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A B S T R A C T

A finite strain constitutive model to predict the deformation behaviour of orthotropic metals is developed in this
paper. The important features of this constitutive model are the multiplicative decomposition of the
deformation gradient and a new Mandel stress tensor combined with the new stress tensor decomposition
generalized into deviatoric and spherical parts. The elastic free energy function and the yield function are
defined within an invariant theory by means of the structural tensors. The Hill’s yield criterion is adopted to
characterize plastic orthotropy, and the thermally micromechanical-based model, Mechanical Threshold Model
(MTS) is used as a referential curve to control the yield surface expansion using an isotropic plastic hardening
assumption. The model complexity is further extended by coupling the formulation with the shock equation of
state (EOS). The proposed formulation is integrated in the isoclinic configuration and allows for a unique
treatment for elastic and plastic anisotropy. The effects of elastic anisotropy are taken into account through the
stress tensor decomposition and plastic anisotropy through yield surface defined in the generalized deviatoric
plane perpendicular to the generalized pressure. The proposed formulation of this work is implemented into the
Lawrence Livermore National Laboratory-DYNA3D code by the modification of several subroutines in the code.
The capability of the new constitutive model to capture strain rate and temperature sensitivity is then validated.
The final part of this process is a comparison of the results generated by the proposed constitutive model against
the available experimental data from both the Plate Impact test and Taylor Cylinder Impact test. A good
agreement between experimental and simulation is obtained in each test.

1. Introduction

In practice, in the real world, most of engineering materials such as
composites and sheet metal components, manufactured using sheet
metal forming processes, are orthotropic. Sheet forms of aluminium
alloy are examples of orthotropic materials. Furthermore, many
engineering materials such as fibre-reinforced elastomers or glassy
polymers exhibit orthotropic behaviour while undergoing large elasto-
plastic deformation, which can be observed at the unit-cell level due to
the preferred orientations as a result of various manufacturing
processes. At quasi-static rates of strain, this behaviour has been
studied extensively by [72,66] while significant contributions to
investigate the behaviour of metals that impacted with dynamic shock
loading are due to [49,40,25,51,38,77,43,16]. Many have studied the
influence of anisotropy on material behaviour undergoing finite strain
deformation, including shock wave propagation, see for example
[27,41–43,52,55,67,68,72].

A primary investigation of the shock response of aluminium alloys
was made by [60] who showed in differently heat treated states, the
Hugoniot Elastic Limit (HEL) and spall strengths for AA2024 followed
the identical trends as the quasi-statically measured properties.
Rosenberg showed that under both testing regimes, solution treated
specimens possess the lowest strengths. Work by [47,48,12] on BCC
tantalum, through a number of Taylor impact tests, predicted that
evolution of texture does not affect the plastic deformation observed at
continuum level. For a range of strain rates, it is shown that yield
surface remained the same shape. This is the hypothesis used to
support the assumption of isotropic hardening in this work.

A homogeneous yield function of degree two which is used to model
an orthotropic plastic response of rolled sheet was first proposed by
[29]. This concept can be regarded as a solid foundation for the subject
in the case of metals. In the literature, numerous researchers have tried
to investigate and examine the validity of this basic framework. The
consensus is that the proposed model is too flexible and only well-
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suited to certain metals, as summarised by [34]. In addition to Hill’s
yield function, various types of yield functions have been presented in
the literature. For the sake of brevity, only a few of them are briefly
highlighted and grouped in this section, and a general comment is
made accordingly.

The yield criteria modelled for metals can be found in
[6,31,32,14,4] and others. The yield functions proposed in [6,31] are
modelled for metals that are subjected to plane stress condition. The
yield criteria proposed particularly for aluminium alloy sheets can be
found in [7,9,39,13]. Further, Barlat and his group have proposed yield
functions of the mth order in [6,7,9]. Constitutive models that are
consistent with a micromechanical crystallographic-based yield criteria
can be observed in [6,7]. In addition, a linear transformation-based
anisotropic yield function can be found in [8,57,58] and others. Several
non-quadratic yield criteria have been proposed by [26,30,44] and
others.

For several reasons, not all of the above yield criteria are appro-
priately applicable to anisotropic materials. For example, some of the
yield criteria are specified for isotropic materials and planar isotropy,
which cannot be used to describe the behaviour of anisotropic
materials. In addition, even though the yield criteria proposed by
[30,44] are modelled for planar anisotropy, they have no shear
components. Hence these models are not compatible in the case where
the loadings are not co-linear with the anisotropic axes.

In addition, a few researchers such as Feigenbaum et al. have
concentrated on distortional hardening as a consequence of internal
variables’ evolution, [17,22,23]. To track the results provided for these
models, we refer to [22]. Generally this approach results in complexity
of the model since more constants are introduced to describe the
distortional hardening. However, the model as a whole has shown a
capability to capture distortion of the yield surface for different loading
paths and metals. On the other hand, most of the micromechanical
based yield criteria can provide the required results. However they are
not simple enough for fast numerical applications [15].

Some of the above yield criteria have been successfully implemen-
ted into finite element FE codes in order to model sheet metal forming
processes as discussed in [15,70,35,76] and others. For instance, [15]
have investigated Barlat’s six components anisotropic yield function as
proposed in [7] by modelling hydraulic bulge and cup drawing tests in
ABAQUS. The same yield criterion has also been examined in [35] to
investigate earing phenomena in the deep drawing of rolled aluminium
sheets. Good agreements are obtained with respect to the experimental
data. Earing can be observed developing in the early deformation
phases and are influenced primarily by the initial texture of the tested
aluminium sheets. In addition, the simulation showed that the evolu-
tion of texture has no effect upon the initial profiles of earing.

The yield criteria modelled in [6,29] are examined by [76] by
simulating a stretch flange forming operation. The results obtained in
the chosen numerical simulations show good agreement. This proves
that these yield criteria are capable of simulating the forming pro-
cesses. However, there are still theoretical problems: specifically the
issues related to the rotation and distortion of the initial anisotropic
reference frame [70]. A rigorous review and comments on the yield
criteria proposed to capture the anisotropy of sheet metals can be
found in [4].

The constitutive models intended to represent dynamic plastic
behaviour are of great importance in the current design and analysis
of forming processes due to various engineering applications, [13]. As
discussed above, much research has been carried in this field, leading
to results in various technologies involving analytical, experimental
and computational methods. Despite of this current status, it is
generally agreed that there is still a need for improved constitutive
models as well as corresponding procedures to identify the parameters
for these models. Moreover, the characterization of plastic deformation
for orthotropic materials is still an open and exciting area of study even
though there are many computer codes available for numerical

analyses of intense impulsive loading due to high-velocity impact.
The theory related to isotropic materials is not very complex, as it

may undergo rotations without affecting the material response.
However, this is not the case for anisotropic materials. The mechanical
properties that affect the yield surface will start to change (be distorted)
when a material undergoing plastic deformation starts to rotate.
Therefore, a set of variables has to be introduced to take into account
the evolution and orientation of such materials. Generally speaking,
anisotropic materials exhibit different mechanical properties in differ-
ent directions which can be specified by magnitude and orientation.
Even though there has been significant progress in computational
methods and theoretical parts, there are still many issues relating to
mechanical characteristics which have to be addressed. Moreover,
there are numerous mechanics of materials issues that have yet to be
solved, related to orthotropic elastic and plastic behaviour. The prime
motivation in this work, therefore, is to propose a new constitutive
model that is capable for modelling of the deformation behaviour of
such materials undergoing finite strain deformation.

2. New stress tensor decomposition

The shock response of an orthotropic material cannot be accurately
predicted using the conventional decomposition of the stress tensor
into isotropic and deviatoric parts, [1]. Constitutive models developed
for the modelling of shock wave propagation in solids comprise of two
parts, an equation of state (EOS) and a strength model which define the
response of the material to uniform compression (change of volume)
and the response of the material to shear deformation (change of
shape), respectively. This separation of material response into volu-
metric and deviatoric strain components is matched for isotropic
materials which have an isotropic elastic stiffness tensor cijkl. As a
consequence the spherical part of the stress tensor Pδ c δ ε− = /3ij ijkl kl pp ,
being a product of two isotropic tensors, is itself isotropic.
Furthermore, the isotropy of cijkl results in the co-linearity of the
principal axes of the stress and strain tensors. In other words,
components of stress and strain are proportional to each other and
orthogonality between the volumetric and deviatoric components of
strain is reflected in orthogonality between the volumetric and devia-
toric components of stress. This is successfully done for isotropic
materials through the conventional decomposition of the stress tensor
into the spherical and deviatoric parts.

