RATIONAL DESIGN AND SYNTHESIS OF INHIBITORS FOR H1N1 NEURAMINIDASE AND DENGUE PROTEASE ENZYMES

by

MAYWAN HARIONO

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

July 2015

ACKNOWLEDGEMENT

Formost, a great thankful was expressed to The Almighty, Allah SWT. Without His Blessings, it was impossible to complete my PhD thesis in an exact time. Secondly, I would like to express my sincere gratitude to my advisor Prof. Dr. Habibah A. Wahab for her continuous support on my PhD study and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. A great thank was also expressed to Universiti Sains Malaysia for awarding me the USM fellowship and Malaysian Ministry of Science and Technology Inovation for fully funding my projects under ScienceFund Research Grant. Special thanks were expressed to Dr. Tan Mei Lan, Prof. Dr. Hasnah Osman, Dr. Ezatul E. Kamarulzaman for their helps during my study. I would also like thank to all laboratory technicians in Pharmaceutical Technology Dept. (in particular, En. Shamsudin and En. Rosli) and Pharmaceutical Chemistry Dept. (En. Hammid, En. Fizal, En. Zaenudin and En. Annuar) for their helps. I thank my fellow labmates: Azizairol, Dr. Belal Al-Najjar, Dr. Muchtaridi, Sufian, Yusuf and Khairi for stimulating discussion as well as our brotherhood in happy and sad moments. Dya, Neny, Rina, Nadia, Saira, Hanim, Ban Hong, Lim, Lee, Stella, Vincent, Adila, Vanee, Nasuha, Adiba, Shakina, Fakhrul, Faizul, Emah and Wani, thanks for all the funs despite the hard times. Thank you and thank you again.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF SCHEMES	XV
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii
ABSTRAK	XX
ABSTRACT	
CHAPTER ONE INTRODUCTION	1
1.1 Statement of the Problem	1
1.2 Objectives	9
CHAPTER TWO LITERATURE REVIEW	11

2.1	Influe	nza A and Its Dru	g Treatment			11
	2.1.1	Influenza A viru	IS			11
	2.1.2	Influenza A neu	raminidase			14
	2.1.3	Neuraminidase l	Inhibitors			18
2.2	Dengu	e and Potential A	nti-dengue Compo	unds		25
	221	Dengue virus				26
	2.2.1	Deligue virus				20
	2.2.2	Non Structural F	Protein 3 (NS3) Prot	tease		30
	2.2.3	NS3 Protease In	hibitors			33
2.3	Comp	uter-Aided Drug	Design			43
	2.3.1	Pharmacophore	Modelling			44
	2.3.2	Molecular Dock	ing			45
	2.3.3	Quantitative	Structure-Activity	Relationship	(QSAR)	48
		Modelling				
2.4	Conter	nt of the Thesis				51
CHA	PTER	THREE RATI	ONAL DESIGN	AND SYNTH	ESIS OF	52
H1N1	I NA II	HIBITORS				

3.1	Overv	iew		52
	3.1.1	Pharmacop	hore Modelling	52
	3.1.2	QSARs		54
	3.1.3	Molecular I	Docking	56
3.2	Metho	odology		59
	3.2.1	Materials		59
		3.2.1 (a)	Softwares and Hardwares	59
		3.2.1 (b)	Reagents and Other Consumable Materials	59
		3.2.1 (c)	Instruments	60
	3.2.2	Methods		61
		3.2.2 (a)	Molecular Modelling	61
		3.2.2 (b)	Chemical Synthesis of Ferulic Acid and Its	64
			Derivatives	
		3.2.2 (c)	H1N1 Neuraminidase Assay	81
		3.2.2 (d)	QSARs	82
3.3	Result	s and Discus	ssions	85
	3.3.1	Pharmacop	hore Mapping	85
	3.3.2	Molecular I	Docking	88
	3.3.3	Synthesis o	f Ferulic Acid and Its Derivatives	93
	3.3.4	H1N1 Neur	aminidase Assay	120
	3.3.5	QSARs		125
	3.3.6	Design of N	Jovel H1N1 NA Inhibitors	133
3.4	Concl	usion		135
СНА	PTER	FOUR RA	TIONAL DESIGN AND SYNTHESIS DENV2	137
NS2I	B/NS3 I	PROTEASE	INHIBITORS	
4.1	Overv	iew		137
	4.1.1	Pharmacoph	nore Modelling	137
	4.1.2	QSARs		139
	4.1.3	Molecular D	ocking	139
4.2	Metho	odology		141
	4.2.1	Materials		141
		4.2.1 (a) So	oftwares and Hardwares	141
		4.2.1 (b) Re	eagents and Other Consumable Materials	141

