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e-mail: david.tall@warwick.ac.uk

Symbols occupy a pivotal position between processes to be carried out
and concepts to be thought about. They allow us both to d o
mathematical problems and to think about mathematical relationships.
In this presentation we consider the discontinuities that occur in the
learning path taken by different students, leading to a divergence
between conceptual and procedural thinking. Evidence will be given
from several different contexts in the development of symbols through
arithmetic, algebra and calculus, then on to the formalism of axiomatic
mathematics. This is taken from a number of research studies recently
performed for doctoral dissertations at the University of Warwick by
students from the USA, Malaysia, Cyprus and Brazil, with data collected
in the USA, Malaysia and the United Kingdom. All the studies form part
of a broad investigation into why some students succeed yet others fail.

Introduction: Building a theory
Our purpose in this paper is to build a theory of how individuals use symbols in
mathematics and to consider why some are so much more successful than others.
To begin with we will consider the wider cognitive growth to see that
mathematical symbols work in a very special and powerful way. This involves a
compression of knowledge developing the ability to pivot between mental
concepts to think about problems and time-dependent processes to do
mathematical operations to produce solutions.

Various theories have been proposed, some building from cognitive studies of
chi ldren learning elementary
mathematics, others based on diverse
viewpoints such as the logical structure
of propositional thinking or computer
metaphors for brain activity. The
approach given here is based on how the
biological human species builds from
activities in the environment to
developing highly subtle abstract
concepts (Tall, 1995). This begins with
the ability to perceive things, to act on
them and to reflect upon these actions to
build theories (figure 1).

Some authors see various activities
occurring in specific sequences. For
instance, Dubinsky and his colleagues
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Figure 1: Combining Reflection,
Perception & Action
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propose a theory (e.g. Dubinsky, 1991; Cottrill et al., 1996 etc.) in which actions
become routinized into processes that are then encapsulated as objects, later to be
embedded into cognitive schemas (referred to by the acronym APOS). Such a
sequence occurs widely in cognitive development, and will often occur in this
paper. However, our view is that perception, action and reflection occur in various
combinations at a given time and a focus on one more than the others can lead to
very different kinds of mathematics.

Perception of the world includes the study of space and shape, eventually
leading to geometry, where verbal formulations support a shift to Euclidean proof.
Actions on the world, such as counting, are represented by symbols and grow into
the symbolic mathematics of number, arithmetic and thence on to generalised
arithmetic and algebra. Reflection on perception and action in mathematics leads
eventually to the desire for a consistent axiomatic theory based on formal
definitions and deductions (figure 2).
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Shape
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Mathematics

Axiomatic
Mathematics

Figure 2: Various types of mathematics

Our hypothesis is that each of the three types of mathematics (space & shape,
symbolic mathematics, axiomatic mathematics) is accompanied by a different type
of cognitive development (figure 3).
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Figure 3: Conceptual development of selected mathematical concepts
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Development of Geometric Concepts

Before focusing on the growth of symbolic thinking, we briefly consider the very
different cognitive development in geometry. This is rooted in perceptions of
objects in the world, initially recognised as whole gestalts. Some are specific
individual perceptions, such as a child’s mother, or the family pet, but more often
they are perceived as prototypes that apply to a wide range of percepts. For
instance, dog, cat, bird are prototypes for various kinds of living creatures. Some
creatures are evidently birds (such as a robin), whereas others, such as an ostrich,
are also classified as birds even though they fail to fly. It is interesting to note that
these classifications do not begin from the bottom up, or from the top down, but in
terms of centrally typical levels of recognition. For instance, children usually
recognise dog before the more specific types of dog such as Alsatian, poodle, or
more general notions such as mammal, animal. Likewise in mathematics, the
recognition of concepts such as square, rectangle, parallelogram, quadrilateral,
polygon, take time to organise into a conceptual hierarchy which is done neither
bottom up nor top down.

This development involves various cognitive reconstructions. For instance, in
the early stages, squares and rectangles are initially considered by young children
as disjoint concepts (a square is not a rectangle, because a square has four equal
sides whilst a rectangle has only opposite sides equal). Disjoint categories of
geometric shapes must be reconstructed to give hierarchies of shapes (a square is a
rectangle is a parallelogram is a quadrilateral). Further re-constructions are
necessary to see a shape not as a physical object, but as a mental object with
perfect properties, and then to imagine geometry not just in terms of two and three
dimensional euclidean geometry, but as a variety of different geometries (affine,
projective, elliptic, hyperbolic, differential, etc.) Such a cognitive development and
its succession of cognitive stages have been documented in the work of van Hiele
(1986). (Figure 4.)
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Figure 4: cognitive development of geometrical concepts
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Language plays an increasingly subtle part in this geometric development.
Prototypical shapes such as a straight line, a triangle, a circle, are described
verbally in ways that support the imagination of perfect platonic representations,
such as a perfect straight line with no width that may be extended arbitrarily in
either direction, or a perfect square, a perfect circle. Thus, paradoxically, perfect
geometric entities depend on language to construct their meaning.

Euclidean proof builds on this use of language to give verbal argument to
support deductions based on visual concepts. Later still, the question arises as to
whether the verbal proof is complete in itself, or whether it depends on implicit
properties of the geometric objects. (For instance, in Euclidean geometry the
notion of “inside” is not defined and yet theorems refer to the diagonals of a
rhombus meeting “inside the figure.) This led to the need to formulate verbal
axioms and definitions to build a system where all the properties of that system
could be formally deduced from explicit assumptions.

