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SATU  KAEDAH DIUBAHSUAI UNTUK RAMALAN BAYESIAN BAGI 

STATISTIK TERTIB MASA DEPAN DARIPADA FUNGSI KUASA 

TERITLAK  

 

 

 

ABSTRAK 

Statistik Bayesian adalah kaedah statistik yang digunakan secara meluas dalam 

pelbagai bidang seperti perubatan, sains sosial dan ekonomi. Ramalan Bayesian 

adalah salah satu kaedah statistik Bayesian. Ia bekerja dengan pelbagai kaedah. 

Kajian ini turut membincangkan tiga kaedah ramalan Bayesian. Terdapat satu 

sampel, dua sampel dan sampel pelbagai ramalan. Tiga kaedah bertindak balas 

terhadap motivasi praktikal yang memerlukan data sampel kurang, dalam 

kebanyakan kajian statistik digunakan. Oleh itu, sampel yang akan datang adalah 

istilah yang penting dalam tesis ini. Pendekatan Bayesian menggunakan ramalan 

untuk statistik tertib masa depan berdasarkan data tertib yang diperhatikan dan fungsi 

ketumpatan ramalan memberi selang ramalan Bayesian untuk statistik tertib masa 

depan. Taburan fungsi kuasa teritlak piawai adalah dasar untuk tiga kaedah dengan 

menggunakan teori Bayes untuk mencapai had rendah dan had atas yang sempit bagi 

selang ramalan Bayesian 95% dan  selang ramalan Bayesian 99%. Selang yang 

dicadangkan menyumbang dalam peningkatan ketepatan untuk nilai ramalan. 

Prestasi tiga kaedah dinilai oleh had rendah dan had atas dari sampel yang 

diperhatikan dan untuk statistik tertib dari sampel masa depan. Dua jenis fungsi 

priori digunakan dalam ramalan Bayesian: prior bermaklumat dan prior bukan 

bermaklumat. Analisis berangka menunjukkan had rendah dan had atas bagi selang 
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ramalan Bayesian 95% dan selang ramalan Bayesian 99% untuk tiga kaedah, dan set 

data dihasilkan daripada taburan fungsi kuasa teritlak piawai. 

Anggaran Bayesian digunakan untuk parameter bentuk, parameter skala dan 

parameter lokasi. Penganggar Bayesian dicadangkan sebagai min taburan posterior 

berdasarkan fungsi prior bermaklumat atau fungsi prior bukan bermaklumat. Kedua-

dua fungsi prior menggunakan rumus  bagi taburan posterior dari teori Bayes untuk 

menggabungkan fungsi kebolehjadian dan fungsi prior. Penganggar Bayesian yang 

dicadangkan ialah min taburan posterior berdasarkan taburan fungsi kuasa teritlak 

piawai dan fungsi kehilangan ralat kuasa dua. Selain teknik ini, kriteria Bayesian 

digunakan. Prestasi penganggar bentuk, skala dan lokasi  dinilai oleh beberapa jenis 

taburan prior dan digunakan dalam masa yang sama dengan ramalan Bayesian, yang 

jika dibandingkan, mengesahkan kewajaran dan kelebihan dari beberapa jenis 

taburan prior untuk anggaran atau ramalan menggunakan kaedah Bayesian. Analisis 

berangka menunjukkan penganggar yang dicadangkan oleh set data yang dihasilkan 

daripada taburan fungsi kuasa teritlak piawai. 
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A MODIFIED METHOD FOR BAYESIAN PREDICTION OF FUTURE 

ORDER STATISTICS FROM GENERALIZED POWER FUNCTION  

 

 

