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APLIKASI PERANTI MUDAH ALIH DENGAN RANGKAIAN NEURAL 

UNTUK PENINGKATAN AUTONOMI DALAM PERSEKITARAN KILANG 

PEMBUATAN YANG FLEKSXIBEL  

ABSTRAK 

Kajian ini memberi tumpuan kepada inovasi berasaskan telekomunikasi dan 

teknologi komputer di kilang pengeluaran "MF" untuk menjanakan pulangan nilai 

yang lebih tinggi.  Process pembuatan moden merupakan industri yang sangat 

kompetitif, dan kos kerugian daripada kecacatan dalam pengeluaran produk adalah 

tinggi.  Berdasarkan kaji selidik aktiviti process pembuatan, proses percetakan stensil 

(SPP) telah dipilih sebagai kawasan kajian.  Keputusan ini berdasarkan ulasan 

kesusasteraan yang menunjukkan bahawa sekurang-kurangnya 50% daripada 

kecacatan dalam pemasangan papan litar bercetak berasal dari SPP, dan data 

kecacatan sebenar yang dikumpul semasa penyiasatan. Memandangkan persekitaran 

kerja sambil berdiri oleh krew pengendali mesin yang terus menerus bergerak, 

cabarannya adalah untuk memberi keupayaan autonomi melalui pengetahuan 

mengenai prestasi kerja mereka dengan penggunaan aplikasi pembelajaran mudah 

alih. Untuk mencapai objektif ini, peranti mudah alih dimuatkan dengan sebuah 



xxi 

 

aplikasi Android yang digunakan untuk menyampai maklumat yang diproses oleh 

algoritma rangkaian neural.  Algoritma rangkaian neural digunakan untuk 

menganalisis sejarah prestasi setiap krew berbanding dengan tugas-tugas yang 

dilakukan dalam persekitaran pembuatan yang fleksibel, dan membuat ramalan 

prestasi yang dijangka untuk setiap tugas. Teras aplikasi pembelajaran adalah dalam 

penggunaan grafik jadual dua hala, yang diperkenalkan sebagai matrik inferior-

superior-neutral (ISN). Dengan memperkasakan pengetahuan yang berdasarkan 

pengalaman kerja krew pembuatan, dua peningkatan dalam prestasi SPP dicapai.  

Pertama, krew B mencapai kecacatan produk sifar selepas perlaksanaan projek 

selama 9 bulan, manakala kadar kecacatan bagi krew A dikurangkan hampir 90%.  

Kedua, perbezaan antara kadar kecacatan krew A dan krew B yang dianalisa oleh 

model regresi menunjukkan kurangkan secara mendadak. Ini membuktikan bahawa 

aplikasi pembelajaran mudah alih telah berjaya mengurangkan jurang pengetahuan 

dan membolehkan prestasi yang konsisten antara kedua-dua krew. 
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 A NEURAL NETWORK MOBILE LEARNING APPLICATION FOR 

AUTONOMOUS IMPROVEMENT IN A FLEXIBLE MANUFACTURING 

ENVIRONMENT 

ABSTRACT 

 This study is focused on how an innovation based on telecommunication and 

computer technologies at a manufacturing facility “MF” is implemented to generate 

higher value returns.  Modern manufacturing has evolved into a very competitive 

industry and wastages resulting from process defects are very costly.  Based on a 

survey of the manufacturing floor activities, the stencil printing process (SPP) was 

selected as the area of research.  This decision was based on literature reviews which 

indicated that at least 50% of defects in the printed circuit board (PCB) assembly 

originated from SPP, and actual defects data collected during the survey.  Given the 

standing work environment of the machine operators who are continuously on the 

move, the challenge is therefore, to empower them with knowledge on their 

performances relative to defects with a mobile learning application, and to stimulate 

an autonomous process improvement. To attain this objective, a mobile device 

loaded with an Android app is used to present information that is processed by a 

neural network algorithm.  The neural network algorithm is used to analyze the past 

performances of each crew relative to the tasks that are performed in a flexible 
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manufacturing environment, and make prediction on the expected performance for 

each task.  The core of the learning app is in the use of a graphical two-way table, 

introduced as an inferior-superior-neutral (ISN) matrix.  This empowerment of 

knowledge, which leveraged on the extensive work experience of the manufacturing 

crews, led to two improvements in the SPP performance.  Firstly, crew B achieved 

zero defects after 9 months of project implementation, while defect rates for crew A 

reduced by almost 90%.  Secondly, the divergence between defect rates of crew A 

and B, as indicated by the regression model, reduced dramatically.  This proved that 

the mobile learning application has been successful in reducing the knowledge gap 

and enabled a consistent performance between the two crews.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

General purpose technologies (GPT) is a term used to describe a new method 

of producing and inventing that is important enough to have a protracted aggregate 

impact (Jovanovic and Rousseau, 2005).  Examples of GPT are the steam engine, 

semiconductor, electric motor, and they are characterized by its pervasiveness, 

inherent potential for technical improvements, innovational complementarities, and 

giving rise to increasing returns-to-scale (Bresnahan and Trajtenberg, 1995).  

