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ARTICLE INFO ABSTRACT

Article history: The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal
Available online 17 October 2015 data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are

E multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using
gg::;:;émo - §piking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn
Evolving connectionist systems mcrement_ally from data stream.s. can include ‘on t_he fly’ new input variables, new output class labels
Evolving spiking neural networks or regression outputs, can continuously adapt their structure and functionality, can be visualised and

Computational neurogenetic systems
Evolving spatio-temporal data machines
NeuCube

interpreted for new knowledge discovery and for a better understanding of the data'and the processes
that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike
early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM
called NeuCube along with a design methodology for building eSTDM using this is presented. The
implementation of this framework in MATLAB, Java, and PyNN (Python)is presented. The latter facilitates
the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM
for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data,
ecological data, climate data, audio-visual data. Future directions are discussed, including extension of
the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM.
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1. Introduction: Spatio & spectro temporal data and the
challenges for information sciences

Most problems in nature require spatio- and/or spectro-
temporal data (SSTD) that include measuring spatial or/and
spectral variables over time. SSTD is described by a triplet
(X, Y, F),where: X is a set of independent variables measured over
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consecutive discrete time moments t; Y is the set of dependent
output variables, and F is the association function between whole
segments (‘chunks’) of the input data, each sampled in a time
window At, and the output variables belonging to Y, such that

F:X(At) > Y

where X(t) = (x1(t), x2(t), ..., xp(t)) and t = 1,2, ..., m.

It is important for a computational model to capture and
learn ‘whole ‘spatio- and spectro-temporal patterns from data
streams in order to most accurately predict future events from
new input data. Examples of problems involving SSTD are:
brain cognitive state evaluation based on’ spatially distributed
EEG electrodes (Kasabov, 2014); fMRI data (Chu, Ni, Tan, &
Ashburton, 2011; Gholami Doborjeh & Kasabov, 2015; Just, 2001;
Mitchell, Hutchinson, Just, Niculescu, & Wang, 2003; Murli,
Kasabov, & Handaga, 2014); moving object recognition from video
data (Delbruck & Lichtsteiner, 2007); evaluating risk of disease,
e.g. heart attack, stroke (Kasabov et al., 2014); evaluating response
of a disease to treatment based on clinical and environmental
variables; modelling the progression of a neuro-degenerative
disease, such as Alzheimer’s Disease; modelling and prognosis of
the establishment of invasive species in ecology. The prediction
of events in geology, astronomy, economics and many other areas
also depend on accurate SSTD modelling.

The most commonly used models for dealing with temporal in-
formation, based on Hidden Markov Models (HMM) and traditional
artificial neural networks (ANN), have limited capacity to achieve
the integration of complex and long temporal spatial/spectral com-
ponents because they usually either ignore the temporal dimen-
sion or over-simplify its representation. A new trend in machine
learning is currently emerging and is known as deep machine
learning (Schmidhuber, 2014). Most of the proposed models still
learn SSTD by entering single time point frames rather than learn-
ing whole SSTD patterns. They are also limited in addressing ade-
quately the interaction between temporal and spatial components
in SSTD. Some recent developments in SSTD modelling have been
proposed (e.g. (Liu et al,, 2013; Liu, Wang, Jayarajah, Misra, & Kr-
ishnan, 2013)) but these are limited in their application — typically
these methods are targeted towards one specific source of data,
and do not show the broad level of application required in the con-
texts we seek to address.

The human brain has the amazing capacity to learn and
recall patterns from SSTD at different time scales, ranging from
milliseconds, to years, and possibly to millions of years (i.e. genetic
information, accumulated through evolution). Thus, the brain is
the ultimate inspiration for the development of new machine
learning techniques for SSTD modelling. Indeed, brain-inspired
Spiking Neural Networks (SNN) (Buonomano & Maass, 2009;
Gerstner, Kreiter, & Markram, 1997; Gerstner, Sprekeler, & Deco,
2012) have the potential to learn SSTD by using trains of spikes
(binary temporal events) transmitted among spatially located
synapses and neurons. Both spatial and temporal information
can be encoded in'an SNN as locations of synapses and neurons
and time of their spiking activity, respectively. Spiking neurons
send spikes via connections that have a complex dynamic
behaviour, collectively forming an SSTD memory. Some SNN
employ specific learning rules such as Spike-Time-Dependent-
Plasticity (STDP) (Song,-Miller, & Abbott, 2000) or Spike Driven
Synaptic Plasticity (SDSP) (Fusi, 2003).

In Kasabov (2014) a NeuCube framework was presented for
spatio-temporal brain data and in Kasabov et al (2014) an
application for personalised modelling stroke prediction was
published. This paper further extends the published works
into a generic and systematic methodology for a new type
of solutions to any spatio-temporal stream data problems and
the solution is called here for the first time—evolving spatio-
temporal data machine (eSTDM). Various novel aspects of this

approach are developed and presented here such as: the analysis
of encoding methods; 3D VR visualisation; GA optimisation;
along with a novel NeuCube development system that consists
of 10 different functional modules including a hardware module
and a description of a hardware implementation of a developed
application prototype model. The NeuCube development system
is announced here for the first time to be publically available
online: http://www kedri.aut.ac.nz/neucube. New applications are
presented here for the first time, such as: earthquake prediction;
age detection from face video data, along with previously
published applications that have been cited and briefly explained
here.

Organisation of this paper:

In Section 2 we introduce classical evolving connectionist sys-
tems, the conceptual predecessor of this work, including the evolv-
ing spiking neural network which this work is based around. The
primary contribution of this paper is established in Section 3,
where our design methodology for eSTDM in the NeuCube com-
putational framework is proposed. An immersive visualisation for
this framework is discussed in Section 4. In the following sections
we apply, this methodology to build example eSTDM for case stud-
ies, in: eSTDM for brain data, including EEG and fMRI (Section 5);
neurogenetic models {Section 5.3); personalised modelling, in-
cluding stroke prediction (Section 6); environmental applications,
including invasive pest population prediction and earthquake
prediction (Section 7); video data (Section 8); and general spectro-
temporal data, including radioastronomy (Section 9). An im-
plementation of the framework for neuromorphic hardware is
discussed in Section 10.

2. Principles of evolving connectionist systems and their
development

2.1. Principles of ECOS

The human brain uniquely combines low level neuronal
learning in the neurons and the connections between them, and
higher level rule abstraction leading to adaptive learning and
abstract concept formation. This is the ultimate inspiration for
the development of intelligent evolving connectionist systems
(ECOS) where specially constructed artificial neural networks (NN)
are trained on data, so that after training abstract knowledge
representation can be derived that explains the data and can be
further interpreted as a knowledge-based system.

ECOS are modular connectionist based systems that evolve
their structure and functionality in a continuous, self-organised,
on-line, adaptive, interactive way from incoming data (Kasabov,
1998, 2007). They can process both data and knowledge in a
supervised andfor unsupervised way. ECOS learn local models
from data through clustering of the data and associating a local
output function for each cluster represented in a connectionist
structure. They can learn incrementally single data records or
chunks of data and also incrementally change their input features.
ECOS further develop some connectionist information processing
principles already introduced in classical NN models, such as SOM,
RBF, FuzyARTMap, Growing Neural Gas, Neuro-Fuzzy Systems, or
RAN (Kasabov, 2007).

ECOS perform adaptive local learning—neurons are allocated as
centres of data clusters and the system creates local models in
these clusters. The clustering used in ECOS is on-line, one-pass,
evolving clustering, which is in contrast to the traditional fuzzy
clustering methods that use pre-defined number of clusters and
many iterations (Bezdek, 1987; Yager & Filev, 1994).

