
EXECUTION TRACE ANALYSIS USING

UTILITY CLASS DETECTION AND DECOUPLING

IN OBJECT-ORIENTED SOFTWARE COMPREHENSION

HASAN MUGBIL KHALAF ABU AL ESE

UNIVERSITI SAINS MALAYSIA

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/83541373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EXECUTION TRACE ANALYSIS USING

UTILITY CLASS DETECTION AND DECOUPLING

IN OBJECT-ORIENTED SOFTWARE COMPREHENSION

by

HASAN MUGBIL KHALAF ABU AL ESE

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

July 2015

 ii

ACKNOWLEDGMENTS

The praises are due to ALLAH, the most merciful, the most compassionate, and may

the prayers of blessing of Allah be upon Prophet Muhammad, the chosen, the

trustworthy, and upon his family and all of his companions.

I would like to express my deepest grateful thanks and gratitude towards my thesis

advisor Associate Professor Dr. Putra Sumari, for his extraordinary supervision,

friendship, invaluable guidance and constructive criticism which made this work

possible. He pushed me when I needed to be pushed. I am thankful for every minute

he spent on giving me guidance to achieve my academic goal. He has taken so much

of his valuable time for reading, correcting and restructuring the preliminary drafts. I

would also like to thank the members of my examination committee for the feedback

they provided during my PhD viva voce. Iam also indebted to Professor Dr. Ahamad

Tajudin Khader and Associate Professor Dr. Shahida Binti Sulaiman.

I would like to convey my appreciation to the School of Computer Sciences in

University Sains Malaysia (USM), the Library of the University, the Institute of

Postgraduate Studies (IPS) and the Laboratories Technicians. I am also grateful to

my colleagues for their encouragement with this work.

Last but not least, I would like to express my most sincere and warmest gratitude to

my mother, wife, children, sisters, brothers, sisters in law, brothers in law, uncles,

aunts, cousins, nephews, and nieces for their prayers, love, generous moral and

financial support during my study.

Thank You All.

