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ABSTRACT 

 

The eventuality of recurrent fractures on the adjacent level of fractured vertebra is 

becoming prevalent in this era. To date, the underlying cause of this phenomena is either due to 

low bone quality or adverse geometrical changes of the vertebral body, as a result of osteoporosis 

and vertebral compression fractures (VCFs). To further investigate the determinant factor of this 

phenomenon, an image based finite element analysis (FEA) was used to scrutinize the 

biomechanical response of spines that have been afflicted by different types of spinal deformities, 

namely; wedge-shaped, fish-shaped and plana-shaped vertebrae. The evaluation was made based 

on its structural integrity in accordance to stress and strain distributions, and fracture risks 

prediction. These findings were then further corroborated by evaluating other associating factors 

such as kyphotic deformity angle and bone density distribution in order to find the underlying 

cause of this symptom. The results showed that the low bone density due to osteoporosis has 

become the dominant factor in inciting the risks of subsequent fractures on the adjacent vertebrae. 

This is based on the contradictory relation between the number of the failure elements 

distributions and the degree of the kyphotic deformity angle, as described by the wedge-shaped 

vertebral fracture model. Obviously, the most highly structural deformed vertebra still could 

withstand any kinds of high input loads, provided that its structural formation is still intact and 

has not severely affected by osteoporosis. 

The high incidence of subsequent fractures following Balloon Kyphoplasty (BKP) in 

both the augmented and adjacent vertebrae is quickly becoming a clinically unresolvable 

complication. The underlying cause of this phenomenon is still unknown and to date medical 
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practitioners are still unable to explain the fundamental cause of this phenomenon. To verify this 

claim, an image-based finite element analysis was used to investigate the effectiveness of BKP 

treatment of pre-operative and post-operative osteoporotic spine models. The three-dimensional 

(3D) non-linear finite element (FE) models of the thoracolumbar spine (T11-L3) were developed 

from CT-scan images. The biomechanical responses were evaluated based on the models’ load 

sharing mechanisms, load transfer mechanisms, stiffness recovery, stability, and kyphotic 

deformity restoration. The margin of safety for each of the models was evaluated under 

incrementally increased loads (1-10kN). This margin would be determined based on the fracture 

risk evaluation in accordance to the associated onset fracture load. The results showed that the 

BKP procedures play a significant role in enhancing the structural integrity of the treated spine 

by lowering the effect of the bone fracturing and optimizing the biomechanical alterations up to 

its pre-fracture level. However, the phenomenon of high incidence of vertebral bone failures on 

the augmented and its neighboring vertebrae indicates that the osteoporosis severity is the most 

influential factor in determining the sufficiency of the BKP treatment.  

Cage subsidence, pedicle screw loosening and instability are the most prevalent posterior 

lumbar interbody fusion (PLIF)-related complications. These may be attributed to interrelated 

mechanical, biomechanical and environmental factors. Current advancement in medical 

treatment has paved the way for the implementation of unilateral cages in an oblique position to 

overcome unintended mechanical and clinical shortcomings. To verify this claim, an image-

based finite element analysis (FEA) was used to evaluate several factors; cage subsidence, screw 

loosening and PLIF construct stability via stress profiles, fracture risk prediction and range of 

motion (ROM) evaluations in the different type of cage materials and cage orientations. 

Obviously, obliquely-placed unilateral fusion cage constructs with PI exhibited the most reliable 
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biomechanical constructs by showing the smallest ROM and producing the minimal distortion 

stress at the cage-endplate and pedicle screw-bone interfaces. Moreover, these results also 

showed good agreement with the results obtained using fracture risks assessments by showing 

the lower numbers of deformation elements at the both contact interfaces in normal and 

traumatic events. In conclusion, biocompatible cage materials and structural symmetry are the 

most important criteria in achieving biomechanical advantage in PLIF surgery.   
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CHAPTER I 

 

 

Introduction 

 

 