The following are the main principles of ECOS as stated
in Kasabov {1998):
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1. Fast learning from large amount of data, e.g. using ‘one-pass’
training, starting with little prior knowledge;

2. Adaptation in a real time and in an on-line mode where new
data is accommodated as it comes based on local learning;

3. ‘Open’, evolving structure, where new input variables (relevant
to the task), new outputs (e.g. classes), new connections and
neurons are added/evolved ‘on the fly’;

4. Both data learning and knowledge representation is facilitated
in a comprehensive and flexible way, e.g. supervised learning,
unsupervised learning, evolving clustering, ‘sleep’ learning,
forgetting/pruning, fuzzy rule insertion and extraction;

5. Active interaction with other ECOSs and with the environment
in a multi-modal fashion;

6. Representing both space and time in their different scales, e.g.:
clusters of data, short- and long-term memory, age of data,
forgetting, etc.;

7. System’s self-evaluation in terms of behaviour, global error and
success and related knowledge representation.

2.2. ECOS development: EFuNN, DENFIS, eSNN

The development of ECOS, as a trend in neural networks and
computational intelligence that started in 1998 (Kasabov, 1998)
continued as many improved or new computational methods
that use the ECOS principles have been developed along many
applications.

While the classical ECOS such as EFUNN and DENFIS (Kasabov,
2007) use a simple McCulloch and Pitts model of a neuron, where
data is represented as scalars, the further developed evolving
spiking neural network (eSNN) architectures use a spiking neuron
model, while applying the same or similar ECOS principles. eSNN
uses data represented as temporal sequences of spikes.

A single biological neuron and the associated synapses is
a complex information processing machine that involves short
term information processing, long term information storage, and
evolutionary information stored as genes in the nucleus of the
neuron. A spiking neuron model assumes input information
represented as trains of spikes over time. When sufficient input
information is accumulated in the membrane of the neuron
and the neuron’s postsynaptic potential exceeds a threshold,
the neuron emits a spike at its axon. Some of the-state-of-
the-art models of a spiking neuron include: early models by
Hodgkin and Huxley (Hodgkin & Huxley, 1952); more recent
models by Maass, Gerstner, Kistler, Izhikevich and others, e.g.:
Spike Response Models (SRM); Integrate-and-Fire Model (IFM);
Izhikevich models (Izhikevich, 2004); adaptive IFM; probabilistic
neurogenetic model (Kasabov, 2010).

Based on the ECOS principles, an evolving spiking neural
network architecture (eSNN) was proposed (Kasabov, 2007;
Wysoski, Benuskova, & Kasabov, 2010). It was initially designed
as a visual pattern recognition system. The first eSNNs were
based on the Thorpe’s learning rule (Thorpe, 2001), in which the
importance of early spikes (after the onset of a certain stimulus) is
boosted, called rank-order coding and learning. Synaptic plasticity
is employed by a fast supervised one-pass learning algorithm.

The main advantage of the eSNN when compared with
other supervised or unsupervised SNN models is that it is
computationally inexpensive and boosts the importance of the
order in which input spikes arrive, thus making the eSNN
suitable for on-line learning with a range of applications. For a
comprehensive study of eSNN see Wysoski et al. (2010).

Different eSNN models have been developed, including:

e Dynamic eSNN (deSNN)—an architecture that uses both rank-
order and time-based learning methods to account for spatio-
temporal learning Dhoble, Nuntalid, Indiveri, and Kasabov
(2012) and Kasabov, Dhoble, Nuntalid, and Indiveri (2013);

Fig. 1. A principle diagram of an eSTDM.

o Reservoir-based eSNN for spatio- and spectro-temporal pat-
tern recognition (for principles of reservoir computing, see Ver-
straeten, Schrauwen, D’'Haene, and Stroobandt (2007));

e Specialised architectures for EEG modelling and moving object
recognition systems (Kasabov & Dhoble, et al., 2013).

3. A design methodology for evolving spatio-temporal data
machines (eSTDM) using the NeuCube framework

3.1. General architecture and functionality of eSTDM

Our approach here to modelling large and fast stream SSTD is
based on a common architecture of eSTDM as depicted in Fig. 1. The
functionality of an eSTDM is based on the following procedures:

1. Converting multivariable input stream data into spike se-
quences;

2. Unsupervised learning of spatio-temporal patterns from data in
a SNN reservoir (the “Cube”);

3. Supervised learning of classification/regression output system
for classification/regression problems;

4. Optimisation using the evaluated/tested accuracy of the system
as a feedback for improving the performance of this system in
an iterative way (if necessary).

The structure of the eSTDM resembles the structure of a LSM (Ver-
straeten et al., 2007), but the methodology for building sucheSTDM
in a specially proposed SNN computational framework called Neu-
Cube departs significantly from the classical neuro-computation
and artificial intelligence approaches.

3.2. NeuCube: A framework for eSTDM

The latest development in the direction of eSNN systems was
proposed as a new architecture called NeuCube (Kasabov, 2014). It
was initially proposed for spatio-temporal brain data modelling,
but then it was further developed for other types of data as
presented in this paper.

A block diagram of the NeuCube architecture is provided in
Fig. 2. It consists of the following modules:

e Input information encoding module;
e 3D SNN module (the Cube);
e Output classification/regression module;

and other optional modules, including:

e Gene regulatory network (GRN) module;

e Parameter optimisation module;

e Visualisation and knowledge extraction module (not shown in
Fig. 2).

The input module transforms input data into trains of spikes.
Spatio-temporal data (such as EEG, fMR], climate) is entered into
the main module—the 3D SNNcube (SNNc). Different types of data
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Neurogenetic Cube (NeuCube)

Fig. 2. Ablock diagram of the NeuCube architecture initially proposed for brain data modelling but later used for a wide range of SSTD (Kasabov, 2014).

can be used. This data is entered (“mapped”) into pre-designated
spatially located areas of the SNNc that correspond to the spatial
location of the origin where data was collected (if such a location
exists).

Learning in the SNN is performed in two stages:

1. Unsupervised training, where spatio-temporal data is entered
into relevant areas of the SNNc over time. Unsupervised
learning is performed to modify the initially set connection
weights. The SNNc will learn to activate same groups of spiking
neurons when similar input stimuli are presented, also known
as a polychronization effect (Izhikevich, 2004).

2. Supervised training of the spiking neurons in the output
module, where the same data that was used for unsupervised
training is now propagated again through the trained SNN and
the output neurons are trained to classify the spatio-temporal
spiking pattern of the SNNc into pre-defined classes (or output
spike sequences). As a special case, all neurons from the SNN
are connected to every output neuron. Feedback connections
from output neurons to neurons in the SNN can be created for
reinforcement learning. Different SNN methods can be used to
learn and classify spiking patterns from the SNNc, including the
deSNN (Kasabov, Hu, Chen, Scott, & Turkova, 2013) and SPAN
models (Mohemmed & Kasabov, 2012). The latter is suitable
for generating motor control spike trains in response to certain
patterns of activity of the Cube.

In an eSTDM similar activation patterns (called ‘polychronous
waves') can be generated in the SNNc with recurrent connections
to represent short term memory. When using STDP learning,
connection weights change to form LTP or LTD, which constitute
long-term memory (see Song et al. (2000) for more detail of STDP).