 iii

TABLE OF CONTENTS

PAGE

ACKNOWLEDGMENTS ... ii

TABLE OF CONTENTS ... iii

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xiv

ABSTRAK .. xv

ABSTRACT .. xvii

CHAPTER 1- INTRODUCTION ... 1

1.1 Program Comprehension ... 1

1.2 Coupling and Complexity .. 2

1.3 Background of the Problem ... 3

1.4 Research Problem .. 6

1.5 Objectives of the Research ... 8

1.6 Scope of the Research .. 8

1.7 Research Contributions .. 9

1.8 Organization of the Thesis ... 10

CHAPTER 2 - LITERATURE REVIEW.. 13

2.1 Introduction .. 13

2.2 Software Maintenance ... 13

2.3 Program Comprehension ... 16

2.3.1 Bottom-up Model .. 17

 iv

2.3.2 Top-down Model ... 18

2.3.3 Integrated Model ... 20

2.3.4 Systematic and As-Needed Models ... 20

2.4 Dynamic Analysis .. 22

2.4.1 Dynamic Analysis versus Static Analysis ... 24

2.4.2 Execution Traces ... 25

2.4.3 Phases of Dynamic Analysis ... 27

2.4.4 Weaknesses and Threats of Dynamic Analysis 31

2.5 Coupling and Program Comprehension ... 33

2.5.1 Definition and Taxonomy of Coupling ... 33

2.5.2 Dynamic Coupling versus Static Coupling ... 36

2.5.3 Classification of Dynamic Coupling ... 37

2.5.4 Dynamic Coupling for Program Comprehension 39

2.6 Utilities and Implementation Details ... 40

2.7 Decoupling ... 44

2.7.1 Strategies for Decoupling .. 45

2.7.2 Modularity Patterns ... 46

2.7.3 Module Facade .. 48

2.8 Trace Analysis Tools ... 50

2.8.1 Content Prioritization .. 51

2.8.2 EXTRAVIS ... 53

2.8.3 Trace Summarization .. 55

2.8.4 Shimba ... 59

2.8.5 AVID ... 62

2.8.6 Together Diagrams .. 64

 v

2.8.7 Dynamic Views in Existing IDEs ... 66

2.9 Trace Analysis Techniques .. 67

2.9.1 Trace Exploration Techniques ... 67

2.9.2 Language-Based Techniques ... 68

2.9.3 Metrics-Based Techniques .. 68

2.9.4 Selective Instrumentation Techniques ... 69

2.9.5 Query-Based Techniques .. 69

2.9.6 Pattern-Matching Techniques .. 69

2.9.7 Sampling Techniques .. 70

2.9.8 Clustering Techniques ... 70

2.10 Summary .. 71

CHAPTER 3 - RESEARCH METHODOLGY .. 76

3.1 Introduction .. 76

3.2 Research Procedure .. 76

3.3 Research Justification .. 78

3.4 Evaluation .. 80

3.4.1 A Controlled Experiment .. 80

3.4.2 Comparison with Extravis ... 82

3.5 Limitations and List of Assumptions ... 84

3.6 Summary .. 85

CHAPTER 4 - A TRACE SIMPLIFICATION FRAMEWORK 86

4.1 Introduction .. 86

4.2 Theoretical Framework .. 86

 vi

4.3 Proposed Framework ... 88

4.4 Scope Filtering ... 89

4.5 Utility Class Detection ... 92

4.6 Utility Class Decoupling .. 93

4.7 Prototype Tool ... 94

4.8 Summary .. 95

CHAPTER 5 - UTILITY CLASS DETECTION METRICS 96

5.1 Introduction .. 96

5.2 Utility Detection Techniques ... 96

5.3 Dynamic Coupling for Utility Detection ... 98

5.4 Utility Class Detection Metrics .. 100

5.4.1 Export Utility Class Metric ... 101

5.4.2 Export-Import Utility Class Metric ... 104

5.5 Summary .. 106

CHAPTER 6 - UTILITY CLASS DECOUPLING SCHEME 108

6.1 Introduction .. 108

6.2 Overview .. 108

6.3 Trace Collection Component ... 111

6.4 Class Identification Component ... 113

6.5 Filtering Component .. 115

6.6 Decoupling Component ... 117

6.6.1 Utility Detection Subcomponent ... 117

6.6.2 Facade Processing Subcomponent .. 118

 vii

6.7 Trace Simplification Component ... 120

6.8 The Algorithm .. 121

6.9 UtilityDecoupling Tool .. 126

6.10 Summary .. 128

CHAPTER 7 - EVALUATION ... 131

7.1 Introduction .. 131

7.2 Controlled Experiment ... 132

7.2.1 Experiment Questions and Hypotheses ... 135

7.2.2 Subjects and Subject System ... 137

7.2.3 Comprehension Tasks ... 141

7.2.4 Pilot Studies ... 143

7.2.5 Experimental Procedure .. 144

7.3 The Analysis .. 146

7.3.1 Analysis of the Subjects Expertise .. 146

7.3.2 Analysis of the Results .. 149

7.3.2(a) Time Spent Results .. 151

7.3.2(b) Correctness of Solutions Results ... 153

7.3.3 Analysis of Individual Tasks ... 155

7.3.4 Analysis of Debriefing Questionnaire ... 158

7.4 Discussion .. 161

7.4.1 Time spent Differences.. 161

7.4.2 Correctness of Solutions Differences .. 163

7.4.3 Individual Task Differences .. 164

7.5 Possible Threats ... 172

 viii

7.5.1 Threats to Subjects .. 172

7.5.2 Threats to Subject System ... 173

7.5.3 Threats to Comprehension Tasks .. 174

7.6 Comparison with the Trace Visualization .. 175

7.6.1 Controlled Experiments for Trace Visualization 175

7.6.2 Analysis of the Results .. 176

7.6.3 Discussion ... 180

7.7 Summary .. 183

CHAPTER 8 - CONCLUSION AND FUTURE WORK 186

8.1 Summary .. 186

8.2 Contributions .. 187

8.3 Future Work ... 191

REFERENCES ... 193

APPENDICES .. 202

APPENDIX A - The User Manual of UtilityDecoupling Tool 203

APPENDIX B - The Questionnaire .. 208

APPENDIX C - Analysis of Time Spent Result per Group 213

APPENDIX D - Analysis of Correctness of Solutions per Group 215

APPENDIX E - Analysis of Time Spent Result per Task 217

APPENDIX F - Analysis of Correctness of Solutions per Task 219

APPENDIX G - Comparison Analysis between Extravis and UD 220

 ix

LIST OF TABLES

PAGE

Table 2.1: Tasks and activities requiring program comprehension. 16

Table 2.2: Strengths and drawbacks of dynamic analysis. .. 32

Table 2.3: Dynamic Coupling Classification. .. 38

Table 2.4: Summary of Dynamic Coupling Measure. ... 39

Table 2.5: Dynamic Tools and Their Corresponding Techniques. 75

Table 5.1: EUC Values for Dependencies of Figure 5.2. ... 103

Table 5.2: EIUC Values for Dependencies of Figure 5.2. 106

Table 7.1: Characteristics of the Subjects, sorted descending by average of expertise.

 .. 139

Table 7.2: the Principal Activities of Pacione Comprehension Framework. 142

Table 7.3: Description of the Comprehension Tasks. .. 143

Table 7.4: Java Language versus Group Crosstabulation .. 147

Table 7.5: Eclipse IDE versus Group Crosstabulation... 147

Table 7.6: Reverse Engineering versus Group Crosstabulation............................... 148

Table 7.7: CHECKSTYLE versus Group Crosstabulation 148

Table 7.8: Language Technology versus Group Crosstabulation 148

Table 7.9: Time spent Results per Task. .. 149

Table 7.10: Correctness Results per Task. ... 149

Table 7.11: Descriptive Statistics related to Time spent and Correctness of Solutions.

 .. 150

Table 7.12: Requested Tests for Time spent. ... 153

Table 7.13: Requested Tests for Correctness of Solutions. 155

Table 7.14: Requested Tests for Time spent per Task. .. 157

 x

Table 7.15: Requested Tests for Correctness per Task. ... 158

Table 7.16: Results of the Debriefing Questionnaire. .. 159

Table 7.17: A Summary of Time spent Results per Task for Extravis and UD Groups.

 .. 177

Table 7.18: A Summary of Correctness Results per Task for Extravis and UD Groups

 .. 177

Table 7.19: A Summary of the Descriptive Statistics related to Time spent and

Correctness for Extravis and UD Groups... 177

Table 7.20: A Summary of Requested Tests for Time spent and Correctness. 179

 xi

LIST OF FIGURES

PAGE

Figure 1.1: Example of Polymorphism. ... 6

Figure 2.1: An Example of Contents of a Method Calls Execution Trace. 27

Figure 2.2: Strategies for Decoupling. ... 45

Figure 2.3: Coldewey‟s Example of Original Dependencies among Classes. 49

Figure 2.4: Coldewey‟s Example of the Subsystem Decoupled with a Module

Facade. ... 50

Figure 2.5: The Massive Sequence and Circular Bundle Views in Extravis. 54

Figure 2.6: An Example of a Call Graph 57

Figure 2.7: Overall Structure of Shimba that integrates Rigi and SCED tools. 60

Figure 2.8: A view showing an example cel in AVID. .. 63

Figure 2.9: The AVID summary view of the execution... 63

Figure 2.10: Together UML interaction sequence diagram. 65

Figure 3.1: General Framework of the Research Procedure. 77

Figure 4.1: The Theoretical Framework of the Research. ... 88

Figure 4.2: The Proposed Framework and its Components for Trace Simplification.