However, in the case of orthotropic materials this co-linearity is not
in place. Hence the equivalent relationship cannot be defined for
orthotropic materials. If one maintains the assumption that pressure is
the state of stress induced by an isotropic state of strain (uniform
compression or expansion) then a more general definition of pressure
is required, [73]. This leads to a number of possible definitions of
pressure as a vector in the principal stress space which is not co-linear
with the conventional hydrostatic alignment for orthotropic materials.
To explore this statement further Vignjevic has proposed a new
expression for generalized pressure or stress related to uniform
compression. The ability to describe shock propagation in orthotropic
materials is investigated with experimental plate impact data and
showed a good agreement with the physical behaviour of the consid-
ered material (carbon fibre reinforced epoxy).

To derive the formulation of this generalized pressure, let us first
write the stress due to the isotropic component of strain (isotropic
strain pressure) as

Pψ c δ ε c ε− = /3=∼
ij ijkl kl ss ijkk v (1)

where ψ =0ij ∀ i j≠ , ψ ≠0ij ∀ i j= , and ε ε= /3v ss . In above equation, P∼ and
ψij can be defined as

P ε
ψ ψ

c c− = 1∼
v

st st
ijkk ijll

(2)
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and

ψ c ε P c
ψ ψ

cc=− / = / 1∼
ij ijkk v ijkk

st st
prkk prll

(3)

The double contraction tensor ψ ψst st must be defined to uniquely
define P∼ and tensor ψij. One possible assumption is to set ψ ψ =3st st . Note
that the tensor ψij is fully defined by the material elastic stiffness
properties. Further, Eqs. (1)–(3) can be expressed in Voigt notation as
shown in Eqs. (4)–(6) respectively:
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The scalar P∼ which is used to define the magnitude of pressure can
be expressed as

P c c c c c c c c c ε K

ε

=− ( + + ) + ( + + ) + ( + + )
3

=−3∼
v ψ

v

11 12 13
2

12 22 23
2

13 23 33
2

(5)

The parameter Kψ reduces to the conventional bulk modulus in the
limit of material isotropy. ψij which is used defines the direction of the
new volumetric axis in stress space then can be defined as

ψ c c c= + +
ii

i i i

c c c c c c c c c
( )

1 2 3

( + + ) + ( + + ) + ( + + )
3

11 12 13 2 12 22 23 2 13 23 33 2

(6)

Repeated indices in brackets in the above equation indicate no
summation. The alternative formulation of generalized pressure for
orthotropic materials can finally be expressed as follows:

P
ψ

ψ ψ
σ

=∼ kl kl

sr sr (7)

It should be noted that ψij becomes δij when dealing with isotropic
materials. Hence the new decomposition reduces to the conventional
decomposition developed for isotropic materials. This new stress
tensor decomposition has been used to develop a new yield criterion
for orthotropic sheet metals under plane-stress conditions by assuming
the yield surface to be circular in the new deviatoric plane [53]. The
predictions of the new effective stress expression showed good agree-
ment with respect to the experimental data for 6000 series aluminium
alloy sheet (A6XXX-T4) and Al-killed cold-rolled steel sheet SPCE [5].

2.1. Representation in stress space

The representation of the new stress tensor decomposition in stress
space is presented in this section. Bear in mind that any arbitrary stress
state in stress space can be decomposed into hydrostatic and deviatoric
parts. This representation which is applied for isotropic materials as
shown in Eq. (7) is best presented in 3- and 2-dimensional stress
spaces by red lines in Figs. 1 and 2 with their directions perpendicular
to each other. Recalling the new stress tensor decomposition, the
representations of this decomposition ψij in 3- and 2-dimensional stress
spaces are shown in Figs. 1 and 2 by green lines respectively. These
figures represent the graphical interpretation of the generalized
pressure axes of the new decomposition ψij in 3- and 2-dimensional
stress spaces respectively. From these figures, it can be observed that
this decomposition leads to a shift of the pressure vector away from the
common alignment (equal angle with the principal stress directions).
Equally, it can be observed that the direction of the volumetric axis ψij
is not making the same angle with the principal stress directions. Based
on the definition of the new stress tensor decomposition, any con-
sidered orthotropic materials will uniquely define their own deviatoric
plane within the stress space.

3. New constitutive model formulation

3.1. Kinematics for finite strain deformations

The construction of the new hyperelastic-plastic constitutive model
for orthotropic metals in this paper is based on the multiplicative
decomposition of the deformation gradient F:

F F F= e p (8)

where Fe and Fp represent thermo-elastic part of the deformation and
plastic part of the deformation (dislocation mechanics), respectively.
This concept distinguishes the proposed constitutive model from
hypoelastic-plastic material models (when elastic strains are small
compared to the plastic strains). The intermediate (generally non-
Euclidean) configuration corresponds to elastically unloaded material,
known as the elastic reference configuration which can be physically
obtained by elastic unloading of material (unstressed condition). The
formulation based on additive decomposition of generalized strain
measures is avoided in this work. As demonstrated by [36], this
formulation leads to spurious shear stresses which are independent

Fig. 1. ψ and δ as a vectors in a principal stress space. (For interpretation of the

references to colour in this figure, the reader is referred to the web version of this article.)

Fig. 2. ψ and δ representation in 2-dimensional stress space. (For interpretation of the

references to colour in this figure, the reader is referred to the web version of this article.)
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of the elastic material properties for orthotropic materials. In addition,
the evolution of material symmetry in orthotropic materials due to
large deformations could not be tracked by the additive strain decom-
position based model [37].

Using Eq. (8), the elastic right Cauchy-Green tensor Ce and the
elastic Green-Lagrange strain tensor Ee are

C F F E C I F F I= ∙ , = 1
2

( − )= 1
2

( ∙ − )e e
T

e e e e
T

e (9)

The experimental work in [45] shows a strong correlation between
elastic and plastic material symmetries. Therefore, the constitutive
model described in this paper is developed and integrated in the
isoclinic configuration. In other words, the hyperelastic part of the
constitutive model is based on the assumption that the principal
directions of material elastic and plastic orthotropy coincide and are
not influenced by inelastic deformation. The requirements that free
strain energy function is invariant under transformations of material
symmetry and the non-uniqueness of the intermediate configuration
are directly resolved by working in this configuration. This definition
gives a significant simplification to the numerical implementation of
the corresponding constitutive equations because one can steer clear of
the explicit use of any corotational rate, [2]. To avoid confusion, (^) is
used in this paper upon each of kinematic and kinetic variables defined
with respect to the isoclinic configuration.

The structural tensors iM =1,2,3ii [11] are introduced to construct
the orthotropy symmetric group ϑ. These tensors can be defined as
M n n= ⨂1 1 1, M n n= ⨂2 2 2 and M n n= ⨂3 3 3 where n1, n2 and n3 are unit
vectors represent an orthonormal frame of the material. By using the
structural tensors iM̂ = 1,2,3ii in the isoclinic configuration, the elastic
free strain energy function for orthotropic materials considers the
principal directions of material elastic orthotropy (material symmetry)
in this configuration to be aligned with the unit (director) vectors n̂1, n̂2
and n̂3. As shown in Fig. 3, push forward transformations of the
structural tensors from an initial configuration Ωo to elastically
unloaded configuration Ωp can be defined as M F M F=ii p ii p

−1. The
structural tensors Mii are pulled back from the elastically unloaded
configuration (having an arbitrary orientation) Ωp to the isoclinic

configuration Ω̂i by rotating back for plastically induced rigid body
rotation due to plastic related deformations using below orthonormal
transformation.

M Q M Qˆ =ii p
T

ii p (10)

where Qp is an orthonormal tensor that defines the rigid rotation due to
plastic related deformation.