ABSTRACT 

Bayesian statistics is a statistical method that is widely used in many fields, including 

medicine, social and applied sciences. These fields occasionally have little or limited 

information about their populations. Therefore, using new techniques that require 

fewer samples while providing the same quality as the case of available samples is 

necessary.  Bayesian prediction is a commonly used tool in Bayesian statistics. This 

study modifies three Bayesian prediction methods: one-, two- and multi-sample 

predictions. Bayesian prediction modified method does not require the many 

samples. Therefore, a future sample is a significant term in this thesis. Our Bayesian 

prediction modified method used a prediction for the future order statistics based on 

the observed ordered data, and predictive densities provided the Bayesian prediction 

intervals for the future order statistics. The standard generalized power function 

distribution serves as the basis for the three modified methods by applying Bayes' 

theory to achieve close lower and upper limits for the 95% and 99% Bayesian 

prediction intervals. The proposed intervals contributed to increasing the precision 

for the predictive value. The performance of the three modified methods is evaluated 

using the lower and upper limits from the observed sample and for the order statistic 

from the future sample. Two types of prior functions are used in Bayesian prediction: 

informative and non-informative priors, both of which use Bayes' theory. The 

numerical analysis illustrates lower and upper limits for the 95% and 99% Bayesian 
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prediction intervals for the three modified methods, and the data set generated from 

the standard generalized power function distribution. Bayesian estimation is used to 

determine the shape, scale and location parameters. Bayesian estimators are 

suggested as the mean of the posterior distribution based on an informative or non-

informative prior function.  Both prior functions use a formula for the posterior 

distribution from Bayes theory to combine the likelihood function and prior function. 

The proposed Bayesian estimator is the mean of the posterior distribution based on 

the standard generalized power function distribution and a squared error loss 

function. In addition to this technique, a Bayesian criterion is used. The performance 

of the shape, scale and location estimators are evaluated with some types of prior 

distributions and used simultaneously with the Bayesian prediction, which, when 

compared, confirms the suitability and advantage of some types of prior distributions 

for estimation or prediction using the Bayesian method.  The numerical analysis 

illustrates the proposed estimators derived from the data set generated from the 

standard generalized power function distribution.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the study 

The Reliability distribution function analysis  is used for estimation and 

prediction. It was formulated during the early research in the science of insurance, 

life schedules and mortality. Modern analysis of the reliability distribution  

began approximately 50 years ago in engineering applications. The incentives to 

study this probability function increased in World War II when studying the failure 

rates of war machines led to a marked improvement in them. After World War II, the 

progress made in increasing the lifetimes of war machines was used for machines in 

civil applications. Researchers initially focused on the parametric approach for 

random variables that follow a known distribution, such as the normal, exponential, 

Weibull or gamma distributions; thereafter, they focused on the prediction and 

testing of hypotheses for parameters of these distributions. When interest of the 

prediction and testing of hypotheses in medical and biological research increased, so 

did interest in using a non-parametric approach. Both non-parametric and parametric 

approaches concerning positive random variables are used in estimation and 

prediction.  

 

1.1.1 Future sample and present sample  

Statistical inference from a Bayesian perspective usually requires less sample data to 

achieve the same quality of inference compared with sampling theory-based 
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methods. In many cases, this is the practical motivation for using a future sample. 

Aitchison and Dunsmore (1975) presented a medical example to explain the concept 

of future sample. 

Example 1.1  

Table 1.1.    Survival times (weeks) of 20 carcinoma patients medical diagnosis 

25 45 238 194 16 23 30 16 22 123 

51 412 45 162 14 72 5 35 30 91 

 

The data in Table 1.1 are the survival times (weeks) of 20 patients suffering from      

a certain type of carcinoma and receiving treatment of preoperative radiotherapy 

followed by radical surgery. On the basis of this information, what can appropriately 

be said about the future of a new patient with this type of carcinoma and assigned to 

this form of treatment? Clearly any rational statement would regard 100 weeks 

survival as much more plausible than 500 weeks survival, but how should such views 

be summarized and quantified? What is a reasonable assessment of the probability 

that the patient will survive 100 weeks?  

In this example the informative experiment  consists of recording the survival times 

of the 20 patients already treated. The future experiment  consists of treating a new 

patient similarly and recording his survival time. If no change in the treatment has 

been made since conducting , then   and  consist of 20 replicates and a single 

replicate of the same basic trial (record the survival time of a treated patient), 

respectively and are independent. 

