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Resumo Alargado 

 

A epigenética dedica-se ao estudo de modificações que ocorrem, principalmente, sobre a dupla 

cadeia de DNA, sem que exista a edição da sequência nela contida (Waddington 1942b, 1942a). 

Graças às descobertas feitas nesta área nos últimos anos, existem vários tipos de modificações 

epigenéticas já descritas, entre as quais se destaca as modificações de histonas e a metilação do DNA 

(Li et al. 2007). Assim, avaliando a presença ou ausência destas modificações, poderemos inferir 

relativamente à activação ou silenciamento de uma determinada região do genoma. Vários estudos 

têm sido realizados para caracterizar a forma como estas modificações afectam a transcrição de genes 

codificadores de proteína (Kouzarides 2007), no entanto, pouco se sabe como estas modificações 

podem condicionar outras classes de genes, nomeadamente, os pseudogenes. Neste sentido, o 

objectivo deste trabalho consiste na determinação de modificações epigenéticas que possam estar 

envolvidas na expressão dos pseudogenes, potencialmente exercendo um papel crucial na sua 

regulação.  

Os pseudogenes são cópias ancestrais de sequências codificantes que, possivelmente devido à 

perda de pressão selectiva, degeneraram em novas unidades genéticas (Jacq et al. 1977). Actualmente, 

os pseudogenes são classificados em três grandes grupos que são definidos com base no seu processo 

de formação: processados, a classe de pseudogenes mais representada e cuja formação envolve um 

processo de transcrição reversa e integração de um RNA mensageiro novamente no DNA, num 

processo conhecido por retrotransposição; não processados, no caso do processo de formação do 

pseudogene acontecer através da duplicação de um gene completo; e unitários, quando a própria 

estrutura física do gene sofre modificações que levam à perda da capacidade de codificar uma 

proteína (Pink et al. 2011). O processo de formação dos pseudogenes que resulta na incapacidade do 

novo pseudogene codificar uma proteína denomina-se “pseudogenização” (Gregório 2016).  

Graças ao recente desenvolvimento de plataformas de sequenciação em larga escala, revelou-se 

que os pseudogenes são transcritos e que a sua transcrição pode estar envolvida na condução de 

importantes processos celulares nos quais os pseudogenes podem desempenhar funções celulares 

específicas. Presentemente, sabe-se que os pseudogenes conseguem também actuar através de 

diferentes mecanismos para modular a regulação dos seus genes parentais, nomeadamente através da 

competição para esponjas de microRNAs (Thomson and Dinger 2016), transcritos antisense ou 

lncRNAs com a capacidade de conduzir complexos proteicos remodeladores de cromatina (Groen et 

al. 2014). Para além desta actuação mediada por RNA através dos potenciais transcritos dos 

pseudogenes, pensa-se também que os pseudogenes podem ter mecanismos de acção ao nível do DNA 

que podem condicionar a actividade do gene parental, por exemplo através de um evento de 

recombinação homóloga entre o pseudogene e o gene parental que pode resultar na deleção do gene 

parental (Poliseno 2012). Dada esta possível contribuição em vários processos celulares, os 

pseudogenes definem um novo paradigma de como o genoma não codificante pode ter importantes 

contribuições em diversas funções biológicas, nomeadamente no desenvolvimento e no cancro. Um 

exemplo destas contribuições é o pseudogene Oct4p4, que tem a capacidade de regular a transcrição 

do seu gene parental, o regulador de pluripotência Oct4. Quando expresso, este pseudogene conduz a 

célula a iniciar o processo de diferenciação neural, através da imposição da modificação repressiva da 

histona H3 (H3K9me3) na região promotora do gene Oct4 (Liedtke et al. 2007). Um outro exemplo 

de um pseudogene com uma função importante, neste caso em cancro, é o PTENP1, um pseudogene 

do gene supressor tumoral PTEN. O PTENP1 é o exemplo de um pseudogene com diversificados 

mecanismos de acção através de um único pseudogene conseguindo actuar como uma esponja de 

microRNAs, um catalisador do recrutamento de remodeladores da cromatina para o promotor do gene 

PTEN e um transcrito antisense que consegue regular a estabilidade e a função de esponja de 

microRNAs do próprio transcrito sense do PTENP1 (Johnsson et al. 2013). 
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Contudo, os mecanismos pelos quais a expressão dos pseudogenes é regulada e qual o seu papel 

biológico estão ainda por explorar. Grande porção dos pseudogenes não aparentam ter sequências 

regulatórias a montante do corpo do pseudogene, o que pode sugerir que outros mecanismos poderão 

estar envolvidos neste processo, em resultado da observação de modificações nas histonas de 

pseudogenes que são transcritos e que não são características nos seus genes parentais ou nos restantes 

genes codificadores de proteínas (Pei et al. 2012). Um destes exemplos é a presença de H3K9me3 na 

região do promotor de pseudogenes expressos (Guo et al. 2014).  