4.2.2 Methods1434.2.2 (a) Molecular Modelling1434.2.2 (b) Chemical Synthesis of Thioguanine Derivatives1454.2.2 (c) DENV2 NS2B-NS3 Protease Assay1664.2.2 (d) QSARs1674.3Results and Discussions1704.3.1Pharmacophore Mapping1704.3.2Molecular Docking1764.3.3Synthesis of Thioguanine Derivatives1794.3.4DENV2 NS2B-NS3 Protease Assay2004.3.5QSARs2094.3.6Design of Novel H1N1 NA Inhibitors2274.3.7Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay229of the new designed compounds229of the new designed compounds234CHAPTER FIVE FURTHER DISCUSSION234CONCLUSION AND FUTURE WORK2425.1Conclusion2425.1Conclusion243REFERENCES245Appentix 1The published synthesised compounds and their referencesAppentix 2Examples of Assay Data ManagementAppentix 3The Compound's Structures Used as Test SetsAppentix 4Appentix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine DerivativesAppentix 5Fourier Transform Infra Red (FTIR) Correlation TableAppentix 5Appentix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesAppentix 4Appentix 6Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives <th></th> <th>4.</th> <th>2.1 (c) Instruments</th> <th>143</th>		4.	2.1 (c) Instruments	143
4.2.2 (a) Molecular Modelling 143 4.2.2 (b) Chemical Synthesis of Thioguanine Derivatives 145 4.2.2 (c) DENV2 NS2B-NS3 Protease Assay 166 4.2.2 (d) QSARs 167 4.3 Results and Discussions 170 4.3.1 Pharmacophore Mapping 170 4.3.2 Molecular Docking 176 4.3.3 Synthesis of Thioguanine Derivatives 179 4.3.4 DENV2 NS2B-NS3 Protease Assay 200 4.3.5 QSARs 209 4.3.6 Design of Novel H1N1 NA Inhibitors 227 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 229 of the new designed compounds 232 CHAPTER FIVE FURTHER DISCUSSION 232 CHAPTER SIVE FURTHER DISCUSSION 234 CONCLUSION AND FUTURE WORK 242 5.1 Conclusion 242 243 REFIENCES 243 Armples of Assay Data Management Appendix 1 The compound's Structures Used as Test Sets Appendix 2 Farmples of Assay Data Management Appendix 3 Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine Derivatives <td></td> <td>4.2.2 Me</td> <td>ethods</td> <td>143</td>		4.2.2 Me	ethods	143
4.2.2 (b) Chemical Synthesis of Thioguanine Derivatives 145 4.2.2 (c) DENV2 NS2B-NS3 Protease Assay 166 4.2.2 (d) QSARs 167 4.3 Results and Discussions 170 4.3.1 Pharmacohore Mapping 170 4.3.2 Molecular Docking 176 4.3.3 Whesis of Thioguanine Derivatives 179 4.3.4 DENV2 NS2B-NS3 Protease Assay 200 4.3.5 QSARs 209 4.3.6 Design of Novel H1N1 NA Inhibitors 227 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 209 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 232 CHAPTER FIVE FURTHER DISCUSSION 232 CHAPTER FIVE FURTHER DISCUSSION 243 Seconclusion Functionand their references 5.2 FURTHER DISCUSSION 243 CHAPTER FIVE FURTHER DISCUSSION 243 FURE FIVE SUCCUSION AND FUTURE WORK 243 Appendix 1 The published synthesised compounds and their references		4.2	2.2 (a) Molecular Modelling	143
4.2.2 (c) DENV2 NS2B-NS3 Protease Assay 166 4.2.2 (d) QSARs 167 4.3 Results and Discussions 170 4.3.1 Pharmacophore Mapping 170 4.3.2 Molecular Docking 176 4.3.3 Where Tocking 170 4.3.4 DENV2 NS2B-NS3 Protease Assay 200 4.3.5 QSARs 201 4.3.6 Design of Novel HIN1 NA Inhibitors 227 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 202 of the new designed compounds 227 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 228 CHAFTER FUER FUER FUENTHER DISCUSSION 234 CHAFTER SUCONCLUSION AND FUTURE WORK 242 5.1 Conclusion 243 Steper EUE 243 REFERENCE 243 REFERENCE 243 Appendix 1 The published synthesised compounds and their references Appendix 2 Examples of Assay Data Management Appendix 3 The Compound's Structures Used as Test Stest Appendix 5 Predicted Chemical Shift of ¹ H-NMR on Ferulic Ac		4.2	2.2 (b) Chemical Synthesis of Thioguanine Derivatives	145
 4.2.2 (d) QSARs Results and Discussions 4.3.1 Pharmacophore Mapping 4.3.1 Pharmacophore Mapping 4.3.2 Molecular Docking 4.3.3 Synthesis of Thioguanine Derivatives 4.3.4 DENV2 NS2B-NS3 Protease Assay 4.3.5 QSARs 4.3.6 Design of Novel H1N1 NA Inhibitors 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 4.3.8 Conclusor 4.3.9 ENTER FUE FURTHER DISCUSSION 4.3.9 Conclusion AND FUTURE WORK 4.3.9 4.3.9 Enter VE 4.3		4.2	2.2 (c) DENV2 NS2B-NS3 Protease Assay	166
 4.3 Results and Discussions 4.3.1 Pharmacophore Mapping 4.3.2 Molecular Docking 4.3.3 Synthesis of Thioguanine Derivatives 4.3.3 Synthesis of Thioguanine Derivatives 4.3.4 DENV2 NS2B-NS3 Protease Assay 4.3.5 QSARs 4.3.6 Design of Novel H1N1 NA Inhibitors 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 4.3.7 Charter FUE FURTHER DISCUSSION 4.3.6 Conclusion 4.3.7 Conclusion 4.3.7 Conclusion 4.3.8 Conclusion 4.3.9 Conclusion And FUTURE WORK 4.3.9 Conclusion 4.4.9 Protected Chemical Shift of ¹H-NMR on Ferulic Acid and Th		4.2	2.2 (d) QSARs	167
 4.3.1 Pharmacophore Mapping 4.3.2 Molecular Docking 4.3.3 Synthesis of Thioguanine Derivatives 4.3.4 DENV2 NS2B-NS3 Protease Assay 4.3.5 QSAR 4.3.6 Design of Novel H1N1 NA Inhibitors 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 200 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 217 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 229 of the new designed compounds 232 CHAPTER FIVE FURTHER DISCUSSION 234 Conclusion Conclusion 242 5.1 Conclusion 243 REFERENCES Appendix 1 The published synthesised compounds and their references Appendix 2 Examples of Assay Data Management Appendix 3 The Compound's Structures Used as Test Sets Appendix 4 Predicted Chemical Shift of ¹H-NMR on Ferulic Acid and Thioguanine Derivatives Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 5 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine Derivatives 	4.3	Results a	and Discussions	170
4.3.2 Molecular Docking 176 4.3.3 Synthesis of Thioguanine Derivatives 179 4.3.4 DENV2 NS2B-NS3 Protease Assay 200 4.3.5 QSAR 209 4.3.6 Design of Novel H1N1 NA Inhibitors 227 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 209 of the new designed compounds 234 CHAPTER FURTHER DISCUSSION 234 CARACHAPTER SUCONCLUSION AND FUTURE WORK 242 5.1 Conclust 243 Server Support Sign of Assay Data Management Appendix 1 The published synthesised compounds and their references Appendix 2 Examples of Assay Data Management Server Support Sign of Structures Used as Test Sets Appendix 3 The Compound's Structures Used as Test Sets Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 5 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine Derivatives		4.3.1 P	harmacophore Mapping	170
 4.3.3 Synthesis of Thioguanine Derivatives 4.3.4 DENV2 NS2B-NS3 Protease Assay 4.3.5 QSAR Q00 4.3.5 QSAR Q10 4.3.6 Design of Novel H1N1 NA Inhibitors 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay of the new designed compounds 4.4 Conclusor CALAPTER FIVE FURTHER DISCUSSION Q12 Q12 Q14 COnclusor Q14 Conclusor Q14 Q15 Conclusor Q14 Q15 Conclusor Q14 Q15 Conclusor Q14 Q15 Q14 Q14 Q15 Q14 Q15 Q14 Q15 Q14 Q15 Q14 Q14<td></td><td>4.3.2 M</td><td>Iolecular Docking</td><td>176</td>		4.3.2 M	Iolecular Docking	176
4.3.4 DEVV2 NS2B-NS3 Protease Assay 200 4.3.5 QSARs 209 4.3.6 Design of Novel H1N1 NA Inhibitors 227 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assay 209 of the new designed compounds 232 232 234 242 242 242 242 242 242 243 242 243 243 243 243 243 243 243 243 243 243 243 243 243 245 245 <td></td> <td>4.3.3 Sy</td> <td>vnthesis of Thioguanine Derivatives</td> <td>179</td>		4.3.3 Sy	vnthesis of Thioguanine Derivatives	179
4.3.5 \U \U 209 4.3.6 \U \U 227 4.3.7 \U \U 229 of the new designed compounds 232 CHAPTER FUE FURTHER DISCUSSION 232 CHAPTER FUE FURTHER DISCUSSION 242 CONCLUSION AND FUTURE WORK 242 State 243 State 243 State 243 State 242 State 242 State 243 <t< td=""><td></td><td>4.3.4 DI</td><td>ENV2 NS2B-NS3 Protease Assay</td><td>200</td></t<>		4.3.4 DI	ENV2 NS2B-NS3 Protease Assay	200
4.3.6 Design of Novel H1N1 NA Inhibitors 227 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assau 229 of the new designed compounds 232 4.4 Conclusion 232 CHAPTER FURTHER DISCUSSION 234 CHAPTER SUCONCLUSION AND FUTURE WORK 242 5.1 Conclusion 242 5.2 Future Vork 243 REFERENCES 243 Appendix 1 The published synthesised compounds and their references Appendix 2 Examples of Assay Data Management 40 Appendix 3 The Compound's Structures Used as Test Stests 40 Appendix 4 Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and thiore Areitand Thioguanine Derivatives 40 Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table 40 Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives 40 Appendix 7 Fourier Transform Infra Red (FTIR) Correlation Table 40 Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives 40 Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine Deriv		4.3.5 Q	SARs	209
 4.3.7 Synthesis and DENV2 NS2B-NS3 Protease Inhibition Assau atterne designed compounds 232 Charrer Strep FURTHER DISCUSSION CHARTER STREP TORCLUSION AND FUTURE WORK 242 5.1 Conclusion Conclusion Conclusion 242 5.2 Future Vork 243 REFERENCES Appendix 1 The published synthesised compounds and their references Appendix 2 Examples of Assay Data Management Appendix 3 The Compound's Structures Used as Test Sets Appendix 4 Predicted Chemical Shift of ¹H-NMR on Ferulic Acid and Thioguanine Derivatives Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives 		4.3.6 D	esign of Novel H1N1 NA Inhibitors	227
4.4 Conclusion 232 CHAPTER FURTHER DISCUSSION 234 CHAPTER SUCCLUSION AND FUTURE WORK 242 5.1 Conclusion 242 5.2 Future Vock 243 REFERENCES 243 Appendix 1 The published synthesised compounds and their references Appendix 2 Examples of Assay Data Management Appendix 3 The Compound's Structures Used as Test Sets Appendix 4 Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Ung-Dose Response Curves of Ferulic Acid and Thioguanine Derivatives		4.3.7 S	ynthesis and DENV2 NS2B-NS3 Protease Inhibition Assay	229
4.4Conclusion232CHAPTER FIVE FURTHER DISCUSSION234CHAPTER SIX CONCLUSION AND FUTURE WORK2425.1Conclusion2425.1Conclusion2425.2Future Work243REFERENCES245Appendix 1The published synthesised compounds and their referencesAppendix 2Examples of Assay Data Management4Appendix 3The Compound's Structures Used as Test SetsandAppendix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine DerivativesandAppendix 5Fourier Transform Infra Red (FTIR) Correlation TableandAppendix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesandAppendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguaniceand		of	the new designed compounds	
CHAPTER FIFE FURTHER DISCUSSION234CHAPTER SIFE CONCLUSION AND FUTURE WORK2425.1Conclusion2425.2Future Vorte243Chapter Sife Function243Appendix 1The published synthesised compounds and their referencesAppendix 2Examples of Assay Data Management4Appendix 3The Compound's Structures Used as Test Sets4Appendix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine Derivatives4Appendix 5Fourier Transform Infra Red (FTIR) Correlation Table4Appendix 6Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives4	4.4	Conclusi	ion	232
CHAPTER SIX CONCLUSION AND FUTURE WORK2425.1Conclusion2425.2Future Vork2435.2Future Vork243AEFERENCES245APPENDICESAppendix 1The published synthesised compounds and their referencesAppendix 2Examples of Assay Data Management4Appendix 3The Compound's Structures Used as Test Sets4Appendix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and thioguanine Derivatives4Appendix 5Fourier Transform Infra Red (FTIR) Correlation Table4Appendix 6Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives4Appendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguanine Derivatives4	CHAPTER FIVE FURTHER DISCUSSION 23		234	
5.1Conclusi>2425.2Future Work243REFERENCES245APPENDICESAppendix 1The published synthesised compounds and their referencesAppendix 2Examples of Assay Data ManagementAppendix 3The Compound's Structures Used as Test SetsAppendix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine DerivativesAppendix 5Fourier Transform Infra Red (FTIR) Correlation TableAppendix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesAppendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguanice	СНА	PTER SI	X CONCLUSION AND FUTURE WORK	242
5.2Future Work243REFERENCES245APPENDICESAppendix 1The published synthesised compounds and their referencesAppendix 2Examples of Assay Data ManagementAppendix 3The Compound's Structures Used as Test SetsAppendix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine DerivativesAppendix 5Fourier Transform Infra Red (FTIR) Correlation TableAppendix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesAppendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguanine	5.1	Conclusi	ion	242
REFERENCES245APPENDICESAppendix 1The published synthesised compounds and their referencesAppendix 2Examples of Assay Data ManagementAppendix 3The Compound's Structures Used as Test SetsAppendix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine DerivativesAppendix 5Fourier Transform Infra Red (FTIR) Correlation TableAppendix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesAppendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguanine	5.2	Future W	Vork	243
APPENDICESAppendix 1The published synthesised compounds and their referencesAppendix 2Examples of Assay Data ManagementAppendix 3The Compound's Structures Used as Test SetsAppendix 4Predicted Chemical Shift of ¹ H-NMR on Ferulic Acid and Thioguanine DerivativesAppendix 5Fourier Transform Infra Red (FTIR) Correlation TableAppendix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesAppendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguanine	REF	ERENCE	S	245
 Appendix 1 The published synthesised compounds and their references Appendix 2 Examples of Assay Data Management Appendix 3 The Compound's Structures Used as Test Sets Appendix 4 Predicted Chemical Shift of ¹H-NMR on Ferulic Acid and Thioguanine Derivatives Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine 	APP	ENDICES	5	
 Appendix 2 Examples of Assay Data Management Appendix 3 The Compound's Structures Used as Test Sets Appendix 4 Predicted Chemical Shift of ¹H-NMR on Ferulic Acid and Thioguanine Derivatives Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine 	Appe	ndix 1	The published synthesised compounds and their references	
 Appendix 3 The Compound's Structures Used as Test Sets Appendix 4 Predicted Chemical Shift of ¹H-NMR on Ferulic Acid and Thioguanine Derivatives Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine 	Appe	ndix 2	Examples of Assay Data Management	
 Appendix 4 Predicted Chemical Shift of ¹H-NMR on Ferulic Acid and Thioguanine Derivatives Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine 	Appe	ndix 3	The Compound's Structures Used as Test Sets	
Thioguanine DerivativesAppendix 5Fourier Transform Infra Red (FTIR) Correlation TableAppendix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesAppendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguanine	Appe	ndix 4	Predicted Chemical Shift of ¹ H-NMR on Ferulic Aci	d and
 Appendix 5 Fourier Transform Infra Red (FTIR) Correlation Table Appendix 6 Spectroscopic Data of Ferulic Acid and Thioguanine Derivatives Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine 			Thioguanine Derivatives	
Appendix 6Spectroscopic Data of Ferulic Acid and Thioguanine DerivativesAppendix 7Drug-Dose Response Curves of Ferulic Acid and Thioguanine	Appe	ndix 5	Fourier Transform Infra Red (FTIR) Correlation Table	
Appendix 7 Drug-Dose Response Curves of Ferulic Acid and Thioguanine	Appe	ndix 6	Spectroscopic Data of Ferulic Acid and Thioguanine Derivati	ves
	Appe	ndix 7	Drug-Dose Response Curves of Ferulic Acid and Thiog	uanine