Results of the use of the NeuCube suggest that the NeuCube
architecture can be explored for learning long spatio-temporal
patterns and to be used as associative memory. Once data is
learned, the SNNc retains the connections as a long-term memory.
Since the SNNc learns functional pathways' of spiking activities
represented as structural pathways of connections, when only a
small initial ‘part of input data is entered the SNNc will ‘synfire’
and ‘chain-fire’ learned connection pathways to reproduce learned
functional pathways. Thus a NeuCube can be used as an associative
memory and as a predictive system for event prediction when only
some initial new input data is presented.

3.3. Design methodology of eSTDM in NeuCube

In order to design an appropriate eSTDM for a given data source,
a number of factors must be taken into consideration. Here, we
identify these considerations.

e Which input transformation function do we use to encode the
data as trains of spikes?

o Which input variable mapping into the SNNc is used? Is there
some a-priori information we can use to spatially locate these
input variables in the SNNc?

¢ Which learning method do we use in the SNNc?

o Which output function is appropriate? Is it classification or
regression?

o How tovisualise an eSTDM for an improved understanding?

o Which parameter optimisation method will we apply?

For rapid prototyping and exploration of a NeuCube model, a
generic prototyping and testing module has been implemented
and is discussed later in this paper.

3.3.1. Data encoding

There are different coding schemes for SNN, primarily rate (in-
formation as mean firing rates) or temporal (information as tem-
porally significant) coding. For NeuCube, we use temporal coding
to represent information. So far four different spike encoding algo-
rithms have been integrated into the existing implementation of
the NeuCube, namely the Ben's Spiker Algorithm (BSA), Temporal
Contrast (Threshold-based), Step-Forward Spike Encoding Algo-
rithm (SF) and Moving-Window Spike Encoding Algorithm (MW).
Fig. 3a(a) shows different results of the same SSTD, in this case an
EEG signal, encoded by these four algorithms.

Different spike encoding algorithms have distinct characteris-
tics when representing input data. BSA is suitable for high fre-
quency signals and because it is based on the Finite Impulse
Response technique, the original signal can be recovered easily
from the encoded spike train. Only positive (excitatory) spikes
are generated by BSA, whereas all other techniques mentioned
here can also generate negative (inhibitory) spikes. Temporal Con-
trast was originally implemented in hardware (Delbruck & Licht-
steiner, 2007) in the artificial silicon retina. It represents significant
changes in signal intensity over a given threshold, where the ON
and OFF events are dependent on the sign of the changes. However
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Fig- 3a. Spike trains generated by four different spike encoding algorithms in NeuCube with corresponding recovery signals. The blue(red) lines in (b), (c), (d), (e) are
positive(negative) spikes, and the blue lines in (f), (), (h), (i) are the original signals while the red dash lines are the signals reconstructed by corresponding spike trains.

if the changes of the signal intensity vary dramatically, it may not
be possible to recover the original signal using the encoded spike
train generated by AER. Therefore, we propose here an improved
spike encoding algorithm, SF, to better represent the signal inten-
sity.

For a given signal S(t) where (t = 1,2,..., n), we define a
baseline B(t) variation during time t with B(1) = S(1). If the
incoming signal intensity S(t1) exceeds the baseline B(t;_1) plus
a threshold defined as Th, then a positive spike is encoded at time
t1, and B(t) is updated as B(t;) = B(t;—1) + Th; and if S(t;) <=
B(t;—1) — Th, a negative spike is generated and B(t,) is assigned as
B(t;) = B(t;_1)— Th. In other situations, no spike is generated and
B(t1) = B(t1-1).

As to the Moving-Window Spike Encoding Algorithm, the
baseline B(t) is defined as the mean of previous signal intensities
within a time window T, thus this encoding algorithm can be
robust to certain kinds of noise.

Before choosing a proper spike encoding algorithm, we need
to figure out what information the spike trains shall carry for
the original signals, like AER for significant changes. After that,
the underlying spike patterns in the spike trains will be better
understood.

3.3.2. Input variable mapping

Mapping input variables into spatially located spiking neurons
in the SNNc is a new approach towards modelling SSTD introduced
in Kasabov (2014) and is a unique feature of the eSTDM. The main
principle is that if spatial information about the input variables
is known it can help in (a) building more accurate models of
the SSTD collected through these variables and (b) a much better
interpretation of the model and a better understanding of the SSTD.
This' is very important for data such as brain data such as EEG
(see Kasabov (2014) and Kasabov and Capecci (2015)) and for fMRI
data (see Fig.-3d) where patterns of interaction of brain signals
can be learned and discovered. In some implementations we have
used the Talairach brain template, mapped spatially into the SNNc
(see Fig. 2). Another way of mapping, when there is no spatial
information available for the input variables, is to measure the
temporal similarity between the variables to map variables with
similar patterns into closer neurons in the SNNc. This is the vector
quantisation principle, where by ‘vector’ here we use time series,
which do not necessarily have the same length.

3.3.3. Learning

Learning in a eSTDM is a two-phase process as it was described
in the NeuCube framework (cf. Section 3.2). The accuracy of a
NeuCube' model depends a great deal with the SNNc learning
parameters and the classifier/regressor parameters. Optimisation
procedures are discussed in Section 3.3.5.

3.3.4. Output classification or regression

We use an SNN for the output model of the type eSNN. An
eSNN evolves its structure and functionality in an on-line manner,
from incoming information. For every new input data sample, a
new output neuron is dynamically allocated and connected to the
input neurons. The neuron's connections are initially established
using the RO rule for the output neuron to recognise this vector
(frame, static pattern) or a similar one as a positive example. The
weight vectors of the output neurons represent centres of clusters
in the problem space and can be represented as fuzzy rules (Soltic &
Kasabov, 2010). Then these connection weights are further adapted
to the following spikes (Kasabov & Dhoble, et al., 2013),

In some implementations neurons with similar weight vectors
are merged based on the Euclidean distance between them.
That makes it possible to achieve a very fast learning (only one
pass may be sufficient), in both supervised and unsupervised
modes (Kasabov & Dhoble, et al., 2013). When in an unsupervised
mode, the evolved neurons represent a learned pattern (or a
prototype of patterns). The neurons can be labelled and grouped
according to their class membership if the model performs a
classification task in a supervised mode of learning.

Weights are calculated based on the order of the incoming
spikes on the corresponding synapses using the RO learning rule:

wij =« modorder([,f)

where: « is a learning parameter (in a partial case it is equal to 1);
mod is a modulation factor that defines how important the order of
the first spike is; wj; is the synaptic weight between a pre-synaptic
neuron j and the postsynaptic neuron i; order(j, i) represents the
order (the rank) of the first spike at synapse j, i ranked among all
spikes arriving from all synapses to the neuron i; order(j, i) = 0
for the first spike to neuron i and increases according to the input
spike order at other synapses.

While the input training pattern (example) is presented (all
input spikes on different synapses, encoding the input vector are
presented within a time window of T time units), the spiking
threshold @ of the neuron i is defined to make this neuron spike
when this or a similar pattern (example) is presented again in the
recall mode. The threshold is calculated as a fraction (C) of the total
PSP; (denoted as PSP"™) accumulated during the presentation of
the input pattern:

Pspimax L Z modorder(j,l)
i

© = C PSP,

The eSNN (deSNN) learning is adaptive, incremental, theoreti-
cally ‘lifelong’, so that the system can learn new patterns through
creating new output neurons, connecting them to the SNNc neu-
rons, and possibly merging the most similar ones. The deSNN im-
plements the 7 ECOS principles from Section 1.
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Fig. 3b. The cursor node can be used to view additional information about a specific neuron and its activity in the SNNc.