Tendo em consideração estas observações, propomos a hipótese que os pseudogenes possuem  

mecanismos epigenéticos próprios a regular a sua transcrição. Para testar esta hipótese, estudámos o 

transcriptoma e epigenoma dos pseudogenes durante a diferenciação neural de células estaminais 

embrionárias, através da combinação de análises de dados em larga de escala do transcriptoma (RNA-

seq e GRO-seq), metilação de DNA (BS-seq), regiões de cromatina aberta (hipersensibilidade à 

DNase) e modificações de histona (ChIP-seq). Os dados usados foram obtidos através da plataforma 

NIH Roadmap Epigenomics Consortium (Bernstein et al. 2010), consistindo em 72 amostras e um 

total de 194 replicados. Devido à elevada expressão de pseudogenes no cérebro (Pei et al. 2012), este 

projecto incidiu essencialmente na diferenciação neural, durante a qual células estaminais 

embrionárias (H1) foram diferenciadas in vitro em células progenitoras neuronais (H1N). 

As nossas análises referentes ao transcriptoma revelaram um número mais elevado de pseudogenes a 

serem expressos durante a diferenciação neural quando comparado com a diferenciação mesenquimal. 

No entanto, observámos que a detecção da transcrição dos pseudogenes pode ser incorrectamente 

determinada usando dados de RNA-seq, pois os perfis obtidos por esta tecnologia são influenciados 

pela estabilidade dos transcritos. Em concordância, os resultados obtidos usando dados de GRO-seq 

suportam esta hipótese, dado que permitem identificar um maior número de pseudogenes a serem 

transcritos. Após a identificação dos pseudogenes transcritos e silenciados, analisámos o seu 

enriquecimento em modificações de histonas. De todas as alterações observadas, destacamos três 

importantes observações associadas com a transcrição de pseudogenes, nomeadamente a presença de: 

H3K36me3 no corpo do pseudogenes transcritos, associada a episódios de continuação da transcrição 

do gene na região a montante (“read-through”); H3K9me3, uma marca epigenética usualmente 

associada a regiões não transcritas; e, por fim, domínios bivalentes (H3K4me3 e H3K27me3) na 

região promotora de alguns pseudogenes. Estas observações parecem sustentar a hipótese que sugere 

que a transcrição dos pseudogenes é regulada. Estudos mais profundos são necessários para perceber a 

extensão destas modificações na expressão dos pseudogenes, apesar da presença de H3K36me3 e 

H3K9me3 terem sido já observadas previamente em pseudogenes transcritos (Pei et al. 2012; Guo et 

al. 2014).  

No entanto, são ainda muitas as limitações associadas ao estudo dos pseudogenes e que precisam de 

um melhoramento no futuro. Primeiramente, a semelhança existente entre pseudogenes e os genes 

parentais dificulta o mapeamento destas regiões usando dados de sequenciação de transcriptoma. 

Adicionalmente, a expressão de pseudogenes por “read-through” do gene a montante pode sugerir a 

existência de erros na anotação de bases de dados e pressiona para a crescente necessidade de 

melhoramento na caracterização de genomas. 

Concluindo, os resultados aqui observados e discutidos confirmam que os pseudogenes são 

transcritos e que a sua transcrição parece ser regulada, sugerindo que o seu papel não será assim tão 

“pseudo” como previamente se pensava. Contudo, mais esforços são necessários para caracterizar a 

extensão destas alterações, bem como para aferir a contribuição da metilação do DNA na regulação da 

expressão dos pseudogenes.  

 

Palavras-chave: Pseudogenes, transcrição, epigenética, biologia computacional  
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Abstract 

 

Pseudogenes are genetic elements that derive from normal protein-coding genes which, through the 

accumulation of deteriorating mutations, have lost coding potential in a process which is known as 

“pseudogenization”. However, recent high throughput sequencing technology has shown that 

pseudogenes are transcribed and that their transcription is tissue-specific, which suggests that 

pseudogenes might have an important role in biological processes. Many pseudogenes have been 

described to regulate important processes in development or cancer. Yet, not much is known about 

how pseudogene expression is regulated. Most pseudogenes seem to have lost their upstream 

regulatory sequences, indicating that trans-acting mechanisms might be responsible for this 

regulation. Studies evidence that pseudogenes have different histone modifications compared to their 

parental genes, suggesting that they might have specific transcriptional mechanisms. 

In this project, we aimed at identifying the epigenetic pattern responsible for the regulation of 

pseudogene transcription through a genome-wide analysis. For this analysis, we used transcriptomic 

data (RNA-seq and GRO-seq) to detect pseudogene transcription and epigenomic data (ChIP-seq, 

DNase Hypersensitivity and WGBS-seq) to assess epigenomic changes in silent and expressed 

pseudogenes. Since pseudogene expression has been shown to be higher in the brain, we choose to 

address our research questions using in vitro neural differentiation of embryonic stem cells (ESCs) as 

a cell differentiation model system.  

Our analysis confirmed that there are more pseudogenes being expressed during neural 

differentiation when compared to mesenchymal differentiation. Regarding their epigenetic 

modifications, our results show that some pseudogenes, in which the histone modification H3K36me3 

is present, might be transcribed as a consequence of transcription read-through from the upstream 

gene. Expressed pseudogenes also seem to be enriched with the histone modification H3K9me3, a 

modification that is known to be associated with inactive transcription. As well as in protein-coding 

genes and lncRNAs, pseudogenes are enriched with bivalent promoters features, such as the co-

localized presence of H3K4me3 and H3K27me3 in both undifferentiated and neural differentiated cell 

lines.     