Attempts to quantify medical prognoses are of vital importance when similar 

information on an alternative treatment, for example, radical surgery followed by 
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postoperative radiotherapy, is available and a choice has to be made between 

treatments for a particular patient.  

 

In life testing, it is possible to predict age of survival of observations or age of 

survival for all systems because we have the sample space, random variables and 

distribution functions. But sometimes the information of the experiment is not 

complete. Therefore, there is a necessity to use new methods that provide some new 

information, especially when the sample is not found. 

Bayesian prediction can treat the problem of absent sample (future sample) by using 

the present sample and can assume some assumptions which relate between random 

variable  from present sample and random variable � from future sample as an 

interval which is given as follows: (� < � < ) = − ,                                          .  

 

where �  is the lower prediction bound and  is the upper prediction bound 

from the present sample. �  ,    is a − % Bayesian prediction interval for a future random 

variable � if −   is called the confidence prediction coefficient (Alamm et al., 

2007). However, Gianola and Fernando (1986) presented the concept of        − α % Bayesian confidence interval from Bayesian prediction interval which 

plays an essential role in the posterior function if we have the following: 

� ∈ | = ∫ �| �,                                                      .  
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where  is a region of the space of parameter �. Fixing the probability in Equation 

(1.2) at say − α , for a given , it is possible to obtain an interval for � such that 

its probability content is − α .  

When we choose a specific distribution, we can obtain estimates of parameters or 

Bayesian prediction intervals. Kamps (1995) and Kamps and Gather (1997)  

introduced the concept of generalized order statistics as a unified approach to various 

ordered random variable models, such as last order statistics, sequential order 

statistics, and last observed values. After that emerged the concept of censoring 

schemes. Many authors have used censored order statistics in their works (Burkschat 

et al., 2006, Howlader and Hossain, 2002). In addition, Soliman (2000) used the 

order statistics censoring with Rayleigh distribution and presented its estimators. 

Then the researchers started thinking about future order statistics as Fernandez 

(2000a)  and Alamm et al. (2007). 

 

1.1.2  Order statistics 

Order statistics have a major role in statistical inference, especially in laboratory 

methods. If � = � , � , … , �  is a random sample selected from a population, then 

the probability density function is  and its cumulative distribution function 

is . If we arrange these observations in increasing order, we obtain the 

following: � < � < ⋯ < � < ⋯ < �                                                       .  

where �  is the smallest observation and is called the first order statistic, �  is the largest observation and is called the ℎ  order statistic, 

and �  is the ℎ order observation and is called the ℎ order statistic. 
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Thus, � , � , … , �  are the order statistics and they yield the probability density 

function for the order statistics as follows:  

= !− ! − ! [ ] − [ − ] −                                    .  

If = , the probability density function for the (smallest) first observation is =  [ − ] −                                               .  

 However, if = , the probability density function for the largest observation is =  [ ] −                                                   .  

(Hogg and Craig, 2013). 

 

1.1.3  Aging 

The concept of aging is a basic concept in statistics, especially in reliability, and it 

has many applications in engineering, physics, and biology. Aging has three types: 

i. Positive aging with time, where the unit age reduces with the progress of 

time. Over time, this type of aging may lead to the erosion of industrial units, 

which requires plans for maintenance or replacement. In addition, the passage 

of time may result in living organisms, including humans reaching old age, 

and this possibility requires the development of plans for remediation. 

ii. Fixed aging, which is not affected by time. An example of fixed aging is 

electronic industrial units that follow the exponential model of a failure rate 

that is fixed in time. 

iii. Negative aging with time, which leads to the improvement of an industrial 

unit after the beginning of the operation of new units. In that case, the proper 

units will remain and defective units will fail at the beginning of their 

industrial operation. As for the biological side, children who are healthy at 
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birth live and become stronger over time, whereas unhealthy children die 

after birth (Hendi and Sultan, 2004). 