Symbolism as a mental pivot between process and concept
The main focus of this paper—the development of symbols in arithmetic, algebra,
calculus and undergraduate mathematics—is in our view very different from that
of geometric objects. These symbols give Homo sapiens an incredibly simple way
of dealing with quantities for calculation, problem solving and prediction. They
simply act as a pivot between the symbol thought of as a concept (such as number)
to a process (such as counting). This gives an instant shift from thinking about
symbols as manipulable entities to doing mathematics. There are many instances
of symbols allowing the switch between process and concept. (Table 1).

symbol process concept
4 counting number

3+2 addition sum

–3 subtract 3 (3 steps left) negative 3

3/4 sharing/division fraction

3+2x evaluation expression

v=s/t ratio rate

y=f(x) assignment function

dy/dx differentiation derivative

f x dx( )∫ integration integral

lim
x→2

x2 − 4
x − 2







1
n2

n=1

∞

∑










tending to limit value of limit

(x1, x2, …, xn) Vector shift point in n-space

σ ∈  Sn permuting{1,2,…,n} element of Sn

Table 1: Symbols as process and concept

The dual use of symbol as process and concept often begins by becoming familiar
with the process as a step-by-step procedure, then routinizing it so that it can be
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carried out without conscious attention to details sometimes in increasingly
sophisticated ways. Counting, for instance, is a complex process of saying a
sequence of number words at the same time as pointing in turn at objects in a
collection once and once only. As a child counts a number of apples, (s)he might
say “there are one, two, three apples.” As this becomes more routine, the counting
may be performed silently, “there are [one, two,] three apples”, then compressed
into “there are … three apples” or just “there are three apples.” In this way the
process of counting is compressed into the concept of number. The symbol 3 then
evokes either a (counting) process or a (number) concept. Likewise the symbol
3+2 can evoke either the process of addition or the concept of sum.

Gray & Tall (1994) refer to the combination of symbol representing both a
process and the output of that process as a procept (figure 5).

symbol procept
concept}
process

Figure 5: the symbol as pivot between process and concept forming a procept

The procept notion has been given increasingly subtle meaning since its first
formulation (Gray & Tall, 1991). It is now seen mainly as a cognitive construct, in
which the symbol can act as a pivot, switching from a focus on process to compute
or manipulate, to a concept that may be thought about as a manipulable entity. We
believe that procepts are at the root of human ability to manipulate mathematical
ideas in arithmetic, algebra and other theories involving manipulable symbols.
They allow the biological brain to switch effortlessly from doing a process to
thinking about a concept in a minimal way.

Focus of attention during actions on objects

When acting on objects, perception and action are intimately connected. The
addition of 2 and 3 to give 5 can be seen in terms of the combination of 2 objects
and 3 objects to give five objects (figure 6).

2 53
Figure 6: 2+3 is 5

In this way simple arithmetic can simply be “seen” in terms of operations on arrays
of objects. It can lead to personal methods of carrying out imaginary processes to
conceptualise the operation of addition using recognisable images for numbers.

For instance, the addition 5+3 might be seen initially as:
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5 3
Figure 7: Adding 5 things and 3 things

A ‘slow learner’ explained to Eddie Gray that he visualized the middle dot of the 5
moving to the vacant space of the three to give two groups of four, which is eight.

8
Figure 8: A mental picture of the addition

Such experiences can prove of great value in building up meaning for number
relationships. However, a focus on objects is limited to what can be visualized.
The handling of larger numbers requires more efficient methods of representation
to utilize the combination of large memory store and small focus of attention.

Some children persist in seeing arithmetic in terms of mental images that
prevent them from flying into the higher realms of arithmetic. Pitta & Gray (1997)
investigated children selected as ‘low achievers’ and ‘high achievers’. They found
that the low achievers carrying out simple arithmetic of whole numbers tended to
focus attention on imagined objects that may possess shape and in many instances
colour. Frequently they “saw” mental objects having characteristics of a number
track (a line of cubes stuck together), although the common object that formed the
basis of each unit of the track was often derived from an experience with fingers.
Some reported seeing full images of fingers, others reported images that were
‘finger like’. This resulted in the children carrying out mental operations that were
the analogues of counting fingers or other perceptual items. Pitta and Gray
hypothesised that these mental representations were essential to their calculations
and occupied much of their focus of attention. When items became more difficult,
the children reverted to the use of real items.

The ‘high achievers’ on the other hand seemed to focus more often on the
symbolism itself. They often either responded automatically or reported that they
“talked things over in their heads.” When they did describe mental images, they
often described them as coming and going very quickly. “I saw ‘3+4’ flash through
my mind and I told you the answer”, “I saw a flash of answer and told you.”  On
occasion there were traces of intermediate activity, for instance, when given 9+7
one eleven year old gave the answer 16 accompanied by the statement. “10 and 6
flashed through my mind.” This provides vivid evidence of powerful mental
connections enabling the individual to move almost instantaneously from one
focus of attention to another.

This reveals a difference in focus of attention between the more successful and
less successful. The less successful focus on details which may or may not be
appropriate to the arithmetic task in hand—the colour of the objects, their shape
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and position—whilst the more successful use their focus of attention in a more
productive way. Pitta (1998) placed five red cubes before some seven-year-old
children at the extremes of mathematical ability and asked them to indicate what
they thought about when they saw the cubes and what they thought would be
worth remembering about them. The higher achievers all mentioned the word
‘five’ and thought that ‘five cubes’ was worth remembering. The lower achievers
talked about the pattern, the colour, or the possible rearrangements of the cubes.