Referring to Fig. 3, a triad of unit vectors which represent the
material symmetries is schematically shown by two orthogonal axes
with arrows. Both elastic stretching and rotation are contained in the
elastic part Fe of the deformation gradient F. Plastic part of F with
respect to Ωp and Ω̂i is represented by Fp and F̂p respectively. The

plastic rotation Rp is assigned to Fp to ensure there is no rotation to the
material principal axes of orthotropy (remains fixed or unaltered by
plastic deformation) in the isoclinic configuration Ω̂i.

As examined in [64], the rotation and distortion during elastoplas-
tic deformation are contained in the elastic part of F as a result of
isoclinic configuration. Despite of general incompatibility tensor fields
between elastic and plastic deformations, the elastic deformation may
incidentally be compatible with plastic deformation when plastic or
elastic deformation is homogeneous [64]. Alternatively, the plastic
rotation Rp can be assigned to the deformation due to damage Fd to

define F F F Rˆ =e e d p if one considers the elastic material parameters to
evolve due to damage since the changes of material compliance due to
damage [71]. This assumption however not considered in this work.

The elastic and plastic parts of the deformation gradient F of the
proposed constitutive formulation then can be defined explicitly in the
isoclinic configuration as:

F F F R F R R U Uˆ = , ˆ = = =e e p p
T

p p
T

p p p (11)

where plastic rotation Rp is an orthogonal rotation tensor induced by
plastic deformation and Up refers to plastic right stretch tensor.

Subsequently, the total velocity gradient L̂ can be decomposed
additively into elastic L̂e and plastic L̂p parts. The incompressibility
constraint is assumed to hold for plastic deformation which therefore
gives

det F( ˆ )=1p (12)

3.2. Mandel stress tensor

In general, the Mandel stress tensor Σ can be defined as follows
[46]:

SΣ C= ∙ (13)

where C and S refer to Right Cauchy-Green tensor and Second Piola
Kirchhoff stress tensor respectively. These tensors can be expressed in
the elastically unloaded intermediate configuration Ωp as

C F F= ∙e e
T

e (14)

S τF F= ∙ ∙e e
T−1 − (15)

The Kirchhoff stress tensor τ in Eq. (15) is a symmetric tensor
defined in the current configuration Ωt as

τ J σ det F σ= ∙ = ( )∙ (16)

where J is a volume ratio. Substituting Eqs. (14) and (15) into Eq. (13),
the Mandel stress tensor in the intermediate configuration Ωp can be
defined as

τΣ F F det F F σ F= ∙ ∙ = ( )∙ ∙ ∙e
T

e
T

e
T

e
T− − (17)

The Mandel stress tensor defined in Eq. (17) is frequently used to
describe the behaviour of plastic materials [33]. This stress tensor is
adopted in this work to formulate the new constitutive model for
orthotropic metals. Choosing the isoclinic configuration Ω̂i as a point
for integration, the Mandel stress tensor can be rewritten as

τΣ F Fˆ = ˆ ∙ ∙ ˆ
e
T

e
T−

(18)

Further, Eq. (17) also can be expressed as follows:

τΣ F F F F σ F det F F σ Fˆ = ˆ ∙ ∙ ˆ = ˆ ∙ det( )∙ ∙ ˆ = ( )∙ ˆ ∙ ∙ ˆ
e
T

e
T

e
T

e
T

e
T

e
T− − −

(19)

Using Pδσ = +Sij ij ij, the above equation can be defined as

δPΣ det F F σ F det F F S Fˆ = ( )∙ ˆ ∙ ∙ ˆ = ( )∙ ˆ ∙( + )∙ ˆ
e
T

e
T

e
T

e
T− −

(20)

The formulation of the new generalized pressure for orthotropic
metals is introduced in Eq. (20):Fig. 3. Definition of isoclinic configuration.
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⎛
⎝⎜

⎞
⎠⎟

ψ
ψψ

ψΣ det F F S σ Fˆ = ( )∙ ˆ ∙ + ∙ ∙ ˆ
e
T

e
T−

(21)

Eq. (21) can be further extended as

ψ
ψψ

ψΣ det F F S F det F F σ Fˆ = ( )∙ ˆ ∙ ∙ ˆ + ( )∙ ˆ ∙ ∙ ∙ ˆ
e
T

e
T

e
T

e
T

Σ deviatoric
Σ

−

ˆ ′=

−

ˆ p (22)

where Σ̂p denotes the volumetric part (pressure) of the new Mandel
stress tensor. Focusing on the deviatoric part instead of a full stress
tensor, the deviatoric part of the new Mandel stress tensor is given by

⎛
⎝⎜

⎞
⎠⎟

ψ
ψψ

ψΣ det F F σ σ Fˆ ′ = ( )∙ ˆ − ∙ ˆ
e
T

e
T−

(23)

Finally the new deviatoric Mandel stress tensor defined in the
isoclinic configuration Ωi, can be written as

ψ
ψψ

ψΣ F F σ F F F σ F det F F S Fˆ ′ = det( )∙ ˆ ∙ ∙ ˆ − det( )∙ ˆ ∙ ∙ ∙ ˆ = ( )∙ ˆ ∙ ∙ ˆ
e
T

e
T

e
T

e
T

e
T

e
T

Σ
Σ

−

ˆ

−

ˆ

−

p (24)

It can be easily proven the deviatoric component of the new Mandel
stress tensor Eq. (24) is traceless (deviator tensor). As asserted in [54],
existing experimental evidence shows that it is hard to deduce sound
data about a continuum elastic domain for the skew-symmetric part of
the Mandel stress tensor Σa. Much effort still required in terms of
experimental work to establish the elastic domain and yield functions
for the skew-symmetric part of the Mandel stress tensor. Therefore, in
this work, only the symmetric part of the Mandel stress is considered
[59,74].

A thermodynamics analysis presented in Section 3.6 is based on the
second law in the form of Clausius–Plank (CP) inequality, defined in
the isoclinic configuration Ω̂i. In order to define the CP inequality, it is
necessary to introduce relevant conjugate variable pairs, starting with
the stress power .

τ SL det F σ L E Σ L= : = ( )∙ : = : ̇= ˆ ′: ˆ p (25)

The stress power characterizes the real mechanical power during
dynamic process. The representation of stress power is the product of
work conjugate stress and strain measures. This thermodynamic part
of the constitutive model is further discussed in Section 3.6.

3.3. Coupling of the proposed stress decomposition with equation of
state EOS

In recent decades, the topic related to shock wave propagation in
anisotropic materials has received considerable attention in the
isotropic solid-state physics and mechanics literature
[18,19,21,3,50,75,78]. Appropriate constitutive equations to describe
the strength effect and the equation of state must be investigated to
describe the anisotropic material response under shock loading.
Therefore, in this work, the formulation is combined with an equation
of state (EOS) in addition to the conservation laws to mathematically
describe the material’s nonlinear behaviour and propagation of strong
shock waves in solids due to shock loading.

An EOS represents a closure equation, which completes the
relationships between the state variables in front of and behind a
shockwave. Theoretically, the relationship described by EOS can be
determined from the thermodynamic properties of the material, and
require no dynamic data. However, practically, extensive dynamic
experiments such as the planar shock wave experiment are required
to characterize data on the material’s behaviour at high strain rates. In
contemporary hydrocodes EOS’s are either of an analytical or a
tabulated type. In this paper a very popular EOS that is extensively
used for solid continua, the Mie-Gruneisen EOS [69,28], implemented
in DYNA3D, is used. This an analytic EOS frequently used with solid
materials. It defines the pressure as a function of density ρ or specific

volume and specific internal energy e as shown below

P f ρ e p e ev v
v

v= ( , )= ( )+ ( ) ( − ( ))r r
ᴦ

(26)

where v is the specific volume, (v) is the Grunesien gamma defined as

⎛
⎝⎜

⎞
⎠⎟

P
e

v v( )= ∂
∂ v (27)

Generally is defined as constant = 0ᴦ , or assumed that = =constv v
0
0

ᴦ ᴦ

alternatively. The functions pr and er are considered known functions of
v on some reference curve. There are few possible reference curves to
name such as the shock Hugoniot curve, the 0 °K isotherm, etc.
However the most widely adopted form of the Mie-Gruneisen equation
of state for solid materials which uses the shock Hugoniot as the
reference curve is defined as follows