DerivativesAppendix 8ORTEP drawings of *MH005* and *MH010*

LIST OF TABLES

3.1	The series of ferulic acid derivatives designed in this study	62
3.2	The list of published NA inhibitors taken for the test set.	83
3.3	The fit values of the ligands and their corresponding	85
	pharmacophore features in Model A-5-5 for NA inhibitor.	
3.4	The ligands and their FEB, amino acid residues-ligand H-bond	91
	interaction as well as its distances produced by docking against	
	H1N1 NA.	
3.5	The training set compounds with their IC ₅₀ values against H1N1	126
	NA.	
3.6	Superimposition and the molecular properties of compounds	127
	against H1N1 NA in the training set generated using Discovery	
	Studio 2.5.	
3.7	The selected ligand from the test set which showed the best	131
	correlation between experimental and predicted pIC_{50} .	
3.8	The designed compounds for NA inhibitors based on the QSAR	134
	modelling	
3.9	The predicted IC_{50} and the descriptors of the designed compound	134
	for NA inhibitors.	
4.1	The compounds' series of thioguanine derivatives	144
4.2	List of published DENV2 NS2B-NS3pro inhibitors taken as the	168
	test set for the QSAR study	
4.3	Fit values of the ligands and their corresponding pharmacophore	171
	features for dengue protease inhibitor	
4.4	The ligands and their corresponding pose, FEB, amino acid	177
	residue-ligand H-bond interaction as well as its distances produced	
	by docking against DENV2 NS2B-NS3pro model, JMR_977_sm	
4.5	The training set compounds with their IC_{50} values for dengue	210
	protease inhibitors.	

4.6 The superimposition and the molecular properties of the training 211

set compounds for dengue protease inhibitors generated using Discovery Studio 2.5

- 4.7 The best QSAR models for dengue protease inhibitors and their 214 regression statistics generated using Genetic Function Approximation algorithm embedded in Discovery Studio 2.5
- 4.8 The fingerprints features which is used in linear equation 218
- 4.9 The fingerprints features which is used in binary interaction 219 equation
- 4.10 The fingerprints features which is used in simple cubic equation 219
- 4.11 The fingerprints features which is used in full cubic equation 220
- 4.12 The fingerprints features which is used in simple quadratic 221 equation
- 4.13 The fingerprints features which is used in full quadratic equation 222
- 4.14 The superimposition and the molecular properties of the test set 225 compounds for dengue protease inhibitors included their predicted as well as experimental IC_{50} values generated using Discovery Studio 2.5
- 4.15 The regression statistics of the test set experimental pIC_{50} versus its 227 predicted pIC_{50} based on the QSAR modelling for dengue protease inhibitors
- 4.16 The list of designed compound based on the QSAR modelling for 228 dengue protease inhibitors
- 4.17 The prediction of molecular properties and predicted IC_{50} values of 228 the new designed compounds for dengue protease inhibitors

LIST OF FIGURES

1.1	The death number of pandemic H1N1 influenza 2009.	1
1.2	The dengue case statistic in Malaysia from 1995-2013	5
1.3	The structure of ferulic acid and vanillin	8
1.4	The structure of diversity0713 and thioguanine	9
2.1	The influenza viral lipid envelope with a nucleocapsid containing three surface proteins: hemagglutinin (HA), neuraminidase (NA) and the M2 proton ion channel. The	13
	genome of the viral RNAs are presented as red coils bound to	
	Ribonuclear Proteins (RNPs)	
22	The tetramer shapes of neuraminidase N2	15
2.2	The comparison of crystal structures between N1 and N9 (Δ) Δ	15
2.5	superposition of N1 (PDBID 2HTY) and N9 enzyme (PDBID	10
	1F8B) where the key residues are shown in ball-and-stick	
	forms. (B) Ligand in the active cavity of 2HTY with adjacent	
	150-loop. (C) Ligand in the active cavity of 1F8B	
2.4	The cleavage of the new synthesised virus from its sialic acid	17
2.5	receptor by neuraminidase	10
2.5	The binding site of A/Tokyo/3/67 (H2N2) influenza virus NA	18
	and stalle acid (PDBID 2BAT). The green dot lines describe the	
	hydrogen bonding between ligand and specific amino acid residues of NA's active site	
2.6	'Airplane' model of NA active site	19
2.7	The structure of NA inhibitors from sialic acid derivatives	20
2.8	The structure of 4 with the dot boxes describes the nonpolar site	21
	of the particular structure	
2.9	The X-ray crystal structure of neuraminidase complex with 4.	22
	The hydrophobic interactions are indicated by the closeness	
	between isopentyl group and amino acid residues Ile222,	

Arg224 and Ala246

2.10	The structure of 5 in 2D as well as its 3D structure complex to	24
	N8 NA (PDBID 2HTU) was generated using Discovery Studio	
	2.5	
2.11	The 3D structure of active laninamivir (6) in complex with	25
	pO9N1 NA (PDBID 2HTU)	
2.12	The dengue virus genome organization and its cleavage	27
	processing scheme	
2.13	The life cycle of dengue virus	30
2.14	The crystal structure of DENV2 NS2B-NS3pro (PDBID	31
	2FOM); (a) a ribbon form and (b) a surface form was created	
	using Discovery Studio 2.5	
2.15	The crystal structure of DENV4 NS2B-NS3 (PDBID 2VBC)	33
	was created using Discovery Studio2.5	
2.16	The structure of decapeptide substrate (7) for dengue NS2B-	34
	NS3pro substrate	
2.17	The crystal structure of NS2B-NS3pro in the absence and	36
	presence of an inhibitor. (a) DENV2 NS2B-NS3pro (NS3 =	
	gray ribon; NS2B = yellow) (b) WNV NS2B-NS3pro in	
	complex with Bz-Nle-Lys-Arg-Arg- H (orange)	
2.18	The WNV NS2B-NS3pro crystal structure (PDBID 2FP7). The	36
	hydrogen bond (dotted line) interaction between substrate-	
	based inhibitor with the residues in S1 pocket and S2 2 of	
	NS2B-NS3	
2.19	The structure of a tetrapeptide DENV2 NS3pro inhibitor	39
2.20	The structure of 10	40
2.21	The structure of 11	41
2.22	The structure of anthracene-based DENV2 protease inhibitor	41
2.23	The structure of 14	42
2.24	The structure of cyclohexenyl derivatives	43
3.1	The pharmacophore model GR-210729 for NA inhibitor. The	53
	pharmacophore features are color-coded: blue (NI), light yellow	
	(HBD), PI (white), HBA (green) and H (light blue)	

