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ABSTRACT 

The need for high-speed printed circuit board design whilst maintaining signal integrity 

and EMC standards have increased over the years in the modern integrated circuitry 

field. The use of electromagnetic bandgap structures (EBGs) have been demonstrated to 

provide excellent reduction of electromagnetic interference (EMI). In this study, a three 

by three planar of spiral, with and without patch were designed, simulated and fabricated 

on a low-cost FR4 substrate with permittivity of 4.3 and thickness of 1.6 mm. The 

designs of spiral EBGs with and without patch have the dimensions of 36 mm x 36 mm 

covering 9 unit cells. The performance of the designed EBGs were simulated and 

measured experimentally, and it was found to be in acceptable agreement. It was found 

that the spiral EBG without patch experienced a bandgap that covers from 4.5 to 6.3 

GHz by using a dispersion diagram. Conversely, the bandgap for the spiral EBG with 

patch structure was found to be from 4.5 to 7.8 GHz with wider bandwidth. Owing to 

the desirable results demonstrated by the spiral EBG design with patch, it was then 

integrated into the high-speed circuit design to suppress the EMI emitted by the board. 

In this work, two low and three high-speed PCB designs were fabricated to track the 

desired EMI levels above 4.5 GHz. The third design of the high-speed PCB emitted the 

highest radiation emission (4.54 GHz) was selected for integration. The spiral EBG with 

patch structure successfully suppressed the EMI that occur at 4.54 GHz. Its effectiveness 

further suggests that the proposed EBG spiral with patch structure design is appropriate 

for EMI suppression that may occur from 4.5 to 7.8 GHz.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Controlling emissions and interferences have become a necessity in the design and 

manufacture of electronic devices for both civilian and military use. It is more cost 

effective to design a product with suppression designed into the printed circuit board 

(PCB) than to "build a better box." Containment measures are not always economically 

justified and may degrade as the electromagnetic compatibility (EMC) life cycle of the 

product is extended beyond the original design specification. For example, users usually 

remove covers from enclosures for ease of access during repair or upgrade. In many cases, 

sheet metal covers, particularly internal subassembly covers that act as partitioning shields 

are never replaced. The same goes for blank metal panels or faceplates on the front or rear 

of a system that contains a chassis or backplane assembly. Consequently, containment 

measures are compromised, and EMC with the end-use environment is affected. Proper 

layout of a PCB, with suppression techniques implemented, assists EMC compliance at 

the level of cables and interconnects, whereas box shielding (containment) does not. 

Electrical engineers may focus on analog, digital, or system-level products but, 

regardless of their specialty, whatever they produce must be suitable for production. More 

often than not, the emphasis is placed on the functionality rather than on system 

integration. System integration is customarily assigned to product engineers, mechanical 

engineers, or others within an organization. Design engineers must now consider other 

aspects of the product design that includes the layout and production of PCBs that 

conforms to the EMC radiated emission tests such as CISPR 22 and CISPR 14-1. In 
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addition, the cost must be minimized during design, test, integration, and production. If a 

product fails to meet regulatory compliance tests (EMC and product safety), redesign or 

rework may be required.  

 

1.2 Problem Statement 

Electromagnetic radiation of high-speed circuits is considered as one of the most critical 

challenges to the electromagnetic interference (EMI), compatibility and reliability of 

electronic systems. The world of EMI and EMC design has undergone significant changes 

as the speed of processors, clocks, and digital communications links have increased. EMI 

is a complex mechanism that takes place at different levels including the chassis, board, 

component, and finally, the device level. There are many techniques of EMI suppressions 

to face this critical challenge such as shielding and filtering. Shielding is used to reduce 

the amount of electromagnetic radiation reaching a sensitive victim circuit. Shields are 

made of metal and work on the principle that electromagnetic fields are reflected and/or 

attenuated by a metal surface. Shielding can be a stand-alone solution, but it is more cost-

effective compared to other suppression techniques such as grounding, filtering, and 

proper circuit-board design to minimize the loop area. Unfortunately, designers often 

leave shielding as a last option since the shields can be installed once the design is 

completed. Thus, this will increase the cost as the shielding will be customized to the 

actual radiating components on the printed board. If a metal enclosure is to be used, its 

shielding effect should be utilized. However, it is always better to reduce the noise inside 

the box than to rely on the shielding effectiveness (Texas Insturment,2010). Filters or 

decoupling capacitors are used to eliminate EMI and can be installed at either the source 

or the victim. It was investigated by (Montrose, 2011) that the magnitude of radiated 

electromagnetic interference (EMI) is significant based on physical placement of 

decoupling capacitors to digital components. The proposal of EBG structure for EMI 

suppression on high speed PCBs will overcome the drawback of using shielding or 

decoupling capacitors. This study employs new method that impelement the integration 

of EBG structures into the PCB design to achieve EMI suppression with cost effictive 

technique. 
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1.3 Research Objective 

(i) To design an EBG structure that operates within a frequency range of 4 to 8 GHz 

where existing methods have limitations for this frequency rang. 