During the recall phase, when a new spike sequence is
presented, the spiking pattern is submitted to all created neurons
of the SNNc. An output spike is generated by neuron i at a time l
if the PSP;(I) becomes higher than its threshold Th;. After the first
neuron spikes, the PSP of all neurons are set to an initial value
(e.g. 0) to prepare the system for the next pattern for recall or
learning.

3.3.5. Parameter optimisation of NeuCube models

eSTDM behaviours can be easily manipulated by changes in
their large number of parameters. For example, differing neuron
reset voltages can lead to a number of different spiking dynamics,
and differing encoding parameters can significantly change the
information density of the spike trains. Different ‘mod’ and
‘drift’ parameters in a deSNN can result in different classification
accuracy. To this end, a parameter search is usually performed in
order to extract the best performance, Three primary techniques
are discussed here: Grid Search; Genetic Algorithm search; and the
Quantum-Inspired search.

Grid search. Grid search is a straightforward but effective method
to tune parameters. Suppose there are P parameters that have to
be optimised simultaneously. For each parameter there are three
hyperparameters to be specified manually: the minimal value
m and the maximal value M of the searching interval, and the
searching step size s. Given these three hyperparameters of each
optimizing parameter, we first create a P-dimension matrix, each
dimension of which corresponding to a optimizing parameter,
from m to M divided into (M —m) /s entries. In this case, each entry
of the matrix corresponds to a group of values of the optimising
parameters. Then we randomly split the training set into two
equal-size parts, a training part and a validation part. For a specific
group of values, we run the NeuCube system in a two-fold cross-
validation way and the error rate of the cross-validation isadded to
the entry of the P-dimension matrix corresponding to that group
of parameter values.

Instead of directly choosing the group of parameter values
corresponding to the minimal entry in the matrix, we adopt
another more robust method to determine the optimal parameters.
We first apply a low pass filter by replacing each matrix entry
with the average of its adjacent neighbouring entries, and then,
after all entries are filtered, we choose the group of parameter
values corresponding to the minimal entry of the filtered matrix
as the optimal one. The adjustification is that the performance
surface of the system varies smoothly in parameter space, and
after filtering some highly unstable points (entry whose value
is extremely larger or smaller than its all adjacent neighbouring
entries) will be reduced. Thus the minimal value of the matrix can
capture the general trend of the performance surface.

Genetic algorithms. Standard Genetic Algorithm techniques can be
used to optimise the parameters of a NeuCube model.

Quantum-inspired evolutionary methods. These methods use the
principle of superposition of states to represent and optimise
parameters of SNN models (Kasabov, 2007). Such a method is
the quantum inspired genetic algorithm or QiPSO (Defoin-Platel,
Schliebs, & Kasabov, 2009).

4. Dynamic and immersive visualisation of NeuCube models

The number of neurons and connections within NeuCube
as well as the 3-dimensional structure requires a visualisation
that goes beyond a simple 2D connectivity/weight matrix or
an orthographic 45-degree view of the volume. We created
a specialised renderer for NeuCube datasets using JOGL (Java
Bindings for OpenGL) and GLSL (OpenGL Shading Language)
shaders:to be able to render up to 1.5 million neurons and their
connections. with a steady frame rate of 60 fps. In this view,
neurons are displayed as stylised spheres, and connections are
rendered as lines with green colour for excitatory connections and
red for inhibitory connections. Spiking activity is shown as signals
travelling along the connections.

In conjunction with a 3D’ stereoscopic HMD (Head Mounted
Display) like the Oculus Rift, it is easy for users to perceive
the spatial structure of the network and the neuron positions.
Furthermore, interaction mechanisms' allow for playback of
spiking patterns and the development of connection weights
throughout the learning period. In addition, the visualisation
includes analysis functionality for the usage of connections to find
‘hot paths’, connection length analysis, and the ability to view the
3D structure in ‘slices’. A 3D cursor metaphor is employed to look
at neurons individually, their parameters, and their spiking history
(see Fig. 3b).

The NeuCube visualisation can run as a standalone program on
a PC with a reasonable modern 3D graphics card and can be used
with keyboard and mouse control. However, the full potential of
the visualisation is possible in a motion capture space, where the
camera perspective and the cursor node position and orientation
are controlled by markers that are attached on the actual HMD and
a cursor implement (see Fig. 3c). This setup makes it possible for
the user to literally walk through NeuCube and point out individual
neurons with the cursor in a natural manner.

In comparison to other scientific visualisation tools for neural
networks such as BrainGazer (Bruckner et al., 2009) and Neuron
Navigator (NNG) (Lin et al,, 2011), our solution differs in'that
the user can naturally navigate through the 3D space by simply
walking and gesturing instead of using mouse and keyboard
shortcuts.
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Fig. 3c. A user navigating through the virtual representation of the NeuCube
network, using an intuitive, hand pesition based 3D cursor.

Closer to our visualisation is the work of von Kapri, Rick, Potjans,
Diesmann, and Kuhlen (2011), who are using a Computer Assisted
Virtual Environment (CAVE) to visualise the spatial structure and
activity of a spiking neural network. However, due to the limited
space within a cave environment, navigation by simply walking is
not possible and requires indirect ways, e.g., by using a controller.

We have not yet conducted a systematic user study, but so far,
around 50 visitors of the Immersive VR space have experienced
this visualisation. We have observed that, in general, people
quickly start to move around and look at structures and point
out individual neurons using the 3D cursor. The visualisation and
interaction metaphors are very intuitive for new and experienced
users.

5. eSTDM for spatio-temporal brain data modelling and under-
standing

5.1. eSTDM for EEG STBD

EEG has been used for the study of human neural activity
recorded from the scalp for nearly a century. It can measure
functional changes in the brain that occur over a period of
milliseconds, is easy to manage, and is considered non-invasive for
the subject. For these reasons, EEG has been used in brain computer
interface (BCI) based systems to allow users to control devices, for
studying and staging of neurodegenerative disorders, and for other
clinical diagnostic purposes. As the increase in average human
lifespan has been followed by the dramatic rise in the appearance
of neurological diseases, the importance of such tools is clear.

EEG data contains temporal, spatial, and spectral information
that is difficult to truly explore using standard statistical or ML
techniques. Though these techniques are often used to process
STBD, they lack the ability to classify differences in neurological
dynamics that occur over time, to identify the functional brain
areas involved, and to quantify the information involved. SNN,
however, are shown tq be capable of such tasks (Hu, Hou, Chen,
Kasabov, & Scott, 2014; Kasabov & Hu, et al;, 2013; Taylor et al.,
2014).

In Kasabov and Capecci (2015) for example, an SNN method-
ology based in the NeuCube eSTDM was used for the study of
6-channel EEG data recorded from the scalp of seven subjects per-
forming different mental tasks. This research identifies that the
NeuCube is able to classify and analyse changes in functional brain
activities, This is significant, as it allows for the identification of the
appearance of mild cognitive impairment (MCI) to stage its degen-
eration towards Alzheimer's Disease (AD).