1.1. Background of study 

Osteoporosis is a disease characterized by low bone mass and micro-architectural 

deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to 

fracture [1]. Osteoporosis affects over 200 million people worldwide [2], with an estimated 10 

million osteoporotic patients in Japan alone [3]. This kind of bone-related pathology is the most 

common disease affecting both men and women, and it is becoming increasingly prevalent in an 

aging society. Basically, osteoporosis could affect the entire skeleton; however, the most 

prevalent fracture site occurs in the spine [4]. In the United States, about 1.5 million fractures 

due to osteoporosis are reported annually including over 700,000 vertebral fractures [5]. Fracture 

resulting from osteoporosis leads to significant pain, deformity, disability, morbidity, mortality 

and economic burden. Moreover, the survival rate of the patient afflicted by osteoporosis fracture 

is totally dependent on how early the symptom could be detected. It was reported that if the 

symptom is detected within a year form its initial state, the survival rate would be as large as 

72%. However, if the symptom is spotted after five years from its initial condition, the survival 
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rate would drop significantly to only 28% [6]. Therefore, with the prediction that life expectancy 

is continuously on the rise, the understanding on the specific treatment for osteoporosis is 

extremely important in order to improve the quality of life so that proper preventive and 

precautionary measures could be established in advance.  

 

1.2. Spine 

Human spine (Figure 1(a)) is made up of 33 individual bones called vertebrae. The 

primary function of the vertebrae is to provide body’s upright support and to protect the spinal 

cord from injury. The vertebrae are stacked on top of one another in a flexible curved structure 

and they are divided into four segments namely; cervical (neck), thoracic (chest/trunk), lumbar 

(low back) and sacrum (pelvic). The cervical spine, thoracic spine, lumbar spine and sacrum 

spine is made up of seven cervical vertebrae, twelve thoracic vertebrae, five lumbar vertebrae 

and five sacral vertebrae, respectively. First lumbar vertebra has been identified as the weakest 

region in the spine because it is located at the most critical inflection point of the spine, in which 

the combination of bending forward and downward pressure will generate excessive pressure on 

the vertebral body [4]. The spine is also surrounded by muscles and ligaments to provide support 

and stability to the spine and the upper body (Figure 1(b)). Strong ligaments connect the 

vertebrae and help keep the spinal column in position.  

Intervertebral disc (Figure 1(c)) lies in between the vertebrae. In total there are twenty 

four intervertebral discs in the human spine. They are round and flat, and about a half inch thick. 

Its primary function is to act as a shock absorber between each of the vertebrae in the spinal 

column by keeping an appropriate distance between the vertebrae when there is an impact from 
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activity. Besides, they also serve to protect the spinal cord and its branches (nerve roots) from 

injury. Intervertebral disc is made up of two components. The outer part of the disc is known as 

annulus fibrosus and the inner part of the disc is called nucleus pulposus. The annulus fibrosus is 

composed of a ring of strong ligament fibers (collagen type II) and its primary function is to hold 

the nucleus pulposus in place. The nucleus pulposus is fabricated from a jelly-like substance 

(collagen type I) and it serves to provide disk flexibility and strength. The combination of these 

two elements allow the spine movements to take place as well as maintaining the strength of the 

spine.  

Facet joints are a small joints act as a hinge that provide flexible movement and stability 

to the spinal column. There are two set of facet joints for each vertebra that link vertebrae 

together. One pair which is facing upward is known as superior articular facet, while the other 

pair which is facing downward is called inferior articular facet. Facet joints are composed of 

fluids that protects and lubricates the joints, and they are encapsulated in facet joint capsules. 

These characteristics is significant in allowing the vertebrae to move smoothly without crashing 

to each other.  