3.2	Mapping Model A-5-5 against sialic acid derivative compared	54
	with its corresponding docked poses into NA	
3.3	The structure of 3 as a potent neuraminidase inhibitor and its	57
	2D interaction with NA	
3.4	The docking pose of 2D-interaction of AV5027 with NA (PDB	58
	code 3TI6)	
3.5	Mapping pharmacophore models A-5-5 against 020. The green-	86
	vectored spheres encoded for HBA while the blue sphere	
	represents negative ionizable was visualized using Discovery	
	Studio 2.5	
3.6	Mapping pharmacophore models A-5-5 against (a) 013, (b)	87
	014, (c) 015, (d) 016, (e) 021 and (f) 019 was visualized using	
	Discovery Studio 2.5	
3.7	Mapping pharmacophore models A-5-5 against (a) 000, (b)	88
	004, (c) 005, (d) 006 and (e) 007 was visualized using	
	Discovery Studio 2.5	
3.8	The control docking pose of 4 to H1N1 NA (PDBID 3TI6) in	89
	ribbon form (in set) and surface form was visualized using	
	Discovery Studio 2.5	
3.9	The proton NMR spectrum of compound 001	96
3.10	The proton NMR spectrum of compound 000	97
3.11	The mass spectrum of compound 001 is calculated using	98
	QTOF-MS as $[M+NH_4]^+$ found m/z 257.2999	
3.12	The proton NMR spectrum of compound 002	100
3.13	The mass spectrum of compound 002 is calculated using	101
	QTOF-MS as $[M+Na]^+$ found m/z 262.1653	
3.14	The proton NMR spectrum of compound <i>003</i>	102
3.15	The FTIR spectra of compound 003 showed the presence of	103
	amino group as a broad absorption at 3420 and $3215m^{-1}$	
	described the success of nitro reduction from compound 001	
3.16	The mass spectrum of compound 003 is calculated using	103
	QTOF-MS as $[M+NH_4]^+$ found m/z 227.2268	
3.17	The proton NMR spectrum of compound 004	106

Х

3.18	The proton NMR spectrum of compound 009	107
3.19	The proton NMR spectrum of compound 012	110
3.20	The proton NMR spectrum of compound 013	113
3.21	The proton NMR spectrum of compound 019	116
3.22	The mass spectrum of compound 019 is calculated using	117
	QTOF-MS as [M] ⁺ 209.2019, found 209.1438	
3.23	The proton NMR spectrum of compound 020	119
3.24	The drug-dose response curve of 000 against H1N1 NA	121
3.25	The docking pose of (a) 000 and (b) 018 was visualized using	121
	Discovery Studio 3.5	
3.26	The drug dose-response curve of 001 and 002 against H1N1	122
	NA	
3.27	The docking pose of (a) 001 and (b) 002 to H1N1 NA (PDBID	123
	3TI6) was visualized using Discovery Studio 2.5	
3.28	The drug dose-response curve of 003, 004 and 012 against	124
	H1N1 NA	
3.29	The drug dose-response curve of 019, 020 and 021 against	125
	H1N1 NA	
3.30	The predicted IC_{50} versus experimental IC_{50} of the of NA	130
	inhibitors training set generated using multiple linear regression	
	method	
3.31	The graph plotting the experimental of pIC_{50} versus the	131
	predicted pIC_{50} based on QSAR modelling. The graph was	
	generated using Microsoft Excell 2007	
3.32	The similar pose of 020 produced by docking (left) and	132
	pharmacophore mapping (right) was generated using Discovery	
	Studio 2.5	
3.33	Proposed new model of H1N1 Neuraminidase inhibitor based	133
	on QSAR model above	
3.34	Intermolecular interactions between (a) $\theta 22(\mathbf{M})$ and (b) $\theta 23(\mathbf{M})$	135
	was visualized using Discovery Studio 2.5	
4.1	Pharmacophore ligand model for dengue protease generated	138
	from HIV protease inhibitors	

4.2	Dynamic pharmacophore model of dengue protease inhibitor	138
4.3	The docking pose of three 4-hydroxypanduratin derivatives (a)	140
	246DA, (b) 20H46DA and (c) 2446DA against DENV2 NS2B-	
	NS3pro (PDBID 2FOM)	
4.4	The docking pose of RKR into the 2FOM model	141
4.5	Mapping pharmacophore models S5T5HO6 against MH019 (a)	172
	3D structure and (b) 2D structure.	
4.6	Mapping pharmacophore models S5T5HO6 against (a)	173
	MH010, (b) MH011 and (c) MH020 was visualized using	
	Discovery Studio 2.5	
4.7	Mapping pharmacophore models S5T5HO6 against (a)	174
	MH001, (b) MH002 and (c) MH003 was visualized using	
	Discovery Studio 2.5	
4.8	Mapping pharmacophore models S5T5HO6 against (a)	175
	MH007, (b) MH008 and (c) MH009 was visualized using	
	Discovery Studio Client 2.5	
4.9	Mapping pharmacophore models S5T5HO6 against MH016	176
	and MH018 was visualized using Discovery Studio 2.5.	
4.10	The overlay of an initial pose and a control docking of	177
	tetrapeptide inhibitor (NDL1001) to the DENV2 NS2B-NS3pro	
	from the Wichapong model was visualized using Discovery	
	Studio 2.5	
4.11	The proton NMR spectrum of compound <i>MH001</i>	180
4.12	The carbon 13 NMR spectrum of compound <i>MH001</i>	181
4.13	The FTIR spectrum of MH001 shows the presence of $-NH_2$	183
	indicated the absence of alkylation at this particular functional	
	group	
4.14	The Mass spectrum of compound 003 is calculated using	183
	QTOF-MS as $[M+H]^+$ found m/z 224.1142	
4.15	The proton NMR spectrum of compound MH013	187
4.16	The carbon 13 NMR spectrum of compound MH013	188
4.17	The FTIR spectrum of <i>MH013</i>	189
4.18	The FTIR spectrum of <i>MH000</i>	190

4.19	The mass spectrum of compound MH013 is calculated using	190
	QTOF-MS as $[M+H]^+$ found m/z 274.2964	
4.20	The proton NMR spectrum of compound <i>MH019</i>	193
4.21	The carbon 13 NMR spectrum of compound <i>MH019</i>	194
4.22	The mass spectrum of <i>MH019</i> is calculated using QTOF-MS as	195
	[M] ⁺ found m/z 475.2863	
4.23	The proton NMR spectrum of compound <i>MH022</i>	198
4.24	The carbon-13 NMR spectrum of compound MH022	199
4.25	The FTIR spectra of <i>MH022</i> showed the presence of carbonyl	200
	groupas a stretching absorption at 1552cm ⁻¹ described the	
	success of acylation from 6-thioguanine	
4.26	7-Amino-4-methylcoumarin (AMC) standard curves. The AMC	201
	concentrations were prepared within 0 to 10 μ M	
4.27	Graph of DENV2 NS2B-NS3pro activity assay (protease	202
	optimum assay)	
4.28	The Lineweaver-burk of DENV2 NS2B-NS3pro activity assay	203
	(protease optimum assay)	
4.29	Graph of DENV2 NS2B-NS3pro activity assay (substrate	204
	optimum assay)	
4.30	The Lineweaver-burk of DENV2 NS2B-NS3pro activity assay	204
	(substrate optimum assay).	
4.31	The drug dose-response curve of <i>MH000</i> against DENV2	205
	NS2B-NS3pro	
4.32	The drug-dose response curves of MH013, MH015 and	206
	MH018 against DENV2 NS2B-NS3pro	
4.33	The similar binding mode of (a) MH018 and (b) MH022	207
	produced by molecular docking. The picture was generated	
	using Discovery Studio 2.5.	
4.34	The drug dose-response curve of <i>MH019</i> and <i>MH020</i> against	208
	DENV2 NS2B-NS3pro	
4.35	The similar pose of MH019 produced by docking (left) and	209
	pharmacophore mapping (right) was generated using Discovery	
	Studio 2.5	

- 4.36 The graph plotting the experimental versus predicted pIC₅₀ of 215 dengue protease inhibitors was generated using GFA embedded in Discovery Studio 2.5
- 4.37 Design of the model of DENV2 NS2B-NS3pro inhibitor based 227 on the linear model
- 4.38 The graph plots log concentration versus % inhibition against 229 DENV2 NS2B- NS3 protease (a) *MH006* with the $IC_{50} = 2042$ μM (r² = 0.9431) and (b) *MH012* with $IC_{50} = 55 \mu M$ (r² = 0.9388)
- 4.39 The docking pose *MH012* to DENV2 NS2B-NS3pro with the protease in surface form was visualized using Discovery Studio 2.5
- 4.40 The graph plots log concentration versus % inhibition against 231 DENV2 NS2B- NS3 protease (a) *MH021* with the $IC_{50} = 55$ μ M (r² = 0.9388) and (b) *MH024* with $IC_{50} = 132 \mu$ M (r² = 0.9096)
- 4.41 The docking pose of (a) *MH022* and (b) *MH024* to DENV2 232NS2B-NS3pro was visualized using Discovery Studio 2.5
- 5.1 The superposition of *019* and DANA at the binding site of 236 H1N1 NA (3TI6.pdb).
- 5.2 The superposition of *MH018* and Panduratin A at the binding 241 site of DV2 NS2B/NS3pro.