There is an amusing Simpsons cartoon which illustrates an extreme case of this
phenomenon. Bart Simpson is taking an intelligence test, involving calculations for
trains travelling certain distances in certain times. Instead of thinking about the
numbers and calculating the relationships between them, Bart has a nightmare in
which he sees himself on the train without a ticket, trying desperately to avoid
being found by the ticket collector. For him the problem he is trying to solve is not
one involving mathematics, but episodic images of problems related to his
fantasies about the situation.

The divergence between higher and lower achievers in performing simple
arithmetic was termed the ‘proceptual divide’ by Gray & Tall (1994). They
observed that the low achievers sought the security of counting procedures
focusing on physical or mentally perceived objects whilst the high achievers used
more efficient and flexible methods, using known facts or relationships between
symbols where possible and reverting to efficient counting methods otherwise. It is
the growing ability to use symbols as a pivot between process and concept that
gives the power to numerical symbols as procepts.

Compression of symbol usage through procedure, process and procept

Dubinsky (1991) focuses on the development from cognitive process to mental
object and the subsequent “de-encapsulation” back to process once the mental
object has been constructed. Sfard (1991) also sees the move from operational
mathematics of doing processes to forming mental objects whose properties may
then be a focus of a more structural kind of mathematics. Our approach (Gray &
Tall, 1994) looks at the nature of the mathematical activities concerned. The word
procedure is used to mean a specific sequence of steps carried out a step at a time.
The term process is used in a more general sense to include any number of
procedures which essentially “have the same effect.” For instance, the process of
differentiating the function (1+x2)/x2 can be done by various procedures such as
the quotient rule, the product rule (for 1+x2 and 1/x2), or other strategies such as
simplification to x–2+1 prior to differentiation.



– 8 –

Knowing a specific procedure allows the individual to do a specific
computation or manipulation. Having one or more alternatives available allows
greater flexibility and efficiency to choose the most suitable route for a given
purpose. But also being able to think about the symbolism as an entity allows it to
be manipulated itself, to think about mathematics in a compressed and manipulable
way, moving easily between process and concept. This gives a spectrum of
performance (figure 9) in which it is possible, at certain stages, for students with
different capacities all to succeed with a given routine problem, yet the possible
development for the future is very different. Those who are procedurally oriented
are limited to a particular procedure, with attention focused on the steps
themselves, whilst those who see symbolism as process or concept have a more
efficient use of cognitive processing. Long-term, as students meet new tasks the
same kind of spectrum occurs, with more and more tending to be coerced into
procedural thinking. This means that those who are (or who become) focused
mainly on the procedural have a considerably greater burden to face in learning
new mathematics than those who are able (in addition) to focus on the essential
qualities of the symbolism as both process and concept.

Procedure, Process and Procept in Algebra

The processing of expressions in algebra is highly prone to the procedural-process-
procept spectrum. DeMarois (1998) asked a class of college (pre-) algebra students

To DO o DO 
routine routine 

mathematics mathematics 
accuratelyaccurately

To perform
mathematics 

flexibly & 
efficiently

To THINK 
about 

mathematics 
symbolically

Procedure

Process
Procedure(s)

Procept
Process(es)

Procedure(s)

Sophistication
of development

Progress

Spectrum of outcomes

procedural proceptual

Figure 9: A spectrum of performance in the carrying out of mathematical processes
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to write down the output of the two function boxes in figure 10 in algebraic form
and asked if they were the same.

Input

Function
Chris

Function
LeeMultiply by 3

Add 6
Add 2 to the input
Multiply the sum by 3

Output

Input

Output

Figure 10: What are the outputs of these two function boxes and are they the same?

Three students were chosen, so that Student 1 was one of the highest achievers,
Student 2 was in the middle and Student 3 was struggling. Their responses were as
follows (table 2):

Function Chris Function Lee Are functions equal?

Student 1 3x+6 3(x+2) Yes, if I distribute the 3 in Lee, I
get the same function as Chris.

Student 2 x3+6 (x+2)3 Yeah, but different processes.

Student 3 3x+6 x+2(3×) No, you come up with the same
answer, but they are different
processes.

Table 2: A spectrum of responses to functions as procept, process and procedure

Student 1 flexibly uses the notation in the usual way, manipulating the algebra, but
thinking that the expression remains the same throughout the manipulation. We
classify this as the procept level. Student 2 uses non-standard (but clearly
meaningful) algebraic symbolism, asserting the functions to be “equal” but being
highly conscious that there are “different processes’. We classify this as a process
level response. Student 3 wrote his answer for the function Lee with the x in “x+2”
and the “×” in “3 ×” both as a cross. A probable interpretation of this expression is
as meaning “x+2, three times.” This response is classified as being procedural. The
three responses therefore exemplify the spectrum of figure 5. (DeMarois & Tall,
1999.)
Discontinuities in the development of symbols
There is a general perception amongst educators that curriculum design requires
the construction of a sequence of lessons in which each builds smoothly and
inexorably on the previous ones. This does not happen in mathematics. Working in
a given context leads to beliefs that may need reconstructing at a later stage. For
instance, in using numbers for counting, the “next” number after 3 is 4, so how can
there be any numbers “in between”? For some individuals this causes great
difficulties with fractions. Likewise, “you can’t have less than nothing” when
working with whole numbers and fractions, which requires a further reconstruction
when introducing negative numbers. Handling the product of two negative
numbers requires even more conceptual reconstruction. Many just “accept” the
result and begin the slippery slope to learning by rote to pass examinations.
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The routinizing of mathematical procedures can cause tensions to arise which
manifest themselves in a variety of ways. Not only may old rules remain
unchanged and be used inappropriately, new rules may supplant old rules and be
used incorrectly when earlier work is recalled. For instance, rules of thumb in
arithmetic can be mistranslated in algebra, and those in algebra can be
mistranslated in arithmetic. An example of the former is when a fraction is seen to