Some basic functions that accompany aging are defined as follows: 

 

Definition 1.1 

If  � is a positive random variable, the reliability distribution function  after age � is defined as follows: = = − = � >                                  .  

Definition 1.2 

If  � is a positive random variable, then the cumulative distribution  is defined 

as: = �                                                      .  

Definition 1.3 

 If � is a positive random variable, the probability density function  is defined as 

=                                                              .  

(Hogg and Craig, 2013). 

Definition 1.4 

If � is a positive random variable, the failure rate function ℎ �  during the 

interval , +  is defined as: 

ℎ � = → < � < + |� > = ,      � >           .  

The failure rate function, ℎ � , has three important cases in all applications (whether 

engineering or biological) through the following Equation:  
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ℎ � = � − + − � − � � � ,   �, , , > ,      ,     � >               .  

The previous Equation (1.11) takes a -shaped curve with the �-axis of time as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  Curve of the failure rate function 

 

From Figure 1.1, the curve of the failure rate function is described in ℎ �  by 

Equation (1.11). 

i. The first part, DFR, of the -shaped curve indicates that the failure rate 

function, ℎ � , is decreasing with time �. This process is symbolized by the 

Decreasing Failure Rate (DFR), as the value of the failure rate function, ℎ � , is high at the beginning of the operation of industrial units because of 

the presence of manufacturing defects in raw materials, machines, workers, 

DFR CFR IFR  

Y 

ℎ �  
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the quality of production, or in terms of biology (including human) because 

of the presence of birth defects after birth.   

ii. The second part, CFR, of the -shaped curve of the failure rate function, ℎ � , is a constant function over time � and is equal to a fixed amount , 

which is not affected by time and is symbolized by the Constant Failure Rate 

(CFR) and explained practically by uncontrolled reasons. Uncontrolled 

reasons include accidents representing sudden high-voltage power in the 

electricity source that is due to a default in the main power station; such 

accidents result in the destruction of houses or infant mortality, which can 

occur when infants drink poisonous substances that are intended for cleaning 

or chase a ball into a street in front of a speeding car. 

iii. The third part, IFR, of the -shaped curve shows that the failure rate 

function, ℎ � , is increasing over time �, which is symbolized by the 

Increasing Failure Rate (IFR). Indeed, the value of the failure rate function, ℎ � , is small at the beginning with respect to time �, and then, this function 

increases over time. This phenomenon is explained practically for reasons of 

aging, antiquity, and corrosion of industrial machines or in terms of 

biological (including human) factors for reasons of aging (Hendi and Sultan, 

2004). 

 

1.1.4  Bayesian statistic 

In some statistical applications, it is preferred to use statistical inferences from the 

perspective of decision science through the study of loss associated with the 

sequence of possible decisions, e.g., patterns of decision of a buyer, investor, or 

institution. 
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The formulation of decision-making using a probabilistic model requires a 

mathematical structure in a general form. Bayesian statistical inferences and the 

corresponding mathematical structure are formulated as follows: 

a) Group   represents action space where   contains every method 

possible   � . 

b) Group Θ represents parameter space where Θ contains every level possible  � ∈ Θ. 

c) Group  is a partial group from real numbers set  representing space of � 

for every value � =  to ensure ∈ ; thus,  has probability density 

function  related to the distribution family { , � ; � ∈ Θ}. 

d) Group  represents the decision space and contains every possible decision  � .  
 (Hendi and Sultan, 2004) 

 

The decision maker, when choosing the action , should note some connotations 

from the population that provide him with information on the unknown parameter �. 

Furthermore, the decision maker studies the random variable �, where � =  and  is a real value from , as well as the probability density function of the random 

variable �, namely, , � , which provides him with some guidance on the 

parameter � that will assist him in the selection of the action . Decision theory 

focuses on the properties and methods that demonstrate how to make such a choice. 