Generally, vertebra can be divided into two important segments namely; anterior 

(vertebral body) and posterior column (vertebral arch). The anterior and posterior column of the 

vertebra carries 75% and 25% of the compression load across the spine, respectively [6]. In 

general, vertebral bone is made up of a complex network of trabeculae encapsulated in a thin 

cortex made of cortical bone. Even though both the anterior and posterior column are having the 

similar bone compositions, the vertebral arch has relatively thicker coverings of cortex as 

compared to the vertebral body. The vertebral endplates which are located at the superior and 

inferior surface of a vertebral body play an essential role in preventing vertebral failures, 
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especially in a condition when a surgical intervention is believed could technically alter the load 

transfer mechanisms of the affected and its neighbouring vertebrae [6].  The endplate is covered 

with a layer of fibrocartilage linked to intervertebral discs. 

 

Figure 1: Anatomical compositions of human spine: (a) Spinal column [7], (b) vertebral 

muscle and ligament [8] and (c) intervertebral disc composition [9].  
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1.3. Osteoporosis 

Osteoporosis is a disease characterized by reduced bone mass due to imbalance between 

bone formation and bone resorption [10], resulting in a loss of bone density and a change in 

trabecular bone micro-structure (refer to Figure 2(a)), with a consequent increase in bone 

fragility and susceptibility to fracture. This condition is due to altered bone remodeling cycle 

(Figure 2(b)) that increase in the length of the remodeling cycle and reduced capacity to lay 

down a new mineralized bone matrix [11].  

In a normal condition, the trabecular bone is made up of densely packed, highly 

connected, thick, and plate-like trabeculae structures (Figure 3(a)). With the progression of 

osteoporosis, the trabecular bone micro-structure transforms into a poorly connected, thin, and 

rod-like trabeculae architectures (Figure 3(b)) [10, 12-13]. The transformation occurs through 

the progressively thinning of the individual trabeculae, perforation of the transverse trabeculae 

micro-structure, growing space between trabeculae, and increasing structural anisotropy in the 

direction of loading. In addition, due to higher remodeling rates of trabecular bone as compared 

to cortical bone, osteoporosis is presumed to affect trabecular bone to a larger extent than cortical 

bone [14]. Even though osteoporosis is always attributed to trabecular bone, studies have also 

found that osteoporosis could also cause a vast depreciating on cortical bone that subsequently 

ends in bone fracturing [15,16].   

Osteoporosis is remarkably known as a ‘silent disease’ due to its asymptomatic nature, 

and for that reason it is frequently undiagnosed and improperly treated until fracture occurs. 

Basically, the use of drug therapies to treat osteoporosis is futile once the trabecular bone 

structure has been badly degraded. In other words, the efficacy of any related treatments would 
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be diminished as osteoporosis progresses, making early diagnosis critical for the management of 

the disease [17].  

 

Figure 2: (a) Normal and osteoporotic vertebra [18], and (b) healthy bone remodeling cycle [11]. 
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Figure 3: Micro-CT images of calcaneus trabecular bone samples for (a) healthy – plate-like 

structure and (b) osteoporosis – rod-like structure [16]. 
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1.4. Vertebral Compression Fractures (VCFs) 

The structural changes occurring upon osteoporotic bone have resulted in a formation of 

low energy fracture that may lead to increased risk of fractures, with the most prevalently 

reported fracture sites occurring in the spine. Generally, osteoporosis-related vertebral fractures 

are common in men and women, and this condition indicates a greater tendency of recurrent and 

new fractures occurring either in the spine or hip [19]. Moreover, it has been reported that only 

one third of the osteoporosis-related vertebral fractures could be detected, as a large portion were 

thought to be asymptomatic [20-21]. VCF was reported to be the most common osteoporotic 

fractures that can occur in the most severe cases of osteoporosis [22]. It is associated with 

chronic back pain, increased risks of hip fractures and cardiopulmonary complications, reduced 

individual’s mobility, and severed physical debilitation [23]. VCF can be easily recognized by a 

partially collapse of the vertebral bodies, which is radiographically represented by a reduction of 

15% to 20% of the vertebral height as compared to its adjacent vertebrae. The need to prevent or 

detect fractures is very crucial as the occurrence of VCF increases the chance of additional 

fractures by 500% [24]. 