To study the EEG data, we have used a 3D SNNc of 1471 brain-
mapped spiking neurons. Each of these neurons represented the
centre coordinates of 1 cm? of the Talairach Atlas, a human brain
template (Talairach & Tournoux, 1988). The spike trains, obtained
after encoding the real time EEG data using the Temporal Contrast
(Threshold-based) algorithm, were entered into the SNNc to the
corresponding brain-mapped input neurons. The data was first
learned in an unsupervised way using Spike Time Dependent
Plasticity Learning Rule (STDP) (Song et al, 2000) and then
classified via supervised learning with the Dynamic Evolving
SNN (deSNN) (Kasabov & Dhoble, et al, 2013). After training,
the SNNc connectivity can be analysed and interpreted for a
better understanding of the data and to identify differences in
brain activity. A methodology diagram is given in Fig. 4. The
proposed method and the obtained results have been compared
with traditional approaches resulting in a significantly better
classification accuracy, but also in a better interpretation of the
model and a better understanding of the complex cognitive
processes that generate the EEG data. See the paper by Kasabov
and Capecci (2015) for detailed results.

In another study (Capecci et al., 2015), the same NeuCube-
based model has been used to study neural degeneration by
means of EEG data collected amongst two groups: control and
Alzheimer’s Disease patients. Excellent classification results of
100% test accuracy have been achieved. These have also been
compared with other traditional machine learning approaches,
suchas the Multi Layer Perceptron (MLP), Support Vector Machine
(SVM), Evolving Classification Function (ECF) (Kasabov, 2007) and
Evolving Clustering Method for Classification (ECMC). The leave-
one-out cross-validation method was used to verify the results. See
the paper by Capecci et al. (2015) for detailed results.

A NeuCube model performed significantly better compared
with the other methods and with the highest accuracy, sensitivity
and specificity over all. Thus, we believe that the NeuCube eSTDM
can be successfully used for on-line learning and recognition of
STBD. It also offers a better interpretability of the information
and the phenomena of study. Further improvement of the
understanding and use of the model proposed are believed
to contribute to the advancement in machine learning for the
prediction and understanding of brain data and more specifically
for data related to neurodegenerative pathologies, such as AD.

5.2. eSTDM for fMRI STBD

Recently there has been a huge interest in using functional
magnetic resonance imaging (fMRI) to understand, analyse and
predict behaviour and cognition. The ability of fMRI to sample
high resolution spatial information over time has been successfully
used in correlating high-resolution neural activity with behaviour.
Several attempts have been made (Haxby et al., 2001; Mitchell
et al, 2003), not only to identify the spatial distribution of
activation across brain regions associated with cognitive tasks,
but also to build computational models to distinguish them. The
PBAIC 2007 competition was designed to detect cognitive tasks
such as ‘seeing a dog’, ‘picking up a weapon’ etc. in a virtual reality
environment. ;

Traditional machine learning algorithms like Gaussian Naive
Bayes (Mitchell et al,, 2003), or the SVM (Chu et al,, 2011) has
been used previously for this purpose. Some current research
also focuses on the transformation of time series information to
transformed space like shapelet-similarity, similarity in frequency
domain etc. All of these techniques are focused mainly on
classification accuracy (prediction), rather than understanding the
spatio-temporal dynamics of the brain.

In contrast to statistical analysis and traditional machine
learning methods, NeuCube is a rich computational model for
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Neuron connectivity evoked by seeing a picture

Neuron connectivity evoked by reading a sentence

Fig. 3d. [llustrative mapping of 5062 voxels of a single individual fMRI data to the SNNc and the spatio-temporal connectivity which evolved through unsupervised learning
from the spike sequences of 20 input voxels of the affirmative/negative sentence presentation and 33 input voxels of the picture/sentence presentation: (A) 3D visualisation
of the initial connections between neurons before SNNc training; (B) 3D visualisation of the spatio-temporal connections after SNNc training; (C) 2D visualisation of the
spaﬁo-ﬁunponlconnecﬁomamudxeSNthnining_ Blue lines are positive connections while red lines replesentmgaﬁveconnecﬁons.‘mebﬁghterme colour of a neuron,

the stronger its activity with neighbouring neurons. Thicknesses of the lines also identi

fy the neuron’s enhanced connectivity. Zooming on particular areas of the connections

in the SNNc would reveal more information about the brain processes related to the task.

fMRI data analysis (Gholami Doborjeh & Kasabov, 2014). This
method can be applied to fMRI data across areas of brain study
and applications. The NeuCube neuromorphic spatiotemporal data
machine has been used successfully on one of the benchmark
datasets reported in Gholami Doborjeh and Kasabov (2015).

We mapped and analysed a known benchmark fMRI data called
STAR/PLUS (Just, 2001). The 3D size of the SNNc is scalable. This
SNNc is composed of 51 x 56 x 8 spiking neurons corresponding to
the maximum values of the x, y and z coordinates of the STAR/PLUS
fMRI data.

In this experiment, we selected subject number “05780" from
the STAR/PLUS fMRI datasets. This data consists of 5062 voxels
from the entire brain data. In order to visualise the whole
brain structure’s activity, we loaded all voxel coordinates into an
SNNc. Then, we fed the spiking activity sequences of the pre-
selected voxels into the corresponding allocated input neurons
inside the SNNc. Fig. 3d is a comparative illustration of the
neuron connections created after the snnC learning procedure with
different fMRI data streams related to different mental activities of
the same subject.
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Fig.4. The NeuCube framework for EEG data classification and knowledge extraction. The picture shows the cube’s three principal modules: the input module, where input
data are encoded into trains of spikes that are then presented to the main module, the SNNc; the NeuCube module, where time and space characteristics of the STBD are
captured and learned; and the output module for data classification (or regression) and new knowledge discovery from the SNNc visualisation.

Classification of a subject looking at a picture or looking
at a sentence was is conducted for 6 subjects (Murli et al.,
2014). Comparing with the standard machine learning techniques
(ie. SVM and MLP), NeuCube has achieved more than 80%
classification accuracy across all subjects. Neuron connectivity
before and after training can help in understanding the data.
The results suggest that a NeuCube model is more appropriate
in handling complex fMRI data even without filtering the noise
from the data. The noise may carry valuable information in
defining the association between STBD samples, but failed to
be recognised and processed in the standard machine learning
techniques. Further work is in progress which not only uses fMRI,
but also simultaneously uses other modalities like DTI and EEG for
better prediction accuracy and understanding.

5.3. Neurogenetic eSTDM

A neurogenetic model of a neuron is proposed and studied
in Benuskova and Kasabov (2007). It utilises information about
how some proteins and genes affect the spiking activities of a
neuron such as fast excitation, fast inhibition, slow excitation,
and slow inhibition. An important part of the model is a dynamic
Gene-Protein Regulatory Network (GRN) model of the dynamic
interactions between genes and proteins over time that affect the
spiking activity of the neuron (see Fig. 2).

Currently, NeuCube-based models implement the STDP learn-
ing rule, based on the Hebbian theory, which defines a synaptic
connection with respect to the order of incoming spikes, leading to
control of the postsynaptic action potentials over time (Song et al.,
2000).

In the Central Nervous System, these mechanisms are regulated
by two opposite forces controlling the synaptic plasticity. Spiking
activity amongst neurons is intrinsically related with Glutamate
and GABA neurotransmitters, and their receptors. While AMPA and
NMDA Glutamate receptors mediate a fast and a slow excitatory
synaptic response, the GABAa and the GABAbD receptors regulate
a fast and a slow inhibitory synaptic transmission. Additionally,
these receptors are related to'learning and memory in the
hippocampus.

To study how the spiking neuron postsynaptic action potentials
are affected by the dynamics of these four macromolecules, a new
learning rule called neuroreceptor dependent plasticity (NRDP) has
been developed. The model can automatically balance the synaptic
strengths, making postsynaptic firing irregular but sensitive to
presynaptic potentials similar to the STDP family of rules, but also
taking into account neuroreceptor irregularities.