Pervasiveness is defined as the widespread use of the GPT, as in the examples 

mentioned prior.  Besides being widely used, the GPT must also demonstrate 

capabilities in complementing inventions of new products or processes, leading to 

the term “innovational complementarities” used.  Finally, when the GPT enables an 

increase in output by more than the proportional change in input, it gives rise to 

increase in returns-to-scale.  With the introduction of internet, and with wireless 

technologies that enable connections from computers, tablets and smartphones, 

information and knowledge transfers become instantaneous and at a level of 

unprecedented accessibility.  These phenomena led Lipsey et al. (2005) to specify 24 

technologies in history that can be classified as true GPT, of which, included the 

internet and computers.  These technologies in combination, also known as 

information and communication technology (ICT), have been credited with 

productivity gains since comparative studies started in 1870 (David and Wright, 

1999).   
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This study was conducted at a manufacturing facility named as “MF”, which 

is a large multinational corporation where the adoption of ICT has become a 

necessity for efficiency in resource utilization.  Modern manufacturing is a very 

competitive industry, where losses from defects are very costly.  Surveys from the 

surface mount technology (SMT) industry indicated that at least 50% of defects in 

the front-end of printed circuit board (PCB) assembly originated from the stencil 

printing process (SPP).  Due to the complexity and miniaturization of circuit 

components, majority of the defects are not known until the circuit board testing 

phase, where the PCB is already fully populated with components.  This incurs a loss 

in productive time, as well as costs in analyzing the defects, in repair works, in 

component replacement, and in maintenance of repair facilities.  Although the stencil 

printing in MF is performed by precision and automated machines, it operates in a 

flexible manufacturing process where recurring configuration changes performed by 

machine operators, called “changeovers”, are required.  Based on statistical study of 

the defects, they generally are repetitive, and unequal across all 3 crews who operate 

in shifts over 24 hours.   

 

Leveraging on the extensive usage of IT infrastructure at MF, this research 

explores the use of mobile learning as a GPT for improvement in the manufacturing 

process.  Data collection in this study has been facilitated by the availability of 

Oracle database engine that stores huge amount of information on relevant aspects of 

manufacturing processes.  The next section shall discuss on the concept of flexible 

manufacturing to further describe the background of this research. 
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1.2  Flexible manufacturing, mobile learning and neural network  

 The IT infrastructure at MF covers the entire manufacturing floor, linking all 

manual processes and automated manufacturing equipments with the central Oracle 

database.  The database serves as an information repository, as process analytics tool, 

as online tracking of piece parts and progress of product assembly, known as work in 

progress (WIP), and as support for various process monitoring programs.  The 

objective of the infrastructure is to enable productivity in manufacturing operations. 

There are 23 manufacturing lines with unique piece-parts and process flow.  The 

products that MF produces are communication devices, grouped in product families, 

where there are 34 product families as surveyed in August 2013, and each product 

family contains variations of the product identified by a model number.  The 

variations are essential due to product pricing according to the model features, 

customer custom configurations, and country regulations governing communication 

devices.  Each of the 23 manufacturing lines is capable of flexible manufacturing.  

Product families with approximately matching printed circuit board (PCB) sizes, 

component sizes, and number of components are grouped and run on selected 

manufacturing lines.  The main advantage of flexible manufacturing is the flexibility 

in adjusting to the customer demand, in terms of the shortest lead time to delivery, 

and to the quantity as required.  The disadvantage of not having a fixed 

manufacturing line for each product family is the frequent equipment configuration 

change, termed as “changeover”.  Equipment changeovers are a manual process, and 

from conversations with MF process engineers, changeover is one of the contributors 

to increase in manufacturing defects, and a source of variation in overall process 

performance.  This information led to the use of Six Sigma methodology, where the 
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overall objective is about reduction in process variation to achieve customer 

satisfaction (Pyzdek, 2003). 

 

 In this study, mobile learning is used to empower the operation crews on very 

specific knowledge of their performance over time, to create a metric of that 

performance, and to prioritize actions required for process improvement.  Since the 

subject of learning is based in an environment of flexible manufacturing, the learning 

content will dynamically change over time in accordance to the models that are 

produced.  The main advantage of using a handheld mobile device as a learning tool 

is in the learning of the subject at the immediate place of work and learning 

whenever it is needed, which supports informal learning of the operation crews 

towards job proficiency, self-improvement, and problem solving (Huang et al., 

2008). 