The parameter �, where � ∈ Θ, is found in nature without any intervention from the 

decision maker and without any knowledge of its value having been estimated by the 

decision maker with the action ∈ . A loss arises from this estimation, and the 



10 

  

loss’s function is denoted by the symbol �, . It is appropriate for the decision 

maker to choose the random variable, �, which has a density function , � , to 

provide him with some information about the nature of � ∈ Θ. The selection of the 

decision function  represents the plan followed by the decision maker in 

determining this nature. 

The Bayesian estimate and tests of hypotheses are only special cases of issues of 

public decisions. In the Bayesian estimate, we set = Θ (in some cases, it is the real 

number set or an interval from it). The required step is to select the appropriate value 

for the parameter �. 

 (Hendi and Sultan, 2004) 

Definition 1.5 

The linear loss function �,  is defined as follows (Berger, 1985): 

�, = { � − ,              � −   − � ,             � −  < ,                              .  

where ,  are constants,  is any possible action, and � is a parameter. 

The loss function depends on the nature of the problem under study. The values of ,  are selected for positive real numbers set (the selection is conducted to reflect 

an overhead cost or a lower cost). If = = ,  the linear loss function 

becomes �, = |� − |. In this case,  is defined as the absolute error loss 

function. 

The squared error loss function is defined, which logically represents the loss and is 

frequently used in other researches (Berger, 1985). 
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Definition 1.6 

The squared error loss function can be defined as follows: �, = � − �                                                   .  

where  is any possible action and � is a parameter. 

Although most of the deduction operations of the Bayes estimators are performed by 

using the squared error loss function, the estimators themselves can be derived by 

what is known as the linear exponential loss function (LINEX)  (Berger, 1985).  

Definition 1.7 

The LINEX loss function is defined as follows: ∆ = [ ∆ − ∆ − ],                  ≠                         .  

where ∆= �̂� −  ,  �̂ is the estimator of  � and  is a constant.    

The positive value of  is used when overestimation is more serious than under 

estimation, whereas the negative value of  is used in the reverse situation.   

(Soliman, 2000)  

 

1.1.4.1  Prior distributions  

The prior distribution function ℎ �  is used to explain the information about the 

parameter � before taking the sample � = � , � , … , �  from a population that has a 

distribution , � . The prior distribution function ℎ �  is classified into two types: 

i. The non-informative prior distribution function: This function occasionally 

represents vague information, which means cases where the prior information 

about the parameter � is relatively scant (or very limited), Therefore, we may 

use the quasi-density prior in the form:       
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ℎ � ∝ �  ,    � > , >                                     .  

If = , we obtain a non-informative prior function    

ℎ � ∝ �  ,      � >                                                          .  

Also, if  = , we obtain the asymptotically invariant prior 

ℎ � ∝ �  ,        � >                                                      .  

         (Soliman, 2000, and Yang and Berger, 1998) 

ii.  The informative prior distribution function: This function is used when the 

information about � is not vague, and this function is occasionally called the 

conjugate prior when the prior information ℎ �  is comparable with the 

probability function , �  for the population taken from the sample � = � , � , … , � . For example: 

a) The Bernoulli distribution �,  is comparable with the beta prior 

distribution. 

ℎ � = , � − − � −   , , > , � ∈ [ , ]  .  

b) In the case of a Poisson distribution �  and a standard  generalized 

power function the gamma prior distribution is proportional.      

ℎ � = � � − − �  ,     < �                                       .  

c) In the case of a normal distribution � , � , with unknown mean   

and known variance �  this is to be proportional to a prior distribution 

of the following normal distribution family: 

ℎ � = �√ � −� �−� , � ∈ , −∞ < < ∞,   � >   .  

(Lee, 2012) 
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1.1.4.2  Posterior distributions 

First, consider a case that has continuous values and is related to some of the 

previous cases. 

If �, �  has a joint probability density function , � , we can define the joint 

density function from standard probability theory as follows: �, = |� �                                             .  �, = �|                                              .  

where �  and  represent the marginal density functions of � and , 

respectively. From Equations (1.21) and (1.22),  �| = |� � /                                            .  

Note that: 

= ∫ , �  � 

= ∫ |� � �                                      .  