After a spike is emitted by a neuron n; and received by a
neuron n;, the activation of the excitatory receptors in neuron n;
increases up to a maximum threshold value. If no spike is emitted,

the inhibitory receptors activity increases in function to the time
elapsed after the last spike is emitted. A probability determines
the activation of the GABA receptors; if GABA, is activated then
GABA, is not, and the opposite. The inhibition speed (fastor slow)is
also determined by this probability; a higher activation probability
means a faster inhibition, and therefore, the GABA, probability
must be higher than the GABA,, probability.

Threshold values of each neuroreceptor can be modified
according to the problem of interest and the data available. The
possible effects that this change may have on the entire model
connectivity and spiking activity can therefore be studied.

This approach needs to be further developed in terms of
both theory and applications, as it can be used for ' modelling
and prediction of neurodegenerative diseases, such as cognitive
impairment and memory loss that leads to serious disorders such
as Alzheimer’s Disease (AD). In addition to brain data they make
possible the study of gene data related to the same profile.

5.4. eSTDM for brain-machine interfaces

The feasibility of using a NeuCube model trained on EEG data
to develop a functional BCI/BMI system that is able to assist in
the rehabilitation of complex upper limb movements was shown
in Taylor et al. (2014). A primary modality of the device is for
subjects who have no voluntary activity in a limb, who would drive
the device using mental imagery. However, the same model could
be used for arbitrary output, to control a cursor or speaking device,
for example. In order to provide an effective tool for this purpose, a
NeuCube eSTDM was trained on EEG data for a series of relatively
complex muscle movements.

The preliminary experiments suggest that a NeuCube model
is. much more efficient for this task than standard machine
learning techniques, resulting in high recognition accuracy, a
better adaptability to new data, and a better interpretation of the
models, leading to a better understanding of the brain data and the
processes that generated it.

5.5.. eSTDM for neurorehabilitation

eSTDM based on the NeuCube are uniquely applicable for
neurorehabilitation. Their biomimetic learning and information
processing  timescales are appropriate for integration with
mentally-driven tasks. In addition, they offer the fast and incre-
mental (continuous) learning required to adapt to the user's chang-
ing abilities as their rehabilitation progresses. This applicationis a
natural extension of eSTDM's use in a BCI/BMI context.

Repetitive practice of activities of daily living (ADL) is com-
monly practised in the rehabilitation of paretic patients, and
robotic active assisted training is increasingly being used. Both
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Table 1

Comparative experimental results for all modelling methods (Othman et al., 2014) when applied to predicting a stroke occurrence.

Method Overall accuracy (%)

SVM MLP kNN WKNN NeuCube
1 day earlier (100%) 55 (70, 40) 30(50, 10) 40 (50, 30) 50 (70, 30) 95 (90, 100)
6 days earlier (75%) 60 (70, 30) 25(20, 30) 40 (60, 20) 40 (60, 20) 70(70,70)
11 days earlier (50%) 50 (50, 50) 25(30, 20) 45 (60, 30) 45 (60, 30) 70(70,70)

these approaches have shown some efficacy in the recovery of lo-
comotor function in impaired limbs. Classification of ADL from EEG
is of interest for the active robotic rehabilitation of patients with
spinal cord injuries (SCI). This classification is a significant chal-
lenge with classical techniques, as these cannot deal effectively
with the high noise, variability, and gradual change (due to the sub-
ject learning the task) in the EEG signals.

Hu et al. (2014) performed an experiment using the NeuCube
eSTDM to identify the upper-limb ADL of three classes with 14-
channel EEG data. The continuous real-number signals are firstly
encoded into spike trains through Ben’s Spike Algorithm (BSA).
The generated spikes are then submitted into the SNNc reservoir,
Spike trains from all neurons of the trained, reservoir are finally
classified using the dynamic evolving spiking neural network
(deSNN) classifier. Classification accuracy using this technique is
shown to be promising despite the highly noisy, low resolution EEG
data (Hu et al.,, 2014). This experiment indicates strong potential
for further exploration of the eSTDM for neurorehabilitation tasks.

6. eSTDM for personalised modelling and personalised event
prediction

6.1. Personalised modelling

A special direction of ECOS is transductive reasoning and
personalised modelling. Instead of building a set of local models
(e.g prototypes) to cover the whole problem space and then
use these models to classify/predict any new input vector, in
transductive modelling for every new input vector a new model
is created based on selected nearest neighbour vectors from the
available data. Such ECOS models are the Neuro-Fuzzy Inference
model, NFI, and the Transductive Weighted Neuro-Fuzzy Inference
Model, TWNFI (Kasabov, 2007).

In Kasabov et al. (2014), a methodology for personalised model
creation is proposed based on the NeuCube framework. It builds
an eSTDM for every individual based on both static and temporal
data.

6.2. A case study on personalised early stroke prediction

The problem formulation for stroke occurrences is stated as:
Given a set of individuals’ data (static variables) and a set of
environmental data (temporal variables), produce a model for an
individual that predicts the earliest time point that individual is
likely to suffer a stroke.

A feasibility study on the applicability of NeuCube eSTDM was
published in Othman et al. (2014) where the dataset was taken
from Auckland Regional Community Stroke Study population,
consisting of 2805 patients data that suffered a stroke between the
years 1981-1982, 1991-1992 and 2002-2003.

The subjects in this experiment are described by eighteen
variables which consist of six static features (age, gender, history of
hypertension, smoking status, season, date of stroke); along with
twelve environmental (temporal) features (continuous daily data)
including eight daily mean weather data (e.g. wind speed, min &
max temperature, humidity); three daily mean air pollution data
(e.g. NO? concentration); planetary geomagnetic activity, and solar
radiation.

As NeuCube eSTDM functionality enables us to do predictive
modelling, experiments were designed in three ways:

1. One day earlier prediction where the whole 100% time period
of 20 days was taken for analysis. -

2. Six days earlier prediction (75% of the whole time period was
taken).

3. Eleven days earlier prediction (50% of the whole time period
was taken).

As a comparative experiment, tests were also designed for
conventional machine learning methods (SVM, MLP, kNN, wkNN).
Table 1 shows the best obtained accuracy from all experiments.

The results clearly show that NeuCube eSTDM performed better
than conventional machine learning methods (for 1 day prior
prediction) since it achieved an overall accuracy of 95% for high
risk of stroke with a misclassification of low risk.

Through visualisation tools in NeuCube eSTDM, patterns of
temporal features can be analysed further. In NeuCube we can
visualise input feature interactions, not only at group level but also
on a personalised level leading to increased understanding of the
relationships within the data and how these affect the individual
risk of stroke.

7. Ecological and environmental event prediction

A NeuCube eSTDM would be suitable for learning the complex
spatio-temporal relationships inherent in ecological and environ-
mental data; for ecological applications to predict pest or crop pop-
ulations; for seismic applications to potentially predict earthquake
occurrence; and so on.

7.1. Case study on prediction of risk of aphid population

In this section we consider how to use the NeuCube architecture
to model and predict the population of a harmful species,
Rophalosiphum padi, in Southern New Zealand based on weather
and climate factors.

We study a concrete case on aphid population prediction
to demonstrate the capability of the NeuCube architecture for
modelling ecological and environmental spatio-temporal data. In
this study we use 14 weather variables which are recorded week
by week from year 1982 to 2004 at the Canterbury Agricultural
Research Centre, Lincoln, New Zealand (Hartono, Pears, Kasabov, &
Worner, 2014). Data preprocessing consisted of bad data removal,
and time point alignment. Feature selection was applied to make
sure the data was useful before entering the next phase.