 

 To process large amount of information that is available in from the Oracle 

database, a neural network learning algorithm was utilized to model the specific 

manufacturing process.  The intention of the learning algorithm is to built an expert 

system that will give guidance towards process improvement efforts by the 

manufacturing crew.  An expert system is defined as a computer program designed to 

model the problem solving ability of the human expert, both in terms of content and 

structure (Feigenbaum 1977).  In effect, the expert system is the encoding of the 

knowledge and problem solving skills of a human expert.  This expertise gained from 

learning of the specific manufacturing process will then be used to assist the 

manufacturing crew in process improvement.   
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 The neural network learning algorithm was selected based on two criterias 

which were judged to be most important.  First, it is the amount of time needed to 

process the information and build the machine learning model, and secondly, the 

accuracy of the resulting model in predicting unseen datasets.  The neural network 

algorithm was inspired by the biological processes of the human brain.  Among the 

earliest papers which discussed on the mathematical model of the brain neuron was 

by McCulloch and Pitts (1943).  This was followed by the “Perceptron” model by 

Rosenblatt (1962), which defined the neuron model used today.  Further 

developments by Rumelhart et al. (1986), which introduced the backpropagation 

algorithm and multi-layered perceptron model, simulates the brain approach to 

information processing by using multi-layered neurons connected to each other as in 

a networked system.     

 

1.3 The Six Sigma methodology  

This study began with a general direction towards an application in mobile 

learning, which can be integrated into the manufacturing operations at MF.  In 

addition, the mobile learning application as a GPT, must lead to increasing returns-

to-scale, which is expected to be in the form of gains from defect reduction, 

productivity increase in manpower, and reduction in lead time of delivery to 

customer.  In the search for a process that is suitable for implementing mobile 

learning the Six Sigma methodology (Pyzdek, 2003) was used due to the statistical 

modeling approach.  It is also the standard approach for process improvement in MF 

as a way towards process improvements.  The Six Sigma methodology consists of 

five phases, which are Define, Measure, Analyse, Improve, and Control.  A summary 

of the methodology is illustrated in a flowchart (Figure 1.1). 
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Figure 1.1.  Flowchart of Six Sigma methodology. 

 

 In the first phase which is Define, the research project is constructed by 

evaluating the strategic focus of the organization, the long term objectives and the 

priorities to justify a business case for the project.  This is due to the fact that all 

projects consume resources, and those resources must be justified in the form of 

investment returns to the organization.  Typical areas for high impact projects 

include high volume processes, high defect rate products, consistent customer returns 

or warranty claims, and large budget items.   Clearly, such projects are connected to 

Manufacturing floor survey, study of processes by 

literature review, Gemba walk, interviews/ 

discussions with staff, identification of target 

operation for process improvement which aligns 

with the long term objectives of the management. 

Create a strategy for informative inspection with 

poke-yoke learning model for SPP improvement. 

Create an Android App for user interface to poke-

yoke learning model for mobile learning program. 

Deploying Android App for testing and evaluation 

of mobile learning program at manufacturing floor. 

Analysis of process data by graphical analysis, 

testing and selecting a suitable statistical model for 

modeling process characteristics of the SPP. 

 

Define 

Measure  

      & 

Analyse 

Improve  

     &  

Control 
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the business priorities of the management, and will receive support and approval.  

The outcome of the evaluation is a problem statement that specifies an area of focus 

that meets the interests of the organization.  When the area of focus is identified, the 

project must be defined in scope to set the boundaries in which to match the 

complexity to the approximate length of the study.  This is followed by defining the 

metrics of measurements in the area of focus, which sets the baseline and target for 

improvement as a final delivery towards project completion.   

 

In the second phase which is Measure, data is collected from areas that are 

related to the research for measurements on the process performances.  In addition, 

mathematical models as the physical process will be built to understand the 

influences of various factors towards the outcome of the process. Mathematical 

function such as these enable an unbiased and objective study of the process  

(Vapnik, 1995; Pyzdek, 2003; Hastie et al., 2013).  The general function to be 

modelled can be given as 

1 2( , ,..., )nY f x x x                                                         (1.1) 

where 

Y   is the output variable of interest from the process, which may be continuous or  

     discrete (binomial, multinomial), and 

xi   for i = 1,2,…,n, are the input variables of the process. 

 

The approach in Six Sigma in the measurement phase is to take as many 

measurements of relevant input variables as possible, and to gradually reduce those 

towards a critical few through hypotheses testing for variable significance (Pyzdek, 

2003).     
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 In the third phase which is Analyse, the statistical model of the process is 

used to predict outcomes with the objective of improving the process.  Michie et al. 

