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Abstract: Reactive distillation of MTBE has strong interaction between the variables and is 

highly nonlinear process. Here, nonlinear MPC was proposed to tackle the nonlinearity and 

the interaction in controlling tray temperature of MTBE reactive distillation. To improve the 

performance of the MPC, advanced nonlinear block oriented model known as Neural Wiener. 

The control study has been successfully simulated using Simulink (Matlab) which is 

integrated with Aspen dynamic model. Set point tracking, disturbances rejection and 

robustness tests were conducted to evaluate the Neural Wiener Based NMPC (NWMPC) 

performance. The results achieved show that the NWMPC is able to maintain the product 

purity at its set point of 99% with the Isobutene conversion over than 99.98%. NWMPC is 

also able to reject the disturbance which was introduced by changing the feed flowrate at 

30% from the nominal value. It is also found to be robust towards column efficiency changes.     

Keywords:  Reactive Distillation NMPC, Neural Wiener, SQP, Nonlinear Optimization 

 

 

1.  INTRODUCTION 

 

The main purpose of reactive distillation (RD) of MTBE control is to maintain the 

MTBE purity at a desired range. The desired MTBE purity can be obtained by controlling 

tray temperature because MTBE purity can be correlated with tray temperature
[1]

. 

Temperature controller is more economical since the composition analyzer can be omitted. 

Due to highly variable interaction in the RD and its nonlinearity characteristics, in this work, 

the nonlinear MPC is proposed to control this system. Neural – Wiener (NW) model known 

to be as one of   the powerful   block oriented model which capable reduces the 

computational time has been selected to be embedded in the MPC. The NW model proposed 

is consisting of state space as a linear dynamic block followed by neural network as a 

nonlinear static block.  The MPC with the NW model and SQP optimizer has been used to 

control the MTBE RD and is call as Neural Wiener Based MPC (NWMPC).
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2. DEVELOPMENT OF MTBE REACTIVE DISTILLATION PROCESS 

MODEL  

 

The most promising technique of producing MTBE is from methanol and isobutene, 

where the liquid-phase reaction is catalyzed by ion exchange resin (heterogeneous reaction). 

The reaction scheme is:   

  

i-C4H8 + CH3-OH                     C5H12O                 (1) 

 

Butenes feed for MTBE synthesis consists of about 40% isobutene and 60% n-butene, 

which n-butene is an inert. Methanol is usually fed in excess to improve the conversion of 

isobutene into MTBE. MTBE forms azeotropes with methanol and isobutene, hence difficult 

to separate MTBE from it impurities. However, in reactive distillation the azeotropes are 

reacted in reaction section
[6, 7]

. The specification MTBE RD considered here can be found 

in
[8]

.  

 

 

 

 

 

 

 

 

 

Fig. 1.  MTBE Reactive Distillation Column 

 

3.  DEVELOPMENT OF NEURAL – WIENER MODEL 

 

 

Fig. 2. Neural Wiener model configuration 

Neural Wiener (N-W) model consist of linear block and nonlinear block as shown in 

Fig. 2. The linear block that used in this work is state space model. Using Matlab 

identification tool box, the state space model for multivariable MTBE Reactive distillation 

can be identified as shown below:  

x(k+1) = A x(k) + B u(k)                                           (2) 

v(k) = C x(k) + D u(k)                                              (3) 
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where : 

𝐴 =   

 0.73897   −0.042774 0.060387 0.02007
−0.34542 0.7133 −0.31961 0.30447
−0.24956 −0.44335 0.34634 −0.7272
−0.035443 0.059417 −0.11259 0.61541

 , 𝐵 =   

−1.3786    1.5398
−4.2 4.1893

6.4984 −5.8288
1.1353 −0.38649

  

𝐶 =   
 0.20528 0.10429 0.10847 −0.11637

−0.0039021 0.0034986 0.0019554 −0.00039005
  

where D, u and x are matrix zero with size (2x2), (4 x 2) and (4 x 1) respectively,  G is 

discrete-time model.  

Nonlinear Block of Neural – Wiener used in this work is Neural Network model and 

to represent the inverse of nonlinear block in N-W model. In this part, the MTBE reactive 

distillation was modeled using the MIMO (Multiple input Multiple output) feed forward 

Neural Network model which have 15 hidden nodes and 1 hidden layer. The output y(k) of 

the neural network is described below: 

y k =  w0 +   wi
2φ   wi,0

1 +  wi,1
1 v(k) 

K
i=1                       (4) 

where w0 is bias, wi,j is weight of first layer, and wi is weight of second layer, φ is a nonlinear 

transfer function (e.g. : hyperbolic tangent sigmoid transfer function or tansig), K is the 

number of hidden nodes
[5, 9]

. The output of the N-W model can be defined by substitute 

equation (3) into (4), as shown below: 

y k =  w0 +   wi
2φ   wi,0

1 +  wi,1
1  C x(k)  +  D u(k)  +  e(k)  K

i=1    (5) 

 

4.  DEVELOPMENT OF NEURAL WIENER MPC (NWMPC) 

 

The best control configurations with most suitable control variable, manipulated 

variable and disturbances have been identified
[4, 5]

. The empirical model developed and the 

optimizers proposed have been embedded in the Neural Wiener NMPC as shown in Fig. 3. 