 .. 89

Figure 5.1: Polymorphism in a Java Program. ... 98

Figure 5.2: Relationships among Methods and Classes. .. 103

Figure 6.1: Utility Classes Decoupling Scheme. ... 109

Figure 6.2: Generating an Execution Trace using AspectJ. 112

Figure 6.3: Procedural Steps for Reading and Checking Trace File Format. 114

Figure 6.4: Procedural Steps for Extracting Distinct Classes from the Trace. 114

 xii

Figure 6.5: Procedural Steps for Extracting Straightforward Utility and un-

Application Classes. .. 116

Figure 6.6: Procedural Steps for Extracting Undesired Classes. 116

Figure 6.7: Relationships among Methods and Classes of Figure 5.2 with

Compression Rate 60%. ... 119

Figure 6.8: Screenshot of the Generated Views. .. 120

Figure 6.9: Screenshot of Checking the Availability of the Trace File. 127

Figure 6.10: Screenshot of Inserting the First Scope Parameter. 127

Figure 6.11: Screenshot of Inserting the First Scope Parameter. 128

Figure 7.1: The important Aspect of the Controlled Experiment. 133

Figure 7.2: A Snapshot of Eclipse IDE Environment. ... 135

Figure 7.3: Average Expertise in Control and Experimental Groups. 140

Figure 7.4: Mean and Box Plots for Time spent. ... 153

Figure 7.5: Mean and Box Plots for Correctness of Solutions. 155

Figure 7.6: Average of Time spent per Task.. 156

Figure 7.7: Average of Correctness per Task. ... 156

Figure 7.8: Average of Task Difficulty per Task. .. 161

Figure 7.9: Answering T2.1 using UD Tool. ... 166

Figure 7.10: Answering T2.2 using UD Tool. ... 167

Figure 7.11: Answering T3.1 using UD Tool. ... 168

Figure 7.12: Answering T3.2 using UD Tool. ... 169

Figure 7.13: Answering T3.3 using UD Tool. ... 170

Figure 7.14: A Comparison of Box Plots of Time spent and Correctness. 178

Figure 7.15: A Summary of Averages of Correctness per Task for Extravis and UD

groups. .. 182

 xiii

Figure 7.16: A Summary of Averages of Expertise Knowledge for Extravis and UD

groups. .. 183

 xiv

LIST OF ABBREVIATIONS

C Correctness of solutions

JIDE Java IDE

MT Maintenance Tasks

PC Program Comprehension

SE Software Engineers

SS Software System

T Time spent

UD Utility Decoupling Tool

US Usability and Usefulness Survey

 xv

ANALISA SURIH PELAKSANAAN MENGGUNAKAN

PENGESANAN DAN PENYAHGANDINGAN KELAS UTILITI

DALAM PEMAHAMAN PERISIAN BERORIENTASIKAN OBJEK

ABSTRAK

Sistem perisian berorientasikan objek adalah platform yang paling banyak digunakan

dalam organisasi di dunia pada hari ini. Penyelenggaraan sistem ini sememangnya

menjadi satu tugas yang penting untuk memastikan sesuatu perisian sentiasa

dikemaskini dan selari dengan perubahan pada beban kerja dan pembaharuan

teknologi. Salah satu kaedah untuk melakukan penyelenggaraan ini adalah untuk

menyurih pelaksanaan sistem dan kemudian menganalisanya yang dipanggil sebagai

teknik analisa surih pelaksanaan. Walau bagaimanapun, sistem perisian

berorientasikan objek mempunyai pelbagai kelas dan ciri gandingan yang membuat

analisa menjadi sukar. Surih pelaksanaan sistem perisian pada masa kini cenderung

untuk menjadi sangat besar dari segi kerumitan dan saiz. Kebergantungan antara

kelas-kelas dan ciri-ciri gandingan membentuk jalinan kekisi yang sangat rumit. Ini

berkaitan terutamanya dengan utiliti yang sememangnya lebih boleh diguna semula

dan mempunyai penyahgandingan yang sangat kukuh. Tesis ini memperkenalkan

satu teknik analisa surih baru yang ringkas dan memudahkan proses menyurih

pelaksanaan. Kerja yang dicadangkan terdiri daripada tiga komponen utama, iaitu

komponen penapisan skop, komponen pengesanan kelas utiliti, dan komponen

penyahgandingan kelas utiliti. Komponen penapisan skop adalah untuk menapis

modul aplikasi yang tidak dikehendaki bagi memilih hanya skop-skop tertentu dalam

sesuatu sistem perisian untuk aktiviti-aktiviti surih pelaksanaan. Komponen

pengesanan kelas-kelas utiliti bertujuan untuk mengesan kelas utiliti dalam skop

 xvi

tertentu yang telah dipilih untuk aktiviti-aktiviti penyurihan. Di sini, dua metrik

pengesanan kelas utiliti baru dicadangkan. Metrik-metrik ini bergantung terutamanya

kepada gandingan dinamik untuk merekod ciri-ciri masa laksana sistem

berorientasikan objek seperti polimorfisma dan pengikatan lewat. Akhir sekali,

komponen penyahgandingan kelas utiliti memisahkan gandingan antara kelas-kelas

utiliti. Kerja yang dicadangkan dinilai secara kuantitatif dengan menggunakan

eksperimen terkawal. Eksperimen menunjukkan peningkatan 25% dalam

pengurangan masa yang digunakan dan 62% ketepatan penyelesaian untuk menjawab

tugasan kefahaman yang diberikan. Selain itu, perbandingan dengan kaedah yang

lain dalam bidang yang sama telah dijalankan. Perbandingan menunjukkan

peningkatan 15% masa yang dikurangkan dan 12% ketepatan penyelesaian untuk

menjawab tugasan kefahaman yang diberikan. Keputusan mengesahkan kecekapan

dan keberkesanan kerja yang dicadangkan untuk membuat surih pelaksanaan kurang

sukar.

 xvii

EXECUTION TRACE ANALYSIS USING

UTILITY CLASS DETECTION AND DECOUPLING

IN OBJECT-ORIENTED SOFTWARE COMPREHENSION

ABSTRACT

Object-oriented software systems are the most used platforms in most today

organizations in the world. The maintenance of these systems indeed is becoming an

important task in order to assure the software keep updated with changes of the

recent workload and technologies. One method to do the maintenance is to trace the

executions of the system and yet analyze them which is called execution trace

analysis technique. However, object-oriented software has classes and coupling

features that make the analysis difficult. The execution traces of current software

systems tend to be very large in terms of complexity and size. The classes and

coupling features form a very complicated interwoven lattice of the dependencies.