(1994) introduced two general divisions of statistical modelling, one being classical 

statistics, the other being modern statistics.  Generally, classical statistics is based on 

certain parametric distributions of the dataset, but modern statistics make no 

assumptions on the underlying distribution of the dataset.  The value of the statistical 

model of the process is first, to evaluate the effects of predictor variables including 

their interactions where permissible by the model, and secondly, to learn the 

characteristics of the process performance over time.  Therefore, the Analyse phase 

forms the core of the process improvement study, which sets the platform for the 

next phase in improving the process.  This approach is similar to several other 

studies, where data are collected and modelled with various statistical models to 

determine the characteristics of the process (Ho et al., 2001; Zhang and Luk, 2007; 

Barajas et al., 2008; Tsai and Chen, 2009; Tsai, 2012,), with the exception that the 

processes are not done in a flexible manufacturing environment.  Due to the frequent 

changeovers required, this study will have to include, in the statistical model, the 

effect of changeover activities on the stencil printing process (SPP).   

 

 The Improve phase is the implementation of a solution to the problem 

statement first stated in the Define phase.  The solution is found through a statistical 

model of the process, where significant predictive variables are identified.  Majority 

of literatures on SPP focus on machine parameters under experimental conditions 

(Ho et al., 2001; Zhang and Luk, 2007; Jianbiao et al., 2004; Aravamudhan et al., 

2004; Yang et al., 2010), and some on actual production run conditions (Huang et 

al., 2004; Tsai and Chen, 2009; Tsai, 2012).  None of these studies on SPP 
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improvement involved flexible manufacturing, where human factor in equipment set-

up changes to accommodate changing product models in manufacturing runs is 

evaluated.  In addition, the validation on the quality of SPP is performed using 

automated inspection machine, whereas in this study, the quality of SPP is performed 

using human as the inspector.  Since the parameters for the stencil printing machine 

has been optimized and programmed to be used for each specific product model in 

production, the improvement method study will be focused on the human factors that 

determine the quality of SPP.  One of the ways to achieve that would be to compare 

several manufacturing lines and to use the best SPP performer as a standard.  This 

will then be followed by the use statistics to achieve a SPP quality that will be just as 

good or better than the best performing manufacturing line.   

     

 Finally, the Control phase in a standard Six Sigma project involves 

documenting the improvements made and concludes with a Control Plan (Pyzdek, 

2003).  The Control Plan is a plan to ensure that the process improvements are 

sustained throughout the lifetime of the process.  In this study, an innovative 

approach has to be found as a substitute, as the operation crews are hands-on 

personnel, and do not respond well to documentations.  A common approach towards 

sustaining the process performance is in the use of control charts (Montgomery, 

2004; Hung and Sung, 2011) as part of the institutional memory of what has been 

learned in the past.  This method, however, will be difficult to implement due to 

multiple product models in the manufacturing process, and aggregating multiple 

models into a single chart will invariably introduce a bias towards the product model 

that is the majority, or highest in production volume in the analysis.  Even though the 

challenges exist due to flexible manufacturing, a control method that is based on SPP 
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evaluation over period of time was thought to be the best way in sustaining the 

process improvement.   

     

1.4 Problem statement  

 One of the major challenges of manufacturing is of productivity, and the 

foundations have been laid since the days of Henry Ford, the inventor of assembly 

line production (Ford and Crowther, 1922).  This translates to a maximization on the 

use of resources to obtain the highest possible output.  However, no manufacturing 

process is perfect, and process defects, leading to rework, or reject, is a constant 

challenge.  Five percent of the factory floor space in MF is dedicated to repair and 

rework of product defects originating from the production line.  Teams of technicians 

work 24 hour shifts to handle the flow of defects, whose objective is to minimise 

sub-assembly rejection, where each carries costs of manhours and of piece parts.  

The challenge presented is wide in scope, and must be narrowed down for this 

research project.  Therefore, the first problem is to determine the main source of 

failures where the research should be focused on.  Secondly, when the area of focus 

is identified, what will be the strategy for process improvement.  Thirdly, how can 

the infrastructure of MF be leveraged to support the implementation of the process 

improvement, which is to allow the improvement method to be integrated into the 

existing IT system. 
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1.5 Objectives of the research  

 The three primary objectives of this research are:  

1. To identify a process suitable for implementation of mobile learning 

that aligns with the objective of the top management at MF towards 

zero manufacturing defects.  

2. To learn the process characteristics and to construct a strategy in 

process improvement that can be integrated into manufacturing 

operations.  