involve “dividing the top number by the bottom number” so that 12
6

 is correctly

computed by dividing 12 by 6. However, in the algebraic expression a12

a6 , “dividing

the top number by the bottom number” may be incorrectly given as a2 . The reverse
also occurs with new rules in algebra interfering with operations in arithmetic. For
instance, the rule to compute 3a2 × 4a3  to give 12a5 by “multiplying numbers and
adding powers” may be mis-applied in arithmetic to compute 32 × 43 as 125 . Both
of these errors (and a variety of others) prove to be made by a significant
proportion of students (Anderson, 1997).

Even when a mathematical idea is learnt in a meaningful way in one context,
this may cause conceptual difficulties when the old meanings no longer hold in a
new context. For instance, the power 23, meaningfully means “three twos
multiplied together.” From this meaning, the properties of powers 23×24 = 27 easily
follows because the left side has three lots of two times four lots of two, giving
seven lots of two. But from this meaning, what does 21/2 mean? How can one have
“half a lot of twos multiplied together”? This leads to deep confusions when
students who prefer to learn meaningfully are asked to use the power law in a
context where – for them – it has no meaning.

Flexible and Procedural Links in Algebra

Students attempting to learn algebra occupy a wide spectrum of development.
There are those who understand the symbolism flexibly as process and concept and
find it almost trivial to manipulate the symbols in a meaningful way. Others have
already fallen foul of difficult reconstructions and are hanging on to a collection of
half-remembered procedures to apply to a limited range of specific problems. The
cognitive links that each individual forms between various aspects of symbolism
and visual representations of graphs are widely different. The way in which they
solve problems can give fascinating insight into their available cognitive
structures. For example, the x- and y- intercepts for a given straight line equation
may be found by several methods: reading the points off a graph, setting y=0
solving for x, and then x=0, solving for y. A student who has understood how to
manipulate expressions as mental concepts may have a variety of methods at their
finger-tips and choose the most efficient method to suit a given situation.
However, a student who seeks the security of procedures may not always be so
fortunate. In a study by Crowley of students taking a preparatory course for college
algebra (Crowley & Tall, 1999), they were asked:

Find the x- and y- intercepts of 3y+x–12=0.
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For those who realise that intercepts are found by putting the other variable equal
to zero and solving, there is a symmetry between the two cases. Putting x=0 gives
3y=12, so y is 4 and putting y=0 gives x=12. Some students can just look at the
equation and see each answer in a single glance. Kristi, however, had a strategy for
most of the problems in this course, which was “put it into y=mx+b form and then
work form there. When asked, “What would you do here?”, she replied:

Divide everything by 3.  … in my mind I’m visually moving everything, and dividing x
by 3 is … . one third x plus …, so the y-intercept is 4.

She found the y-intercept easily, but then had to cope with the x-intercept with the
equation now in the form y x= − +1

3 4. This presented difficulties with fractions
and negatives, so putting y=0 was abandoned and she took out her calculator to
draw the graph and use the INTERSECT facility to find the x-intercept. (Figure 11.)

Kristi seems typical of a kind of student who has difficulty manipulating
symbols meaningfully, but has overall aims of following certain procedures to
move her closer to her ultimate goal. It is not that she lacks processing power, for
she often seems to be working harder than her more flexible colleagues. She
seems to expend so much mental power on the details of her particular approach
that she has difficulty maintaining control of the whole enterprise.

3y + x    12 = 0

Find x and y intercepts

y = mx + b y-intercept is 4

incomplete ...

x-intercept is 3

strategic sub-goal

symbol manipulation

immediate link

calculator use

use

1 , 2 , 3 , ……

to get x-intercept
put x=0 and solve ...

draw graph on
graphic calculator

INTERSECT

1

1

1

2

2

3

3

3

y =      x + 4 1
3

successive sub-goals

Figure 11: Kristi’s strategies for finding x- and y- intercepts of 3y+x–12=0.
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Student concept maps

A further method of investigating the differing cognitive constructions of students
is through concept maps that the students are asked to draw at intervals during
their course. McGowen (1998) did this with a class of college students studying a
preliminary algebra course based on the function concept. Students were asked to
build up a concept map using moveable “post-it” labels before making a
permanent record after 4, 9 and 15 weeks of the course. Figures 12 and 13 show
the first two maps of student SK who struggled to make sense of the course.

Figure 12: First concept map of SK in week 4

Figure 13: Second concept map of SK in week 9
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On inspection it may be seen that the links between boxes do not always relate to
conceptual relationships; for instance at the top of figure 12, “data” is linked to
concepts involving (linear) functions such as ordered pairs, graphs, slope, with no
direct link between the latter and function machine. Furthermore, on comparing the
two concept maps, it soon becomes apparent that, apart from the box for
“function” in the centre, almost all of the items in the second concept map are new
and those that are not are moved into new positions.