In Bayesian terminology, �  is known as the prior density of �, which reflects the 

relative uncertainty about the possible values of � before the data vector � is 

realized. The density |�  is the likelihood function which represents the 

contribution of  to knowledge about �. If we consider �|  as a posterior density 

function and ℎ �  as a prior density function, we can write the posterior density 

function as follows:  

�| = |� ℎ �|� ℎ � �                                                 .  

 

(Gianola and Fernando, 1986). 
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1.1.4.3  The Bayes risk function  

At first glance, it appears that no problem results in the choice of the ideal decision; 

instead, we choose the decision function  that enables us to obtain the minimum 

loss regardless of the real value of the parameter level of �. Unfortunately, choosing 

the ideal decision is impossible without knowing the real value of the parameter level 

of �, but if the real value of the level of � is known, there is no problem. To 

demonstrate this fact, we will discuss parameter estimation using � with an error loss 

function �,  that takes the quadratic form �, = � − . Suppose that  � = , =  is the chosen estimation, and the real value of the parameter is �. 

Then, we suffer from error loss that equals �, = � − . If � = � , then     = �  is necessary for an ideal decision, but if � = � , then we must have = � . However, because we do not know the value of �, we cannot choose 

 to obtain the minimum error loss; thus, mathematicians have disregarded this 

problem. 

The available way to measure the quality of the decision function comes from 

searching how to improve the average of the error loss function �,  using the 

risk function  �, , whose domain is Θ ×   and whose range is the real numbers 

set  . The risk function is defined as follows: 

      A.   In the case of a continuous random variable �, 

�, = ∫ (�, ) , �                                              .  

 

B.   In the case of a discrete random variable �, 

�, = ∑ (�, ) , �∈                                            .  
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where , �  is the probability density function and  is the space of the random 

variable �. 

Previous cases means the risk function �,  represents the expected error loss for 

the probability density function , �  for the decision maker when he chooses a 

real level for � and a decision . If we symbolize the expected error loss by the risk 

function, then it can be written in the given form as follows: �, = � (�, )                                              .  

The risk function �,  expresses the expected error loss from making the decision 

 provided we know the parameter � , and if we assume that �,  is the 

distribution function of �, we know . Thus, we can calculate the expectation value 

for the posterior distribution �| , and the Bayesian risk  can be defined for 

the decision  as follows: 

A. In the case that � has continuous values: 

= ∫ �, �| �                                                   .  

B. In the case that � has discrete values: 

= ∑ �, �|                                                       .Θ∈�  

 

It is natural to seek the decision function  that provides the minimum value around 

all error loss averages. For example, we may choose ∗ to demonstrate the following 

rule: 

∗ = ∈�( )                                               .  

The function ∗, if applicable, is called the Bayesian decision function, and  is 

the Bayesian risk of the decision function . When given a decision problem, there is 
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no single Bayesian decision function, and furthermore, the obtained answer depends 

on the choice of the posterior distribution function �|  if  is a Bayesian 

decision function. The function �  is called the Bayes estimator, and  is 

called Bayes estimate (Berger, 1985). 

 

1.1.5  Bayesian prediction 

In statistics, attention is often focused on confidence intervals, or prediction 

intervals. In the issues of life testing, either the age of survival for the units involved 

in the test or the age of survival for the system as a whole can be predicted. 

Moreover, in conventional statistics or Bayesian statistics, the issue of prediction has 

specific formulas for the distributions of tests of life. Prediction has contributed to 

the development of statistics. In particular, Bayesian statistical prediction has been 

useful for its association with Bayesian estimation. For example, future sample, 

minimum or maximum values, the arithmetic mean, or the range of the future sample 

can be predicted by the present sample. 

1.1.5.1  Types of Bayesian prediction problems 

1. One-sample Bayesian prediction 

Suppose that � < ⋯ < � , where  is the number of units that first failed in a 

random sample that has size . Because the failure intervals are identical in 

distribution with a random variable � that has the probability density 

function |� , we can predict the intervals of failure in the test for some or all of 

the remaining order statistics −  to find the ages of survival � + < ⋯ < � .  