(ii) To validate the simulation of the proposed EBG structure through experimental 

works. 

(iii) To design high source of radiated emission within frequency level of 4 to 8 GHz. 

(iv) To investigate the effectiveness of the EBG in reducing the EMI by integrating it into 

a bad high speed PCB design that produce high radiated emissions.  

 

1.4 Research Scope 

This work focused on the design, modeling and implementation of electromagnetic band 

gap (EBG) structures and high radiated emission source in the form of high speed printed 

circuit board. This work is devoted to design and model a planar EBG structure to be 

implemented for EMI suppression on high speed PCBs. The design of an EBG structure 

covers the frequency band within 4 to 8 GHz. At this frequency band of radiated 

emissions, the existing methods have not been costly effective such as shielding or are not 

efficient enough for high radiated noise. Therefore, the EBG structure will overcome this 

issue due to its unique behavior at such frequencies. 

The research included three by three spiral EBG with and without patch array. 

Both designs have been simulated and measured using the commercially available 

software Computer Simulation Technology, CST and Advanced Design System, ADS.  

For measurements, the Agilent Vector Network Analyzer is used to validate the 

transmission coefficient (S21) of the proposed spiral EBG designs.  

This work also focused on the design of high source of radiated emissions at 

frequency band greater than 4 GHz. Thus, several designs have been implemented using 

SPICE tool which was proteus simulator and went under radiated emission test defined by 

CISPR22 regulations by using semi anechoic chamber, SAC at the Research Center of 

Applied Electromagnetics-Universiti Tun Hussein Onn Malaysia. Finally, the source of 
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high radiated emissions was selected according to the RE test readings and ready for 

integration stage. A new method of EMI suppression on noisy printed circuit board was 

developed and implemented by integrating spiral EBG with patch structure into the PCB 

board. Then, the developed integration went under radiated emission test for EMI 

detection.  

 

1.5 Research Contribution 

(i) The integration of EBG structure into PCBs was introduced for the purpose of 

reducing the EMI levels.  

(ii) This research proposed spiral with and without patch EBG designs that have unique 

structure that exclude the existing of vias. This will make it practical to be integrated 

into many layers PCBs.  

(iii) One of the techniques that reduce EMI on PCBs is applying decoupling capacitors. 

At high frequencies, this technique is not sufficient. This research proposed the 

integration of EBG structure into high speed PCB and shows significant improve to 

EMI levels. 

 

1.6 Thesis Outline 

This thesis consists of five chapters. The chapters are briefly outlined as follows: 

CHAPTER 1 explains the background, scope, research objectives and the problem 

statements of the project.  

CHAPTER 2 discusses the theory of EBG design and past related works. This 

chapter explains the basic parameter of electromagnetic photonics, different types of EBG 

with distinct design concept. The methods of analysis for the simulation software as well 

as the measurements were also explained. 

CHAPTER 3 describes the steps in designing two types of EBG structures and the 

integration of one type of the proposed EBG structures into the high-speed PCB design. 

The design begins with the mathematical representation of the lumped element model and 

followed by simulation, fabrication and finally the measurement.  
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CHAPTER 4 will present the results obtained from the study and followed by a 

discussion. The performances of all EBG structures and PCB designs that was simulated 

and verified experimentally.  

CHAPTER 5 concludes the project with some suggestions for future design 

improvements on both the PCB and EBG structures. 
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CHAPTER 2 

THEORY AND LITERATURE REVIEW 

2.1  Introduction 

Electromagnetic Interference (EMI) that affects electronic devices poses a critical 

challenge in the legalization of electronic equipment (Scogna, 2012). This challenge 

isfurther intensified by an increase in system integration motivated by the rise of clock 

functionality (Gagare & Kachare, 2014). EMI may be attributed to different hardware 

design stages including the device, the chip, the package, the printed circuit board, 

interconnects and components, the chassis, as well as the peripherals (Montrose, 2000).By 

meansofeither reducing radiated emission of the equipment or increasing their immunity 

to external interference, EMI could be reduced. Various strategies have been applied to 

mitigate such radiation emission unique to each of the aforementioned levels.  