To conclude, although the regulation of pseudogene transcription still requires further work to truly 

apprehend the epigenetic mechanisms that contribute to pseudogene expression, our work has 

confirmed that mainly histone modification such as H3K36me3 and H3K9me3 may indeed play a 

role, either direct or indirect, that can help modulate the expression of these very particular genes.  

 

Keywords: pseudogenes; transcriptional regulation; epigenome; computational biology 
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1. Introduction 

1.1.  The role of the epigenome in the regulation of gene expression 

 

The term “epigenetics” arises for the first time in 1942 attributing now a word to the concept of 

phenotypic change without genotypic change (Waddington 1942b, 1942a). Nowadays, it is known 

that the DNA template works in collaboration with epigenetic programs to regulate gene expression 

through several mechanisms (Figure 1.1). The advances in epigenetics have gone from the 

identification of different levels of chromatin condensation (transcriptionally active regions as 

“euchromatin” and silent regions as “heterochromatin”), to more detailed insights such as the effects 

of histone modification and DNA methylation in transcriptional programs (Li et al. 2007). These last 

two epigenetic features will be discussed in this project. 

 

 

 

 

1.1.1. Histone Modifications 

 

The DNA inside the nucleus is compacted as a chromatin fibber which is organized in 

nucleosomes, the building-block structure of the genome. The nucleosome structure is composed of 

an octamer of four histones, namely H3, H4, H2A, and H2B, which are encircled by 147 base pairs of 

DNA (Kornberg and Lorch 1999). It is known that histones have large N-terminal tails that can suffer 

several modifications, such as methylation, acetylation or phosphorylation, which can affect several 

DNA-related processes, including transcription (Karlić et al. 2010), splicing (Kornblihtt et al. 2009) or 

DNA repair (Fillingham et al. 2006) (Figure 1.2, A).  

The development of high-throughput sequencing (HTS) technologies has allowed the mapping of 

all these modifications across the genome. This transformation allowed the association of specific 

modifications to regulatory processes (Kouzarides 2007), namely transcription (Li et al. 2007; 

Soboleva et al. 2014). There have been many histone modifications that were described to regulate 

transcription. Transcription regulation can be performed at several levels, namely through specific 

modifications in enhancer, promoter and gene body regions (Figure 1.2, B). For instance, 

trimethylation of lysine 4 in histone H3 (H3K4me3) in promoter region and trimethylation of lysine 

36 also in histone H3 (H3K36me3) throughout the gene body correlates positively with active 

transcription. On the contrary, presence of trimethylation of lysine 9 in histone H3 (H3K9me3) and 

trimethylation of lysine 27 in histone H3 (H3K27me3) are usually associated with transcriptional 

Figure 1.1 – Examples of different molecular mechanisms of epigenetic control (adapted from Allis and Jenuwein 

2016).     
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repression. Interestingly, H3K4me3 and H3K27me3 histone modifications are also concomitant with 

bivalent chromatin associated structures that are characteristic of early development stages in cell 

differentiation. In these bivalent domains, transcription activation and repression histone 

modifications are co-existent in a regulated equilibrium (Voigt et al. 2013). Throughout 

differentiation, there is a tendency for these regions to undergo silencing, which results in the decrease 

of these bimodal domains. It has been observed that, in ES cells, these bivalent regions are associated 

to pluripotency factors, such as OCT4, delivering their contribution at maintaining basal activation 

levels for these factors (Voigt et al. 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2. DNA methylation  

DNA methylation is an epigenetic modification that occurs in the DNA itself, through which, in 

eukaryotes, a methyl group is added to the fifth position of the cytosine nitrogenous base ring in the 

cytosine-guanine dinucleotides (CpG) (Holliday and Pugh 1975). This modification is highly 

conserved in both animal and plants (Law and Jacobsen 2010) and is thought to be present in 60-80% 

of the estimated 28 million CpG dinucleotides found in somatic cells (Smith and Meissner 2013). 

CpGs occur in CG-dense regions called CpG islands, predominant in transcription initiation sites. 

DNA methylation of gene promoter regions is associated with a decrease in gene expression and can 

lead to gene silencing (Suzuki and Bird 2008). These findings have established the role of DNA 

methylation in the definition of repressed chromatin states and silent gene activity. In mammals, the 

addition of this methyl group is completed by the family of methyltransferases DNA 

methyltransferase 3 (DNMT3), for de novo methylation, and DNA methyltransferase 1 (DNMT1), 

Figure 1.2 - Effects of different histone modifications on the determination of functional activity in the genome. (A) 

(A.A) NURF complex being transported to H3K4me locations to induce changes in transcription. (A.B) DNA repair response 

prompted recruitment of Crb2 complex to DNA repair foci. (A.C) Transport of HBO1 acetyltransferase to H3K4me3 in DNA 

replication sites (adapted from Kouzarides 2007). (B) Functional consequences of histone modifications in transcriptional 

dynamics. According to their expression level, genes and promoter regions are enriched with different histone modifications 

that help shape the robustness of transcriptional programs. Besides genes, other genomic transcriptional regulatory elements, 

such as enhancers, also seem to be characterized by the presence of specific histone modifications (adapted from Zhou et al. 