This applies particularly to utilities which are inherently more reusable and having

very tight coupling. This thesis introduces a new trace analysis technique that

simplifies and eases the execution tracing process. The proposed work consists of

three main components, namely scope filtering component, utility class detection

component, and utility class decoupling component. The scope filtering component

filters the unwanted application modules to yield only a specific scope of the

software system for the execution trace activities. The utility class detection

component detects the utility classes within a particular scope of a given execution

trace. Here, two new utility class detection metrics are proposed. These metrics

depend mainly on the dynamic coupling to capture runtime properties of an object-

 xviii

oriented system such as polymorphism and late binding. Lastly, the utility class

decoupling component decouples the tightly coupled utility classes. The proposed

work is evaluated quantitatively using a controlled experiment. The experiment

showed an improvement of 25% less time spent and 62% correctness of solutions to

answer given comprehension tasks. Moreover, comparisons with related state-of-art

methods are conducted. The comparisons showed an improvement of 15% less time

spent and 12% correctness of solutions to answer given comprehension tasks. The

results verify the efficiency and effectiveness of the proposed work in order to make

execution traces less difficult.

 1

CHAPTER 1

INTRODUCTION

1.1 Program Comprehension

In the area of software engineering, program comprehension is an extremely

essential activity of software maintenance to get better understanding of software

systems before they can be modified (Demeyer et al., 2003; Ko et al., 2006;

Sommerville, 2011).However, program comprehension has applications in other

software engineering areas such as software development, software reuse, software

migration and software reengineering (Obrien, 2003; Storey, 2006). The area of

program comprehension is also known as software understanding. Therefore, the

terms, comprehension and understanding are used as synonyms.

Actually, program comprehension process is an extremely individual process.

For example, several software engineers may use the same way in understanding the

software systems, nevertheless, the results may vary from one software engineer to

another. Therefore, several definitions are found in the literature to identify what

program comprehension means. Among these definitions, one could recognize the

definition introduced by Zhang (2005) as follows:

"Program comprehension is the process of deriving from

program code abstract information which are meaningful to

engineers and can help them to learn the program, making

decisions and modify the program correctly."

 2

1.2 Coupling and Complexity

Coupling is a powerful technique for assessing relationships among software

entities to understand how they are relate to each other before any modification. In

coupling, two entities are coupled when they are related to each other by any kind of

relationship or connection (Abdurazik, 2007). Coupling as a metric, was first

introduced by Stevens et. al. (1974) as the measure of connection strength that is

established between two modules. The concept of coupling has been adapted to

object-oriented software by Coad and Yourdon (1991) and numerous metrics for

object-oriented software have been defined.

However, coupling is related directly to complexity (structural complexity

rather than computational complexity) in a positive correlation. For example, tight

coupling leads to high complexity as components are more inter-related whilst,

loose-fitting coupling leads to low complexity where the components are less inter-

related. In particular, current object-oriented systems lead to form a very complicated

interwoven lattice of dependencies which is known as "Spaghetti Architectures"

phenomenon (Webster and Simon, 2011). The reason is that when high performance

and fast turnaround time are crucial to a system, components are intentionally

programmed to be tightly coupled. In this case, the functions in each of the tightly

coupled components are cohesive. However, a very tight coupling implies a

complicated structure of the system, therefore, the structural complexity is expected

to be very high.

Complexity refers to the degree of difficulty to understand and verify a

software system or one of its components (IEEE glossary, 1990). In the literature,

 3

complexity is represented by several properties such as size and coupling. However,

the size property cannot sufficiently characterize the structural complexity as any two

different software systems of similar size are almost different in structure.

Alternatively, coupling is a good indicator for the structural complexity as coupling

can depict the hierarchy of the system and the structural dependencies between its

components.

Similar to complexity, coupling has a negative impact on program

comprehension and software maintenance. The reasoning is that, when a component

is coupled to more other components, this means that in order to understand that

particular component, more “links” and components need to be investigated which

makes understanding it more difficult. Also, assembly of coupled components might

require more effort and/or time due to the increased inter-components dependency.

The reasoning is also similar for maintenance, when a maintainer wants to change a

component, but is coupled to many other components, the ripple effect might be

bigger and/or additional constraints for making changes might apply. Hence, it is

desirable to keep coupling as loose as possible in order to ensure that changes to one

component have limited impact on the rest of other components. However, coupling

is unavoidable within a software system as components need to work together to

achieve the desired functionality.

1.3 Background of the Problem

Current software systems tend to be very large in terms of complexity and

size. Consequently, maintenance of these software systems requires exploiting

various knowledge resources such as the availability of the original developers and

 4

up-to-date documentation. Otherwise, the maintenance process will be tedious, costly

and time-consuming. However, original developers usually switch to a new system

or even a new firm after the current system has been delivered and up-to-date

documentation is often not available or insufficient. These documentation problems

may be attributed to time-to-market constraints, excessive ad-hoc maintenance

activities and the cost of updating is not justifying the benefits. Thus, Software

maintenance activities consume about two-thirds of the budgets of IT systems, which

are considered to be a very high cost proportion (Sommerville, 2011).

The major factor that leads to this higher cost proportion is the understanding

process of the software system under maintenance. In particular, more than half of

the maintenance costs are assigned to understand the intended software system (IEEE

CS, 2012). For example, a considerable amount of time, required for maintenance

process, is spent in understanding the software system and analyzing the impact of

the proposed changes (Storey, 2005). Therefore, understanding of an existing

software system is a costly activity, in particular, when software systems undergo

several maintenance cycles (Hamou-Lhadjand Lethbridge, 2010). Thus, there is a

need to develop tools and techniques that support the comprehension process. These

tools and techniques should rely on reliable and complete up-to-date references

which may be confined only to programcodes (i.e., source code and object code).

