/AVC

standard (Hsu-Feng and Chen-Tsang, 2013). If a key picture is inter-coded, its

reference frame will be from the previous GOP. Therefore, the two GOPs are no

longer coded independently. However, to eliminate the possible errors from such a

dependency over error-prone networks, key pictures are usually intra predicted (Hsu-

Feng and Chen-Tsang, 2013).

In terms of frames, the frame type determines the level of dependency. I-

frame is like a conventional static compressed image. P-frame is a predicted frame

which holds only the changes in the image from the previous frame, while B-frame is

a bidirectional predicted frame where this picture holds only the changes from

previous and successive frames. However, due to the flexibility of selecting the

reference frame and the various possible sequencing of I, P and B frames in each

GOP (see Figure 2.5 & Figure 2.6), the dependency may vary from one video

sequence to another (Franche and Coulombe, 2012).

.

23

Figure 2.5: Inter frame dependency (IBBPBBP sequence)

 Figure 2.6: Inter frame dependency (IBPBP sequence)

Typically, slices of the same frame are coded independently. However, slices

boundaries are subject for deblocking filter (Hiremath, 2010). Although this feature

is optional, adopting it will incur dependency among slices. Figure 2.7 shows the

optional deblocking filter across the slice boundaries (dashed lines).

24

Figure 2.7: Deblocking filter across the slice boundaries

Dependencies at finer levels (MBs and blocks), are numerous. In terms of

intra prediction, several modes of intra dependencies are required to predict an MB

or a block in a frame. At the same pace, inter dependency of MB can be predicted by

motion vectors of the same regions of prior coded frames. Moreover, deblocking

filter is applied at the MB boundaries of flat areas of the image and at the block

boundaries of the image for more detailed areas. In addition, the numbers of the

supported prediction modes in H.264/AVC standards are numerous. Hence, the

dependencies are varying from one mode to another.

Finally, the entropy coding stage is applied at the MB-level in a raster-scan

order on a frame bases. This scan ordering limits the chance of parallelism

accumulatively. Hence, in several studies, such as (Jo et al., 2012), this encoding

stage is excluded from the parallelised loop.

2.5.8 Common H.264/AVC Coding Software

Currently, there are several available software programmes to encode/decode

videos by using the H.264/AVC standard. Among these several solutions, three