LIST OF SCHEMES

Page

3.1	The scheme of the synthesis of ferulic acid derivatives	65
3.2	The scheme of the synthesis of vanillin derivatives	66
3.3	The reaction of ferulic acid (compound 000) with fuming	93
	nitric acid – glacial acetic acid to produce compound 001	
3.4	The reaction mechanism of <i>o</i> -nitration of 000 to yield 001	95
3.5	The reaction of compound 000 with methanol using H_2SO_4 as	104
	the catalyst to produce compound 004	
3.6	The esterification mechanism of 000 to yield 004	105
3.7	The reaction of compound 009 with isopropyl bromide, TBAI	108
	as the solid phase transfer catalyst, Na_2CO_3 as the base	
	catalyst and DMF as the solvent to produce compound $\theta 12$	
3.8	The reaction mechanism of alkylation of compound 009 to	109
	yield compound 012	
3.9	The reaction of compound 000 with 4-fluorobenzenesulfonyl	111
	chloride using pyridine as the nucleophilic catalyst to produce	
	compound <i>013</i>	
3.10	The reaction mechanism of benzenesulfonylation of	112
	compound 000 to yield compound 013	
3.11	The reaction mechanism of guanidine introduction of	115
	intermediate 2 to yield 019	
3.12	The reaction of intermediate 3 with 2-ethanolamine chloride	117
	using DIPEA as the base catalyst and dichloromethane (DCM)	
	as a solvent to produce compound 020	
4.1	The scheme of the synthesis of thioguanine derivatives for	146
	<i>MH001-12</i> (<i>004</i> was declined)	
4.2	The scheme of the synthesis of thioguanine derivatives for	147
	MH013-21	
4.3	The scheme of the synthesis of thioguanine derivatives for	148
	MH022-24	

4.4	The reaction step of <i>S</i> -alkylation consists of 1) initial state, 2)	179
	thioanion state and 3) the S-alkylated of thioguanine	
4.5	The reaction scheme of Schiff base formation from 6-	184
	thioguanine using sodium hydroxide-ethanol as solvent	
4.6	The reaction mechanism of Schiff base formation to yiela	186
	compound <i>MH013</i>	
4.7	The reaction scheme of benzenesulfanylation of 6-thioguanine	191
	using pyridine as catalyst	
4.8	The reaction scheme of acylation of 6-thioguanine using either	195
	glacial acetic acid as solvent	
4.9	The reaction mechanism of thioguanine acetylation to yield	197
	MH022	

LIST OF SYMBOLS

Å	Angstrom
Fit	Fit value
Σ	Sum
ΔG	The Free Energy
ΔS	The entropy
r	Correlation coefficient
K _i	Inhibition Constant
K _m	Michaelis Menten Constant
nM	nanoMolar
μΜ	microMolar
R	Rectus configuration
S	Sinister configuration
evals	Evaluation
[S]	Substrate concentration
J	Coupling constant
S	Singlet
d	Doublet
t	Triplet
q	Quartet
т	Multiplet
δ_{C}	Chemical shift of carbon-13
1/V	The reciprocal of reaction assay velocity
[E]	Enzyme concentration
r ² adj	Adjusted quadratic correlation coefficient
r ² pred	Predicted quadratic correlation coefficient
F	Variance
$\delta +$	Positive partial
δ-	Negative partial
AlogP	Partition coefficient based on Ghose and Crippen's method

LIST OF ABBREVIATIONS

act	Actual
AMC	Aminomethyl coumarine
br	Broad
Boc	Butoxycarbonyl
Bz	Benzoil
С	Capsid
DANA	2-deoxy-2,3-didehydro-N-acetylneuraminic acid
DIPEA	N, N-diisopropylethylamine
E	Envelope
ECFP	Extended Connectivity Finger Print
EDG	Electron Donating Group
ER	Endoplasmic Reticulum
EWG	Electron Withdrawing Group
GFA	Genetic Function Approximation
GTP	Guanine Triphosphate
GA	Genetic Algorithm
FEB	Free Energy of Binding
HA	Hemagglutinin
HBA	Hydrogen Bond Acceptors
HBD	Hydrogen Bond Donors
ITC	Isothermal Titration Calorimetry
kb	Kilobase
kDa	KiloDalton
L.O.F	Lack of Fit
M2	Membrane2
MES	2-(N-morpholino)ethanesulfonic acid
MLR	Multiple Linear Regression
MTase	Methyl Transferase
NCI	National Cancer Institute
Neu5Ac	N-Acetylneuraminic Acid
NS	Non Structural

NTPase	N Triphosphatase
Р	Peptide
PDB	Protein Data Bank
pred	Predicted
prM	preMembrane
PTC	Phase Transfer Catalyst
RFU	Relative Fluorescence Unit
RMSD	Root Mean Square Deviation
RTPase	RNA Triphosphatase
SA	Sialic Acid
sNS	Secreted Non Structural
S.O.R	Significant of Regression
TBAI	Tetrabutylammonium Iodide
WNV	West Nile Virus

REKABENTUK SECARA RASIONAL DAN SINTESIS PERENCAT UNTUK ENZIM NEURAMINIDASE H1N1 DAN PROTEASE DENGGI

ABSTRAK

Influenza dan denggi adalah dua daripada penyakit berjangkit yang disebabkan oleh virus. Rintangan virus terhadap ubat influenza komersial dan ketiadaan ubat untuk merencat virus denggi menggalakkan usaha untuk mencari perencat virus yang berpotensi. Setakat ini, enzim neuraminidase H1N1 ialah satu daripada sasaran utama dalam pencarian perencat influenza A manakala enzim protease NS2B-NS3 DENV2 pula merupakan sasaran utama dalam penemuan ubat denggi. Kajian sebelum ini mendapati bahawa asid ferulik yang dipencilkan daripada kulit buah manggis dapat merencat aktiviti neuraminidase H1N1 dengan nilai $IC_{50} =$ 200 µM. Struktur aromatiknya yang sederhana menarik perhatian untuk dikembangkan sebagai perencat neuraminidase H1N1. Sebanyak 20 terbitan asid ferulik telah pun direkabentuk dan disintesis. Kajian asai atas sebatian tersebut menunjukkan nilai IC₅₀ daripada 50 sehingga > 1000 μ M. Rekabentuk hubungan kuantitatif struktur dan aktiviti menggunakan kaedah Multiple Linear Regression dilaksanakan untuk menghasilkan model yang menentukan hubungan positif daripada penderma dan penerima ikatan hidrogen dengan keputusan statistik yang baik ($r^2 = 0.758$; r^2 (adj) = 1.185; *Least-squared error* = 0.189). Dua model lagi direkabentuk berasaskan kajian hubungan kuantitatif struktur-aktiviti ini dan ianya diramalkan mempunyai IC₅₀ lebih rendah daripada sebatian sebelumnya. Kajian sebelum ini mengenai penskrinan virtual daripada pangkalan data Institut Kanser Nasional terhadap protease NS2B-NS3 DENV2 menyarankan thioguanine sebagai perencat protease ini. Langkah penyelidikan yang sama juga dilaksanakan kepada protease ini, menunjukkan nilai IC₅₀ daripada 28 sehingga > 1000 μ M. Kajian hubungan kuantitatif struktur-aktiviti pula dilaksanakan menggunakan kaedah *Genetic Function Approximation* dengan *Linear* terpilih sebagai model terbaik berasaskan keputusan statistik (($r^2 = 0.921$; r^2 (adj) = 0.884; r^2 (pred) = 0.820; *RMS residual errors* = 0.258; Friedman L.O.F = 0.141 and S.O.R *p-value* = 1.919e⁻⁰⁰⁶). Model ini menentukan koefisien pembahagi sebagai deskriptor positif untuk rekabentuk seterusnya. Sebanyak empat ligan baru direkabentuk, disintesis dan ditentukan aktivitinya terhadap protease denggi. IC₅₀ yang diramalkan dan ditentukan melalui aktiviti *in vitro* adalah saling setuju. Kesimpulannya, kaedah pemodelan *in silico* dalam kajian ini telah berjaya menunjukkan konsep merekabentuk perencat enzim secara rasional.

RATIONAL DESIGN AND SYNTHESIS OF INHIBITORS FOR H1N1 NEURAMINIDASE AND DENGUE PROTEASE ENZYME

ABSTRACT

Influenza and dengue are two of infectious diseases which caused by viruses. The viral resistances towards commercial anti-influenza as well as no drug available to combat dengue infection have prompted the search for potential inhibitors. Currently, H1N1 neuraminidase is one of the major targets in searching for inhibitor of influenza A as well as DENV2 NS2B-NS3 protease in dengue drug discovery. In a previous study, ferulic acid from G. mangostana pericarps has been isolated and showed an inhibition against H1N1 neuraminidase in vitro with $IC_{50} = 200 \mu M$. Its simple aromatic structure was attractive to be developed as H1N1 neuraminidase inhibitor. Twenty ferulic acid derivatives were designed in silico and synthesised, respectively. The *in vitro* assay showed the inhibitory activity with IC₅₀ from 50 to >1000 µM. The Quantitative Structure-Activity Relationship (QSAR) modelling using Multiple Linear Regression was then carried out to produce the model defining a positive correlation of number of hydrogen bond donor as well as hydrogen bond acceptor with a good statistical results ($r^2 = 0.758$; r^2 (adj) = 1.185; Least-squared error = 0.189). Two further models were designed based on this QSAR equation and they were predicted to have lower IC_{50} values. On the other hands, previous study on virtual screening of National Cancer Institute database against DENV2 NS2B-NS3 protease suggested thioguanine as a potential inhibitor for the enzyme. The same approach carried out on DENV2 protease inhibitor design demonstrated the inhibitors possessing IC₅₀ in the range of 28 to $>1000 \mu$ M. QSAR models were also generated using Genetic Function Approximation selecting a Linear model as the best QSAR equation upon statistical results ($r^2 = 0.921$; r^2 (adj) = 0.884; r^2 (pred) = 0.820; *RMS residual errors* = 0.258; Friedman L.O.F = 0.141 and S.O.R *p-value* = $1.919e^{-006}$). The model defined partition coefficient as the positive descriptors for further design. Four more ligands were then modeled, synthesised and tested their activity *in vitro*. The results showed a good agreement between its predicted and experimental IC₅₀. In general, the *in silico* modelling used in this study successfully proved the concept of the rational enzyme inhibitor design.