Electromagnetic noise or interference may be reducedbut not limited to the isolation 

of critical components, shielding, matching, filtering, the addition of lossy materials and 

absorbers.Eliminating the source of EMI is clearly desirable, but does not necessarily 

translate or equate to a reduction in the susceptibility of the device to external sources.In 

astudy conducted by (Iravani, 2007), lossy material and absorbers were applied to isolate 

interference between apertures or antennas sharing a common reference plane. 

Nonetheless, although lossy materials have desirable electromagnetic features, 

mechanical and thermal properties that can severely limit their applicability, the cost, on 

the other hand, can be an important factor as these materials need to be engineered to work 

with specific frequency bands. 
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Electromagnetic Bandgap (EBG) structures that have been proposed over the past 

few years possess inherent features that make them important in EMI/EMC applications 

(Yang, 2009). Previous works investigated the effectiveness of EBG structures in the 

suppression of unwanted electromagnetic energy in several applications. EBG structures 

are sufficent to reduce the coupling of antennas (Zarrabi, Mansouri, & Rahimi, 2014). 

Shahparnia & Ramahi (Shahparnia & Ramahi, 2007), on the other hand, used the EBG 

patches to suppress propagating waves within the power planes and parallel plates of 

printed circuit boards.Shahparnia et al. (Shahparnia, Member, Ramahi, & Member, 2004) 

also utilized EBG to suppress the radiation from Printed Circuit Boards (PCB), and they 

were used in for signal integrity purpose. 

 

2.2 Electromagnetic Bandgap Structure 

EBGs have attracted researchers due to their ability to control and manipulate the 

propagation of electromagnetic (EM) waves which produce forbidden frequency gaps in 

which propagation is prohibited and allow certain frequency to pass (Zarrabi, Mansouri, 

& Rahimi, 2014). At the forbidden band gap, all the electromagnetic wave will be 

reflected. Basically, the EBG can act as reflector for stop band gap. At other frequencies 

it will act as transparent medium. The EBG functioning concept of passing and reflecting 

the EM waves is illustrated in Figure 2.1 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: EBG functioning concept  

EBG 

Incident wave at Stop 

band Frequency 

Reflected Wave 

Incident wave at Pass 

band Frequency 
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EBG structures consist of periodic cells. Studies were conducted by (Alam, Islam, 

& Misran, 2012) (Aminian, Yang, & Rahmat-Samii, 2003) (Phuong, Chien, & Tuan, 

2013) (Fei, Guo, Liu, & Wang, 2011) (Mohajer-iravani, Shahparnia, Ramahi, & Member, 

2014), reported that the unique properties of electromagnetic bandgap (EBG) structures 

have made them applicable to many microwave applications. Two main interesting 

features associated with EBG structures are suppression of surface waves and in-phase 

reflection coefficient for plane waves (Aminian, Yang, & Rahmat-Samii, 2003). EBG 

structures can also be used in microstrip antenna design to enhance antenna performance 

by means of surface wave suppression (Majid et al., 2014).The EBG design can be 

implemented and optimized based on the substrate material, design geometrics, via 

involvements, lumped element model as will be explain in next subtopics. 

 

2.3 Electromagnetic Bandgap (EBG) Classification 

Electromagnetic band gap material is also known as type of metamaterials, which is 

realized by a periodic arrangement of dielectric materials and metallic conductors. 

According to their geometric configuration, they can be classified into three categories: 

(1) one-dimensional transmission line, (2) two dimensional planar surfaces, and (3) three-

dimensional volumetric structures . Figure 2.2 shows an example of one-dimensional EBG 

transmission line design (Kim, Park, Ahn, & Lim, 2000). 

 

Figure 2.2: Example of 1-D EBG design (Kim et al., 2000) 
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Previous study of 2-D EBG structures by the name of mushroom-like EBG 

structure were proposed by (Sievenpiper, Zhang, Broas, & Yablonovitch, 1999). An 

example of a top view and side view of the Mushroom-like structure is illustrated in Figure 

2.3.  