3. To create an effective mobile learning application for the operation 

crews as a process improvement tool towards the goal of zero defects 

within the scope of the selected process.  

 

In summary, with consultation from the top management at MF, a viable research 

project on a manufacturing process will be selected.  Evidences of viability shall be 

collected in the form of historical data from the manufacturing process.  The analysis 

of the data shall then used as a business case to justify returns to the company when 

the project is implemented in actual production runs. 

 

1.6  Organisation of the thesis 

The rest of this thesis is organized as follows: Chapter 2 provides a literature 

review and discussion of related work in Lean and Six Sigma methodology, SMT 

stencil printing, data mining, statistical learning methods, artificial intelligence, and 

mobile learning.  Chapter 3 presents the approach in selecting the process suitable for 

implementing the mobile learning application.  Chapter 4 illustrates the stencil 

printing process (SPP), the pre-processing of SPP information extracted from Oracle 
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database, the mathematical modeling of the process output characteristics based on 

the input variables, and the construction of information lookup table for Android app.  

Chapter 5 details the mobile learning application development.  Chapter 6 presents 

the mobile learning system deployment and results, while Chapter 7 presents the 

conclusion and possible future research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

This chapter presents a review of relevant literature that forms the basis of 

this study.  Since the research started with only a general direction, the review of 

literature begins with subjects consistent with the manufacturing policy and 

objectives of MF which are Lean manufacturing, and the continuous improvement 

methodology of Six Sigma.  This is followed by a review of literature that focuses on 

the subject of stencil printing process, the process identified for implementation of 

mobile learning.  Subsequently, literature pertaining to statistical modeling is 

reviewed, followed by literature on mobile learning.        

 

2.2 Application of Lean and Six Sigma methodologies 

 Henry Ford lived during a time where resources are scarce, and financing for 

new business start-up is difficult to come by.  He detailed his chronicles in a self-

biography, as a learning to be passed on to anyone who is interested (Ford and 

Crowther, 1922).  Ford was credited with the invention of the car assembly line, a 

huge success which is the embodiment of his ideas on productivity.  He defined 

waste from work involving man and machine as “due largely to not understanding 

what one does, or being careless in doing of it”, and illustrated in detail that prices of 

products can be lowered by elimination of wastes and not by cutting of worker 

wages.   

 

 Henry Ford’s philosophy on manufacturing spread to the east and greatly 

influenced an engineer by the name of Taiichi Ohno, who was credited with the 
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development of Toyota production system (Ohno, 1988).  This concept was 

introduced to the world as “Lean Manufacturing” (Womack et al., 1990).  He refined 

the concept of waste from Henry Ford into 7 categories, of which, manufacturing 

defect is one of the elements.  In addition, he developed a manufacturing system for 

small numbers of many different kinds of automobiles, in contrast to Western 

practice of producing large numbers of similar vehicles (Imai, 1986), which led to 

the use of the term “flexible manufacturing” (Dessouky et al., 1995).    

 

 Shigeo Shingo, a consultant to Toyota who worked with Taiichi Ohno, 

implemented a method to achieve zero defect in manufacturing process known as 

“Poka-yoke” system  (Shingo, 1986).  In the system, Shingo categorized 3 types of 

inspections, which are judgment inspection, informative inspection, and source 

inspection.  Judgment inspection is defined as an inspection to discover defects, 

which is of no value as it does not contribute towards continuous improvement.  

Informative inspection leads to gradual reduction of defect rates by an immediate 

feedback loop, in conjunction with statistical quality control, to correct the work 

process.  Source inspection, used in conjunction with poka-yoke device, leads to 

elimination of defects.   

 

 To integrate all work methods in all aspects of operations to achieve high 

productivity in Lean Manufacturing, a total productive maintenance (TPM) program 

is utilized.  It is a program that involved all levels of employees through motivation 

management (McKone et al., 1999; Kodali and Chandra, 2001; Jadhav et al., 2013).  

The term “autonomous”, defined by Merriam-Webster online dictionary (2015) as 

self-government and independent, is used to describe one of the eight pillars of TPM, 
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which is “autonomous maintenance” (Rajput and Jayaswal, 2012).  In line with this 

usage, the term “autonomous improvement” is proposed as  self-motivated, self-

governing and independent initiative by the production crews towards process 

improvement.    