⎛
⎝⎜

⎞
⎠⎟P f ρ e p μ ρ e= ( , )= ∙ + 1−

2
+H

ᴦ
ᴦ

(28)

where pH refers to Hugoniot pressure, μ = −1ρ
ρ0

is relative change of

volume, is Gruneisen parameter, ρ is density and e is the specific
internal energy. The Rankine–Hugoniot equations for the shock jump
conditions can be regarded by defining a relation between any pair of
the ρ, P, e, up (the velocity of the particle directly behind the shock) and
U (the velocity of shockwave that propagates through the medium).
There is an empirical linear relationship between U and up for many
liquids and most solids:

U c Su= + p (29)

where c is the intercept of the U u− p curve (U -shock velocity vs. up
particle velocity curve), and S is the coefficient of the U u− p curve
slope. The Hugoniot pressure and a shock velocity normally U are
normally defined as a non-linear function of particle velocity up as
follows [69]:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟U c S u S

u
U

u S
u
U

u= + + +p
p

p
p

p1 2 3

2

(30)

The Gruneisen’s gamma for the undeformed materials can be
expressed by

γ au
u

=
+

1 +
0

(31)

Hence, the pressure as a function of Gruneisen equation of state with
cubic shock velocity can be defined as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

P μ Γ E μ

P ρ c μ μ Γ E μ

= + (1 + ) when > 0

= + (1 + ) when < 0

EOS

ρ c μ μ μ

S μ S S

EOS

1 + 1 − −

1 − ( − 1) − −

0
2

Γ Γ

μ
μ

μ
μ

0
2

2 2
2

1 2
2

+ 1 3
3

( + 1)2

2

(32)

where
E is the internal energy per initial specific volume,
S S S, ,1 2 3 are the coefficients of the slope of the U u− p curve,
γ0 is the Gruneisen gamma for the un-deformed material,
a is the first order volume correction to γ0,
c S S S γ a ρ, , , , , ,1 2 3 0 0 represent the material properties supplied by the
user to characterize this EOS.

The combination between the proposed stress tensor decomposi-
tion and the Mie-Gruneisen EOS requires some modifications to reflect
the formulation of the generalized orthotropic pressure. Briefly, ψ is
calculated using the material stiffness matrix C read from the input file.
The increment of deviatoric Mandel stress tensor Σ̂′ is then calculated
using rate of deformation tensor D. By setting pressure equals to PEOS,
P P=∼

EOS, the stress update at time n + 1 can be defined as

σ Σ P ψ= ˆ′ −n n
EOS
n+1 +1 +1 (33)
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3.4. Orthotropy of elastic free energy function

To model the behaviour of orthotropic metals within elastic and
plastic regimes the formulation of orthotropic tensor functions is
constructed as a free strain energy function and a plastic level set
function (orthotropic yield criterion). These tensor functions are
defined fundamentally based on the representation of isotropic tensor
functions theory. As aforementioned, a material symmetry group ϑ is
defined in this work to develop anisotropic tensor function for
orthotropic constitutive behaviour. This orthotropic symmetric group
is assumed to be unchanged during plastic deformation. Furthermore,
the isotropic tensor function must be invariant under the special
orthogonal group [20].

The elastic orthotropy of the proposed formulation is defined using
the Helmholtz free energy as a function of evolving structural tensors.
The Helmholtz free energy in the isoclinic configuration Ω̂i is additively
decomposed into elastic and plastic parts as

Ψ Ψ ΨE αˆ = ˆ ( ˆ )+ ˆ ( )e e p isot( ) (34)

In the above expression, Ψ Eˆ ( ˆ )e e represents the energy stored due to
elastic deformations defined in terms of Elastic Green-Lagrange strain
tensor Êe. In addition, Ψ̂ (α)p isot( ) represents energy resulting from
isotropic plastic hardening, where α is the isotropic hardening variable
(i.e. accumulated plastic deformation). The response of elastic material
in the isoclinic configuration must be invariant under transformations
of the material symmetry group ϑ. This is necessary based on the
definition of isotropic functions.

Ψ Ψ ϑQ E Q E Q Eˆ ( ˆ )= ˆ ( ˆ ),∀ ∈ , ˆe
T

e e e e (35)

where Q is orthogonal rotation tensor. Ψ̂e is then known as a ϑ-invariant
function. Using the structural tensors M̂ii, the elastic component of free
energy function for orthotropic materials can be expressed in terms of
isotropic function in the isoclinic configuration as follows:

Ψ Ψ ΨE M M QE Q QM Q QM Qˆ = ˆ ( ˆ , ˆ , ˆ )= ˆ ( ˆ , ˆ , ˆ )e e e e e
T T T

11 22 11 22 (36)

Ψ̂e can be further defined in terms of a set of invariants of the Elastic
Green-Lagrange strain tensor Êe [20] such as

J J JtrE tr E tr E= , = [( ) ], = [( ) ]e e e1 2
2

3
3

(37)

Using structural tensors that reflect the material symmetry of
orthotropic materials, the irreducible invariants and the additional
pseudo-invariants in the isoclinic configuration Ω̂i can be expressed as
follows [79,65,20] etc.

J trJ tr J tr J trM E M E M E M E= [ ], = [ ( ) ], = [ ], = [ ( ) ]e e e e4 11 5 11
2

6 22 7 22
2

(38)

Subsequently, the elastic free energy function Ψ̂e can be expressed in
a quadratic form as

J J J J J JΨ λJ μJ J J J Jˆ = 1
2

+ + 1
2

+ 1
2

+2 +2 + + +e 1
2

2 1 4
2

2 6
2

3 5 4 7 5 4 1 6 6 1 7 4 6 (39)

where λ μ, , i i=1,..7 in this case represent material parameters for the
elastic orthotropic material. The second Piola-Kirchhoff stress tensor Ŝ
in the isoclinic configuration Ω̂i can be derived as Ŝ= Ψ

E
∂ ˆ

∂ ˆ
e

e
, while the

constant fourth-order tensor ̂ is obtained by the second derivative of
Ψ̂e. Eventually the constant fourth-order tensor ̂ that consists of the
structural tensors iM̂ =1,2,3ii can be defined in the isoclinic configura-
tion Ω̂i as

λ μI I M M M M

M I I M M I I M

M M M M

ˆ = ⨂ +2 + ˆ ⨂ ˆ + ˆ ⨂ ˆ +2 +2

+ ( ˆ ⨂ + ⨂ ˆ )+ ( ˆ ⨂ + ⨂ ˆ )+

( ˆ ⨂ ˆ + ˆ ⨂ ˆ )

1 11 11 2 22 22 3 1 4

2 5 11 11 6 22 22 7

11 22 22 11

  



(40)

where

δ δ

δ δ

δ δ M M

M M

= = (fourth − order unit tensor) = ˆ + ˆ ,

= ˆ + ˆ
ik jl jl ik

ik jl jl ik

ijkl ik jl 1
1 1

2
2 2

  

 (41)

Note that the conventional relation between stress and strain tensor
in the isoclinic configuration Ω̂i can be expressed as follows:

S Eˆ =ˆ ˆij ijkl kl (42)

where ijkl is a fourth-order elasticity or material stiffness tensor. This

tensor can be set equal to ̂ to define λ μ, , i i=1,..7 with respect to the
elasticity orthotropic parameters. By choosing the preferred directions
as n =[1,0,0]T1 and n =[0,1,0]T2 , the new elastic orthotropic constants can
be defined as follows

λ μ= +2( − − ) = + − = + −4 −2 = + −

4 −2 = − = − = − −2( − − ) = −

−2( − − ) = − − + +2( − − )

33 44 55 66 55 66 44 1 11 33 55 13 2 22 33

66 23 3 44 66 4 44 55 5 13 33 44 55 66 6 23 33

44 55 66 7 12 13 23 33 44 55 66

            

            

          (43)

3.5. Orthotropic yield criterion

The aim of yield function formulation is to model plastic anisotropy
by using the structural tensors defined in terms of isotropic function of
the material symmetry group ϑ. In the proposed formulation, the
orthotropic yield function is defined using the classical Hill’s yield
criterion [29]. The hardening is modelled as an isotropic hardening.
Therefore, the yield surface is expected to maintain its initial shape
(change in size, not shape). The yield surface expansion is controlled by
the physically and a thermally micromechanical-based model–
Mechanical Threshold Stress (MTS) model [24].