 

Figure 2.3: Mushroom-like EBG Array (Sievenpiper et al., 1999). 

 

A study was conducted by (Ouassal, Shaker, Roy, & Chaharmir, 2016) shows an example 

of 3-D Multi-layer EBG structure that was comprised of 3-D Lattice of Square Rings as 

illustrated in Figure 2.4. 

 

Figure 2.4: A 3-D Slab EBG Structure (Ouassal et al., 2016) 
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2.4 EBG Characterizations 

There are several methods that were used commonly to investigate the frequency bandgap 

of EBG structures. The most common methods are the dispersion diagram, in-phase 

reflection, and scattering parameter as will be reviewed in the following subtopics. 

2.4.1 Dispersion Diagram 

For dispersion diagram method, the periodic boundary condition is considered on four 

sides of the unit cell. For the top of the unit cell a perfect matched layer (PML) boundary 

condition will be applied as an infinite periodic replication. The dispersion diagram has a 

vertical axis that shows the frequency and a horizontal axis that represents the values of 

the transverse wave number (kx, ky). The horizontal axis is defined by three remarkable 

points (Yang F., 2009): 

 

 Γ:    kx = 0,     ky = 0,                                               (2.1)                                               

 

                X:    kx = 2π/(W + g),      ky = 0,                              (2.2) 

 

                               M:    kx = 2π/(W + g),      ky = 2π/(W + g)               (2.3) 

 

where; 

Γ = reflection coefficient 

X = surface reactance 

M = wave factor 

W = width of the EBG cell 

g = gap of the EBG cell 

 

As shown in Figure 2.5 (a), the EBG unit cell structure that was designed by 

(Ouassal et al., 2016). The dispersion diagram of the unit cell is illustrated in Figure 2.5 

(b) where the variation of the parameter G has the effect on the bandgap as presented. 
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From the dispersion diagram, it is observed that the frequency band gap for the EBG unit 

cell shown in is between 5 GHz and 11 GHz considering G = 0.1 mm, which means that 

the surface wave inside this frequency band range will be suppressed. 

 

 

 

(a)                                                                  (b) 

Figure 2.5: (a) Simulated unit cell by dispersion diagram method (b) Dispersion diagram 

with different gap sizes G (Ouassal et al., 2016) 

 

2.4.2 In-phase Reflection 

Reflection phase of EBG structures is very interesting topic where they exhibit unique 

response and behavior. In-phase reflection, the reflection property will be described. It 

can be defined as the ratio of the reflected waves over the incident waves at the destination 

surface.  

The simulation model is realized by using an ideal TEM waveguide as illustrated 

in Figure 2.6. The periodic boundary conditions are assigned with perfect electric 

conductor, (PEC) in two parallel walls of the waveguide and with perfect magnetic 

conductor, (PMC) in the other two parallel walls. Thus, the adjacent walls offer perfect 

electric and perfect magnetic boundary conditions alternating circular around the 

longitudinal axis. The TEM wave is excited by a wave port travelling down the 

longitudinal axis of the waveguide.  
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Figure 2.6: Waveguide model of in-phase reflection method  

 

 

A study was conducted by (Islam & Alam, 2013) focuses on a compact uni-planar 

type EBG structure for a 2.4 GHz resonant frequency band is illustrated in Figure 2.7.  

 

Figure 2.7: Unit cell dimensions 

 

The reflection phase characteristic was examined with the simulated waveguide 

model as shown in Figure 2.8. The EBG unit cell was surrounded symmetrically by a pair 

of electric boundary and a pair of magnetic boundary planes whilst a wave port illuminated 

the surface from the top. The reflected phase from the EBG structure is normalized to the 

reflected phase from a PEC surface placed at the same height of EBG. 
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Figure 2.9 illustrates the reflection phase characteristic of the double-folded bend 

EBG structure. Reflection phase bandwidth is defined as the ratio of frequency bandwidth 

in which the reflection phase is between 90 ± 45° to the center frequency. The quadratic 

phase is necessary to obtain a good return loss (Yang & Rahmat-samii, 2003). The AMC 

point was located at 3.3 GHz, having a narrow bandwidth of 0.3 GHz (3.1 – 3.4 GHz). 

This method has the advantage of reduced time of simulations and ease.  