In the literature, there are two main comprehension techniques for program

analysis namely, static analysis and dynamic analysis. The static analysis techniques

are based on parsing the source code of a program without executing it. Whilst,

dynamic analysis techniques are based on analyzing the dynamic behavior of the

 5

program by extracting its dynamic information while it is executed. Hence, the static

techniques analyze what may possibly occur (i.e. they examine all execution paths)

whereas the dynamic techniques analyze what is actually occurring (i.e. they

examine only actual execution paths for a particular execution scenariothat contains

one or more features). Therefore, both of the dynamic and static techniques are

complementary (i.e. one of them cannot supplant the other) and they have the ability

to make the understanding process easier and less costly.

However, the key issues of object-orientation such as polymorphism and late

binding necessitate the use of dynamic analyses where the actual polymorphic

method calls can only be determined at runtime (Zaidman and Demeyer, 2008;

Chhabraand Gupta, 2010; Gupta, 2011).In addition, dynamic analysis techniques can

support goal-oriented comprehension strategy that allows maintainers focus only on

interested parts rather than taking the entire system into consideration. Hence, the

dynamic analysis techniques have the potential of providing precise structure of

software systems through addressing runtime information that is commonly

represented in the form of execution traces. Figure 1.1 shows an example of

polymorphism in a Java program where there are several methods that have an

identical name, that is, open(). Therefore, the executed behavior is determined at the

runtime, not at the compile time. The only way to determine which of a number of

dynamic binding actually occurs in a particular set of circumstances is to trace

through the code, either by running it on a computer or tracing through it manually.

However, manually tracing for a large set of objects with intensive use of

polymorphism and late binding is difficult task, if possible at all.

 6

class Driver {

 static public void main (String[] args) {

 File myFile;

 .

 .

 .

 .

 myFile.open();

 }

}

abstract class File {

 abstract void open();

}

class DiskFile extends File {

 void open() {

 System.out.println("open file from a disk");

 }

}

class TapeFile extends File {

 void open() {

 System.out.println("open file from a tape");

 }

}

class DisketteFile extends File {

 void open() {

 System.out.println("open file from a diskette");

 }

}

Figure 1.1: Example of Polymorphism.

1.4 Research Problem

Coping with execution traces is a daunting task as they are tend to be very

large in terms of size and complexity (Cornelissen, 2009; Hamou-Lhadjand

Lethbridge, 2010; Pirzadeh, 2012). For example, an execution trace for a current

industrial system, usually consists of several thousands up to several millions of

events (Dugerdil and Repond, 2010). In addition, current object-oriented systems

lead to forma very complicated interwoven lattice of dependencies which is known

as "Spaghetti Architectures" phenomenon (Webster and Simon, 2011). Therefore, the

major challenge for the trace analysis techniques is how to properly convey the large

and complicated traces to the maintainers.

Trace analysis techniques involve trace visualization and trace reduction in

order to simplify the understanding of large and complicated traces and yet minimize

 7

effort and time needed for the maintenance process. Unfortunately, trace

visualization techniques are being limited in several cases. In particular, they require

considerable intervention from the user side to analyze the intended trace. In other

words, it is absolutely up to the user to navigate and explore among the diversity of

features in the trace (Pirzadeh, 2012). Also, these techniques in most cases have

upper limits on the amount of data that can be tackled (Cornelissen, 2009).

Consequently, the problem of analyzing large and complicated traces is turned to as

the problem of developing visualization tools. These limitations necessitate the use

of trace reduction in order to: 1) make execution traces more tractable and less

difficult; 2) protect users from being confused by massive data of traces; and 3)

alleviate user intervention and interpretation. However, trace reduction techniques

should be adequately introduced in order to produce informative traces, otherwise,

the reduction process be useless.

Unfortunately, most trace reduction techniques represent the problem by trace

sizeonly without paying attention to its structural complexity. However, the size

property cannot sufficiently characterize the trace. For example, any two different

traces of similar size are almost different in structure. Also, trace components are

usually not equally important. In particular, there exist components that complicate

the relationships between various trace componentswith little or no important to

program comprehension. Consequently, they hinder the understanding process

(Pirzadeh et al., 2009; Hamou-Lhadjand Lethbridge, 2010).This applies particularly

to utilities which are inherently more reusable components. Hence, they have very

tight coupling and yet raise the structural complexityof execution traces.

 8

1.5 Objectives of the Research

The main objective of this thesis is to propose a new trace analysis method

that can effectively simplify understanding of large execution traces. The specific

objectives of this thesis include the following:

1. To establish a new trace simplification framework, that can reduce the

impact of trace complexity in order to facilitate the understanding process

for maintenance tasks and reduce the relevant costs and time.

2. To detect utility componentsprecisely using dynamic couplingin order to

determine which components lead to higher complexity.

3. To decouple utility components using module facade in order to resolve

the trace complexity problem without creating gaps and holes in

components dependencies.

1.6 Scope of the Research

The scope of this research is bounded as follows:

1. The domain of this research is software engineering.

2. The application of the proposed work is scoped to the understanding of

execution traces to perform some maintenance tasks. In particular, this

thesis focuses on adaptive maintenance, where maintenance tasks may

involve the modification of existing features or the addition of new ones.

3. The trace mode used in this research is restricted to offline mode.

4. The trace type used in this research is limited to "method calls" in Java

systems.

 9

1.7 Research Contributions

The major contributions of this thesis are as follows:

1. A trace simplification framework is proposed based on a combination of

three components.The three components are scope filtering, utility class

detection, and utility class decoupling. The proposed framework provides

further manipulation to the execution trace and it can provide different

views of the software system at different runs.

2. Two new metrics for utility class detection based on dynamic coupling

are proposed. The first metric considers only the coupling in one direction

(i.e. export coupling). Whilst, the second one considers both directions of

coupling (i.e. export and import coupling). The importance of the

proposed metrics is that they can detect utility classes precisely in object-

oriented systems as intensive use of polymorphism and late binding.

Moreover, they can detect utility classes at distinct scope of software

systems such as feature scopes.