The dependence on material anisotropy during plastic deformation
is modelled by the introduction of the structural tensors iM̂ =1,2,3ii
with respect to the isoclinic configuration Ω̂i. The corresponding yield
surface is defined in a new deviatoric plane as a result of the new stress
tensor decomposition. Using the symmetric Mandel stress tensor
defined in Eq. (24), the yield function can be written as

f f Σ αˆ =ˆ ( ˆ ′, ) (44)

where α is an isotropic hardening variable. The properties of symmetric
orthotropy are considered by introducing the structural tensors, M̂ii as
follows:

f f Σ M αˆ =ˆ ( ˆ ′, ˆ , )ii (45)

Accordingly, the plastic anisotropy of the new constitutive model is
characterized by Hill’s anisotropy yield function as follows:

f fΣ Σ αˆ = ˆ ′: ˆ : ˆ ′ −ˆ ( )=0 (46)

where ̂ is a fourth-order tensor defined in the isoclinic configuration
Ω̂i. The dependence of the above yield function on Hill’s yield criterion
and structural tensors is represented by this tensor. f̂ (α) in the above
equation defines the evolving flow stress that is controlled by isotropic
hardening. The Hill’s effective stress can be expressed in terms of the
deviatoric Mandel stress in the isoclinic configuration Ω̂i as follows:

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

F G H L

M N
F G H

Σ

Σ Σ Σ Σ Σ Σ Σ

Σ Σˆ ′ = 3
2

( ˆ ′ − ˆ ′ ) + ( ˆ ′ − ˆ ′ ) + ( ˆ ′ − ˆ ′ ) + 2 ˆ ′

+ 2 ˆ ′ + 2 ˆ ′
+ +

y z z x x y yz

zx xy

2 2 2 2

2 2

(47)

The fourth-order plastic anisotropy tensor ̂ is characterized by the
Hill’s matrix:
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⎡

⎣
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⎤

⎦

⎥⎥⎥⎥⎥⎥

G H
H
G

H
H F

F

G
F

F G
N

L
M

ˆ =

+
−
−
0
0
0

−
+

−
0
0
0

−
−
+
0
0
0

0
0
0

2
0
0

0
0
0
0

2
0

0
0
0
0
0

2



(48)

By comparing the Hill’s matrix with the fourth-order isotropic
tensor function ̂ in Eq. (40) the orthotropic plastic constants
λ μ( , , )i i=1,..7 are obtained:

λ F G N L M μ L M N F H G L G

H F M N M N L F G L M N G

F L M N H F G N L M

= 1
2

+ 1
2

+2( − − ) = + − = 1
2

+ 1
2

+2 −4 = 1
2

+ 1
2

+2 −4 = − = − =− 1
2

– +2 +2 −2 =− 1
2

–

+2 +2 −2 =− 1
2

+ + +2 −2 −2

1 2

3 4 5 6

7 (49)

3.6. The Clausius-Plank inequality

The evolution equations for the specified variables of the new
constitutive model are defined with respect to the second law of
thermodynamics framework. Using the Clausius-Plank inequality, an
isothermal and uniform temperature distribution type of deformations
can be expressed as

S Ψ: E= ̇ − ̇≥0 (50)

where Ψ ̇ is a rate of Helmholtz free energy function, and Ė is

E Ċ= 1
2

̇
(51)

Using Eqs. (51) and (50) can be rewritten as follows:

S ΨC= : 1
2

̇ − ̇ ≥0
(52)

Considering the free strain energy (Helmholtz free energy) function
is represented by the elastic Cauchy-Green strain tensor Ce, and the
strain-like internal variable describing isotropic plastic hardening ξh,

ξΨ Ψ C= ( , )e h , this function can be easily divided into elastic and plastic
as

Ψ Ψ Ψ ξC= ( )+ ( )e e p h (53)

The differentiating of the above equation with respect to time leads
to

Ψ Ψ Ψ
ξ

ξ
C

Ċ = ∂
∂

: ̇ +
∂
∂

∙ ̇e

e
e

p

h
h

(54)

Substituting Eq. (54) into Eq. (52) gives

⎛
⎝⎜

⎞
⎠⎟S Ψ Ψ

ξ
ξC

C
C= : 1

2
̇ − ∂

∂
: ̇ +

∂
∂

∙ ̇ ≥0e

e
e

p

h
h

(55)

Using C F C F= ∙ ∙e p
T

p
− −1 and its material time derivative

C F C F F C F F C Ḟ = ̇ ∙ ∙ + ∙ ̇ ∙ + ∙ ∙ ̇e p
T

p p
T

p p
T

p
− −1 − −1 − −1, the Mandel stress tensor can be

expressed as:

⎛
⎝⎜

⎞
⎠⎟S Ψ ΨΣ C F C F F

C
F C

C
= ∙ =( ∙ ∙ )∙ 2∙ ∙ ∂

∂
∙ =2∙ ∙ ∂

∂p
T

e p p
T e

e
p e

e

e

− −1

(56)

Using Eq. (56), the non-negative of the internal dissipation can
finally be defined as follows:

Ψ
ξ

ξΣ L= : −
∂
∂

∙ ̇ ≥0p
p

h
h

(57)

The evolution equations for the plastic strain tensors are derived
based on the principle of maximum plastic dissipation. In addition, the
normality rules gives function of Lp and ξḣ as

f ξ fL λ
Σ

λ
α

= ̇ ∂
∂ ′

, ̇ = ̇ ∂
∂p h (58)

These equations satisfy the associative flow rule and the expression
for evolution equation, respectively. Equally ξḣ is a work conjugate of
the stress-like internal variable describing isotropic hardening α.
Finally the local dissipation inequality can be expressed with respect
to the isoclinic configuration Ω̂i as

ξΣ L αˆ = ˆ ′: ˆ − : ̇ ≥0p h (59)

where

f ξ fL λ λ
α

=⋅ ∂
∂Σ′

, ⋅ = ⋅ ∂
∂hP (60)

Since the Mandel stress adopted in the formulation is symmetric
and because this stress measure is thermodynamically conjugate to the
plastic velocity gradient, only the symmetric part of the plastic velocity
gradient is adopted in the formulation. Therefore, in this work, the
plastic spin is assumed vanish in the chosen isoclinic configuration.
Using symmetry of Mandel stress and assuming that the plastic spin is
equal to zero in the isoclinic configuration Ω̂i, Eq. (59) can be rewritten
as

ξΣ symL αˆ = ˆ ′: ˆ − : ̇ ≥0p h (61)

The above expression is also written as

ξΣ D αˆ = ˆ ′: ˆ − : ̇ ≥0p h (62)

A similar approach has been adopted in [20], in contrast to the
concept used by [61–63] that define a so-called plastic material spin.
By using the yield function Eq. (46) in the first part of Eq. (60), the
evolution of the plastic deformation D̂p can be expressed as follows:

D λ Σ Σ Σ Σ

Σ Σ
ˆ = ̇ ( ˆ ∙ ˆ ′+( ˆ ∙ ˆ ′) + ˆ ∙ ˆ ′+( ˆ ∙ ˆ ′) )

4 ˆ ′: ˆ : ˆ ′
p

T T T T
   

 (63)

Therefore, the inequality of dissipation energy in Eq. (62) can be
expressed as follows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ξΣ λ Σ Σ Σ Σ

Σ Σ
αˆ = ˆ ′∙ ̇ ( ˆ ∙ ˆ ′+( ˆ ∙ ˆ ′) + ˆ ∙ ˆ ′+( ˆ ∙ ˆ ′) )

4 ˆ ′: ˆ : ˆ ′
− : ̇ ≥0

T T T T

h
   

 (64)

Using the above identities, eventually the Clausius-Plank inequality
of the second law of thermodynamics for the new constitutive model
can be expressed with respect to the isoclinic configuration Ω̂i as
follows:

⎛
⎝⎜

⎞
⎠⎟

fλ Σ Σ α
α

ˆ = ̇ ˆ ′: ˆ : ˆ ′ − : ∂
∂

≥0
(65)

3.7. Plastic flow rule of the new constitutive model

The evolution equation which determines the relation between the
stress and strain increments of the constitutive relations is defined
from the consistency condition. Let us first write the plastic velocity
gradient L̂p in the isoclinic configuration Ω̂i as

L F F r Σˆ = ˆ ̇ ∙ ˆ =λ̇ˆ ( ˆ ′, α)p p p
−1

(66)

The plastic flow direction is marked by r̂ and set equal to f
Σ
∂ˆ

∂ ˆ ′
.