These changes between successive concept map can be represented in what are
termed “schematic diagrams” (figure 14).  The two columns of three pictures show
the changes in two students, SK on the left and MC on the right. The first picture
in each column is the outline of the first concept map, then successive diagrams
represent the changes from the previous diagram. The sequence of schematic
diagrams for student SK reveal the almost total change in the second diagram, and
a further major change on the third diagram, this time bringing back some items
from the first concept map, but in different positions.

week 15

week 9

week 4

week 9

week 4

week 15

MCSK

: new items: items in same place
 [or on first map]

: moved items : recalled items
  from an earlier map

Figure 14: Schematic concept maps for students SK and MC
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Student MC, on the other hand, begins with a more complex map, and each
successive map builds directly on the previous one. This emphasises the manner in
which MC builds a growing complex of related concepts, whilst SK (who is far
less successful) builds a new map every time. SK appears to lack the stable
connections that give MC the conceptual power, leaving SK mainly with
procedures or processes to carry out. Whilst SK stays procedural, MC builds a
more conceptual structure. (McGowen & Tall, 1999.)

Different kinds of procepts

Another theme developing through the cognitive building of arithmetic, algebra
and calculus is the way in which different procepts operate in different ways
leading to the need for cognitive reconstruction. In whole number arithmetic the
symbols have a built-in computational process which children learn to compute a
specific answer. The basic arithmetic symbols all have a dual meaning as process
and concept, but there are subtle nuances that are different. For instance the sum of
two whole numbers is another whole number so that the process of addition
outputs a number of the same kind. But division of whole numbers can give an
entirely new entity—a fraction. These violate previous experiences of (counting)
numbers. For instance, although five is the “next” number after “four”, fractions
introduce many “numbers” between four and five and, more generally, no number
has a “next” number. Similarly the expansion from counting numbers to positive
and negative integers leads to old beliefs like “you can’t have less than nothing”
being violated in the new context, causing discontinuity in cognitive growth that
may cause great difficulties for some.

The shift from arithmetic to algebra leads to a new kind of procept where the
expression 2+3x has only a potential process of evaluation (when the numerical
value of x is known). Thus the student again has to reconstruct experiences to give
meaning to these new kinds of procept. In particular, many students have difficulty
conceiving of expressions as manipulable mental objects, being unable to accept
such expressions as “answers” to problems. For many of these students, the equals
sign in an equation such as 3+2=5 is seen as a left-to-right process where the left
hand side “makes” the right-hand side through computation. Students with such an
interpretation may be able to solve an equation such as

3x + 1 = 16

by reasoning that if “3x+1” makes 16, if the final 1 wasn’t added, then the 3x part
of the expression only makes 15, and if 3 times x is 15, then x must be 5.

An equation of the form

3x + 1 = 4x – 4

is an altogether stranger beast. Both sides “make” something, but by different
calculations that cannot be undone by reversing each of them. At the very best, if
both sides are seen as mental objects representing a number, then “doing the same
thing to each side” will continue to give the “same things” but these are different
from the “same things” on the previous line. Faced with problems of meaning,
many students concentrate on learnt procedures to “get an answer”, such as
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“change sides, change signs”, “move the numbers over to the right”, “move the xs
to the left”, “divide both sides by the coefficient of x.” Students may be able to
“do” mathematics procedurally, yet not understand it relationally. The symbols
have little meaning other than carrying out learned rules impressed on them by
their teacher.

The shift from algebra to calculus poses even new problems. The limit symbols
which occur such as

lim
x→2

x2 − 4
x − 2






,  1

n2

n=1

∞

∑ ,

all have potentially infinite processes. They seem to “go on forever”, perhaps never
reaching the output limit concept. Again the difficulties of moving from finite
algebra to potentially infinite limit processes have been widely documented (see
Cornu, 1991 for a review). The limits are often sensed, not as fixed values, but as
variable quantities that are “arbitrarily small”, or “arbitrarily close” or “arbitrarily
large.”

Faced with such difficulties, it is no wonder that so many are relieved to find
that the rules of differentiation such as

d

dx
sin x cos x( )

can be performed by a finite manipulative process. This returns the student to a
kind of security reminiscent of the operational procepts in arithmetic. The rules for
computing derivatives again give a definite answer, albeit in the form that an
operation on a formula gives another formula. Few students cope with the limit
concept and many seek the procedural security of the rules of differentiation. Thus,
in the calculus, procedural students are happier with the rules of differentiation and
may make no formal sense of the limit concept. Likewise, in the theory of limits of
sequences and series, students often prefer the achievable computation offered by
the tests for convergence of series (such as  comparison test, ratio test, or the
alternating sign test). All of these have a familiar operational notion of a built-in
finite computation to give an answer.

At the formal level, there are still procepts (for instance, the elements of a
transformation group can be thought of both as processes and concepts). However,
the procept notion is now reduced to a more minor role. For instance, the notion of
a group itself is not a procept—it is an altogether bigger structure given by a
definition that specifies properties it must have. The processes to construct formal
meaning are now logical processes and the concepts are formally constructed. A
further discontinuity, this time of major proportions intervenes, signalling the step
from “elementary mathematics” of calculation and manipulation to “advanced
mathematics” of defining and proving (figure 15).
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Figure 15: Different types of process & concept in mathematics

Conceptual Preparation for Calculus Procedures

As some students develop from single procedures to use alternative, more efficient,
solutions, it is interesting to see how flexible they become in solving calculus
problems that essentially only require the selection and operation of an appropriate
procedure. The rules of calculus, such as the derivative of a product or quotient
may benefit from a little conceptual preparation before carrying out the algorithm.
For instance, the problem:

Determine the derivative of 
1 2

2

+ x

x

becomes quite complicated if it is treated immediately as a quotient:

y
x

x

dy

dx

x x x x

x

x x x

x

x

x x

= +

= − + = − − = − = −

1

2 2 1 2 2 2 2 2

2

2

2 2

2 2

3 3

4 4 3

,

( )( ) ( )( )
( )

.