2011).  

 

 

A B 
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responsible for the maintenance of the methylation pattern during replication (Cheng and Blumenthal 

2008). The tight regulation of CpG methylation heritability (Smith and Meissner 2013) suggests that 

this modification must be of great importance in the maintenance of the stability of several DNA 

metabolic processes.       

 

 

1.2. Pseudogene – a mysterious genetic element 

 

The definition of pseudogene appeared for the first time in 1977, when Jacq et al. described the 5S 

DNA, coding for oocyte type 5S RNA, of Xenopus laevis. This 5S DNA is composed of several 

repeats of a 700 base pairs sequence which included a long spacer, the gene, a linker and a 101 base 

pairs sequence almost identical to a portion of the 121 base pairs gene to which no function was 

associated. The finding of this sequence led to the definition of a new genetic element which, up to 

this day, can still be partially described by the same words as in 1977:“Further studies showed that 

this homologous structure was nearly as long as, and almost an exact repeat of, the gene itself; hence 

the name – pseudogene” (Jacq et al. 1977). From 1977 to present date, the definition of pseudogene 

has grown more intricate. While before it was thought that pseudogenes had no coding potential, 

mainly due to the accumulation of deteriorating mutations, recent evidence has shown that 

pseudogenes are transcribed (Harrison et al. 2005; Groen et al. 2014; Kandouz et al. 2004) and can 

impact the expression levels of their parental genes (Liedtke et al. 2007; Poliseno et al. 2010).  

 

1.2.1. Pseudogene Typology 

Pseudogenes are very similar to regular protein-coding genes however, through time, they 

accumulated mutations that were capable to damage their coding potential. According to the 

mechanism through which they were generated, pseudogenes can be divided in 3 different classes: 

unprocessed, processed and unitary pseudogenes (Figure 1.3) (Pink et al. 2011). 

Unprocessed pseudogenes (Figure 1.3 A) are generated by a process of duplication of an original 

protein-coding gene and subsequent accumulation of mutations which could have led to the loss of the 

coding potential and also the transcription initiation signals. (Milligan et al. 2016) 

Processed pseudogenes (Figure 1.3 B) are derived through retrotransposition, a process where the 

transcriptional product from an original protein-coding gene is converted back to DNA and integrated 

in the genome. Since the mature (spliced) mRNA is the template for the reverse transcription, these 

pseudogenes are usually intronless (Sakai et al. 2007). Processed pseudogenes are the most 

represented class in mammalian genomes, possibly due to several bursts of retrotransposition 

(Ohshima et al. 2003). 

Unitary pseudogenes (Figure 1.3 C) are the only type of pseudogenes that do not have parental 

genes since they are generated through the accumulation of mutations in the ancestral protein-coding 

gene body (Zhang et al. 2010). These mutations can lead to loss of promoter signals or coding 

potential (through introduction of premature stop codons, frameshift mutations or splice site 

alterations), process known as “pseudogenization” (Gregório 2016). 

Due to the emergence of genome-wide data and computational approaches, 18000-20000 

pseudogenes were thought to exist in the human genome (Torrents et al. 2003; Svensson et al. 2006). 

However, a more recent and exhaustive studies reduced this number to 14000 pseudogenes in the 

human genome (Pei et al. 2012).   

Although pseudogenes are very abundant in the mammalian genome, their parental genes represent  

only 16% of all protein-coding genes (Pei et al. 2012; Poliseno 2012). It is also known that some 
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parental genes originated a greater number of pseudogenes, namely ribosomal proteins (Tonner et al. 

2012), olfactory receptors  and metabolic enzymes, such as GAPDH (Liu et al. 2009; Zhang et al. 

2003).          

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2. Pseudogene Roles 

The product of pseudogene transcription is thought to have a biological function in the regulation 

of their parental genes. Pseudogenes can affect the regulation of their parental genes mostly at RNA 

level although it has been described that pseudogenes can alter the structure of their parental genes at 

DNA level. For instance, BRCA1 has an unprocessed pseudogene, ΨBRCA1, which is thought to be a 

potential recombination hotspot due to the extensive similarity between them. In families with breast 

and ovary cancer, this gene has been shown to be nonfunctional due to the loss of its promoter and 

initiation codon, providing a mechanism whereby this oncosuppressor gene can become inactivated in 

cancer (Puget et al. 2002). Another example is the pseudogene CYP2A7, which originates from the 

parental gene CYP2A6 coding for an hepatic enzyme. CYP2A6 gains a polymorphic site that stabilizes 

its mRNA leading to an augment in its abundance and stability. The enzyme resulting from this 

polymorphism metabolizes nicotine much faster and this genotype is often associated with an 

increased risk of developing lung cancer (Wang et al. 2006).  