Further, the evolution of isotropic hardening law is given by

H Σα̇=λ̇ ˆ ( ˆ ′, α) (67)

where Ĥ represents the plastic modulus that is defined from the
referential curves of the MTS model. By using the yield function Eq.
(45), the loading-unloading condition and considering the structural

tensors remain constant in the isoclinic configuration M, ˆ ̇ =0ii , the
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consistency condition of the new constitutive model can be defined as

f f fΣ αˆ ̇=ˆ ,: ˆ ̇ ′ + ˆ ∙ ̇=0Σ αˆ (68)

where

f f f f
Σ α

ˆ
′
= ∂ˆ

∂ ˆ ′
ˆ = ∂ˆ

∂Σ αˆ
(69)

Using Σ Σ Σˆ ′ = ( ˆ ′ ˆ ) ˆ ′T3
2  to define the orthotropic yield criterion,

f̂ (α) in Eq. (46) can be re written as

f α Σˆ ( ) = 2
3

ˆ ′
(70)

The rate of this expression α̇ can be expressed as

α Σ̇ = 2
3

ˆ ′
˙

(71)

where Σ̂′
˙

is given by

Σ HDˆ = ˆ ˆ p

˙ ′

(72)

Combining Eqs. (71) and (72) results in

α HD⋅= 2
3 p (73)

Subsequently, simplifying Ĥ2
3

as K̂f and defining D̂ = λ̇p
2
3

, the

above equation can be rewritten as

α λ K̇= ̇ 2
3

ˆ f (74)

Using this equation, the consistency condition of the new constitu-
tive model Eq. (68) can be re expressed as

f f fΣ λ Kˆ ̇=ˆ
′

: ˆ ̇ ′ + ˆ ∙ ̇ 2
3

ˆ =0fΣ αˆ
(75)

The formulation of the plastic flow equation in the intermediate
configuration requires the decomposition of the deformation rate into
elastic and plastic parts. The formulation however differs between
hyperelastic-plastic materials defined in this work and hypoelastic-
plastic materials when the plastic flow equation is specified in terms of
plastic velocity gradient L̂p as shown in Eq. (66), [10]. Subsequently,

using Σ E C E C D Dˆ ̇ ′= : ˆ ̇ = : ˆ ̇ = :( ˆ − ˆ )Ψ
e el e el pE E

Σ Σ∂ ˆ

∂ ˆ ∂ ˆ
ˆ ˆ

e e
D D

2
in the above equation where

C =el
ΨΣ

E E
ˆ ∂ ˆ

∂ ˆ ∂ ˆ
D

e e

2
refers to the elasticity tensor (material stiffness tensor) that

relates the material time derivative of the Mandel stress Σ̇̂′ to the

material time derivative of the Green strain Ė̂e in the isoclinic
configuration Ω̂i, the consistency condition of the proposed formulation
in the isoclinic configuration Ω̂i can be further derived as follows:

f f fC D D λ Kˆ ̇=ˆ
′

: :( ˆ − ˆ )+ˆ ∙ ̇ 2
3

ˆ
el p fΣ
Σ

αˆ
ˆ D

(76)

Introducing D̂p equals to L rsym ˆ =λ̇symˆp in the above equation, [10],
the plastic rate parameter λ̇ can be expressed as

f

f f
λ

C D

K C symr
̇=

ˆ
′

: : ˆ

−ˆ ∙ ˆ + ˆ
′

: : ˆ
el

f el

Σ
Σ

α Σ
Σ

ˆ
ˆ

2
3 ˆ

ˆ

D

D
(77)

3.8. The Elasto-Plastic tangent modulus

The plastic rate parameter λ̇ can be used to explicitly define the
relation between the stress and strain increments of the new constitu-
tive model in the isoclinic configuration Ω̂i within elastic and plastic

regimes using the following equation:

Σ C D D C D λsymrˆ ̇ ′ = :( ˆ − ˆ )= :( ˆ − ̇ ˆ)el p el
Σ Σˆ ˆD D (78)

Using Eq. (77), this equation can be further written as follows:
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Finally, with some arrangements the relationship between the
stress and strain increments within elastic and plastic regimes in Ω̂i
is concluded by the elasto-plastic tangent modulus C ′Σ̂ ;
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4. Validation and results

The proposed formulations in the preceding sections are imple-
mented into the LLNL-DYNA3D and named Material Type 93. On the
completion of the implementation process, the capability of the new
constitutive model to capture strain rate and temperature sensitivities
of orthotropic materials is first checked. The numerical simulation
results of the newly proposed constitutive model are then compared
against the published experimental data of Plate Impact and Taylor
Cylinder Impact Tests A cm−g−μs units system is adopted in the
involved numerical tests.

4.1. Strain rate and temperature dependency tests

To investigate rate sensitivity and temperature sensitivity of the
new constitutive model, a series of one element analyses are per-
formed. The single element with the node numbering used to define
boundary conditions is shown in Fig. 4. Assuming the single element
represents one of the elements around the gauge length of the uniaxial
stress test’s specimen, the uniform plastic deformation observed in the
element is applicable to predict strain rate and temperature dependent
using this simplified analysis. Bear in mind that this comparison
method is only valid for the test data before the plastic deformation
occurs non-uniformly (localisation or necking) in the test specimen.

In this model the principal directions of material orthotropy are
aligned with the x y z, , axis of the global coordinate system. The
displacement boundary conditions applied in these tests are sum-
marised in Table 1. Loading in tension is applied to the elements by

Fig. 4. Single element configuration.
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prescribing displacement load curves to nodes 1, 2, 3 and 4.
The tensile test data of Aluminium 7010 published in [56] is used in

this validation stage. The parameters defined for this specimen are
given in Tables 2 and 3.

The stress-strain curves for quasi-static tension tests
(6.4x10 s−4 −1strain rate) conducted at −50 °C and 70 °C are presented
in Fig. 5. In addition, Fig. 6 shows the stress-strain curves of the
specimen tested at 140 °C at two different strain rates; 6.4x10 s0 −1 and
6.4x10 s−1 −1. It can be clearly seen from these figures that the specimen
exhibits strain rate and temperature sensitivity.

The strain rate and temperature predictions of the newly constitu-
tive model are shown in the following figures.

Figs. 7–10 show that the flow stress (MTS model) of the new
constitutive model shows a good agreement with the rate and
temperature sensitivity of the specimen. The flow stress formulated
as a function of the microstructural state has captured a reasonable
relationship between stress, strain rate and temperature of Aluminium
7010. Small variances between the simulation and the experimental
results might be caused by the MTS properties used to control the flow
stress of the new constitutive model.

It can be concluded that increasing strain rate increases the flow
stress, while increasing temperature decreases the flow stress. In other
words, the saturation stress of the new formulation increases with

increasing strain rate and decreases with increasing temperature.

4.2. Plate impact test analysis of aluminium alloy 7010

The capability of the newly implemented constitutive model to
represent the behaviour of orthotropic metals when impacted with
shock loading at high impact velocity is investigated in this stage.
Fig. 11 shows the configuration of the Plate Impact test simulation.

Table 1
Displacements boundary condition for a uniaxial stress and uniaxial strain tests in the x
direction.

Node number Displacement boundary condition of uniaxial stress

1 No constraints
2 No constraints
3 No constraints
4 No constraints
5 Constrained x y, and z displacements
6 Constrained x displacement
7 Constrained x displacement
8 Constrained x displacement

Table 2
Aluminium 7010 material parameters for elastic-plastic with isotropic plastic hardening
analysis.