However, if the expression is first simplified as x −2 + 1, then its derivative is
immediately seen to be −2x −3, affording a considerable reduction in processing.

More successful students may be able to “see” the symbol 
1 + x2

x2  as two fractions

like this:

1 +
x2

x2

x2
.

By seeing 
1

x2  as x–2, and 
x2

x2  as +1, the solution can be written in a single step.

Maselan Bin Ali (1996), chose 36 students in three groups of 12, who were
high (grade A), medium (grade B) and low (grade C) achievers respectively. The
students in the various grades performed as in table 3.
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Students’
grade

Conceptual
preparation

Post-algorithmic
simplification

No further
simplification

A
B
C

10
6
4

2
6
7

0
0
1

Total 20 15 1

Table 3: Student responses to a differentiation problem

The difference between the A and C grade students is significant at the 5% level
using a χ2 test (with Yates correction). The more successful students are more
likely to use conceptual preparation to minimise their work in carrying out the
algorithm.

Students were asked how many different ways they could do this example, (e.g.
by product rule, quotient rule, simplification first, or implicitly differentiating yx2 =
x2+1). The number of students offering different (correct) methods are given in
table 4.

Of those giving two or three methods, the number of A students (9 out of 12) is
significantly better than the number of C students (3 out of 12) at the 5% level
using a χ2 test (with Yates correction). However, the spectrum in this example is
not an all-or-nothing phenomenon. Some A students use single procedures just as
some C students show some flexibility. The A students, therefore have a greater
tendency to be (at least) process-oriented than the more procedurally-oriented C
students (Ali & Tall, 1996).

Students’
grade

0 or 1 methods
[procedure]

2 or 3 methods
[process]

A
B
C

3
7
9

9
5
3

Total 19 17

Table 4: Flexibility of student solution processes

Procedural and Conceptual Knowledge

In the previous section we saw a distinction between those who learn to cope with
a step-by-step procedure and those who develop flexibility to use a variety of
methods and choose the most efficient. This is only part of a range of performance.
Beyond this, as we saw earlier, there is also the duality of the use of symbolism as
process and concept allowing the student to go even further and think about the
symbols as mental concepts that can be manipulated. Flexible thinking, however,
can go beyond the spectrum from procedural via process to procept using only
symbols. The flexible use of a wider range of linkages between symbols and visual
representations is called versatile thinking (Tall & Thomas, 1991). Essentially this
involves the relationships between perceptual aspects of objects and manipulative
aspects of symbols represented in figure 1. Expand this by reflection to higher
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level theories of figure 1 and we get a full presentation of conceptual knowledge in
the sense of Hiebert & Lefevre (1986).

Using conceptual knowledge flexibly requires the development of a wider
range of problem-solving skills. Yusof (1995) found that students taking a course
focusing on developing broader problem-solving skills changed their attitudes to
mathematics as a collection of skills to be rote-learned towards a creative problem-
solving attitude, more willing to attack problems they had not been seen before. In
this study, it happened that half the students claimed that mathematics made sense
to them and half claimed it did not. These responses were not related to success at
all, each group containing the same spectrum of success in examinations. The
research indicated that a wide range of students gained some advantage from
problem solving with the possible exception of the least successful of those who
claimed that mathematics did not make sense to them. The high attainers for whom
“mathematics makes sense” tended to approach problems in an open, creative way
but that some lower attaining students for whom “mathematics does not make
sense” treated problem-solving techniques as a new sequence of routine
procedures (Yusof & Tall, 1996, 1999). Once again, we find a bifurcation between
those who succeed and those who fail now extended to the full range of
conceptual/procedural spectrum of thinking.

The Transition: perceptual/proceptual to formal

The move from elementary to advanced mathematics requires a significant
reconstruction in thinking. The perceived shapes in space are the result of direct
perception; these lead on to platonic images in euclidean geometry which perfectly
represent imagined properties of the geometric figures. Meanwhile, arithmetic
begins by counting actual objects and the resulting number properties (such as
associativity, commutativity and distributivity) are all directly experienced by the
individual.

The transition to advanced mathematical thinking makes a complete shift in
focus from the existence of perceived objects and symbols representing actions on
the objects to new theories based on specified properties of formally defined
mathematical structures. Geometric experiences can be used to focus on certain
properties (points, lines, intersections, curves, continuity, etc) to formulate new
axiomatic systems such as non-euclidean geometry, topology and analysis.
Properties of arithmetic and algebraic symbols are formulated and generalised to
give axioms for groups, rings, fields, vector spaces, and so on. These newly
developed theories are still built by the human brain and to a greater or lesser
extent they continue to link with various kinds of mental imagery. Such imagery is
useful, even essential for suggesting what kinds of definitions will be most useful
and what theorems might be proved. However, the essential quality that makes
advanced mathematical thinking different from elementary mathematics is the
introduction of formal definitions and proof. (Figure 16.)
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Figure 16: From perceptual & procedural to formal mathematics

The cognitive shift to formal mathematics presents a serious new discontinuity. In
almost all previous experience, students have encountered objects that possess
properties and symbols that can be manipulated. In both cases, the meaning of the
objects and symbols comes from the experience of playing with them and finding
out their properties. In formal mathematics this development is reversed. The
student is now presented with definitions in words and symbols that give rise to
new mathematical entities through deduction, building up their properties through
a sequence of theorems and proofs.