 

 Quality control for inspection of manufactured products was first introduced 

by Walter A. Shewhart (Shewhart, 1931).  It was quickly adopted by a host of 

industries as an economical way of controlling process variations (Blount, 1953; 

Montgomery, 2004; Cozzucoli, 2009; Marques et al., 2015), and was promoted by 

Shingo (1986) for process continuous improvement.  Control charts are essential 

tools in Six Sigma methodology, where they serve as process monitoring, 

diagnostics, as well as a historical record of the learning process in continuous 

improvement (Pyzdek, 2003).  Even though the selection of analytical tools used is 

not rigid, the methodology is to follow the Six Sigma DMAIC model.  Since the 

selection of analytical tools are flexible, certain Six Sigma studies do not contain any 

analysis with control charts at all (Valles et al., 2009).  Due to this flexibility, many 

industries have adopted the methodology in improving critical processes to reduce 

costs, and to meet or exceed customer expectations (Sokovic et al., 2006; Hung and 

Sung, 2011). 

  

 However, in environment where processes have very low levels of 

nonconformities, the use of standard control charts is not recommended as it leads to 

false alarms (Steiner and MacKay, 2004; Chang and Gan, 2001; Cheng and Thaga, 

2008).  Since the Six Sigma methodology is flexible, other methods must be found to 
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mitigate this shortcoming in control charts as a quality tool towards continuous 

process improvement. 

 

2.3 The stencil printing process (SPP) 

 SPP is part of the process in manufacturing printed circuit board (refer to 

Section 3.2 for detailed description).  SPP has been a challenge on printed circuit 

board (PCB) manufacturing, evident by the proliferation of solder paste inspection 

equipment, or substituted by rigorous non-value added activity of manual 

inspections.  It is a process of applying solder paste onto the surface of PCB solder 

pads, and has been characterized as a process that is challenging, with 45 important 

controllable variables that will influence the quality of the stencil print (Jianbiao et 

al., 2004).  Given the ever decreasing size of components, the paste printed must be 

very precise in position, thickness and volume.  Process variations lead to defects in 

the form of solder shorts and unsolders, which forms the majority of defects 

observed in SPP (Huang et al., 2004, Ooi et. al., 2004, Ooi et. al., 2012). 

 

 The component placement (CP) process is the next process after SPP if solder 

paste inspection equipment is not present. CP process places all the components that 

are required by design onto the PCB, and it must do so at high speed to attain the 

economy of volume.  Front-end defects for SPP versus CP are found by practitioners 

to be in the range of 50%-80% (Aravamudhan et al., 2002; Jianbiao et al., 2004; 

Zhang and Luk, 2007; Ufford and Mohanty, 2009; Yang et al., 2010).  Even though 

the SPP literature provide detailed study into the characteristics of the process 

(Jianbiao et al., 2004; Huang et al., 2004), by design of experiments (Aravamudhan 
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et al., 2002), and automated inspection equipment evaluation (Ooi et al., 2006), these 

studies are all done under ideal operating circumstances, or “controlled conditions”.   

 

2.4 Statistical learning using machine learning algorithms  

 Statistical learning refers to a set of tools for modeling and understanding 

complex datasets (Hastie et. al., 2013).  It is a recently developed area in statistics 

and blends with parallel developments in computer science and, in particular, 

machine learning.  Machine learning is an implementation of statistical learning 

using automatic computing procedures based on logical or binary operations, that 

learn a task from a series of examples (Michie et al, 1994).  They have all attempted 

to derive procedures that would be able: 

 

a. to equal, if not exceed, a human decision-maker’s behaviour, but have the 

advantage of consistency, 

b. to handle a wide variety of problems and, given enough data, to be extremely 

general,   

c. to be used in practical settings with proven success. 

 

The goal is to apply a statistical learning method to the training data in order to 

estimate the unknown function f such that ˆ( )Y f X  for any observation (X, Y ).  

Therefore, supervised statistical learning involves building a statistical model for 

predicting, or estimating, an output based on one or more inputs (Hastie et. al. 2013).   

The earliest examples on techniques for statistical learning, or learning from data are 

from Legendre and Gauss on the method of least squares (M.Merriman, 1877), and 

Nelder and Wedderburn on generalized linear models (Nelder and Weddeburn, 
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1972).  These are exclusively linear models because fitting non-linear relationships 

were computationally infeasible at that time. With the development of computing 

technology in the 1980’s, non-linear statistical learning became prominent.  Among 

the first non-linear statistical learning models to be introduced was the classification 

and regression trees (Breiman et. al., 1984), followed by the Neural Network 

(Rumelhart et al., 1986), Support Vector Network (Cortes and Vapnik, 1995), 

AdaBoost (Freund and Shapire, 1996), and Random Forests (Breiman, 2001). 

 

 The prominence of classification and regression decision tree model is 

attributed to model interpretability (Hastie et. al, 2013).  Trees are directed graphs 

beginning with one node and branching to many. They are fundamental to computer 

science (data structures), biology (classification), psychology (decision theory), and 

many other fields.  Decision trees classify instances by sorting them down the tree 

from the root to some leaf node, which provides the classification of the instance. 