In clinical practice vertebral fractures can be determined by quantitatively analyse a 

thoracolumbar region in a lateral view via conventional radiograph instrumentations. Commonly 

vertebral fractures can cause alteration in geometrical appearance of a vertebra, however 

fractures are not the only contributor of all vertebral deformities. To further investigate this 

matter, the anatomical changes of the vertebrae must be thoroughly investigated through 

additional radiographic projections or by complimentary examinations such as CT or MRI scans. 

Basically, vertebral fractures can be classified into wedge-shaped, plana-shaped and fish-shaped 

vertebral fractures according to the standard six-point morphometry method [25-26]. The 
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classification is made based on the vertebral body height reduction at the anterior, central and 

posterior of the superior and inferior endplates of vertebra (refer to Figure 4). Based on this 

method, the wedge-shaped vertebral fracture is defined when the anterior body height decreases 

with the ratio of A/P less than 0.75, the fish-shaped vertebral fracture is defined when the central 

of the vertebral body decreases with the ratio of C/A less than 0.8 or C/P less than 0.8, and the 

plana-shaped vertebral fracture is defined when the whole vertebral body height decreases by 

more than 20% of its initial height.  
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Figure 4: Classification of vertebral compression fractures, (a) six-point morphometry and (b) it 

corresponding vertebral fractures [25-26].  

 

 

 

Wedge vertebra 

Fish vertebra 

Plana vertebra 

(a) 

(b) 

1 
2 3 

4 5 
6 

(a) 



11 | P a g e  
 

In recent years, a more comprehensive method has been put in place to evaluate and 

diagnose the occurrences of vertebral fractures called semi-quantitative (SQ) assessment method 

(refer to Figure 5) as proposed by Genant et al. [27]. This method is superior than the six-point 

morphometry method due to the fracture classification that is not only focused on the vertebral 

height reduction, but also careful attention is given to alterations in the shape and configuration 

of the vertebrae relative to adjacent vertebrae and expected normal appearances.   
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Figure 5: Semi-quantitative (SQ) assessment method [27]. 
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1.5. Vertebroplasty and Kyphoplasty 

Vertebroplasty and kyphoplasty are minimally invasive treatments performed to repair 

spinal fractures. These treatments are used to replace conservative treatments such as bed rest, 

pain medications, and braces, which are considered practically slow to relieve pain and to gain 

full recovery. By injecting bone cement into the fractured vertebral body, the possibility of 

recurrent fractures can be significantly reduced. This is because the rectification elements of such 

procedures are intended to improve the vertebral body’s structural strength and height to the 

point that is closer to its pre-fracture level. Biomechanical studies have also shown that the 

inclusion of bone cement into the fractured areas can significantly reduce endplate deformation, 

as well as time-dependent creep deformation [28].  

Vertebroplasty and kyphoplasty are almost similar procedures (refer to Figure 6). Both 

are performed through a hollow needle insertion to the fractured vertebra. In vertebroplasty, bone 

cement such as polymethylmethacrylate is injected through the hollow needle into the fractured 

bone. In kyphoplasty, a balloon is first inserted and inflated to expand the compressed vertebra to 

its normal height before filling the space with bone cement. Naturally, without treatment, the 

fractures will eventually heal, but in a collapsed position. At this point, kyphoplasty procedure 

appears to surpass the capability of the vertebroplasty procedure by allowing the vertebral body 

height return to its normal position before the bone hardens. Patients who have undergone 

kyphoplasty procedure reported to have experienced significantly less pain post-operatively as 

compared to vertebroplasty procedure [29]. However, it has to bear in mind that those procedures 

require that the vertebral body height reduction should not exceed more than 65% of its initial 

height [30]. Apparently, beyond this limit more complex surgical procedures are necessary to 

overcome this problem. Therefore, high-end medical instrumentations are required to perform 
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surgical intervention, which is associated with greater risks of medical complications especially 

in elderly patients [31]. A systemic review and meta-analysis comparing complications following 

kyphoplasty and vertebroplasty procedures have also found that vertebroplasty possess higher 

rates of complications, new vertebral fractures, and cement leakage compared to kyphoplasty 

procedure [32]. 
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Figure 6: Kyphoplasty (step ○1 -○4 ) and vertebroplasty (step ○3  and ○4 ) procedures; ○1  Balloon 

insertion, ○2  Balloon inflation, ○3  cement injection, and ○4  internal cast formation [33].  
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1.6. Spinal fusion 