 

 

Figure 2.8: Waveguide model for unit cell simulations 

 

 

Figure 2.9: Reflection Phase Diagram of an EBG unit cell 
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The resonance frequency and the bandwidth of an EBG structure depends on the 

unit cell geometry together with substrate’s relative dielectric permittivity and thickness 

(Phuong, Chien, & Tuan, 2013). Patch and metallic widths plays an important role in 

determining the frequency band (Yang & Rahmat-samii, 2003). The effect of the EBG 

metallic width, by keeping other parameters like the gap width, substrate permittivity, and 

substrate thickness the same is illustrated in Figure 2.10 (a) and (b). 

 

 

(a)                                                                           (b) 

Figure 2.10: (a) Reflection phase of UC-EBG, (b) Frequency band vs. patch width 

(Yang & Rahmat-samii, 2003) 

 

The distance between adjacent patches or metallic elements is known as the gap width. 

The variation of the gap width may also affect the frequency band of the EBG surface too 

as shown in Figure 2.11 (a) and (b). 

 

 

(a)                                                                      (b) 
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2.4.3 Scattering Parameter 

In order to determine the transmission coefficient S21 of a finite structure considering the 

existing of a few periods, this method is used to find at which frequency the stop band is 

located. As the dispersion diagram assumes as an infinite structure without excitation, the 

scattering parameter method is much faster and somehow more realistic to what will be 

found in practice. Owing to use the strongly coupling structures, the characteristic of EBG 

is more obviously exhibited as compared to other techniques (Fan, Rong, Qing, Zhang, & 

Feng, 2003). This method is very similar to the implementation of an EBG as a filter.  

The suspended microstrip line method is used to find the surface wave suppression 

characteristics of EBG structures. This method has been proven in achieving the desired 

characteristics as compared to the classical monopole method. Figure 2.12 (a) and (b) 

show a design of 3 by 3 EBG planar that was examined by suspended microstrip line 

method (Alam, Islam, & Misran, 2012). It can be clearly seen that changing the 

geometrical parameters such as metallic width or patch size, affect the EBG characterstics 

based on the concept of total inductance associated with the EBG geometry as shown in 

Figure 2.13 (Alam, Islam, & Misran, 2012). By considering the bridge width to be 1 mm, 

the stop band of the structure is from 4.5 to 10 GHz. 

 

 

(a)                                                    (b) 

Figure 2.11: (a) Reflection phase of UC-EBG, (b) Frequency band vs. gap width 

(Yang & Rahmat-samii, 2003) 
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Figure 2.12: Three by three EBG planar (a) Front view and (b) Back view (Alam, Islam, 

& Misran, 2012) 

 

 

Figure 2.13: Transmission loss S21 of three by three EBG array with bridge width 

variation (Alam, Islam, & Misran, 2012). 
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2.5 Spiral EBG Structure Characteristics  

A study was conducted by (Lin, Fang, & Zhang, 2008) focused on EBG characteristics 

enhancement by designing spiral structure. This study shows the unique behaviors of 

spiral design compared to a conventional EBG design. The turns of the spiral forms an L-

C network due to the current flow on its metallic strips. Thus, this flow introduces an 

equivalent inductance L, where the gaps between the metallic sections introduce an 

equivalent capacitance C. As a result, a two-dimensional periodic L-C network is realized 

by a resonance frequency of the band-gap. The resonance can be determined by ω0 = 1/ 

LC. Figure 2.14 (a) illustrates the conventional EBG and spiral EBG structures in an array 

of 5 by 3 each. Suspended Microstrip line method was used for both designs. The 

transmission coefficient S21 is shown in Figure 2.14 (b). The spiral design showed 

significant enhancement around 3 GHz and was very obvious from 5 to 8 GHz. 

 

 

 

 

 

 

 

 

(a)                                                             (b) 

Figure 2.14: Transmission loss S21 of three by three EBG array with bridge width 

variation (Alam, Islam, & Misran, 2012). 

 

The spiral EBG structure has a unique behavior that makes it possible to decrease 

the center frequency of the band-gap. The shape of the structure is formed by cutting slots 
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on a metallic patch. In other words, it is possible to have more compact EBG structures 

but with the cost of lower bandwidth. A study was conducted by (Moghadasi et al., 2008) 

investigates the major parameter that can control the center frequency of the band-gap 

region which is the number of spiral turns in comparison to mushroom like EBG planar. 

The circular spiral EBG is shown in Figure 2.15 (a). The transmission coefficient of 3 by 

3 planar is illustrated in Figure 2.15 (b).   