CHAPTER ONE INTRODUCTION

1.1 Statement of the Problem

In recent years, world is threatened with the emergence of pandemic and endemic infections of viruses such as influenza A and dengue. The news of highly pathogenic influenza (H5N1) transmission from birds to human that resulted in 53 deaths in Vietnam, Cambodia and Thailand shocked the world in 2005 (WHO, 2005). More deaths were reported in the subsequent years and the threat of H5N1 now being compounded by the emergence of H1N1 pandemic in 2009. The World Health Organization (WHO) confirmed that the pandemic was spread to over 220 countries with more than 39 million cases and 15,417 deaths worldwide (see Figure 1.1) (CDC, 2010a; Fajardo-Dolci *et al.*, 2010). Compared to H5N1 avian influenza which emerged in 2005, H1N1 swine virus is less virulent but it is more prevalent than that of avian influenza (Salaam-Blyther, 2009).

Source: Ministries of Health, local or national public health authorities, European Centre for Disease Prevention and Control, United States Centers for Disease Control and Prevention, World Health Organization. Map drawn with Philcarto (free software available from: http://philcarto.free.fr/)

Figure 1.1 The death number of pandemic H1N1 influenza 2009 (CDC, 2010a).

Four years later in February 2013, a rare H7N9 subtype of avian influenza was isolated for the first time from the patient with pneumonia and acute respiratory distress syndrome in China. The infection showed alarming mortality rate (28% as of May 2013). Although H7N9 subtype is considered a low pathogen, the possibility of this subtype becomes resistant towards either vaccine or drug should be anticipated (Baranovich, 2013; Chen *et al.*, 2013).

Vaccines are available to prevent the infection of influenza. However, the existing vaccines have been mostly ineffective due to the emergence of rapidly variable mutation (Kim *et al.*, 1999; Zhang *et al.*, 2008a). Thus, the development of effective and safe anti-influenza becomes an urgent need (Gong *et al.*, 2007; Zhang *et al.*, 2008b).

Historically, the adamantane-based M2 ion channel protein inhibitors (amantadine and rimantadine) were the first drugs available for the treatment of influenza. Such drugs had only been useful in the treatment of Influenza A infection due to the fact that only the A strain of the virus has M2 ion channel protein (von Itzstein, 2007). The drugs inhibit the virus replication by blocking this ion channel via binding at the allosteric site which triggers a conformational change in the pore region. This action causes interfering proton transfer through the ion channel across the membrane of the virus or endosome. Therefore, the virus is unable to penetrate the host cell of membrane and the replication being stopped (Sandrock, 2010; Tisdale, 2009). Several toxic effects (CNS toxicity can manifest dizziness, nervousness and insomnia and also gastrointestinal effect such as nausea,

constipation and lost of appetite) have been reported along with rapid emergence of drug-resistant variants. Studies between 1994 and 2005 showed the increase of worldwide amantadine and rimantadine-resistance from 0.4% to 12.3%. Thus, the use of these drugs have been discouraged (Moscona, 2008).

Due to those disadvantages of M2 ion channel inhibitors, there was a shift to drug design targeting the other two surface glycoproteins; hemagglutinin (HA) and neuraminidase (NA), which are expressed by both influenza A and B. The HA plays as the receptor-binding and membrane fusion glycoprotein whilst the NA has a role as a receptor-destroying enzyme (An *et al.*, 2009). So far, no HA inhibitors have been clinically approved for influenza treatment (Meshram and Jungle, 2009).

Neuraminidase (NA), also known as sialidase, is the major surface glycoprotein that shows an important role in the viral replication, thus, has become an attractive target for anti-influenza drug. Zanamivir and oseltamivir are two examples of drugs that are effective for either A or B types of neuraminidase. Studies on NA active site and Structure-Activity Relationships (SARs) of published NA inhibitors disclose that the relative positions of the substituents (carboxylate, glycerol, acetamido, and hydroxyl) of the central ring mainly determine inhibition of the NA (Zhang *et al.*, 2008b).

Although zanamavir is highly effective, its inhalational delivery (D'Souza *et al.*, 2009; Hammad and Taha, 2009; Sun *et al.*, 2010) is not very attractive as oral delivery (via capsule/tablet) is much preferred. Oseltamivir overcomes this limitation, but the production cost is quite expensive as it relies on the expensive

starting material shikimic acid (Chand *et al.*, 1997). Although there have been a lot of efforts to discover new NA inhibitors with various scaffold, including aromatic (Chand *et al.*, 1997; Luo *et al.*, 1997), dihydropyrane (Taylor *et al.*, 1998), cyclopentene (Babu *et al.*, 2009), cyclohexene (Lew *et al.*, 2000) and pyrrolidine (Zhang *et al.*, 2008b), the currently circulating clinical H274Y H1N1 mutant is quite resistant to oseltamivir (Yen *et al.*, 2006). Therefore, there is a need for new drugs that are cheaper and more effective against the influenza virus.

Next to another infectious disease, dengue has become a major disease burden for the South East Asian countries. Although the scale of dengue infection has not reached pandemic proportion, WHO currently estimates that there may be 50 million dengue infections worldwide every year (Murray et al., 2013), with the infection endemic in South East Asian Regions. During 2008, in Indonesia, there were 17,604 cases reported and 10,000 to 12,000 of them concentrated over East and Central Java (WHO, 2014a). Furthermore, it was reported that in India, Indonesia, Sri Lanka and Thailand, the epidemic season started up to 4 weeks earlier than normal, in part due to the heavy rainy season in 2010. In the same year, Vietnam has occurrence rates 10 times greater than in 2009 (CDC, 2010). In Malaysia itself, this deadly disease had killed 107 people in 2005 and 102 people in 2004 (Chen et al., 2006). In 2014, Bernama reported that dengue fever striked 17 deaths and 9,453 cases during January up to 2 February 2014, an increase over 100% of previous year (Bernama, 2014). It was reported that the case increased up close to 90,000 cases in December 2014. Figure 1.2 shows the dengue cases statistic in Malaysia from 1995-2014 ("Development of dengue vaccine: status sreview and future considerations," 2014). As of February 2015, the cases reached up to 59% more as compared to the previous year, with 15,039 cases and 44 deaths as reported by Malaysian Department of Health (WHO, 2015).

Figure 1.2 The dengue case statistic in Malaysia from 1995-2014 ("Development of dengue vaccine: status sreview and future considerations," 2014).

Dengue virus carries a positive single strand RNA in its genome. Serologically, this virus is divided into four serotypes, i.e. DENV1, DENV2, DENV3 and DENV4 (Jitendra and Vinay, 2011). Among those serotypes, DENV2 is the most prevalent type in dengue epidemic, especially in the South East Asian region. The virus genome is encoded by three structural proteins (C, prM, E) as well as seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) (Chambers *et al.*, 1990; Henchal and Putnak, 1990). Understanding of the virus life cycle promotes the clearer key targets of gene/protein in the replication of the virus, thus, is important in a drug design study. Currently, the serine protease of dengue virus has been a major target in dengue drug discovery (Luo *et al.*, 2008; Mueller *et al.*, 2008). Presently, available vaccines e.g. life recombinant, DNA and subunit vaccine are limited by their ability to protect the body system from the viral infection on one serotype only, e.g. if the vaccine is sensitive against DENV1 only, thus the patient is still exposed to the dangers of being infected by other serotypes (DENV2-4). Therefore, the discovery of antiviral drug is of utmost concern in the treatment of dengue and its related diseases (Nair *et al.*, 2009; Tambunan *et al.*, 2011). Up to now, there is no established antiviral drug able to inhibit the dengue virus replication. There are only symptomatic treatment administered to the dengue patient to relieve the symptoms such as analgesic-antipyretic for fever and blood transfusion to recover the thrombolytic level in hemorrhagic patient (Kumar *et al.*, 2012; Zhou *et al.*, 2008). One of antiviral drugs, ribavirin, successfully inhibited the virus replication *in vitro* but it is limited in *in vivo* study due to the fact that the sugar moiety of this compound contributes to its poor bioavaibility during oral administration (Sampath and Padmanabhan, 2009; Takhampunya *et al.*, 2006).

NS3 protease (NS3pro) is a trypsin like serine protease which plays a role in a post-translation from the genome to its proteins as well as its maturation. This enzyme has a catalytic triad made up by His51, Asp75 and Ser135 and enhanced by another non-structural protein named NS2B as an enzyme cofactor (Frimayanti *et al.*, 2011/2012; Yin *et al.*, 2006b; Yin *et al.*, 2006a). This cofactor activity is due to its hydrophilic region which is responsible for holding and promoting the activation of NS3 while the hydrophobic part playing around the membrane association upon the cleavage process (Chanprapaph *et al.*, 2005; Kee *et al.*, 2007; Niyomrattanakit *et al.*, 2004; Steuer *et al.*, 2009).

In most cases, the discovery of dengue antivirus by targeting NS2B-NS3pro activity was based on the non-prime substrates which were identified by profiling dengue virus using tetrapeptides (Frecer and Miertus, 2010; Yang *et al.*, 2011). This peptidomimetic compound is able to inhibit the enzyme activity in a nanomolar concentration; however it is devoid of drug-like structure which can create a problem in physicochemical stability either during pharmaceutical preparation or in further pharmacokinetic step. As such, no peptidomimetic compound has been clinically used as dengue antivirus (Katzenmeier, 2004; Steuer *et al.*, 2011).