Material properties Value

Young’s modulus
Ea 70.06 GPa
Eb 71.1 GPa
Ec 70.6 GPa

Poisson’s ratio
vba 0.342
vca 0.342
vcb 0.342

Shear modulus
Gbc 26.3 GPa
Gab 26.5 GPa
Gac 26.5 GPa

Yield stress in a − direction
σy 504 MPa

Tangent plastic modulus in a − direction
H 0.65 GPa

Hill’s parameters
R 0.836
P 0.824
Qbc 1
Qba 1
Qca 1.0377

Table 3
MTS parameters of aluminium 7010.

Parameter Description Value

σ̂a Athermal threshold stress 100 MPa

σ̂0 Initial threshold stress 600 MPa
g εs0 Normalized activation energy 1.606
εṡ0 Reference strain rate x1.0 10 s7 −1

b Magnitude of the Burgers’ vector x0.286 10 m−9

kb Boltzmann constant x1.36 10 J/K−23

pε Free energy equation exponent 1
qε Free energy equation exponent 1
A Saturation stress constant 5.542
σ̂εs0 Saturation threshold stress at 0 K 801.01 MPa
εṡ0 Reference strain rate of saturation threshold stress x1.0 10 s7 −1

a0 Constant of hardening function 67604.6 MPa
a1 Constant of hardening function 1816.9 MPa
a2 Constant of hardening function 202.3 MPa
b0 Shear modulus at 0 K 28.83 GPa
b1 Shear modulus constant 4.45 GPa
b2 Shear modulus constant 248.5 K
Tr Reference temperature 293.15 K
ρ Density 2.81 g cm−3

Cp Heat capacity 896 J/kg K

Fig. 5. Stress Strain Curves of Aluminium 7010 at x6.4 10 s−4 −1 at different temperatures.
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It can be observed that the test consists of three parts of rectangular
bars with x4 4 solid elements for its cross section (XY plane). The first
bar represents the PMMA block, while the second and third bars refer
to the test specimen and flyer respectively. The mesh of this simulation
is set to allow a 1D wave to propagate along the length of the bars when
the impact happens. From this figure, it is noticed that symmetrical
planes are adopted on all sides of the bars.

To ensure that no release wave is reflected from the back of the
PMMA block into the test specimen, a non-reflecting boundary
condition is applied to the back of this block (PMMA). In addition,
the flyer, test specimen and PMMA bars are modelled with 25 solid
elements (2.5 mm in length), 75 solid elements (10 mm in length) and
100 solid elements (12 mm in length) respectively, parallel to the
impact axis (Z axis). A contact interface is defined in between the flyer

and the test specimen. To record the stress time histories of the impact,
a time history block is defined in the elements at the top of PMMA bar.

In this analysis, the longitudinal stress (Z stress) in the elements at
the top of the PMMA bar is compared with the experimental data with
respect to the short transverse and the longitudinal (rolling) directions
of the specimen. The MTS flow stress is excluded at this stage of
validation. The material properties used in this analysis are shown in
Table 4.

The flyer is defined as Aluminium 6082−T6. Both the flyer and the
PMMA blocks are assigned with DYNA3D’s Material Type 10
(Isotropic-Elastic-Plastic-Hydrodynamic). The Gruneisen equation of
state is adopted to appropriately represent the shock loading developed
in this test. In addition, three different impact velocities are performed
in these analyses 234 ms−1, 450 ms−1 and 895 ms−1. By setting the
material axes definition as AOPT 2 (globally orthotropic), the following
results are obtained:

It can be observed in Figs. 12–17 that the elastic-plastic loading-
unloading behaviours of the Al7010 are well captured by the proposed
constitutive model. A slope that is developed in the initial increment of
the longitudinal stress represents the Hugoniot Elastic Limit (HEL).
Without knowing the error that might happen in the experimental test,
such as an inaccuracy of the gauge used to measure the longitudinal
stress etc., a slight difference between the new constitutive model’s
HEL and the values obtained experimentally is acceptable. In addition,
a different HEL value obtained in each direction is a sign of an
adequate anisotropy level of the material under consideration.

The width of the generated pulses in each analysis is reasonably
agreed with the experimental test data. Furthermore, very close
Hugoniot stress levels between the new constitutive model and the
experimental data proved the capability of the newly implemented
orthotropic pressure to capture shockwaves in orthotropic materials.
The comparison between Material Type 93 and the experimental
results are analyzed and summarised in Table 5.

In this analysis, it can be clearly seen that the tensile wave failure or

Fig. 7. Stress strain curves comparison between Mat93 and experimental data at
x6.4 10 s−4 −1, C−50 ° .

Fig. 8. Stress strain curves comparison between Mat93 and experimental data at
6.4x10−4 s, 70 °C.
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Fig. 10. Stress strain curves comparison between Mat93 and experimental data at
6.4x10−4 s, 140 °C.
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spall (demonstrated by the reloading of the longitudinal stress after the
first loading-unloading pulse) is not generated in the specimen when
impacted with a lower impact velocity (234 ms−1). However, a clear
spall criterion can be observed when higher impact velocities
(450 ms−1 and 895 ms−1) are applied. Such behaviour could not be
captured by the Material Type 93 due to the absence of damage and
failure models in the proposed formulation of this constitutive model.

4.3. Taylor cyliner impact test analysis of aluminium alloy 7010

The capability of the new constitutive model to represent the
deformation behaviour of orthotropic metals within a three-dimen-
sional stress state is accessed in this section. A standard configuration
of this simulation test is depicted by Fig. 18.

It can be observed that this test creates an impact between a solid
cylinder rod of material (specimen) and a fixed rigid surface (anvil) as a
target. Strictly speaking, a cylindrical rod is fired into a fixed rigid plate
at high velocity (left). This impact subsequently produces permanent

Table 4
Material properties for plate impact test analysis.

Parameters Al7010 Al6082 PMMA

Ea 70.6 GPa − −
Eb 71.1 GPa − −
Ec 70.6 GPa − −
vba 0.342 − −
vca 0.342 − −
vcb 0.342 − −
Gbc 26.31 GPa 26.8 GPa 2.3 GPa
Gab 26.48 GPa 26.8 GPa 2.3 GPa
Gac 26.48 GPa 26.8 GPa 2.3 GPa
σy 564 MPa 250 MPa 70 MPa

H 0.13 GPa 130 GPa 300 MPa
pcut − 2.5 GPa −
ρ 2.81 g cm−3 2.7 g cm−3 1.18 g cm−3

Hill’s parameters
R 1 − −
P 0.719 − −
Qbc 1 − −
Qba 1 − −
Qca 1 − −

Gruneisen parameters
C 5200 ms−1 5240 ms−1 2180 ms−1

s1 1.36 1.4 2.088
s2 0.00 0.00 −1.124
s3 0.00 0.00 0.00
Г 2.2 1.97 0.85
A 0.48 0.48 0.00

Fig. 12. Longitudinal stress (Z stress) comparison at 234 ms−1 in longitudinal direction.

Fig. 13. Longitudinal stress (Z stress) comparison at 234 ms−1 in transverse direction.

Fig. 14. Longitudinal stress (Z stress) comparison at 450 ms−1 in longitudinal direction.

Fig. 15. Longitudinal stress (Z Stress) comparison at 450 ms−1 in transverse direction.

Fig. 16. Longitudinal stress (Z stress) comparison at 895 ms−1 in longitudinal direction.

Fig. 17. Longitudinal stress (Z stress) comparison at 895 ms−1 in transverse direction.
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deformations in the rebounded cylinder (right). The impact at the
bottom end of the cylinder happens at a very high strain rate within a
three-dimensional stress state and forms a mushroom-shape around
the impact area. The higher amplitude of the velocity impact results in
a greater mushrooming of the cylinder.

The FE model used to examine capability of the proposed formula-
tion to represent the deformation behaviour of orthotropic metals
within a three-dimensional stress state (3D mode) is shown in Fig. 19.
In order to reduce the simulation time of this experimental test, the
number of elements to model the cylinder is reduced by modelling a
quarter of the cylinder with 9.30 mm diameter and 46.50 mm length.
Furthermore, the cylinder is modelled by using a butterfly mesh
method with 6375 solid elements, as depicted in this figure. The anvil
is modelled as a rigid wall, therefore the impact-interface friction
between the solid cylinder rod and the anvil is negligible. 200 ms−1

impact velocity is used in this analysis. The material parameters of
Aluminium 7010, the Gruneisen EOS and the MTS parameters are
given in Tables 6–8 respectively.