Spinal fusion is a surgical procedure to stop the motion at a painful vertebral segment, 

which in turn should decrease pain generated from the joint (refer to Figure 7). This surgical 

procedure is used to treat lumbar degenerative disc disease, lumbar spondylolisthesis, vertebral 

fractures, scoliosis, and other conditions including a weak or unstable spine (caused by infections 

or tumors). The primary purpose of this treatment is to relieve pain and stabilize the symptomatic 

spinal segment by fusing two adjacent vertebrae. The spinal segment is fused together through a 

solid bridge of bone substitute formation in the intervertebral disc space, which originates from 

an implanted bone graft. The bone graft provides the basis and atmosphere to allow the body to 

grow new bone and fuse two vertebral segments together via cage instrumentation. Posterior 

instrumentation typically consisting of rods and screws systems is deployed to form a solid 

construct and provide stability to the affected segment for the first few months after surgery, in 

which the bone graft does not form a fusion at the time of the surgery.  
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Figure 7: Interbody fusion surgery: (a) lateral view of CT-scan image of posterior 

lumbar interbody fusion and (b) graphical representations in posterior and lateral views of 

combined anterior/posterior arthrodesis using anterior lumbar interbody fusion [34].  
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The interbody graft material can be obtained either through autograft or allograft. The use 

of autograft is advantageous due to its complete biocompatibility, in which tissue or bone 

replacements are taken from a part of the person’s own body. However, patients who undergo 

this procedure have to bear increased post-operative pain coming from the donor and treated sites. 

Moreover, this procedure is unsuitable for patients who have been diagnosed with osteoporosis, 

where they are not able to provide good or sufficient graft materials. For that reason, allograft 

seems to be the best alternative solutions. With allograft the recovery time may be slower and it 

poses a greater likelihood of bone graft failures. However, there is no second procedure required 

to remove and transfer a portion of the patient’s native bone or tissue.  Therefore, surgical time 

may be minimized, postoperative discomfort reduced, and patients may be back to normal 

activities more quickly. This proved that the clinical significance between both of these 

procedures is still elusive. Hence, further corroboration of their usability is needed in order to 

further optimize the clinical outcome of the treatments.   

Basically, bone graft substitutes are not structural and therefore a complimentary assistive 

device is required to hold it in place while the bone graft substitute heals. Typically, spinal 

implants/cages/spacers are either manufactured out of a metal product (e.g. titanium), plastic (e.g. 

polyetheretherketone (PEEK)), or carbon fiber. To date, PEEK-based cage is the most reliable 

tool of interbody fusion surgery due to its Young’s modulus (3.6 GPa) that is much closer to that 

of cortical bone (12 GPa) [35]. Apparently, by having low stiffness mismatch the stress shielding 

effect can be reduced as well as improved the load sharing mechanisms between the cage and the 

vertebral bone that leads to achieving higher fusion rates eventually. Cages are mainly used to 

achieve the required mechanical support which is not given by either allograft or autograft until a 
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fusion occurs between the vertebrae. They are also used to spread the two vertebrae apart, which 

allow more room for nerve roots, as well as decreasing pinching and irritation on the nerves.  