The major mechanisms through which pseudogenes can change the expression of their parental 

genes is through competition for microRNA sponges (Thomson and Dinger 2016), antisense 

transcripts or as lncRNA guides of chromatin remodeling complex proteins (Groen et al. 2014). PTEN 

is an example of a gene whose pseudogene shows a combination of several regulatory functions 

through the production of different RNA products from the same pseudogene, PTENP1. This 

pseudogene can, through several mechanisms, act as: 1) a lncRNA, when it is expressed in its sense 

Figure 1.3 – Pseudogene formation. (A) Duplicated pseudogenes are copies of their parental protein-coding genes that 

through time acquired mutations that conditioned their function. (B) Retrotransposed pseudogenes are a consequence of the 

combination of the reverse transcription of a processed mRNA followed by the insertion of this structure in a random region 

of the genome. (C) In the bottom case, pseudogenes are formed by the degradation of the original gene structure through the 

accumulation of several mutations (adapted from Poliseno 2012). 
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form acting as a microRNA sponge; 2) an antisense RNA, responsible for the recruitment of 

chromatin remodelers to the promoter of the PTEN gene; 3) an antisense RNA which binds to 

PTENP1 sense transcript altering its stability and ability to act as a microRNA sponge (Johnsson et al. 

2013). Another evidence of the great importance of this pseudogene’s activity is the fact that cells 

induce cell-cycle arrest when the antisense RNA mechanism is disrupted (Johnsson et al. 2013). 

Pseudogene expression can also have an influence on differentiation processes. One of these 

pseudogenes is Oct4 pseudogene. Oct4 is responsible for the maintenance of the undifferentiated state 

in embryonic stem cells. Conversely, when Oct4 pseudogene is expressed, it is responsible for 

repressive chromatin rearrangements to the promoter regions of the Oct4 gene leading to its decreased 

expression. Consequently, it allows the cell to enter the neural differentiation process (Liedtke et al. 

2007).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3. Pseudogene Transcriptional Regulation 

Prior to the development of computational tools, the identification of pseudogene transcripts was 

conducted using PCR techniques which failed to be successful due to the similarity between 

pseudogenes and parental genes (Poliseno et al. 2010). Recent computational approaches have shown 

that pseudogenes are expressed (Pei et al. 2012) and that their expression can be tissue specific, not 

only in normal cells (Pei et al. 2012) but also in cancer (Han et al. 2014; Kalyana-Sundaram et al. 

2012). Besides being tissue specific, pseudogene expression is particularly elevated in certain cell 

types, namely, testis, adrenal, oocytes and brain (Pei et al. 2012). 

Figure 1.4 – Example of the effect of the PTENP1 pseudogene transcription in the regulation of PTEN expression. 

PTENP1 has two antisense RNAs, α and β. The α isoform is responsible for the epigenetic modulation of PTEN transcription. 

The β isoform pairs with PTENpg1 sense changing its stability and the interaction with microRNA sponges (adapted from 

Johnsson et al. 2013).     
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The specific patterns of pseudogene expression suggest a coordinated transcription (Han et al. 

2014). However, not much is known regarding the mechanisms through which pseudogene expression 

is regulated. Since processed pseudogenes arise from the retrotransposition of processed mRNAs, 

lacking most promoter regulatory regions, their transcription regulation may differ from their cognate 

genes (Kandouz et al. 2004). Moreover, the upstream region of pseudogenes lack the regular 

transcription factor binding sites (Pei et al. 2012). On the contrary, unprocessed pseudogenes originate 

through genomic duplication, mechanism that preserves the genomic and regulatory features of their 

ancestors (Pink et al. 2011).  

All these facts suggest that different mechanisms might be responsible for pseudogene 

transcription. One hypothesis relies on the fact that some pseudogenes are located within other loci 

and can be expressed by “hitchhiking” on the transcriptional machinery of the genes present there 

(Vinckenbosch et al. 2006). This mechanism suggests that mostly processed pseudogenes, which do 

not have upstream regulatory sequences, might become functional by being integrated in regions that 

favor transcription. This behavior is characteristic of retrogenes which integrate nearby genes, perhaps 

in the pursuit of the opportunity of being transcribed. An alternative theory proposes that pseudogenes 

transcription can be modulated at chromatin level. Globally, pseudogenes show the canonical histone 

modifications from transcribed (H3K4me3 and H3K36me3) and repressed (H3K27me3) protein-

coding genes (Pei et al. 2012). However, recent studies described distinct features associated with 

pseudogenes transcription.  First, the histone modification H3K36me3, prevalent in the gene-body of 

protein-coding genes, appear to be enriched near the transcription start-site of pseudogenes and long 

non coding RNAs (lncRNAs) (Pei et al. 2012; Sati et al. 2012). Also, expressed pseudogenes show an 

enrichment of H3K9me3, an histone modification usually associated with repressed regions (Guo et 

al. 2014). Moving apart from histone modifications, it is also known that DNA methylation can 

regulate gene activity (Schultz et al. 2015). Indeed, pseudogene expression is tissue-specific repressed 

by de novo methylation after the gene duplication event (Cortese et al. 2008). Also, the high 

expression of pseudogenes in testis appear to be a consequence of the transient demethylation during 

spermatogenesis (Grunau et al. 2000). Nevertheless, more studies are need to fully characterize the 

impact of DNA methylation in the regulation pseudogene expression.   