Students often have enormous difficulty coping with this new view of
definitions. Their current rich conceptual structure, where they already “know” a
great deal of mathematics, is not entirely consistent with a formal theory where
everything must now be deduced from definitions by logical inference. The fact is
that mathematicians do not use only logic. They have an interplay between
imagery (to suggest) and deduction (to prove). Likewise there are different
tendencies noticeable among students. Marcia Pinto (1998) studied a spectrum of
students working through a beginning analysis course to see how they handle
definition and deduction. She found two widely differing strategies:

• giving meaning to a definition from a range of personal images,
percepts, processes, examples, non-examples, etc.,

• extracting meaning from the definition by formal deduction in
proving theorems.

A hypothetical analysis might suggest that these two strategies are best used in
sequence. First one gives meaning, by constructing examples and non-examples
and building a range of possibilities that might be deduced from the definitions.
Then one moves to the logical extraction of the hypothesised results by
formulating them as theorems and proving them. Amongst mathematicians there
are some that tend more to one strategy than the other. Geometers, topologists and
those building theories based on conceptual imagery often prefer giving meaning
using visuo-spatial insights. Others build on existing mathematical theories,
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putting them together in new ways and defining new theoretical constructs. Pinto
found that, although students may use either strategy at different times, many
preferred one strategy to such an extent that the other is hardly used. She observed
that students can be successful with either route.

The two strategies has different places where difficulties occur. The student
who prefers to give meaning is involved in continual reconstruction of ideas as
(s)he expands mental images to take account of new phenomena. The student who
extracts meaning must first routinize the definition to be able to write it down from
memory, and then use it to build up a repertoire of properties proved from the
definitions.

Some students succeed in their chosen strategies, but many fail. Those who
attempt to “give meaning” from perceptual images, so they can “see what
happens”, often find they are trying to prove something that is “obvious” for which
the far more obscure proof has no meaning. These can have a “sense” of what is
going on but fail to do any more than rote-learn proofs for exams. Alternatively
those who attempt to “extract meaning” from a definition that they often cannot
remember, let alone understand, are in even greater difficulties. They may not lack
mental pictures, but these are not generative in the same way as those who “give
meaning.” Instead they often represent a single instance (such as a monotonically
increasing sequence that does not ‘reach’ a limit). They are therefore inflexible and
intimate properties that are not implied by the formal definition. Such students
have only confused images and weak grasp of formalism, so that little progress is
possible beyond minimal rote learning. (Pinto, 1998, Pinto & Tall, 1999.)

Examples of successful students giving and extracting meaning

Two students, who we will call Chris and Ross, used widely differing strategies
(Pinto, 1998, chapter 8). Chris is a “giver of meaning” who did not attempt to
memorise definitions. Instead he refined his mental pictures until the definition
becomes evident to him. (Figure 17.)

 “I don’t memorise that [the definition of limit]. I think of this [picture] every time I
work it out, and then you just get used to it. I can nearly write that straight down.”

Figure 17: A picture of convergence

As he drew the picture, he gestured with his hands to show that first he imagined
how close he required the values to be (either side of the limit), then how far he
would need to go along to get all successive values of the sequence inside the
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required range. As he explained his ideas, he realised that he had represented a
sequence graphically as a continuous curve.

”I think of it graphically ... you got a graph there and the function there, and I think that
it’s got the limit there ... and then ε once like that, and you can draw along and then all
the ... points after N are inside of those bounds. ... When I first thought of this, it was
hard to understand, so I thought of it like that’s the n going across there and that’s an.
... Err this shouldn’t really be a graph, it should be points.”

(Chris, first interview)

Ross, on the other hand, took a formal approach, extracting meaning from the
formal definition. He explained that he learns the definition:

“Just memorising it, well it’s mostly that we have written it down quite a few times in
lectures and then whenever I do a question I try to write down the definition and just
by writing it down over and over again it gets imprinted and then I remember it.”

(Ross, first interview. ibid. p. 166)

They continued to use these different approaches throughout the course. For
example, Ross the extractor of meaning soon came to terms with the manipulation
of the symbols and wrote down what it meant for a sequence not to converge by
writing out the definition of convergence. (Figure 18.) He negated this by
interchanging the quantifiers (after first taking care of the fact that the definition
has an implicit quantifier ∃ L at the beginning). (Figure 19.)

Figure 18: The definition of convergence (ibid. p. 175)

Figure 19: The negation of the definition of convergence (ibid. p. 175)

Chris, on the other hand, wrote the definition of non-convergence in a single
thought experiment without using the interchange of quantifiers.

Both students made minor errors in their working on occasions, but were able
to correct themselves by relating specific concepts to a wider range of coherent
ideas. Both were successful in building up a formal theory.

Less successful students

The students who were less successful had a range of difficulties (Pinto, 1998).
One major problem for many students involved concept imagery that was so
dominant that it prevented them from even beginning to come to terms with
deduction from the definition. Laura evoked many personal ideas of the limit
concept, in a manner well-known in the literature (see Cornu, 1991):

 “The limit is the number where the sequence gets to, but never quite reaches.”
“Let an be the sequence and L is the limit which it tends to. Then when some initial
values are placed into the formula of the sequence the answers will never reach the
value of L (negative or positive).”
“... oh, yes, I put ‘never reach’, and it can reach, and that will be the limit of it. ...”
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“... But it won’t never get bigger than the limit. The limit is like the top number it can
possibly reach. And I put never reach.”

(Laura, various quotations, first interview)

Her concept imagery allowed her to give meaning to the statements of theorems,
but she was unable to write down the definition in any formal sense. Thus formal
definitions and formal proof seemed to be complicated fussing over what, to her,
was “obvious”. She was totally unable to “give meaning” to the formal definition
in any sense that then allowed her to use it for logical deduction.