Each node in the tree specifies a test of some attribute of the instance, and each 

branch descending from that node corresponds to one of the possible values for this 

attribute (Mitchell, 1997).   

 

 In an effort to improve the accuracy of decision tree, a technique called 

“boosting” is introduced by Freund and Shapire (1996).  “Boosting” is a general 

method for improving the performance of any learning algorithm. In theory, boosting 

can be used to significantly reduce the error of any “weak” learning algorithm.  

Boosting works by repeatedly running a given weak learning algorithm on various 

distributions over the training data, and then combining the classifiers produced by 

the weak learner into a single composite classifier.  Therefore, AdaBoost is an 
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implementation of decision tree classification algorithm that learns from the training 

data iteratively to generate a superior solution when compared to a single decision 

tree algorithm (Shapire et al., 1998). 

 Random forests are a combination of tree predictors such that each tree 

depends on the values of a random vector sampled independently and with the same 

distribution for all trees in the forest (Breiman, 2001).  The generalization error for 

forests converges to a limit as the number of trees in the forest becomes large. The 

generalization error of a forest of tree classifiers depends on the strength of the 

individual trees in the forest and the correlation between them. Using a random 

selection of features to split each node yields error rates that compare favorably to 

Adaboost (Freund and Shapire, 1996) but are more robust with respect to noise. 

 

 The support-vector network was introduced as a new learning machine for 

two-group classification problems by Cortes and Vapnik (1995). The machine 

conceptually implements the following idea: input vectors are non-linearly mapped 

to a very high dimension feature space.  In this feature space a linear decision surface 

is constructed, where special properties of the decision surface ensures high 

generalization ability of the learning machine.  The algorithm was initially restricted 

to cases where the training data can be separated without errors.  This capability was 

later extended to non-separable training data (Cortes and Vapnik, 1995).   

 

 The development of Neural Network first began as an enquiry by Socrates on 

what qualifies an expert to be an expert (Plato, 2001).  Since then, capturing the 

essence of expert’s knowledge has been a popular topic under the study of 

knowledge engineering.  Early attempts to construct models based on rules and 
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heuristics of a specialist were time consuming and tedious  (Felgenbaum, 1977).  

One of the obstacles faced was in the representation of large amount of knowledge in 

a fashion that permits their effective use and interaction (Goldstein and Papert, 

1977).  Early studies into the modeling of human brain as a neural network of 

information processing functions were slow in progress (McCulloch and Pitts, 1943; 

Rosenblatt, 1962) due to absence of computing technology.  In 1986, a breakthrough 

came with the introduction of the backpropagation algorithm, which enabled the 

Perceptron model first proposed by Rosenblatt, to be viable for approximating 

general functions (Rumelhart et al., 1986).  The modern neural network consist of 

layers of interconnected nodes, each node producing a non-linear function of its 

input. The input to a node may come from other nodes, or directly from the input 

data, and some nodes are identified with the output of the network. The complete 

network therefore represents a very complex set of interdependencies which may 

incorporate any degree of nonlinearity, allowing very general functions to be 

modeled (Michie et al, 1994).  With the advent of low cost computers and 

widespread use of internet, the open source community of R contributed over a 

hundred algorithms on machine learning where statistical models could be built, and 

are available as open source (R Core Team, 2014).  In the R program installation, a 

Neural Network algorithm (Nnet) contributed by Venables and Ripley, is available as 

a default installation.  It is one of the most flexible algorithms, where predictor 

variables can be in the form of nominal  or continuous variable (Venables and 

Ripley, 2002).  Michie et. al. (1994) named the neural network algorithm as the best 

overall classifier base on a comprehensive evaluation of 20 algorithms over 20 

different types of datasets, where performances of various algorithms are compared 

with respect to accuracy.   
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2.5 Mobile learning 

 The motivations behind development of mobile learning in a flexible 

manufacturing environment are mobility, self-paced learning, user friendly interface, 

autonomous improvement, and networked communication capabilities of the 

handheld device.  Mobile learning is a new way of learning which refers to the use of 

mobile and handheld IT devices, such as mobile telephones, tablet, in training, 

learning, and teaching, that may take place anywhere and anytime (Sarrab et al., 

2012).  Mobile learning is defined as the union of mobile computing technologies 

and electronic education technology, where learners are able to access to the learning 

materials from anywhere at anytime (Vinu et al., 2011).  Mobile learning contents 

are broadly classified into fixed content and dynamic content.  Examples of fixed 

contents designed using fixed learning objects as building blocks are in educational 

fields (Chang et al., 2012; Paulins et al., 2014).  A simple example of dynamic 

content learning are location based self-paced mobile learning, where the contents 

change based on user location (Li et al., 2013).   