 

1.3. High-throughput Sequencing Technology (HTS) 

 

It was approximately 20 years between the discovery of DNA’s double helix structure by Watson 

and Crick in 1953 (Watson and Crick 1953) and the first sequencing reactions in the 1970s developed 

by Sanger et al (Sanger et al. 1977). Due to its impact, Sanger’s sequencing method was widely used 

to determine the DNA sequence of a given location in the genome for another 30 years. Until, in the 

2000’s, motivated by the need to increase throughput power, we were greeted with more automate and 

parallel processing technologies that became able to sequence the whole genome (Hattori 2005), 

culminating in the establishment of next generation sequencing (NGS) technologies. Presently, we 

find several technologies that present a diversified array of biological applications considering the 

goals to which these technologies are used.  

Examples of NGS technologies are Roche 454, Illumina/Solexa, ABI-SOLiD and Ion Torrent. 

NGS sequencing protocols can be divided into three major steps as described in Figure 1.5, which are: 

library preparation, amplification and sequencing (Goodwin et al. 2016). The development of 

sequencing machines and protocols led to a significant reduction of the sequencing cost when 

compared to the cost of sequencing a human genome in 2004, meeting the goal to make this 

technology affordable and accessible (Van Dijk et al. 2014). Illumina is one of the most used 

sequencing platforms mainly due to their competitive cost, accuracy, and performance. Rapid 
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advances in the development of sequencing technologies in recent years have enabled an increasing 

number of applications in biology, namely in the fields of transcriptomics, epigenomics or 

metabolomics. In this project we used five types of sequencing data which are RNA-seq, GRO-seq, 

ChIP-seq, WGBS-seq and DNase hypersensitivity. Since the main goal of this project is to investigate 

how transcription can be affected by epigenetic features in pseudogenes, this data can be further 

divided into transcriptomic, which includes RNA-seq and GRO-seq, and epigenomic data, including 

ChIP-seq, WGBS-seq and DNase Hypersensitivity. RNA-seq evaluates the overall amount of 

polyadenilated RNAs inside the nucleus, therefore determining the relative amount of a given mRNA 

in the nucleus (Garber et al. 2011). GRO-seq determines active transcription through identifying 

genes with an engaged RNA polymerase (Core et al. 2008). ChIP-seq assesses the binding sites of 

proteins that bind to DNA (Mardis 2007). WGBS-seq uses bisulfite conversion to identify methylated 

cytosines in the genome (Ziller et al. 2015). DNase Hypersensitivy is a method that uses DNase I 

enzyme to identify regions that are sensitive to cleavage by this enzyme, thus assessing if the DNA 

found in this region can be accessible (Piper et al. 2013).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 – Illumina’s next generation sequencing steps (adapted from http://www.illumina.com/content/dam/illumina-

marketing/documents/products/illumina_sequencing_introduction.pdf).  
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1.3.1. The NIH Roadmap Epigenomics Mapping Consortium 

The NIH Roadmap Epigenomics Mapping Consortium was developed with the main goal of 

producing a public database that contained mostly epigenomic sequencing data from normal tissues 

and cell lines (Bernstein et al. 2010). Presently, it has sequencing information regarding DNA 

methylation, histone modifications, chromatin accessibility and transcriptome from human cells and 

tissues, with a total of 127 both human tissues and cell lines. Besides sequencing data, the Consortium 

also aims to standardise the protocols used for both sequencing and analysis steps in order to allow the 

scientific community to increase data uniformity, through the usage of the same guidelines. One of the 

major goals of the consortium is the public dissemination of raw sequence data, processed data and 

integrated data maps (Romanoski et al. 2015). The NIH Roadmap Epigenomics Consortium is part of 

a bigger consortium, the International Human Epigenome Consortium (http://ihec-epigenomes.org/), 

which gathers sequencing information for several others consortiums, like ENCODE 

(https://www.encodeproject.org/) and Blueprint (http://www.blueprint-epigenome.eu/). Similarly to 

NIH Roadmap, the International Human Epigenome Consortium has, as main objectives, the 

generation of reference maps of human epigenomes in health and disease.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 1.6 – NIH Roadmap Epigenomics Mapping Consortium Data (A) Covered epigenomic information contained in 

each of the data sets (B) All cell lines and tissues found in this database (adapted from 

http://www.roadmapepigenomics.org/). 
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1.4. Background of the thesis and Aims 

 

The development of high-throughput sequencing technologies, their applications and the 

gerneration of public databases allowed the disclosure of tissue-specific expression of pseudogenes, 

suggesting a regulated transcription. However, the mechanisms driving pseudogene transcription are 

incompletely understood.  

Thus, the main goal of this thesis was to identify the epigenomic features that coordinate 

pseudogene transcription. To achieve this goal, a comprehensive analysis was applied assessing 

chromatin accessibility (DNase Hypersensitivity), DNA methylation (BS-seq), histone modifications 

(ChIP-seq) and transcriptome (RNA-seq and GRO-seq) of pseudogenes. The genome-wide data was 

retrieved from the NIH Roadmap Epigenomics Consortium covering 72 samples and 194 replicates. 