The real valued weather variables were transformed into spike
trains with the Temporal Contrast (Threshold-based) encoding
algorithm. A 5 x 20 x 20 SNNs was generated and initialised
according to small world connection rule to learn the temporal
patterns in the spike trains. Then all the weather variables were
mapped into the SNNs using a graph matching algorithm to ensure
that the temporally dependent weather variables were mapped
into nearby input neurons. The input data was propagated, and
after the synaptic weights were learned using STDP, the weights
were fixed and the spike trains fed to the SNNc again to obtain
each neuron’s firing state vector, which serves as the transformed
feature of the original input signals in the following learning stage.
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Table 2
Aphid population prediction accuracy (%).

Accuracy of each training and testing time

length (weeks)

52 (full) 41.6 (early) 39
MLR 3636 64.63 7273
SVM 72.73 7273 63.64
MLP 81.82 81.82 81.82
kNN 72.73 63.64 63.64
wkNN 7273 63.64 63.64
NeuCube 100 9091 81.82

The firing state vector of the SNNc is fed to a dynamic evolving
spike neural network (deSNN) classifier to learn the underlying
temporal pattern. After the whole system was trained, we used a
validation dataset to verify the validity of the system. The accuracy
of the performance was evaluated by comparing the ground truth
results with the predicted results.

Table 2 shows the results of predicting the autumn aphid
population amount with the NeuCube system, as well as results
of other traditional methods as a comparison. The testing time
length means how many weeks weather measurements we used
to predict the autumn aphid population. The fewer weeks used, the
harder to predict accurately in the autumn, as shown in the last two
columns.

7.2. Afeasibility evaluation of using eSTDM for seismic data modelling

Earthquake prediction is a challenging problem but compelling
nonetheless. The immense capacity for destruction of earthquakes
prompts for the ability to predict, within a reasonable time horizon,
the occurrence of significant earthquakes so preemptive and
anticipative actions could be taken to minimise the damage,

One of the potential uses of eSTDM in this field is to analyse
the seismogram readings from multiple sites spread spatially
across a geographical region to predict the occurrence of large
earthquakes. A preliminary study using the waveform data
obtained from the New Zealand GeoNet project web services
(www.geonet.org.nz) has been done for the Canterbury region of
New Zealand. After selecting the appropriate earthquakes from
the earthquake catalog, the seismic waveform data collected prior
to these earthquakes are fetched from four selected seismograph
stations (Fig. 5) which were picked for their high uptime and
availability.

To predict ahead of the actual event, the data fetched is
offset by around twelve hours. The duration of the observation
is 120 h or five days long. The experiment is done by selecting
24 samples of earthquakes in the Canterbury region which are
equally put into two categories based on the severity of the case
(i.e. Strong - historically notable, and Weak - low energy seismic
events unnoticed by the general population). The small number
of samples is the consequence of the fact that strong earthquakes
happen very rarely throughout the history and earthquakes before
the year 2010 were not included because the availability and
quality of the seismic activity data is not as good compared to
those which happen after. The performance of the classifiers are
measured in terms of the F-measure, which is the harmonic mean
of precision and sensitivity of binary classification problems with
the formula F1 = 2TP/(2TP + FP + FN). The testing scheme
is Leave-one-out cross validation, since the number of samples is
small.

The result shown in Table 3 gives us the confidence that
seismicity data might be a viable precursor for short-term
earthquake prediction. The peak F-score of 0.92 means that the
classifier successfully predict 11 out of 12 strong earthquakes and
raises only 1 false alarms. Though the experiment is in a very
preliminary stage, this research has shown a promising way to

Table 3
Preliminary results of earthquake prediction on a small dataset using a NeuCube
eSTDM in comparison with traditional techniques: SVM, MLP, NB.

Measure SVM MLP ECF NeuCube
Accuracy (%) 54.16 5833 66.67 91.67
F-Score 0.58 058 058 092

predict the occurrence of strong earthquakes by training an eSTDM
model to differentiate between strong and moderate earthquakes
based on spatiotemporal seismicity precursors. For future works, it
is important to fine-tune the models to get a better discriminating
capability and using a larger dataset and getting more inputs from
more seismic monitoring sites across the globe and running the
analysis in real-time as the data is collected to produce a useful
and practical disaster prediction system. A more comprehensive
experiment should also be done to verify the accuracy and find
the best prediction horizon and observation period. An interesting
aspect is the extraction of spatiotemporal knowledge or rules
pertaining to how the seismic activities in different sites affect each
other.

8. eSTDM for video data recognition

Video SSTD can be successfully learned in an eSTDM subject to
the availability of quality data and the NeuCube eSTDM parameter
optimisation. Here we demonstrate the feasibility of NeuCube for
this purpose on a case study problem. Specifically, a model is
created to classify a given video data into one of three age groups
based on its assessed age.

Ageing is a slow process and its effects are visible only after a
few months or a few years. But in spite of being slow, it remains a
spatiotemporal phenomenon. The facial features of a person itself
can be considered as a subspace and their ageing over the years
a temporal process. It would be very useful to incorporate the
temporal, as well as spatial, patterns in ageing data as an important
part in classification.

The raw data which has been used in this study is from
(Cerniello, 2013). It is five minutes: of video containing 8943
frames of size 1920 x 1080 pixels. First the video is converted
into greyscale frames. The nose tip of the subject in the image
is manually annotated. The purpose was to locate a small region
on the face which remains at a fixed distance from the annotated
point. That same region is used for all the images in our study. This
region is a part of the textureinformation of the face image; namely
a small part of cheek portion of the face. This is chosen as facial
skin is naturally smooth in youth and becomes wrinkled with age,
thereby resulting in a change in the textural information present
in this area. Based on this assumption 50 pixels are selected from
cheek area of each face image.

All frames are divided into three classes. 128 frames of each
sample are chosen, for each in a total of 60 samples. Thus the whole
data comprises some 7680 images. The first 20 samples comprise
young age, the next 20 samples adult age, and the third set of 20
samples represent old age.

In this experiment, the size of the SNNc is 1000 neurons, a
relatively simple 10' x 10 x 10 cube. It is trained and tested
in a hold out method. Firstly we converted the video data into
discrete spike trains using the Temporal Contrast encoding method
to discretise the continuous signal, following the example of the
silicon retina (Delbruck & Lichtsteiner, 2007 ). The deSNN classified
mentioned previously is used here as an output classifier, because
deSNN is computationally efficient and emphasises the importance
of the first spike, which has been observed in biological vision
systems.

We conducted experiments to compare between traditional
modelling methods (SVM and MLP) and our proposed method for
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Table 4
Age group classification accuracy (%) from
video data.
Method Accuracy (%)
SVM 55
MLP 26
NeuCube 78

age group classification. We designed two experiments for these
baseline algorithms. Note that for these baseline algorithms, the
time length of training samples and testing samples have to be the
same as these methods cannot tolerate different lengths of feature
vectors for training and testing.

It was observed that the classification achieved with NeuCube
was better than other techniques. See Table 4 for results. Note
that the techniques mentioned (other than NeuCube) do not have
the capability of representing the spatio-temporal problem space
effectively. These traditional techniques are only suitable for static
data within a given time segment. Since an eSTDM models the
relationships between and within spatio-temporal data, even a
small input data will be able to trigger the spiking activities in
SNNg, for an accurate pattern (class) recognition from video data.