3. A scheme for utility class decoupling based on a modified module façade

is proposed. The proposed scheme comprises five main components

namely trace collection component, class identification component,

filtering component, decoupling component and finally trace

simplification component. This scheme utilizesthe proposed utility class

detection metrics to find utility classes in a particular execution trace, and

then facadeprocessing is applied to perform the decoupling. It composes a

subsystem facade consisting of the detected utility classes.Then,

itencapsulates and hides that subsystem behind a coordinator interface.

 11

1.8 Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 discusses the different topics that are related to this research as well as

provides a review of the existing trace analysis techniques for program

comprehension. The chapter starts with presenting software maintenance. Also, it

presents program comprehension and its cognitive models. Then, dynamic analysis

and its importance are provided. The chapter continues with mapping between

coupling and program comprehension. In the meantime, it provides a comparison

between static and dynamic coupling as well as the classification of dynamic

analysis. Then, the different decoupling strategies are briefly presented with the

focus on modularity patterns as means of performing decoupling. Afterward, the

chapter proceeds with reviewing in details the trace analysis tools and techniques

available in the literature. In particular, six trace analysis tools are reviewed in order

to infer the embedded techniques. These tools include content prioritization,

EXTRAVIS, trace summarization, shimba, AVID and together diagrams. The

reviewing process involves clarifying the strengths and weaknesses of each tool.

Finally, the inferred trace analysis techniques are discussed and their pros and cons

are provided.

Chapter 3 provides an overview of the research methodology of this thesis. The

chapter starts with identifying the research procedure. Then, it presents the research

justification. Also, the evaluation method is introduced where a controlled

experiment is conducted to quantitatively measure the efficiency and the

effectiveness of the proposed work. In addition, comparisons with related state-of-art

methods are conducted. Finally, the limitations and lists of assumptions are provided.

 11

Chapter 4presents the proposed trace simplification framework and its major

components. The chapter starts with identifying the theoretical framework. Then, it

introduces the proposed trace simplification framework.After that, it illustrates the

major components of the proposed framework and how walking through them.

Finally, it presents the prototype tool which implements the proposed work.

Chapter 5 presents the proposed utility class detection metrics and how to exploit

dynamic coupling for this purpose. The chapter starts by mapping between utility

detection and dynamic coupling. Then, it presents the proposed utility detection

metrics. In particular, two new utility class detection metrics are proposed.

Chapter 6presents the proposed utility class decoupling scheme and how to utilize

modularity patterns in order to perform the decoupling. In particular, module facade

is utilized. The chapter starts by providing a discussion on the overview of the

proposed scheme then, elaborates the details. Also, it illustrates the main steps of the

algorithm and the setting of the required parameters.Finally, it describes the

UtilityDecoupling tool in more detail.

Chapter 7 validates this research empirically by conducting a controlled experiment.

It also provides the results and discussion of this controlled experiment as well as its

usefulness and usability. In addition, the chapter provides a comparison between the

results of the controlled experiments in this thesis and the results of Extravis trace

visualization experiment in order to infer "lessons learned" about trace simplification

and trace visualization.

 12

Finally, Chapter 8 concludes and highlights the major contributions of this thesis

and presents plans for future possible work.

 13

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Dynamic analysis techniques are used to extract and analyze systems

behavior to facilitate program comprehension. This research is intended to improve

the efficiency and effectiveness of such techniques by helping software maintainers

to understand the content of large execution traces. This Chapter consists of two

main parts. Section 2.2 through section 2.7 present related background topics that are

necessary to understand this thesis. These topics include software maintenance,

program comprehension, dynamic analysis, coupling, utilities and decoupling.

Section 2.8providesa review of state-of-art trace analysis tools,and then discusses

their strengths and weakness.The inferred trace analysis techniques are discussed in

section 2.9.Finally, section 2.10 summarizes this chapter.

2.2 Software Maintenance

Software maintenance is a central part of software evolution and it is an

inevitable process to remain software systems useful (Sommerville, 2011). Software

systems must be continually adapted otherwise they become progressively less

satisfactory in use. Consequently, software engineering is a spiral process with

requirements, design, implementation, and testing going on throughout the lifetime

of the software systems. For example, once the first release of the software system is

 14

delivered, enhancements are proposed and the development of the second release

starts shortly (Sommerville, 2011).

IEEE CS (2012) defines software maintenance as the totality of activities

required to provide cost-effective support to software. Activities involve the ones

that carried out during both the pre-delivery and post-delivery stages. Pre-delivery

activities include maintainability, planning for post-delivery operation and logistics

determination for transition activities whereas post-delivery activities include

training, modification and operating or interfacing to a help desk. Moreover, Pfleeger

and Atlee (2009) state that maintenance has a broader scope, with more to track and

control than development. For example, software maintenance includes

understanding the existing systems, documenting systems, extending existing

functions, adding new functions, finding and correcting faults and bugs, helping and

training users, restructuring and purging software systems, managing the software

systems, and all other activities that go into running successful software systems.

Thus, Software maintenance activities consume about two-thirds of the budgets of IT

systems, which is considered to be a very high cost proportion (Sommerville, 2011).

IEEE Standards 14764 (2006) definesfour categories of maintenance as

follows:

1. Corrective maintenance: reactive modification of a software product

performed after delivery to fix faults that cause the software to fail.

2. Adaptive maintenance: modification of a software product performed

after delivery to keep software product usable in a change or changing

environment.

 15

3. Perfective maintenance: modification of a software product after delivery

to improve its performance and to improve its flexibility to make it easier

to extend and add new features in the future.

4. Preventive maintenance: modification of a software product after delivery

to detect and correct latent faults in the software product before they

become effective faults.

Actually, these categories have no explicit distinction between each other.

For example, when a new environment is adapted, software engineers may add new

functionality to benefit from its advantages. However, some researchers suggest that

17% of maintenance effort is devoted to corrective maintenance, 18% to adaptive

maintenance, while perfective maintenance consumes 65% of the maintenance effort

(Sommerville, 2011).