 

2. Two-sample Bayesian prediction 
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Suppose that � = � , � , … , �  are random variables in a sample that has size  and 

probability density function |� . Furthermore, suppose that = , , … ,  

is an independent random sample that has size  and has future units of the same 

distribution. Then, the prediction order statistics  will depend on the known sample � = � , � , … , � . 

3. Multi-sample Bayesian prediction 

Suppose that we have an independent sequence , , … , �  of random samples and   

the probability density function is |� . The multi-sample prediction can be 

obtained from the order statistics of a future sample based on previous samples. 

 

1.1.5.2  Bayesian prediction intervals  

The Bayesian prediction interval for the order statistic  of the future sample = , , … ,  using the known sample � = � , � , … , �  can be determined 

using other methods than the Bayesian methods. Suppose that , �  is a probability 

density function of a random sample with a size of  units and has a random variable �, where � = � , � , … �  and = , , … ,  is another random sample of 

size  that represents the future units of the same distribution and that |�  is the 

probability density function of the Bayesian prediction for the order statistic , 

where . Then, the function has the following form: 

| = ∫ |� �| �,                                           .  

where �|  is the posterior density function of the parameter � given �.  
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The lower �  and upper  Bayesian prediction limits for the order statistic  can be calculated by using the survival function [� < < | ]. This 

function can be defined as follows: [� < < | ] =                                         .  

 First, we find a solution for Equation (1.33) for the lower limit � : 

[ > � | ] = +                                                 .  

Second, we find a solution to Equation (1.33) for the upper limit :  

[ > | ] = −                                                 .  

 

Both  − % of the lower limit and the upper limit of the Bayesian prediction 

interval can be obtained by solving Equation (1.33), where = −  and the values 

of  are = .  and  .  (Alamm et al., 2007). 

 

1.2  Problem identification and the importance of the study 

In life testing, it is typically postulated that there are  units identical and 

independent under testing in a specific experiment and that the respective times of 

failure for these units are recorded. In this case, the continuation in this experiment 

until the failure of all units would not be practical, particularly if the sample was 

large or units are expensive. Thus, it is best to stop the experiment after obtaining 

partial information, and this fact distinguishes the field of survival analysis from 

other fields in statistics, which uses censoring.  

It was found that using partial information yields precise estimations that are as 

accurate as the complete sample of the random variable. But sometimes the 

information and the partial information of the experiment do not exist. Therefore, 
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there is a necessity to use a new method that provides some new information, 

especially when the sample is not found. We call this type of sample, future sample. 

1.3  Objectives of the study 

Main objective 

1. To develop a method for Bayesian prediction of future order statistics from  

generalized power function distribution for one sample, two samples and multi 

samples. 

 

Sub-objectives 

i. To obtain the posterior distribution function for generalized power function 

distribution. 

ii. To obtain Bayesian estimates for shape parameter, location parameter and scale 

parameter from generalized power function distribution. 

iii. To compare between lower and upper limits of 95% Bayesian prediction 

intervals, and lower and upper limits of  99% Bayesian  prediction intervals for 

future order statistics from generalized power function distribution. 

 

1.4  Organization of thesis  

This thesis contains six chapters. Chapter 2 gives an overview of the literature in the 

field of Bayesian prediction and Bayesian estimation. A new construction for 

Bayesian prediction based on the observed ordered data from the predictive densities 

is provided in Chapter 3. This is used to determine Bayesian prediction intervals for 

future order statistics for one-sample, two-samples and multi-samples from 

generalized power function by informative prior distribution and non-informative 



20 

  

prior distribution. Chapter 4 discusses the proposed Bayesian estimators for shape 

parameter, scale parameter and location parameter by using squared error loss 

function in the case of informative prior distribution and non-informative prior 

distribution. A numerical comparison between the Bayesian prediction confidence 

intervals on 95% and 99% is also performed and it is presented in Chapter 5. Chapter 

6 gives the summary and conclusions of the study.                                  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this Chapter, the Pearson’s system is first introduced. The derivation of the 

generalized power function distribution from one of its phases is then explained. 