Within the last decade, the discovery of NS2B-NS3pro inhibitor have been made possible by small molecules design (Kiat *et al.*, 2006; Sidique *et al.*, 2009; Tomlinson and Watowich, 2011), assisted by Computer Aided Drug Design (CADD). These virtual experiments are very helpful to avoid the trials and errors when the tested compound examined its activity *in vitro* as well as *in vivo* (Acharya *et al.*, 2011; Korb *et al.*, 2009; Tang and Marshall, 2011). There are various methods such as structure based drug design (docking and molecular dynamics) and ligand based drug designs (pharmacophore and quantitative structure-activity relationship (QSAR)).

To date, there is no effective vaccine or antiviral drug available to protect against dengue diseases (Nair *et al.*, 2009; Tambunan *et al.*, 2011). Thus, as mortality and economic burden of this disease are quite high, major effort must be put in developing effective antiviral for the treatment against dengue.

Recently, a current unpublished study from Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, USM, found that ferulic acid which was isolated from *Garcinia mangostana* pericarps showed a reasonable inhibition toward H1N1 neuraminidase with $IC_{50} = 200 \mu M$. Although this activity is still far away from the commercial drug (oseltamivir, $K_i = 3.78 nM$) but ferulic acid structure can be used as a scaffold for NA inhibitor. Looking at the structure of ferulic acid, there are three functional groups identified probably contributing to H1N1 neuraminidase inhibition, i.e. carboxylic acid, hydroxyl, and methoxy groups. Furthermore, the ring system of aromatic compound is more planar than shikimic acid derivatives which showed bound to the NA active site and had high antineuraminidase activity (Chand *et al.*, 1997). Ferulic acid has a highly correlated structure with vanillin (see Figure 1.3). Ferulic acid can be prepared synthetically by reacting vanillin and malonic acid; and vice versa, vanillin can be produced by hydrolyzing ferulic acid at a certain condition.

Figure 1.3 The structure of ferulic acid and vanillin.

On the other hand, also unpublished previous works from Pharmaceutical Design and Simulation (PhDs) laboratory, USM, found four National Cancer Institute (NCI) compounds possessed bioactivity *in vitro* against DENV2 NS2B-NS3pro from their virtual screening. Those four NCI compounds showed some hydrogen bond interactions to amino acid residues which are important for DENV2

NS2B-NS3pro activities. The docking results corresponded well with the *in vitro* study. These four compounds, however are not typically classified as peptidomimetic, therefore, there is an opportunity to develop small molecules to be the lead compound of dengue antivirus. Among those NCI compounds, the diversity0713 (see Figure 1.4) which has a thioguanine scaffold is considered chemically accessible in term of synthetic route as well as the availability of starting materials.

Figure 1.4 The structure of diversity0713 (www.pubchem.com) and thioguanine.

1.2 Objectives

The goal of this study is to discover novel neuraminidase and dengue antivirus. Specifically the objectives are:

- To model and design a series of H1N1 NA and DENV2 NS2B-NS3pro inhibitors bearing ferulic acid and thioguanine scaffold respectively, using *in silico* methods.
- 2. To synthesise the designed H1N1 NA and DENV2 NS2B-NS3pro inhibitors.

- To evaluate the *in vitro* activities of the synthetic compounds (H1N1 NA and DENV2 NS2B-NS3pro inhibitors) against H1N1 NA and DENV2 NS2B-NS3pro, respectively.
- To study the quantitative structure-activity relationship (QSAR) of the synthetic compounds, ferulic acid and thioguanine derivaties as the H1N1 NA and DENV2 NS2B-NS3pro inhibitors, respectively.

CHAPTER TWO LITERATURE REVIEW

2.1 Influenza A and Its Drug Treatment

2.1.1 Influenza A virus

Influenza A virus is a pathogen which commonly infects the upper respiratory tract causes several symptoms such as myalgia, malaise, and fever for a few days as common respiratory symptoms. The condition can be more complicated when it affects other cells or organs causes pneumonia and myocardial infection (Kuszewski and Brydak, 2000; Svetlikova *et al.*, 2010). The major pandemics were reported in three periods during 20th centuries: 1918-1921 (H1N1"Spanish" Influenza), 1957-1958 (H2N2"Asian" Influenza) and 1968 (H3N2"Hongkong"Influenza) (Gautret *et al.*, 2010). Since 1997 to 2005, H5N1 influenza became dominant in virus circulation among birds but later on, it kills hundreds people worldwide (Saif and Espinoza, 2006). The swine flu (H1N1) virus was firstly found having human to human transmission in Mexico (2009) but luckily, this virus is less pathogenic than H5N1 virus (Simonsen *et al.*, 2011). The updated status of H1N1 reported by WHO in 2009 indicated this influenza virus found in 381 human specimens in Washington DC (WHO, 2014a).

Influenza A virus is a negative-strand RNA virus belonging to orthomyxo viruses. The shape of the virus is a pleomorphic particle, typically having a spherical or long 'lollypop' like filament shape. The enveloped-negative RNA segmented genomes are packed into a nucleocapsid which complexes with protein polymerase. This RNA-protein (RNPs) complex is packed in a lipoprotein envelope lined by three

surface proteins: hemagglutinin (HA), neuraminidase (NA), and the M2 proton ion channel (Magano, 2009; Shtyrya *et al.*, 2009).

Figure 2.1 shows the schematic diagramme of Influenza A virus. Hemagglutinin (HA) is a glycoprotein which recognizes the cell targets by binding to sialic acid receptor on the host cell membrane. This protein binds to the receptor via α -ketosidic-linked terminal that are followed by fusion of the viral through the endosomal membranes succeeding endocytosis. After endocytosis, the pH of the cell changes and triggers the prolongation of the central coiled at the N-terminus thus drives out the fusion peptide and penetrates into a cellular membrane (Isin *et al.*, 2002; Sollner, 2004; von Itzstein, 2007). There are 15 subtypes of HA (H1-H15); three of them: H1, H2 and H3 attack humans by binding at the sialic acid receptor in the respiratory tract; while another subtype, H5, invades protein in avian digestive enzyme (Fouchier *et al.*, 2005). The swine is susceptible toward both human and avian influenza virus, thus the novel strain of H1N1can be generated by those two virus reassortment in this species leading to the theory called as "mixing vessel" (Ma *et al.*, 2007).

Figure 2.1 The influenza viral lipid envelope with a nucleocapsid containing three surface proteins: hemagglutinin (HA), neuraminidase (NA), and the M2 proton ion channel. The genome of the viral RNAs are presented as red coils bound to Ribonuclear Proteins (RNPs) (Betakova, 2007).

Neuraminidase (NA), also known as sialidase, exists as a tetramer of identical subunits. It is normally attached to the virus surface through a long protein stalk. The active sites are in a deep depression on the upper surface. They bind to polysaccharide chains of the sialic acid receptor and clip off the sugars (sialic acid) at the terminal end. The surface of neuraminidase is decorated with several polysaccharide chains (seen extending upwards and downwards in this structure, Figure 1.1) that are similar to the polysaccharide chains that decorate our own cell surface proteins. NA can be divided into 9 subtypes (N1-N9) and it is important for viral replication and infection (Du *et al.*, 2007; Tisoncik *et al.*, 2011). This enzyme cleaves the terminal sialic acid moieties from the receptors to facilitate release of the virion progeny from the infected cell. NA is able to facilitate the early processing of influenza virus infection in the lung epithelial cells. Due to these essential roles, NA

has been an attractive target in anti-influenza discovery (Du *et al.*, 2007; Gong *et al.*, 2007; Platis *et al.*, 2006; Wang *et al.*, 2010).

M2 ion protein channel is the third membrane protein which provides the virus structural integrity by permitting the proton to enter the virus particle during un-coating of the virion in the endosome (Bauer *et al.*, 1999). It is a homotetramer consisting of four polypeptide chains from 96 amino acids, with the structural domains: an amino-terminal extracellular domain (comprising 23 residues), as a single internal hydrophobic domain that acts as a trans-membrane domain (19 residues) and 54-residue cytoplasmic tails. This membrane protein is important to prevent inactivation of progeny virus as well as premature acid activation of the newly synthesised HA (Betakova, 2007; Rossman *et al.*, 2010).

2.1.2 Influenza A neuraminidase

The crystal structure of neuraminidase first solved in 1983 (Varghese *et al.*, 1983) has given a glimpse on the mechanism of action of this enzyme at a molecular level. This structure was of N2 subtype at a resolution of 2.9 Å, showing that the enzyme adopts a tetramer shape (see Figure 2.2) with the total molecular weight of 240 kDa. Each monomer is formed by six 4-stranded of anti-parallel β -sheets which is arranged as blade propellers around the central of pseudo six fold. The first strand of each sheet is parallel to the central of the propeller and the outer strand is vertical toward it, causes each strand being twisted. The outermost strand of the first sheet is linked to the central of strand for the next sheets. Loops connecting these strands contain a diverse important amino acids and form enzymatic site on its upper surface.

Figure 2.2 The tetramer shapes of neuraminidase N2 (Varghese et al., 1983).