The major and first activity that leads to the higher cost proportion of

software maintenance is the understanding process of the software system under

maintenance as shown in Table 2.1. In particular, more than half of the maintenance

costs are assigned to understanding the intended software system (IEEE CS, 2012).

For example, software engineers have to spend a considerable amount of time

required for maintenance process in understanding the software system and

analyzing the impact of the proposed changes (Storey, 2005). Therefore,

understanding process of an existing software system is a necessary prerequisite and

costly activity, in particular, understanding of software systems that undergo several

maintenance cycles is a difficult and a time-consuming task (Hamou-Lhadjand

Lethbridge, 2010).

 16

Table 2.1: Tasks and activities requiring program comprehension.

Maintenance Category Activities

Corrective Understanding the System

….

Adaptive Understanding the System

….

Perfective Understanding the System

….

Preventive Understanding the System

….

The process of understanding or comprehending software systems is called

program comprehension. Program comprehension has been a subject of extensive

research studies for decades in order to reduce the costs and improve the quality of

software maintenance. For example, Cornelissen et al. (2011) show the importance

of trace analysis in performing adaptive and corrective maintenance tasks. However,

maintaining an inadequately documented software system entails understanding of its

various artifacts such as its source code and dynamic information. Inadequate is the

level where the documentation is poor, out-of-date or at best insufficient. As a result,

the problem of understanding how the system is implemented is a tedious, time-

consuming and costly. The next section discusses program comprehension and its

cognitive models.

2.3 Program Comprehension

Understanding what a program does (function), how the program works

(implementation), and why the program is as is (design) is critical to software

maintenance (Zhang, 2005). A large portion of the budget of software systems is

devoted to the process of understanding and comprehending these issues. However,

the understanding process varies greatly from a maintainer to another as it depends

 17

mainly on the individual (Zaidman and Demeyer, 2008). Several factors can

influence the understanding process such as the experience of the maintainer in the

domain, the familiarity of the maintainer with the subject software system, the

needed level of understanding, the programming language that implements the

subject system and the magnitude of the subject system (Lakhotia, 1993; von

Mayrhauser and Vans, 1995).

Several cognitive models and strategies have been presented for program

comprehension. These cognitive models describe the cognitive processes and

temporary information structures in the programmer's head that are used to form

mental models (Storey, 2005). Mental models are sets of beliefs that a software

engineer hold about how pieces of software, or software features, works. Cognitive

models depend on strategies referred to as program comprehension models

(Pennington, 1987b; von Mayrhauser and Vans, 1995; Storey et al., 1997). In the

literature, there are four accepted models and strategies of program comprehension,

namely bottom-up model, top-down model, integrated model and partial model. The

following subsections discuss these models in more details.

2.3.1 Bottom-up Model

This strategy assumes that software engineers first comprehend source code

and then mentally chunk code statements into higher level of abstraction. These

chunks are aggregated repeatedly until clear understanding of program is attained

(Shniederman and Mayer, 1979; Pennington, 1987b; von Mayrhauser and Vans,

1995; Storey et al., 1997). A chunk of code is usually consists of one or more than

one basic blocks or it can be a part from a basic block.

 18

Several research studies have used bottom-up strategy such as Shneiderman

and Mayers (1979) and Pennington (1987a). For example, Pennington suggests that

two kinds of mental models are needed namely, program model and situation model.

A program model is a control flow abstraction that holds the behaviors of the

program execution. Once the program model exists the situation model is mentally

developed. A situation model is a data flow/functional abstraction. The development

of the situation model requires the knowledge of real-world domain such as objects

and events.

Overall, the bottom-up model begins with abstract concepts constructed by

chunking code structure into higher level of abstraction. This strategy is used when

the source code is totally new to the software engineer. Similarly, bottom-up strategy

is used in understanding execution traces of method calls by means of exploring

contents of various subtrees in the execution trace (Jerding and Rugaber, 1997). This

research enables bottom-up strategy by exploring the interactions between individual

classes in an execution trace.

2.3.2 Top-down Model

This strategy assumes that comprehension process starts from formulating

general hypotheses about the purpose of the program. These general hypotheses are

then refined into sub hypotheses as a hierarchical fashion. Sub hypotheses are

evaluated and verified whether they are valid or not (Brooks, 1983). The verification

of hypotheses depends heavily on the strength of the beacons in the source code

(Brooks, 1983). If a hypothesis is invalid, a new hypotheses may be constructed and

 19

verified. This process continues until an adequate understanding of the program is

achieved.

Several research studies have used top-down strategy such as Brooks (1983)

and Soloway and Ehrlich (1984). For example, Brooks (1983) assumes that software

engineers create a mapping between the application domain and the programming

domain in the development phase. Understanding process involves the reconstruction

of this mapping through several intermediate domains. This reconstruction could be

achieved by creation, confirmation, and refinement of hypotheses. However,

Soloway and Ehrlich (1984) propose that understanding of a new code could be

gained in a top-down model when the code is familiar.

Overall, the top-down model begins with a general hypothesis that leads to

sub hypotheses. This strategy is used when the source code is familiar and when

software engineers have some knowledge of the intended software system, for

example reading documentation of the system. Similarly, a trace analysis consists of

two steps: a) formulating hypotheses about the trace contents in term of what they

do, and b) validating these hypotheses through matching them to the trace contents

(Hamou-Lhadj, 2005). Whilst, the first step ought to be easy for maintainers who are

familiar with the intended software system, the second step is not easy because of

execution traces are very large in terms of size and complexity. The main

contribution of this thesis is to enable top-down strategy through providing

maintainers with simplified views of a particular trace at different levels of

abstraction based on decoupling the tightly coupled modules. This contribution is

discussed in more details in Chapter 6.

 21

2.3.3 Integrated Model

This strategy combines the top-down and bottom-up models where software

engineers use the suitable approaches while understanding the actual code (Letovsky,

1986; VonMayrhauser and Vans, 1993). For example, Von Mayrhauser and Vans

(1993) present a meta-model to ensure that software engineers tend to switch among

the different comprehension strategies depending on their expertise. This meta-model

combines features of several existing models, particularly Soloway and Ehrlich's top-

down model (Soloway and Ehrlich,1984) and Pennington's bottom-up model

(Pennington, 1987a).Overall, the integrated model uses the different comprehension

strategies to build understanding concurrently at several levels of abstractions by

freely switching between the different comprehension strategies (Storey et al., 1997).