Due to the high expression and role of pseudogenes in brain, we surveyed pseudogene features 

throughout in vitro neural differentiation of human embryonic stem cells (H1) into neuronal 

progenitor cultured cells (H1N). We also  included also H1 derived mesenchymal embryonic cells to 

understand if the epigenetic patterns in neural differentiation are unique. Hence, through the 

assessment of an epigenome-wide map, we aim to disclose the epigenomic “active” and “repressive” 

states ruling pseudogene transcription during neural differentiation.  
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2. Methods 

2.1. Database and Samples 

 

Samples. High-throughput sequencing (HTS) profiles for 194 replicates (corresponding to 72 

samples) were produced by the NIH Roadmap Epigenomics Mapping Consortium (Consortium et al. 

2015) and the raw data was collected from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/) (Supplementary Table 1.1). In addition, 

GRO-seq data for H1 cell line (GEO accession no: GSM1006728) was also included to assess nascent 

RNA. 

Cell Lines. The 3 cell lines chosen for this analysis were human embryonic stem cell lines H1, 

(H1), H1 derived mesenchymal stem cells (H1M) and H1 derived neuronal progenitor cultured cells 

(H1N). 

Genome Annotation. Gene coordinates were obtained from GENCODE Annotation v23 for 

GRCh38. This version was chosen over GRCh37 because it contained a higher number of 

pseudogenes.  

2.2. Quality Assessment 

 

All runs were converted from SRA files to FASTQ files and a data quality analysis was performed 

using FastQC software (Andrews 2015). Due to the large number of samples, a workflow was used to 

parse the FASTQC output files and filter out the bad quality samples.  FastQC outputs several quality 

measurements being the most important: per base sequence quality; per sequence quality scores; per 

base sequence content; per sequence GC content and overrepresented sequences. Per base sequence 

quality defines the range of quality values at each nucleotide position and is usually the measure 

where most HTS samples show problems. To overcome this issue and recover data, samples were 

split according to quality criteria and reads from problematic samples were trimmed (Table 2.1). 

 

 

  

 Criteria - FastQC 

Pass 

Per Base Sequence Quality = “PASS” 

OR 

Per Base Sequence Quality = “WARN” 

OR 

If Per Base Sequence Quality = “FAIL” 

Lower Quartile > 20 (for the first 30 positions) 

AND 

Median > 20 (for the length of the sequence except last position) 

Check 

Per Base Sequence Quality = “FAIL” 

Lower Quartile > 20 (for the first 30 positions) 

AND 

Median < 20 (any position except last) 

Report: 1st position in which Median < 20 

Fail 

Per Base Sequence Quality = “FAIL” 

AND 

Lower Quartile < 20 (any of the 1st 30 positions) 

Table 2.1 – Criteria for Quality Analysis applied to all replicates. All sequencing files labelled as “pass” were automatically 

included in the analysis. All sequencing files labelled as “check” were trimmed in length according to the first position in 

which the median value is below 20. “Fail” sequencing files were automatically excluded from the analysis. 
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2.3. Genome Mappability  

 

The genome mappability (also known as uniqueness) improves with increased read length and 

generally shows an inverse correlation with the presence of genomic repeats. Genome mappability is 

an important feature to determine mapping depth which allows the identification of noncomplex or 

repetitive regions. It is assessed by fragmentation of the genome in K-mers (Kbps sliding windows of 

1 bp step size) and determination of their frequency in the genome (after alignment). Due to lack of 

mappability tracks for the latest human genome version (GRCh38), we generated mappability tracks 

using the software GEM (Derrien et al. 2012). GEM software outputs a mappability score for each 

position of the genome (ranging from 0 to 1) which is calculated based on the fragmentation of 

genome in K-mers followed by alignment of the generated k-mers. Since the genome mappability 

varies with the read length, we determined the mappability for K-mers of 36bps and 101 bps (read 

lengths of the ChIP-seq and RNA-seq data, respectively). 

Gene mappability was defined as the sum of the mappability value of each base pair, divided by 

the total length of the gene. For the epigenomic analysis, only genes with a mappablity higher than 

80% were considered.        

2.4 Expression Data: RNA-seq and GRO-seq 

 

Transcriptomic data was aligned using Kallisto (Bray et al, 2016) and transcripts per million 

(TPMs) were calculated. For RNA-seq, TPMs for each gene were defined as the mean of TPMs 

across replicates for each cell line. All genes with TPMs > 1 were defined as expressed. In order to 

compare RNA-seq and GRO-seq samples (Figure 3.2, B-D), RPKMs (normalized reads per kilobase 

per million mapped reads) were obtained using normalized library size, as implemented in edgeR R 

package (Robinson et al, 2010). Bayesian analysis was applied to determine differentially expressed 

genes using limma R package (Ritchie et al, 2015) and the following thresholds: B-value > 0 and fold-

change > 2. 