Phylogenetic studies have divided the neuraminidase influenza virus into two groups, Group 1 contains subtypes N1, N4, N5 and N8 and Group 2, subtypes N2, N3, N6, N7 and N9 (Gong, 2007; Tisdale, 2009). The main difference between these two groups is the presence of a loop consisting amino acids 147 to 151 which is also named as 150-loop (Xu *et al.*, 2008). For example, the 150-loop of the N1 has Val149 while for N9 it is formed by Ile149. For both groups, the 150-loop contains an amino acid Asp151 as shown in the superposition of N1 and N9 in Figure 2.3. However, in N1, its side chain has a carboxylic acid steering away from the active site of the enzyme in an open conformation, while in N9, it is a close form (Du *et al.*, 2007).

Figure 2.3 The comparison of crystal structures between N1 and N9. (A) A superposition of N1 (PDBID 2HTY) and N9 enzyme (PDBID 1F8B) where the key residues are shown in ball-and-stick forms. (B) Ligand in the active cavity of 2HTY with adjacent 150-loop. (C) Ligand in the active cavity of 1F8B (Du *et al.*, 2007).

The function of NA is to facilitate mobility of the virus, both to and from the site of infection. NA catalyzes the cleavages of (2-6) - or α (2-3)-ketosidic linkage between a terminal SA and inward-face sugar residue. This broken bond facilitates to spread the virus in the respiratory tract and allows the elution of progeny virus from the infected cells. The removal of sialic acid from the oligosacharide moiety of HA and NA also helps to prevent the virus self-aggregation after leaving the host cells (Gong *et al.*, 2007). The mechanism of neuraminidase activity that facilitates the virul replication is shown in Figure 2.4.

Figure 2.4 The cleavage of the new synthesised virus from its sialic acid receptor by neuraminidase (Clercq, 2006).

The availability of X-ray crystal structures of neuraminidase with highresolutions complexed with sialic acid (SA, N-acetylneuraminic acid, Neu5Ac) has improved the understanding of the action mechanism of this enzyme. Figure 2.5 described the active binding site of neuraminidase when co-crystallized with Neu5Ac. This active site is highly conserved and presents a rigid catalytic center (Gong *et al.*, 2007; von Itzstein, 2007; Yen *et al.*, 2006). There are eight amino acids which directly make contact with Neu5Ac which provide conserved binding by the charge-charge interaction between the carboxylate group and three positively charged arginine residues (Arg118, Arg292 and Arg371). The NH group of 5-N-Acetyl interacts with the active site cavity via hydrogen bonding with water molecule while the oxygen carbonyl on the same 5-N-Acetyl moiety of Neu5Ac bonds to N of Arg152 via direct hydrogen bonding while its two hydroxyl groups of glycerol side chain are bonded to the carboxylate oxygens of Glu276. In addition, the 2-hydroxyl of Neu5Ac makes a direct contact with the carboxylate oxygen of Asp151 (Varghese, 1999; von Itzstein, 2007).

Figure 2.5 The binding site of A/Tokyo/3/67 (H2N2) influenza virus NA and sialic acid (PDBID 2BAT). The green dot lines describe the hydrogen bonding between ligand and specific amino acid residues of NA's active site (Yen *et al.*, 2006).

2.1.3 Neuraminidase Inhibitors

Most potent NA inhibitors were developed based on the structural information of the N2 NA conserved active site and its complex with sialic acid. Figure 2.6 shows the two-dimensional 'airplane' model to illustrate the NA active site (Wang *et al.*, 2010). This 'airplane' model was used to define the Structure-Activity Relationships (SARs) of NA inhibitors, which is mainly determined by the relative positions of the substituents (carboxylate, glycerol, acetamido and hydroxyl) in the central ring of the inhibitor. There are four well conserved active site domains which consist of Site 1 (Arg118, Arg292, Arg371), Site 2 (Asp151, Glu119,

Glu227), Site 3 (Ile222, Trp178) and Site 4 (Glu276, Glu277) (Gong *et al.*, 2007; Zhang *et al.*, 2008a).

Figure 2.6 'Airplane' model of NA active site (Zhang et al., 2008a).

The elucidation of the three-dimensional structure of influenza neuraminidase located the catalytic site, which makes the design of highly effective inhibitors became feasible. The first NA inhibitor is 2-deoxy-2,3-didehydro-Nacetylneuraminic acid (DANA (1), Figure 2.7) synthesised in 1969 (Chen et al., 2013). It was designed as a mechanism-based inhibitor and was proposed to be a transition state analogue with K_i ~1pM. Compound 1 showed a good activity in vitro but was found inactive as antivirals in an animal model (Laver and Elspeth, 2002). Earlier structure based drug design work, showed the availability of space between 1 and the enzyme in the vicinity of the 4-hydroxyl binding pocket, and thus, it was desirable to fill that space with basic substituents on the sugar (Smith *et al.*, 2001). Upon this information, the compounds targeted for synthesis were 4-amino-Neu5Ac2en (2) and 4-guanidino-Neu5Ac2en (3) (Figure 2.7). The K_i of these compounds are 20 and 5000 times respectively improved over that for 1 when assayed against the neuraminidase of the viral isolate from which the structure had been determined.

Figure 2.7 The structure of NA inhibitors from sialic acid derivatives (Tapar *et al.*, 2011).

Compound **3** or its drug name Zanamivir has an oral inhalation administration not only due to its high polarity, but also consciously intended for direct delivery to the respiratory tract, the principal site of the viral replication (Gupta *et al.*, 2011; Sun *et al.*, 2010). This sialic acid derivative showed a potent antiviral activity *in vitro* against influenza A as well as B viruses, including amantadine-and rimantadineresistant isolates. Further study also showed that **3** is active against avian influenza A viruses, including influenza A H5N1, H6N1, H7N7 and H9N2 as well as some influenza strains resistant to oseltamivir (Elliot, 2001). A new orally active neuraminidase inhibitor, coded by GS4071 (4) was designed to overcome the problem of oral bioavailability of zanamivir (Zhang *et al.*, 1997). The decrease in polarity contributed by carboxyl, hydroxyl as well as guanidine in zanamivir was achieved in 4 by removing the heterocyclic oxygen but augmenting the isopentyl as shown in Figure 2.8.

Figure 2.8 The structure of 4 with the dot boxes describes the nonpolar site of the particular structure.

The similarity of this compound to the compound 2 is evident especially their binding mode as demonstrated from the X-ray crystal structure of the complexes bound to neuraminidase (Figure 2.9). The carboxylate, acetyl as well as amino group belongs to the compound 4 were shown to bind to the conserved amino acid residues of neuraminidase's active site. In addition, the isopentyl group makes several favorable hydrophobic contacts with amino acid residues Ile222, Arg224, and Ala246, increasing the binding affinity (Lew *et al.*, 2000).

Figure 2.9 The X-ray crystal structure of neuraminidase complex with **4**. The hydrophobic interactions are indicated by the closeness between isopentyl group and amino acid residues Ile222, Arg224 and Ala246 (Lew *et al.*, 2000).

In pharmacokinetic experiments, **4** demonstrated only ~5% bioavailability in rats which is similar to **3**. Somehow, the conversion of carboxylic acid to its ester form, oseltamivir, provides five folds higher bioavailability than **4** when it is administered orally. It was found that the ethyl ester form of this compound metabolized via hydrolysis reaction to become carboxylate, the active metabolite which is shown to have poor bioavailability. Therefore, the phosphate salt of oseltamivir was developed to overcome the bioavailability problem thus, the compound can be administered orally (D'Souza *et al.*, 2009; Sun *et al.*, 2010).

The recent X-ray crystallographic study reveals that influenza A virus of the group-1 NA (N1) contains a larger cavity adjacent to the active site, formed by

residue 147-152 (150-loop) which is not found in the group 2 NAs. The group 1 NAs can bind ligands in the open as well as in the closed conformation. However, only the close conformational state was found in the group 2 NAs. The flexible 150-loop residues are occupied on the vicinity by the ligand and interact mostly with the amino and acetamido groups of **4**. The active sites are still conserved at the triad arginines (Arg118, Arg292, and Arg371) that interact with the carboxylate group. Moreover, the affinity is increased by the interaction between the acetamido groups and Glu276 that forms hydrogen bonds with the substrate of hydroxyl groups (Collins *et al.*, 2008; Rungrotmongkol *et al.*, 2009).

A new scaffold containing five members of alicyclic compound was introduced to generate the antiviral activity against influenza virus via neuraminidase inhibition (Bianco *et al.*, 2005). Peramivir (**5**) with the cyclopentane core attached with carboxylic acid as well as acetylamino group and showed to possess *in vitro* activity against H1N1 virus with $IC_{50} = 0.38 \mu M$ (Ikematsu *et al.*, 2012). The crystal structure of N8 complex with Peramivir (PDBID 2HTU) shows the conserved binding mode of this compound to the enzyme (see Figure 2.10).

Figure 2.10 The structure of **5** in 2D as well as its 3D structure complex to N8 NA (PDBID 2HTU) was generated using Discovery Studio 2.5.

The latest NA inhibitor clinically approved in Japan in 2010 is Laninamivir which is proven effective against oseltamivir-resistant mutant. This drug is also prepared in octanoate ester form in the major structure of **3**. This laninamivir ester (**6**) is unique in its ability to rotate the Glu276 to form a salt bridge with Arg224, thus giving more space for Asn294 to interact with the the 9-ester-O of Laninamivir when it was crystallized with 2009 H1N1 NA (p09N1) (see Figure 2.11) (Ikematsu and Kawai, 2011; Vavricka *et al.*, 2011).