In this analysis, the final radius and length of the deformed cylinder
profile obtained experimentally are compared with the results gener-
ated by new constitutive model. The analysis is simulated until 120 μs
to ensure the final deformed shape of the cylinder profile is really
obtained. Again, the material axes definition is set as global orthotropic
(AOPT 2). Fig. 20 shows the deformation behaviour predicted by the
new constitutive model at 5 μs, 20 μs and 50 μs.

First of all, it can be clearly seen that a mushroom-shape is
developed in the deformed cylinders near to the impact area. This is
due to the plastic compressive wave that exceeded the yield strength of
the specimen being generated in the cylinder. Greater mushrooming is
therefore expected for the case where the cylinder is impacted with a

Table 5
Comparison results of plate impact test.

Impact Velocity/Direction Analysis Criteria

HEL (GPa) Hugoniot Stress Level (GPa) Pulse (μs)

234 ms−1 (Longitudinal)
Simulation 0. 41 0. 64 1. 15
Experiment 0. 39 0. 65 1. 40
234 ms−1 (Transverse)
Simulation 0. 42 0. 64 1. 15
Experiment 0. 33 0. 70 1. 50
450 ms−1 (Longitudinal)
Simulation 0. 40 1. 28 1. 20
Experiment 0. 40 1. 28 1. 25
450 ms−1 (Transverse)
Simulation 0. 40 1. 28 1. 20
Experiment 0. 34 1. 36 1. 15
895 ms−1 (Longitudinal)
Simulation 0. 35 3. 15 1. 20
Experiment 0. 20 3. 25 1. 10
895 ms−1 (Transverse)
Simulation 0. 35 2. 90 1. 20
Experiment 0. 19 2. 80 1. 10

Fig. 18. Diagram of Taylor cylinder Impact test.

Fig. 19. FE model used to simulate Taylor cylinder Impact test.

Table 6
Aluminium material properties for Taylor cylinder impact test analysis.

Material properties Value

Young’s modulus
Ea 70.326 GPa
Eb 70.326 GPa
Ec 70.326 GPa

Poisson’s ratio
vba 0.33
vca 0.33
vcb 0.33

Shear modulus
Gbc 26.889 GPa
Gab 26.889 GPa
Gac 26.889 GPa

Yield stress in a − direction
σy 504 MPa

Tangent plastic modulus in a − direction
H 0.65 GPa

Hill’s parameters
R 0.836
P 0.824
Qbc 1
Qba 1
Qca 1.0377

Table 7
Gruneisen equation of state parameters.

Parameter Value

C 5200 ms−1

s1 1.36
s2 0.00
s3 0.00
Г 2.2
A 0.48
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higher velocity. In this figure, it can be observed that the generated
plastic wave has caused a severe deformation in a radial motion moving
away from the cylinder’s axial axis. Therefore, the highest effective
strain shown is developed in the middle of the cylinder footprints. A
higher impact velocity again is expected to produce a higher effective
plastic strain around the localized deformation area compared to a
lower impact velocity. This radial deformation mode that is correctly
predicted at the bottom area helps the proposed constitutive model to
produce an axial shortening of the cylinders.

The propagation of the elastic compression wave is also observable
in the simulation test. Consequently, this deformation behaviour
ensured there is no plastic deformation developed at the top of the
cylinders as the effective plastic strain continues raise from the bottom
to the top of the cylinders and ceases somewhere in the middle of the
cylinders. By using the simulation test data, radial strain vs. distance
from impact end curves of the new constitutive model against the
experimental result are plotted in Fig. 21.

In this figure, the major and minor side profiles of the deformed
cylinder are compared in the case of 200 ms−1 impact velocity.
Generally, it can be seen that the increment in the footprint radius
has an inverse relation with the shortening of the cylinder length. These
criteria are directly influenced by the value of impact velocity. In
addition, Fig. 21 shows a good agreement between the new constitutive
model and the experimental results in terms of both final footprint
radius and length of the deformed cylinder in the case of 200 ms−1

impact velocity. The only deviation between the simulation and the
experimental results is related to the developed mushroom-shape. It
can be observed that the new constitutive model has captured a slightly
different mushroom-shape with respect to the experimental results.

The analysis on this deviation must be referred back to the previous
discussion related to the Taylor Impact test deformation mode. As
emphasized, the deformation is developed at the bottom, near to the
impact area and raised to the top of the cylinder. This is due to the
propagation of the plastic compressive wave which is accompanied by
plastic deformation. In the new constitutive model, the plastic defor-
mation or effective plastic strain is controlled by a flow stress
formulation which refers to the MTS physically-based model.
Therefore, the mushroom-shape disagreement between simulation
and experiment of this analysis is potentially affected by the para-
meters used to characterize the proposed constitutive model. The MTS
parameters used in this analysis are previously derived with new
procedures in Villi’s work [56] Further work is required to justify this
hypothesis. However, it is reasonable to suggest that potentially only a
few parameters might not be correctly derived since the footprint
radius and the final length of the deformed cylinder are satisfactorily
captured.

From the analysis performed in this section, it can be observed the
proposed formulation of the new constitutive model integrated in the
isoclinic configuration and updated in a unique alignment of deviatoric
plane within the stress space is capable of producing a good agreement
with respect to the Taylor Cylinder Impact test data of orthotropic
metals. At this point, it can be concluded that the validation process is
completed since the capability of the proposed formulation of the new
constitutive model to simulate the deformation behaviour of ortho-
tropic metals at high strain rates within a three-dimensional stress-
state has finally been validated.

5. Conclusion

A new hyperelastic-plastic constitutive model for orthotropic metals
undergoing finite deformation is discussed in this paper. The objective
of this study is to develop a new constitutive model for orthotropic
metals that takes into consideration the influence of strain rate and
temperature by adopting the new generalized pressure proposed for
orthotropic materials.

The proposed constitutive model used a new Mandel stress tensor
that is combined with the new stress tensor decomposition of general-
ized pressure. In addition, the Mechanical Threshold Model (MTS) is
adopted as a referential curve to control the yield surface expansion
that accounts for isotropic plastic hardening. Furthermore, the for-
mulation is developed in the isoclinic configuration using the multi-
plicative decomposition of the deformation gradient framework, which
further combined with Equation of States (EOSs).

Table 8
MTS parameters of aluminium 7010.

Parameter Description Value

σ̂a Athermal threshold stress 10.0 MPa

σ̂0 Initial threshold stress 600 MPa
g εs0 Normalized activation energy 1.606
εṡ0 Reference strain rate x1.0 10 s7 −1

b Magnitude of the Burgers’ vector x0.286 10 m−9

kb Boltzmann constant x1.36 10 J/K−23

pε Free energy equation exponent 1
qε Free energy equation exponent 1
A Saturation stress constant 5.542
σ̂εs0 Saturation threshold stress at 0 K 801.01 MPa
εṡ0 Reference strain rate of saturation threshold stress x1.0 10 s7 −1

a0 Constant of hardening function 67604.6 MPa
a1 Constant of hardening function 1816.9 MPa
a2 Constant of hardening function 202.3 MPa
b0 Shear modulus at 0 K 28.83 GPa
b1 Shear modulus constant 4.45 GPa
b2 Shear modulus constant 248.5 K
Tr Reference temperature 293.15 K
ρ Density 2.81 g cm−3

Cp Heat capacity 896 J/kg K

Fig. 20. Deformed profiles (mushroom-shape) of the impact cylinder at various instants.

Fig. 21. Major and minor side profile of Taylor cylinder experimental test results against
simulation results (plotted as radial strain vs distance).
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The newly implemented constitutive model is finally validated by a
comparison against a Plate Impact test and Taylor Cylinder Impact
test results. The results are satisfactory with respect to the experi-
mental data after its rate and temperature sensitivities are investigated.

The proposed formulation is the key novelty of this work – and in
fact a new finding in this field. The expansion of orthotropic yield
surface is performed in a unique alignment of deviatoric plane that is
shifted away from the conventional alignment defined uniquely by the
elastic properties of orthotropic materials. This achievement is a good
indication for more appropriate orthotropic constitutive models in
future in order to help towards a better understanding of the complex-
ity of material orthotropy undergoing finite deformation.
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