 

 

 

 

 

 

  

 

(a)                                                         (b) 

Figure 2.15: (a) Circular spiral EBG structure (b) Transmission coefficient S21 of 

circular EBG planar (Moghadasi et al., 2008) 

 

The effect of turns on the center frequency and fractional bandwidth of the 

structure is investigated as shown in Table 2.1. The increase of the number of spiral turns 

results in lower center frequency and reduction in the bandwidth.  

 

Table 2.1: Turns effect on fC and BW reduction (Moghadasi et al., 2008)  

SPIRAL TURNS (T) fC  (GHZ) BW (%) 

1 3.32 22.40 

1.25 2.86 20.00 

1.5 2.44 16.80 

1.7 2.11 13.70 

(rin = d1 = d2 = 0.2 mm) 

 

As can be seen in Table 2.1, it is obvious that the center frequency of spiral 

structure has been reduced to 2.11 GHz and the related bandwidth to 13.70%.  
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2.6 An Overview of EBG Application for EMI Suppression on PCBs 

Developing printed circuit boards that will pass legally required EMC tests is not difficult 

by incorporating design techniques for EMC compliance (Montrose, 2000). A PCB is a 

dielectric structure with both internal and external wiring that allows components and 

interconnects to be mechanically supported and electrically connected. Interconnects 

between layers are by vias. These vias can be plated and filled with metal to provide 

electrical connection between layers. Solid planar structures provide power and ground to 

components. Signal lines are distributed among various layers to provide interconnects.  

An important consideration in the design and specification of a PCB includes both 

the propagation delay of a transmitted signal and crosstalk between circuits, traces, and 

interconnects (Sunil. R. Gagare, 2014). Board material has become more than just physical 

support for conductors. Materials used form part of the circuit, dictating length, width, 

and spacing of traces. It is worth noting that for frequencies above 500 MHz, signal traces 

becomes part of the circuit that includes distributed resistance, capacitance, and 

inductance. At higher frequencies, the dimensions of the transmission line play a 

significant role in defining performance as the sources of noise are lessnumerous and 

relatively easy to be identified to prevent possible antenna parts from being driven relative 

to one another by these sources (Hubing, 2003).Changing any dimension can dramatically 

alter the board performance. 

EBG materials have been widely considered in microwave circuits due to their 

unique electromagnetic properties for performance improving. The effectiveness of 

proposed EBGs through several PCBs by other researchers and its applications are 

discussed in the following subtopics.   

2.6.1 EBG Structure for SSN Suppression 
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In high-speed digital circuits, the flow of the time-varying currents through vias between 

in multi-layer PCB design, result in radiations as well as switching noise (SSN) which is 

often induced in such circuitries. This noise is created whilst many outputs of a digital 

circuit switch at the same time. In addition, SSN depends on the geometry of the PCB. 

Therefore, it cannot be quantified precisely. Current traces are another issue where various 

studies have been concentrated on modeling this phenomenon (Shahparnia & Ramahi, 

2007). The rapid increase of frequency clock is another primary source of switching noise. 

Recently, the uses of electromagnetic bandgap (EBG) structures have been 

introduced as an inexpensive effective method for SSN suppression in the gigahertz 

frequency bands (Shahparnia et al., 2004). By introducing the EBG structure to PCB 

design, it is possible to suppress switching and other noise generated within boards for 

frequencies in the gigahertz frequency range. In the work of (Shahparnia et al., 2004), the 

EBG cells have been surrounding the port of exitation as shown in Figure 2.16 (a) . Later, 

the boad was going under test by using a monopole antenna that will detect the radiated 

signals from the board as illustrated in Figure 2.16 (b). The results shows segnificant 

reduction of the incoming noise as shown in Figure 2.16 (c). 

 

 

     (a)                                                                                (b) 
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(c) 

Figure 2.16: (a) HIS EBG structure cascading board (b) Experiment set up of RE test.  

(c) Transmission coefficient S21 comparison of PCB with and without EBG structure.           

2.6.2 EBG Structures on Parallel-Plate 

In a study conducted by (Abhari & Eleftheriades, 2003), an EBG structure was initially 

designed by utilizing an approximate circuit model and characterized by analytical 

solutions using the transverse resonance method, as well as full-wave finite-element 

simulations as shown in Figure 2.17 (a). The designed EBG surfaces were fabricated and 

employed in a number of parallel-plate waveguides (PPW) test board. As can be seen from 

Figure 2.17 (b), the transmission coefficient S21 shows a bandgap from 1.95 to 5.3 GHz. 