Other students made the attempt to work with the definition, but made serious
errors. Rolf, for example, learned the definition by rote, but was not as successful
as he thought:

 “Umm ... I wrote it many times because we use it all the time, every time we are
asked a question we have to use and that’s how I remembered it. I don’t think I will
ever forget it now. We have done it so many times.” (Rolf, first interview)

However, the definition he gave was unsatisfactory (figure 20) and he was then
unable to build up a coherent theory.

Figure 20: Rolf’s attempted definition of convergence

Success and failure with the move to formal mathematics

We therefore see that students attempt to move to formal mathematics in a variety
of ways. All begin with imagery before encountering the formalism. For some this
imagery is so coercive that they fail to make any significant shift to formalism at
all. Those who do make an attempt to make sense of the formalism have two
essentially complementary activities. First the consideration of examples and non-
examples to begin to build up meaning for the definition, then the deduction of
other properties from the definition. What is interesting is that so many students
seem to focus much more strongly on one of these activities. Some give meaning
to the definition by manipulating their mental imagery. Successful students with
this strategy can build a rich formal theory with interconnections to other
suggestive imagery. Other students focus more on deduction from the definition
with little or no intervening imagery, extracting meaning from the definition. This
strategy can also build up a formal theory, in this case more confined within itself
and less linked to other aspects of the student’s cognitive structure. It is interesting
to note that professional mathematicians work in various ways that are consistent
with this spectrum of student development.

These observations differ from the theory of Dubinsky et al. (1988) who
presuppose that processes of operation on quantified definitions lead to
encapsulated formal concepts. Such a route is clearly taken by Ross, who works
with the formal definition and regards visualisation as a secondary, often flawed,
insight into the mathematics. Chris, however, works with his visuo-spatial
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imagery, giving this meaning linguistically, so that he can operate using both
global gestalt insight and a sequential deductive thinking. In essence we would see
aspects of perception and action (on the environment) at the root of our theory
(figure 1) being extended to formal mathematics. Whilst Ross prefers to follow the
sequential processes of deduction, Chris works with his internal perceptions of the
concepts. Ross may be considered as encapsulating formal concepts from logical
processes, but Chris manipulates his mental perceptions to construct the
formalism. The mental objects already exist for him; they do not need to be
encapsulated from processes, only moulded to fit with the theory. We therefore see
that the spectrum of approach to formalism found in professional mathematicians
is already present in students. It represents the full spectrum of facilities available
to Homo sapiens, extending from perceptions of and actions on the environment to
perceptions of mental objects and actions on mental objects.

Reflections: Considering the broader picture

We have seen that the development through symbolic and axiomatic mathematics
has a range of discontinuities involving changes in meaning of concepts as
symbols are used to compress different kinds of processes into new types of
concept. At the formal level these are compounded by coping with definitions
which students respond to in a variety of ways. Figure 21 shows an outline of the
development, with a number of discontinuities marked.

These are by no means the only discontinuities that may occur, for
reconstruction of mental concepts in new contexts is a vital part of mathematical
learning. As mathematicians, we may not be aware of the precise nature of
students’ difficulties. This suggests that mathematics cannot be structured as a
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    Figure 21: Cognitive growth in selected topics in mathematics, with associated discontinuities
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simple curriculum steadily expanding the concepts building on old foundations in
established ways. It requires constant re-thinking of concepts which proves
possible, even invigorating, for some, but forces others into rote-learnt rules to
cope in new contexts where the old ideas no longer hold true. In our examples of
student development in proof, Chris positively enjoyed the struggle of making
sense of ideas that confused him. He had a long experience of the satisfying
pleasure of success and now sought the excitement of the struggle to maintain his
high state of mental awareness. Laura, on the other hand, had learnt to fail. She
took no pleasure out of failing again and could not begin to make sense of formal
proof in a context which she would never meet again in her life as a primary
school teacher.

The whole of the curriculum, from elementary school through university
mathematics is a fascinating journey of reconstruction and conquest which appeals
to those who develop a taste for the struggle to overcome defeats and taste new
victories. It is a minefield for others, who may genuinely attempt to understand
mathematics at one level, yet are thrown off course by a discontinuity in learning
that renders new ideas incomprehensible.

Is there a moral to this tale? Certainly we do not claim that all students can
learn mathematics if it is “presented right” and they are willing to “work hard”.
The “American dream” that anyone can do anything we suggest is causing a
nightmare for a vast number of students studying mathematics. The evidence
shows that some failing students are faced with a much greater cognitive load to
achieve a lesser, more pragmatic, procedural goal. On the other hand, we do not
claim that it is impossible for a specific student to conquer specific difficulties.
There will be individuals who fail at one time yet succeed despite the initial
complexity of their view of the task in hand.

All of this must be seen in the wider context of the processes of development
involved in learning mathematics through arithmetic, algebra, calculus and
beyond. This is a challenge that leads to a bifurcation between those who succeed
in compressing knowledge into a flexible form and those who tend to seek security
in learned procedures. Whilst the flexible knowledge compressors have a more
powerful system at their disposal, the procedural learners may be able to solve
routine problems but have a cognitive structure which makes it more difficult to
build up further sophisticated knowledge.

Given the manner in which students’ development diverges into a spectrum of
qualitatively differently thinking, we do not believe there is a single way of
teaching mathematics without taking into account different ways of student
learning. The human interface between teaching and learning is a constant source
of renewal and frustration that will continue to encourage imaginative teachers to
seek pragmatic solutions that respect individual student needs in complex learning
situations.
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