Similarly, this strategy could be applied in understanding execution traces by

combining the bottom-up and top-down strategies where a software engineer can

switch between them according to his needs.

2.3.4 Systematic and As-Needed Models

There are two approaches that software maintainers may use namely,

systematic approach and as-needed approach (Littman et al., 1986). In particular, a

systematic approach implies reading the code in detail and tracing through control

and data flows (Littman et al., 1986). On the other hand, an as-needed approach

implies focusing only on the related code (Littman et al., 1986). For example, Erdos

and Sneed (1998) propose a partial comprehension strategy that assumes that there is

no need to understand the whole program. Therefore, it localizes on a needed part of

a program instead of understanding the whole program. The authors recommend that

software maintenance tasks could be solved by answering a set of basic questions:

 21

How does control flow reach a particular location?

Where is a particular subroutine or procedure invoked?

What are the arguments and results of a function?

Where is a particular variable set, used or queried?

Where is a particular variable declared?

What are the input and output of a particular module?

Where are data objects accessed?

However, some of these questions could be answered directly by analyzing

traces of method calls such as the two first questions. The remaining questions could

be answered by expanding traces of method calls to take into account arguments and

return values or by providing another resource of understanding such as the source

code itself.

Overall, as-needed or partial strategies are commonly used more than

systematic strategy as the latter is less feasible for larger programs (Storey et al.,

1997). However, the former may overlook some important interactions that lead to

more mistakes (Storey et al., 1997). This research supportsthe partial strategy in

order to gain its benefits. In particular, the contribution of this thesis is based on

combination of three principles. The first of them is the scope filtering that aims at

filtering the unwanted application modules and provides the capabilities to allow

maintainers to determine their own wish to consider only wanted modules when

performing the analysis. Hence, the analysis process is focused on the interested

parts of the trace. The next section explores the key aspects of dynamic analysis such

 22

as execution traces, its research directions, its main phases and its strengths and

weaknesses.

2.4 Dynamic Analysis

Dynamic analysis is the investigation of the system behavior by analyzing its

runtime information (Pirzadeh 2012). Runtime information is the information

collected from the software system as it runs (Zaidman, 2006).This information

illustrates distinct aspects of dynamic behavior of the investigated program such as

control flow, data flow and event sequences (Zayour, 2002). Several contexts can

benefit from dynamic analysis such as compilers, optimization, test coverage and

program comprehension (Zaidman, 2006). In particular, dynamic analysis can help in

understanding the functionality of a particular software system by examining its

behavior (Ball, 1999).This research selects dynamic analysis to proceed with for two

reasons:

1. Dynamic analysis can support as-needed comprehension strategy.

2. Dynamic analysis can precisely handle polymorphism in object-oriented

systems as the wide use of polymorphism and late binding.

Regarding to the above first reason, as-needed strategy (or goal-oriented

strategy) implies that only those interested parts of the subject software system

should be analyzed. This strategy is useful to identify which parts exactly are related

to a certain functionality of the subject software system. In addition, as-needed

strategy is used frequently due to commercial pressures and time constraints. For

example, when a software engineer has a little or even no knowledge of a certain

software system, he/she needs only to execute specific scenarios related to the task at

 23

hand. Consequently, the result of the analysis will be useful as the gathered

information is more oriented. On the other hand, if a software engineer has to use a

less goal-oriented strategy (i.e. static analysis), he/she should understand most parts

of the subject software system before knowing which parts exactly are related to the

needed functionality (Zaidman, 2006).

Secondly, Sintes (2002) defines polymorphism as: “polymorphism is the state

of one having many forms. In programming terms, many forms mean that a single

name can represent different codes selected among by some automatic mechanism.

Thus polymorphism allows a single name to express many different behaviors”. This

leads to the notion of late binding where executed behaviors are determined at

runtime. Although this mechanism is efficient in programming context, in contrast, it

disturbs program comprehension process as it defers the precise behavior of the

subject software system to the runtime. In particular, considering multiple

possibilities of variations are difficult and time consuming task (Schach, 2010).

Therefore, instead of considering all theoretical variations, dynamic analysis can

determine the actual ones that are executed.

Regarding the dynamic analysis modes, they can either be online or offline,

also known as ante-mortem and post-mortem modes respectively. The online

analysis mode interleaves the analysis and recording of runtime information phases

with program execution. However, the online analysis mode is considered as

inefficient and time-consuming approach for program comprehension for several

reasons. First, it prevents software maintainers from repeating the analysis without

needing to execute the program in each time. Second, it slowdowns the program

 24

execution, therefore, it is useful for limited cases when it is needed to monitor a

certain part of the code.(Korel and Rilling, 1998; Ernst et al., 1999; Mock, 2003).

On the other hand, the offline analysis mode defers the analysis phase after

the program execution terminates. Therefore, the recorded runtime information must

be stored in a file called an execution trace file (refer to Section 2.4.2). The offline

analysis mode has the advantage of enabling software maintainers to repeat

analyzing the same runtime information several times without repeating the

execution of the program each time. The following subsections discuss some features

of the dynamic analysis.

2.4.1 Dynamic Analysis versus Static Analysis

The complementary technique for the dynamic analysis is static analysis,

which uses the source code of a particular software system without executing it.

Therefore, a static analysis uses source codes of programs as the main references in

order to investigate their properties. Hence, a static analysis can help in

understanding the static aspects of software systems such as their code structures. On

the other hand, a static analysis cannot help in understanding the behaviors of

software systems. In particular, the code structure of an object-oriented system often

tends to be different from its runtime structure. For example, the code structure is

usually frozen at compile time, whilst the runtime structure of the system consists of

very complicated interwoven lattices of communicating objects. Hence, the code

structure of the object-oriented system will not reveal the complete information about

how the system will work (Mulleret al., 1993).