Different forms of the probability density function for the generalized power function 

distribution are considered.  

Furthermore, this chapter provides an overview of important works on Bayesian 

prediction intervals in the context of several distributions, multiple prior distributions 

and additional confidence intervals. In particular, Bayesian prediction intervals by 

one-sample, two-samples and multi-samples in two cases using an informative prior 

distribution and non- informative prior distribution are discussed. 

Finally, an overview on the Bayesian estimation by different loss functions is 

provided for some parameters and functions, as well as how to obtain good 

estimators in place of original parameters.           

 

2.2 Pearson’s system 

The Pearson’s system is one in which the random variable is continuous, and                

all of the elements of its probability density function satisfy the differential equation  ⁄ = − + ⁄ + + . The shape of the differential equation 

depends on the values of the parameters   ,  ,  and . If   = = , the 
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differential equation becomes log ⁄ = − + ⁄  ,  hence              = e�p [− + ] , where  is a constant chosen so that  =∞−∞   

 (Johnson et al., 1994). 

The Pearson’s system contains 12 phases known as density functions of the well 

known distributions. Table 2.1 shows the Pearson phases for the well known 

distributions. 

 

Table 2.1.     Phases of the Pearson’s system 

Distribution name Pearson phase Density function 

Beta 
I 21 )1()1(

mm
xx   

II m
x )1( 2  

Gamma 
III )exp( xx

m   

IV )tanexp()1( 12
xx

m     

Inverse Gamma V )exp( 1 xx
m  

Inverse Beta (F) VI 12 )1(
mm

xx
  

T 

VII m
x

 )1( 2

 
VIII m

x
 )1(  

IX m
x)1(   

Exponential  X )exp( x  

Pareto 

XI m
x


 

XII 
m

x

x











)1(

)1(

 
 

 

(Source: Johnson et al., 1994). 

The most important items in Table 2.1 are Pearson phases I and II, which take the 

form of Beta distributions. The family of  Beta distributions consists of all the 

distributions that have the probability density function given as: 

= , − − − −− + − , , , >  , > , >  .  

A Beta distribution is denoted by the symbol  , . 
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Using = − −  ,⁄  Equation (2.1) will take the standard formula of the 

Beta density function as follows:  = − +  

Substituting  value in Equation (2.1) 

= , − + − − − − + −− + −  

          = , − − − − − −− + −                   
= , − − −−                                                                                

If =  and = , then the standard Beta density function is:  

= , − − − ,                                    .  

If =  in Equation (2.2), then the standard power probability density function has 

the following formula: = − ,      , >                               .  

setting =   in Equation (2.1) representing the Beta distribution, a distribution 

known as the generalized power function distribution, and its probability density 

function takes the following formula: = − − − ,   > , , , >          .  

(Johnson et al., 1994) 

2.2.1 Different forms of the probability density function for the generalized . . . . 

.        power function distribution  

(a) The first form: 

The generalized power function distribution was identified as the generalized 

geometric distribution 
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= � ( − �� + ) − ,   , � − � � + − �         .  

where  and  are defined as: 

= + √ +  ,                = √ +  ,                              .   
(Sultan et al., 2002) 

By setting � = , � =  in Equation (2.5), the probability density function for the 

standard generalized power function distribution is obtained. This form was 

discussed in Sultan et al. (2002). = + − , − − , > , ,       .  

Figure 2.1 illustrates the probability density function for the standard generalized 

power function with a known scale parameter =  for several values of the shape 

parameter   and location parameter  of standard generalized power function. 

 

 

Figure 2.1.   Probability density functions for the standard generalized power  . . . . . . 

.                   function distribution with a known scale parameter = . 

 

(b) The second form: 

The second form is seen in Equation (2.4), which expresses the generalized power 

function distribution. It can be proven that this Equation is equivalent to Equation 
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