Obviously, there are several types of complications associated with the usage of the cage 

interbody fusions. The most prevalent complications are cage migration, cage subsidence, injury 

to spine and nerves, and infection. To date there are many types of interbody fusion devices 

(Figure 8) available in the market with some of them having been approved for use by the 

United States Food and Drug Administration (FDA). Just to name a few such as horizontal 

cylinders, vertical rings and open boxes or rectangular cages. 
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Figure 8: Different types of cages (titanium coated PEEK disk cages) [36].  
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Posterior instrumentation (refer to figure 9) consists of pedicle screws and rods system. 

The primary function of this construct is to prevent motion at the segments that are being fused. 

The pedicle screw provides a means of gripping a spinal segment. The screws themselves do not 

fixate the spinal segment, but act as a firm anchor point that can then be connected with a rod. 

Many surgeons believe that pedicle screws enhance patient recovery because they provide 

immediate stability for the spine and early mobilization for the patient. The rod is used to 

connect the screws and this structure is important in terms of supporting and transferring loads 

between vertebrae and pedicle screws.  

There are many types of spinal fusion surgery options. The most commonly utilized 

method includes: 

� Posterior lumbar interbody fusion (PLIF) 

� Anterior lumbar interbody fusion (ALIF) 

� Transforaminal lumbar interbody fusion (TLIF) 

� Posterolateral gutter fusion 

� Extreme lateral interbody fusion (XLIF) 

� Anterior/posterior spinal fusion 

It is important to note that with any types of spine fusion, there are a risks of clinical failure 

despite achieving a successful fusion.  
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Figure 9: Posterior instrumentation (rods and screws system) [37]. 
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1.7. Aims and Objectives 

The aims of this study were to corroborate the biomechanical behaviors of vertebral 

compression fractures (VCFs), and identify variables that influence the compatibility of its 

associated surgical interventions of kyphoplasty and interbody fusion surgeries, so that the risks 

of subsequent fractures could be avoided and surgical management could be optimized in the 

future. For that purpose, an image-based three dimensional (3D) finite element analysis (FEA) 

models of normal and osteoporotic thoracolumbar spines were obtained and developed in Finite 

Element (FE) platform to closely imitate the real mechanical behavior of human spine. The aims 

of this study were attained through the following objectives: 

� To quantitatively analyze the structural integrity and fracture risks assessment of 

thoracolumbar spine with different types of VCFs namely; wedge-shaped, plana-shaped 

and wedge-shaped VCFs.  

� To quantitatively analyze the load transfer mechanism, load sharing mechanism, stiffness 

recovery, stability and kyphotic deformity restoration of pre-operative and post-operative 

vertebrae that have undergone Balloon Kyphoplasty (BKP) treatments.  

� To quantitatively investigate the phenomenon of cage subsidence, PLIF construct 

stability and pedicle screw loosening phenomena in four different sets of PLIF constructs 

and to identify the most effective surgical intervention modalities.  

The originality of this study lies on the development of inhomogeneous FE models of intact 

vertebrae with real BKP and simulated PLIF cage constructs based on the bone strength 

assessments and failure risks prediction patterns. Apparently, this study was an enhancement of 

the previous studies, which were lack of biomechanical considerations and spine features that 

can hinder the imitation of the real spine environment.   
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CHAPTER II 

 

 

Research Methodology 

 

 

2.1. Finite element modelling  

The FE models were constructed in MECHANICAL FINDERTM software (Research 

Center of Computational Mechanics Co. Ltd. Japan). Written informed consent, permission and 

cooperation of the subjects involved in this research were obtained prior to participation in the 

study. To create the FE models, CT scan images of the subjects were taken and transferred to the 

FE software. The FE models were constructed based on the extracted bone edges of the region of 

interests (ROIs) around the outer region of the cortical bone to obtain the anatomical structure of 

the spinal bone (refer to Figure 9). The vertebral bodies were defined as cancellous bone core 

surrounded by a 0.4 mm thick cortical shell. The cancellous bone, intervertebral discs and facet 

joint cartilages were modelled with 1.0 mm solid tetrahedral elements while the cortical bone 

was modelled with 1.0 mm linear shell triangular elements (refer to Figure 10). 
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