These results are significant although the EBG structure was not integrated into high-

speed board with actual components. 

 

 

(a)                                                                 (b) 

Figure 2.17: (a) EBG structure on parallel plate. (b) Transmission coeffecient S21 

comparision of parallel plate with and without EBG structure.     

  

2.6.3 EBG Structure on Optical Transceiver 

Another interesting method to suppress the noise level was introduced with the use of 

EBG structure and the shielding scheme as shown in Figure 2.18 (a) (Kawase et al., 2011). 

Figure 2.18 (b) shows the field potential ratio at an observation point. The horizontal axis 

is frequency and the vertical axis is a power ratio which is defined as voltage at the 
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observer position over the output voltage from the dipole. This result shows the energy 

component of 21 GHz to 24 GHz is decayed when transmitted to the observer. Therefore, 

the existence of the stop band is at this frequency range. As shown in Figure 2.18 (c), eight 

diaphragms were set up in the waveguide. The size of the diaphragm was determined to 

be 12 mm × 3.9 mm × 0.6 mm with a spacing of 0.6 mm. A small dipole, as a noise source, 

is put into the wave guide on the left side 24.6 mm apart from the EBG.  The depth of 

diaphragms was one-quarter wavelength of the target frequency of 20 GHz. When the 

frequency of the incident wave target is 20 GHz, the top surface becomes a high 

impedance surface, and the incident wave is reflected by mode mismatch in the 

waveguide.  

The transmitted wave was measured at an observer position. Figure 2.18 (d) 

summarizes the peak emission values. Frequency ranges are per IEEE803.2ae and 10 

GFC. This work has shown significant improvement as observed especially at 20.3125 

GHz and 21.0375 GHz of horizontal polarization.  

                              (a)                                                                          (b) 

       (c)                                                                          (d) 

Figure 2.18: (a) Optical transceiver. (b) EBG structure and experimental set up. (c) 

Measured S21 at 5 cm distance by monopole antenna (d) RE test readings. 

 

 

2.6.4 Split-Ring Resonators on High-Speed Circuits 
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The work conducted by (Bait-Suwailam & Ramahi, 2010) suggested a novel concept for 

mitigating switching noise propagation on high-speed printed circuit boards. through the 

introduction of etching complementary split-ring resonators (CSRRs) on only one metallic 

layer of the printed circuit board as shown in Figure 2.19 (a). This behavior is in contrast 

to the split-ring resonator that suppresses the magnetic field as this technique suppresses 

electrical field. Furthermore, by cascading CSRRs, concentrically, a wide suppression of 

switching noise covering a wide frequency band can be achieved. The drawback of this 

design was the need of cascading to obtain a bandgap at high frequency. As illustrated in 

Figure 2.19 (b), the CSRR structure has a stop band from 3 to 7 GHz and from 7 to 10 

GHz.  

 

 

(a)                                                                 (b) 

Figure 2.19: (a) Complementary split-ring resonator PCB. (b) Transmission coeffecient 

S21 comparision of CSRR and solid board.           
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2.7 Summary 

EBG structures with their modeling procedure, classifications and operation 

characteristics, including several applications of EBG applied for EMI reduction on PCBs 

have been presented and reviewed. Electromagnetic bandgap structures were reviewed 

with their capability of suppressing EMI on PCBs. The useful applications of deploying 

2-D EBGs were addressed and their advantages and disadvantages were identified in terms 

the overall operation performances.  

The existing researches have illustrated good agreement with the theoretical 

background of the EBG. In this work, spiral EBG structures will be designed and 

fabricated based on the  lumped-element model. Spiral EBGs have the advantage of 

smaller size, lower cost, and wider bandwidth characteristics. The substrate material that 

will be used is FR4 due to its low cost and availability. The EBG structure will not involve 

vias to make the design easier to be integrated into PCBs as well as its fabrication.  

The methods of dispersion diagram and suspended microstrip line will be used for 

the purpose of analysis the characteristics of proposed EBG design. On other hand, this 

work proposes a high-speed PCB that will be involved to ensure the existence of high 

radiated emissions by violating some of EMC guidance. These violations will increase the 

radiation level. In addition, the passive components will be used with the alert of their 

behavior at high frequency. Finally, the proposed EBG and high-speed PCB will be 

integrated for the purpose of EMI reduction.  
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