9. eSTDM for spectro-temporal data
9.1. eSTDM for audio information processing

Audio data is spectro-temporal. It consists of temporal, se-
quences of the intensity of the signal at different frequencies. How
to map the frequencies into an SNNc is the first challenge. And
then—training the SNNc on spike sequences that represent the au-
dio signals is another challenge.

9.2. Radioastronomy data

Radioastronomy data is massively spectro-temporal. The
timescale of meaningful background radiation in space is billions
of years, and the volume of data to be processed to identify a small
event isimmense. eSTDM are currently being explored for applica-
tions in radioastronomy, as they are effective at learning in a noisy
and dynamic environment, and explicitly incorporating the spatial,
spectral, and temporal characteristics of such data.

10. Implementing the NeuCube on neuromorphic hardware

A system like the NeuCube, with its highly scalable architecture,
requires a highly scalable computation platform. As traditional
Von Neumann computational architectures reach' their limits
(Esmaeilzadeh, Blem, St Amant, Sankaralingam, & Burger, 2011;
Perrin, 2011) in terms of power consumption, transistor size, and
communication, new approaches must be sought. Neuromorphic
hardware systems, especially designed to solve neuron dynamics
and able to be highly accelerated compared to biological time
are a response to these concerns. Systems such as analog VLSI or
the SpiNNaker are advantageous by comparison to software based
simulations on commodity computing hardware in areas such as
biophysical realism; density of neurons per unit of processing
power; and significantly lowered power consumption (Furber,
2012; Indiveri et al, 2011). This is not to say that simulations of
the NeuCube cannot occur on traditional computing architectures;
merely that dedicated hardware is advantageous in these areas and
may be more appropriate for large-scale modelling. Subsequent
to the modular framework for the development of NeuCube
neuromorphic implementations written in Python first introduced
in Scott; Kasabov, and Indiveri (2013), a cross platform version was
written utilising the PyNN APIL.

PyNN (Davison et al., 2008) is a generic SNN simulation markup
framework that allows the user to run arbitrary SNN models on
a number of different simulation platforms, including software
simulators PyNEST and Brian, and some neuromorphic hardware
systems such as SpiNNaker and FACETS/BrainScaleS. It provides a
“write once, run anywhere” (where “anywhere” is the list of simu-
lators it supports) facility for the development of SNN simulations.
A version of the NeuCube has been implemented in this environ-
ment, for application on both commodity Von Neumann comput-
ing systems and dedicated neuromorphic hardware.

A key target of this NeuCube version is the SpiNNaker
device currently in development. SpiNNaker is a general-purpose,
scalable, multichip, multicore platform for the real-time massively
parallel simulation of large scale SNN (Furber, 2012). Each
SpiNNaker chip contains 18 ARM968 subsystems responsible for
modelling up to one thousand neurons per core, at very low
power consumption. These chips communicate through a custom
multicast packet link fabric, and an arbitrary number of these chips
can be linked together, with the assumption that the networks
simulated exhibit some kind of connection locality. The small-
world structure used in the NeuCube and its scalable nature are
appropriate for implementation on this type of hardware.

An alternative implementation of the NeuCube eSTDM for
embedded applications is currently being explored using the INI
Neuromorphic VLSI chip (Indiveri et al., 2011).

11. NeuCube development system for SNN applied to spatio-
and spectro-temporal data

11.1. Technical challenges

Effective eSTDM performance is reliant on the correct combi-
nation of a large number of hyperparameters. To account for this
sensitivity, automated optimisation techniques have been devel-
oped for the system defined here. These have been discussed in
Section 3.3.5,and at present a grid search and genetic algorithm
approaches have been implemented. Future development in this
space will explore the more efficient quantum-inspired optimisa-
tion technique (Defoin-Platel et al., 2009).

Computational ‘scaling is also a concern with systems such as
the NeuCube. Concerns must be paid primarily to computational
speed, power consumption, and in the case of certain applications
(e.g. robotics control) the system'’s physical size. In order to address
these concerns, the neuromorphic hardware systems described in
Section 10 are being explored. While such systems require spe-
cialised knowledge and an investment in dedicated hardware, the
advantages provided in the three main areas of concern (particu-
larly computational speed and power consumption) warrant fur-
ther exploration.

As a general statement regarding SNN, as there is not
yet a robust information theory supporting the design and
implementation of these networks, much of the decision making
regarding network structure and composition must be based on
heuristic measures. In the case of the eSTDM described here,
network structure must be based on some a-priori knowledge
of the dataset. This is, in our case, an advantage, as it allows us
to represent the spatial and/or spectral components of the data
sources explicitly, retaining the relationship between these and the
temporal aspect of the data.

11.2. System architecture

The NeuCube has been implemented in a modular fashion, with
each separate module communicating through JSON-format files.
In this way, new modules can be added easily, in any language, ina
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Fig. 5. Seismograph sites across New Zealand with the 4 selected sites greyed.

cross platform manner. Already the system has modules written in
MATLAB, Python, and Java, and has been tested on both Windows
and Linux environments.

The standard form of the NeuCube software environment
(Fig. 6) is Module M1, responsible for Prototyping and Testing
of NeuCube models and SNN applications. This module is
implemented in MATLAB and is intended for prototyping and
model exploration. From here a developed model can be saved
and deployed to the M2 and M3 modules, utilising large scale
computing or neuromorphic hardware for greater efficiency in
either model optimisation or implementations. These models
can be then visualised immersively with module M4, which
incorporates the capacity to use virtual-reality headsets or even a
full-scale motion capture system. Additional specialised modules
for neurogenetic modelling, personalised modelling, and so on,
can be added when required and will communicate with all other
modules.

A version of Module M1 for research and teaching purposes
can be found free of charge at http://www.kedri.aut.ac.nz/neucube.
For commercial use or access to the full set of modules, please
contact the authors directly or via this web page. The NeuCube is
PCT patent protected.

12. Conclusion, contributions, and future directions

The main goal of ECOS is to facilitate the creation of
computational models and systems for adaptive learning and
knowledge discovery from complex data. ECOS principles are
derived from the integration of principles from neural networks,
fuzzy systems, evolutionary computation, quantum computing
and brain information processing. ECOS applications are manifold,
but perhaps most welcome in the medical, environmental and
health sciences, where the diagnostic phenomena are chaotic in
nature and the datasets are massive and often incomplete. Here
we present a new development of ECOS: the eSTDM, created in the
NeuCube SNN environment.

eSTDM is a promising approach to deal with big, stream
data. Massive (so called ‘big’) datasets with the characteristics

BASIC CONFIGURATION

STANDARD CONFIGURATION

FULL CONFIGURATION

Fig. 6. A conceptual diagram of the NeuCube multimodular development system,
demonstrating the interface and relationships between the core and optional
modules.

just described need to be analysed, virtually in real time, for
prognoses to be made and solutions to the issues sought at
a level of urgency. In this sense, eSTDM for adaptive learning
and knowledge discovery can make a great contribution to
the methodologies employed by the emerging trans-disciplinary,
integrative, systemic and problem-solving science. Herein we have
presented a system to incorporate spatial, spectral, and temporal
data components for the learning, classification, prediction, and
visualisation of such data.

There are some challenging questions that need to be further
explored, for example:

1. What is the capacity of a NeuCube eSTDM in terms of both
spatial and temporal characteristics of the data?

2. How much noise can be tolerated in an eSTDM?

3. How do we model transitions between spatio-temporal states
triggered by external stimuli?

4. How early and accurately can an eSTDM predict an event from
SSTD?

These are some of the questions that need to be addressed as a
future work.
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