The accuracy of controller is the main consideration taken in designing of the NWMPC. 

 

 

 

 

 

 

 

Fig. 3 General structure of NWMPC 
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The NWMPC objective function for the MIMO case consists of the quadratic error 

between each controlled variable and its set-point and the quadratic change of each 

manipulated variable. The MPC objective function for the 2 × 2 system is defined as follows: 

𝑗𝑘 =   (𝑦𝑓1∣𝑘+𝑖 − 𝑦𝑠𝑝1∣𝑘+𝑖)
2𝑄1+ (𝑦𝑓2∣𝑘+𝑖 − 𝑦𝑠𝑝2∣𝑘+𝑖)

2. 𝑄2 
𝑃

𝑖=1
+   ∆𝑢𝑓1∣𝑘+𝑖 

2
. 𝑅1 +

 ∆𝑢𝑓2∣𝑘+𝑖 
2

. 𝑅2          (6) 

        

where yf  is predicted future output, ysp is set point, Q is error penalty, R is input change 

penalty, ∆ 𝑢𝑓   is future input change and k is current sampling time.  

 

5. CONTROL STUDY 

 

The controller performances heve been evaluated based on the results obtained from 

set point tracking , disturbance rejection  and robustness tests andthe performance criteria 

used are  integral absolute error (IAE), integral squared error (ISE), and integral of time 

absolute error (ITAE).  

 

5.1 Set Point Tracking Test  

In this test, the set point 1 value are 0, 5.4966, 4 and 5.4966, meanwhile set point 2 

are 0, 0.424, 0.2708 and 0.424, were changed every 2 hours in order to bring MTBE purity 

from 95% (low quality), to 99% (high quality) and 97% (medium quality), respectively. The 

resulting CV profiles are shown in Fig 4. From the figure, the CV1 profile can be tracked very 

well , however the CV2 profile has shown slightly overshoot at the beginning of step changes 

(t = 2  2.3). The CV2 also show small value of offset but the amount of error calculated is still 

very small with ITAE value at 1.55%. 

 

Fig. 4. Setpoint test profile of CV1 and CV2 using NWMPC 
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5.2 Disturbance rejection Test 

 

Fig. 5. Disturbance rejection test profile of CV1 and CV2 

The disturbance rejection study is performed by changing the feed flowrate at 30% 

from the nominal value. The duration of the change is 0.2hour (3 until 3.2 hours). The result 

of CV1 shows that NWMPC is able to reject the disturbance (within 0.5 hour) and bring back 

the CV1 back to its original set point as shown in Fig. 5. On the other hand, for CV2, the 

NWMPC needs longer time to reject the disturbance imposed. It can also be observed in 

Fig.5 that amount of the deviation occur for the CV2 profile is quite big which caused by the 

reaction and separation process in this tray
[1]

. 

5.3 Robustness test  

In this test, the column efficiency was change to 80%, without change the NMPC 

parameter. With the new initial conditions due to this efficiency change, at the steady state 

condition, the MTBE purity obtained is 95.24%, while the temperature of tray number 3 and 

8 are 93.92 
o
C and 126.96 

o
C, respectively. In this test, set point step were varied from 0, 7, 4, 

and 7 for CV1, meanwhile for CV2 were 0, 0.75, 0.39 and 0.75 with switching time of 2 hours 

applied. For T3 (CV1) profiles, the NWMPC controller managed to bring the CV1 to follow 

the set-point even though the tray efficiency of the column was reduced as shown in Fig. 8. 

Meanwhile the CV2 profile shows an overshoot at the beginning of set point change and then 

converged to steady state. The performance criteria (error information) of CV1 and CV2 are 

tabulated in Table 2.  The table shows that, overall, the NWMPC manage to control tray 

temperature of MTBE RD very well.  

 

Fig. 6. Robustness test profile of CV1 and CV2 
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Table 2. Error calculation of Set Point Changing, Disturbances Rejection and Robustness 

tests 

 NMPC NW 

Set Point Changing 

Test  

Disturbances 

Rejection test 

Robustness test 

Y1  Y2  Y1 Y2 Y1 Y2 

IAE   0.5009  0.4958  0.4511   0.1072  0.6529 0.1029 

ISE   0.6740   0.4872  0.2601   0.1986  0.3979 0.0570 

ITAE   1.5627  1.5479  0.7502  0.2684  2.3473 0.4184 

 

6. CONCLUSION 

 

NWMPC using SQP optimizer has successfully applied to control tray temperatures 

in the MTBE reactive distillation. The NWMPC was then evaluated based on set point 

tracking, disturbance rejection and robustness test. The results achieved showed that 

NWMPC has successfully controls the CV1 and CV2 with small value of error. 
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