 

 A more advanced form of dynamic learning content is found in ubiquitous 

learning environment (ULE) of multiple handheld devices capable of computing and 

communication with each other and with objects embedded with devices containing 

source data (Vinu et al., 2011, Jones and Jo, 2004; Yahya et al., 2010).  The intent of 

ULE is to create an intelligent learning environment to enable the user to connect 

directly to the relevant objects in the context of learning, and within the surroundings 

of other users with handheld devices.  This development led Pontefract (2013) to 

define the phenomenon as pervasive learning, where learning takes place at the speed 

of need through formal, informal and social learning modalities.  The idea of 
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informal education is not new, with the first study published in 1950 by Knowles 

(1950).  A comprehensive survey by the US Bureau of Labor Statistics found that 

informal learning is a significant factor in career development in the work 

environment, where it leads to greater wage growth for workers whose tenure is 2 

years or greater (Loewenstein and  Spletzer, 1998).  This led to a learning and 

development model of 70-20-10 proposed by Lombardo and Eichinger (2000), where 

70% of the learnings are in the workplace context by challenging assignments and 

job experiences, 20% through relationships, network and feedback, and 10% through 

formal training process.  Informal learning is best defined by Bell and Dale (1999) as 

“Learning which takes place in the work context, relates to an individual’s 

performance of their job and/or their employability, and which is not formally 

organised into a programme or curriculum by the employer. It may be recognized by 

the different parties involved, and may or may not be specifically encouraged.” 

 

 The Android driven mobile device is efficient in memory management and 

comes with well developed programming classes (Murphy, 2008).  It has variety of 

user interface templates for rapid program development with good documentation, 

and above all, being open source.  Since the raw data is sourced from Oracle 

database, the learning content that is displayed by the mobile learning application is 

dynamic (Li et al., 2013), where information feedback on performance of the 

operation crews varies according to the tasks that are performed.  Taking advantage 

of the mobile device light weight mobility, learning can take place on the 

manufacturing floor, right next to the relevant activities, termed as “situated” 

learning (Traxler, 2005).  By bringing the learning to the workstation of the operation 

crews, the learning becomes personalized, self-learning and self-paced at the 
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discretion of the team (Teoh et al., 2012).  In addition, the advantages of mobile 

learning at the manufacturing floor based on the concept of ubiquitous learning 

(Huang et al., 2008) are as follows : 

a. Enhancing availability and accessibility of information networks. 

b. Engaging operation crews in learning-related activities in diverse physical 

locations. 

c. Supporting of project-based group work.   

d. Improving of communication and collaborative learning. 

e. Enabling quick content delivery.   

 

 In terms of design of the mobile learning content, Elias (2011) suggests 8 

universal instructional design (UID) principles, which will be discussed here in 

conjunction with the use of Android operating system and user interface (Murphy, 

2008; Lehtimaki, 2013); 

a. Equitable use – to enhance mobility and for use with multiple devices 

wireless connection to the cloud server is necessary for instant sharing of 

latest information updates across all devices.  This design feature will be 

invaluable for implementation across the manufacturing floor, according 

to techniques for large scale implementation and just-in-time delivery of 

information (Traxler, 2009). 

b. Flexible use – learning to be packaged in small chunks.  However, with 

the advent of Android tablet devices, this limitation is mitigated, 

especially large tablets with screen sizes at and above 10 inches. 

c. Simple and intuitive – unnecessary complexity should be eliminated and 

course design to be rendered simple and intuitive.  Android menu driven 
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features are standard across all apps (Lehtimaki, 2013), and therefore the 

designer has only to focus on the flow of information presentation. 

d. Perceptible information – recommendation to add captions, descriptors 

and transcriptions. 

e. Tolerance for error – to minimize hazards and adverse consequences for 

errors in software operation by designing learning environments with a 

tolerance for error.  Android programming recommends error handling 

and recovery as part of the standard subroutine to avoid application crash 

(Murphy, 2008). 

f. Low physical and technical effort – relates to the physical effort in user 

interaction and assistive technologies.  Android user interface has well 

developed touch and gesture features that make user interaction a breeze 

(Lehtimaki, 2013).   

g. Community of learners and support – to include study groups or group 

learners in the learning program. 

h. Instructional climate – to focus on instructor’s course delivery and 

generate interest in the learning content. 

 

The above UID elements were found to be consistent with other literature (Connell et 

at., 1997; Scott et al., 2003) and were included in the design of the mobile learning 

program. 

 

2.7 Summary 

 Mobile learning is a form of information delivery through a mobile device, 

where the objective varies across different environments.  In education, objective is 
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