2.5 Epigenomic Data: ChIP-seq, WGBS-seq, DNase Hypersensitivity 

 

ChIP-seq Data Analysis. To reduce redundancy, improve data quality and achieve uniformity 

required for our integrative analysis, we decided to trim all ChIP-seq sequences to 36 bp and merge 

all replicates from the same sample in order to increase the number of reads per sample thus 

augmenting the coverage of the analysis. Because discrepancies in the number of reads across samples 

can compromise the quality of the analysis, we decided to subsample all replicates that had more than 

20M reads to 20M reads (Consortium et al. 2015). Bowtie software (Langmead et al. 2009) was used 

to align ChIP-seq replicates to the new reference genome GhRC38, reporting only uniquely mapped 

reads. PCR duplicates were removed using Picard software (http://picard.sourceforge.net). Histone 

modification enriched regions (peaks) were identified using MACS2 software with the options –

broadpeaks –broadcutoff 0.1. Peaks with minimum FDR value (qvalue) < 0.5 were defined as highly 

significant peaks and used for the identification of enriched sequences. For quantitative calculation 

and profiles for all genes, uniquely mapped reads were extended in the 3’ direction to reach 150 nt 

with the Pyicos (Althammer et al. 2011). Only read counts that overlapped enriched regions identified 

above were considered.  

 

WGBS-seq Data Analysis. BS-seq reads were mapped to the reference human genome (GRCh38) 

using Bismark (Krueger and Andrews 2011), that aligns bisulfite converted sequence reads and 

determines cytosine methylation states. 
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DNase Hypersensivity Analysis. DNase Hypersensitive reads were aligned similar to the ChIP-

seq data. DNase Hypersensitive regions are identified using a peak calling software Homer (Heinz et 

al. 2010). These regions were subjected to further analysis using the software pyDNase (Piper et al. 

2013) for a more accurate identification of DNase Hypersensitive regions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Analysis pipeline according to each type of dataset from NIH Roadmap Epigenomics Data. 
 

ChromHMM. ChromHMM (Ernst and Kellis 2012) was used to assess chromatin states based on 

histone modifications (ChIP-seq) and chromatin accessibility (DNase-seq) data. Two chromatin states 

models were inferred as previously described, comprising: 18 states (5 core chromatin marks 

H3K4me1, H3K4me3, H3K36me3, H3K9me3,H3K27me3 and DNase Hypersensitive regions) and 51 

states (18 chromatin marks and DNase Hypersensitive regions). These models were used afterwards 

to map the epigenomes and for chromatin state enrichment analyses. These downstream analyses were 

performed using ChromHMM tools to detect chromatin state enrichment in gene regions (Overlap 

enrichment function) and to infer chromatin state enrichment around anchor positions (TSS) 

(neighbourhood function). 

 

Other tools. The SAMtools utility for storing large nucleotide sequence alignments and 

manipulating alignments (Li et al. 2009) and BEDtools software for the comparison of genomic 

Post-Processing 
Alignment 
(Uniquely 

Mapped Reads) 

Data Trimming 
and 

Subsampling 

Quality and 
Data Filtering 

Data 
Acquisition 

Raw Data 
(180 samples) 

FastQC 
(Per base sequence 

quality) 

Trim Galore Bismark 

1) Trim to 36 bp 
2) Merge replicates 

3) Subsample to 20M 
reads 

Bowtie Peak Calling 
(MACS2) 

No Kalisto Gene Expression 

No Bowtie 

1) Peak Calling 
(Homer) 

2) Footprints 
(pyDNase) 

B
S

-s
eq

 
C

h
IP

-s
eq

 
R

N
A

-s
eq

 
G

R
O

-s
eq

 
D

N
a
se

 

1 2

2 

3 4 

4 

5 



13 
 

features (Quinlan and Hall 2010) were used for filtering steps and file format conversion. Finally, 

processed data was plotted and visualized using software of the R project for statistical computing 

(Team 2011). For the metagene profile, genes were aligned at the first and last nucleotides of the 

annotated transcripts and read counts were scaled as follows: the 5’ end (2 kb upstream of the 

transcription start site) and the 3’ end (2 kb downstream of the transcription termination site) were 

unscaled and averaged in a 50-bp window, and the remainder of the gene was scaled to 200 windows 

using cubic spline interpolation (so that all genes seem to have the same length). Individual profiles 

were produced using a 50-bp window. All profiles were plotted on a normalized reads per kilobase 

per million mapped reads (RPKMs). For the epigenomic analysis, we defined a subset of genes 

considered for the analysis based on the criteria present on Table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Genes After Filter 

(60498 genes in Gencode 

Annotation) 

Filter 

14915 
Remove overlapping genes (2kb before TSS and after 

TTS) 

8206 Remove genes less than 80% mappable 

8152 Remove genes with one alternative intron 

8149 
Remove genes that are translated pseudogenes or 

lncRNAs 

Table 2.2 – Filtering criteria to define genes used in epigenomic analysis.  
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3. Results  

3.1 Public high-throughput sequencing data and quality issues 

After downloading the raw data from the NIH Epigenetics Roadmap, we assessed the read quality 

using FastQC software (Andrews, 2010). Due to the high number of sequencing files (runs) that 

presented poor quality, mainly due to low per base sequence quality and adapter contamination 

(Figure 3.1 - panels A and B), we were forced to define a set of criteria in order to rigorously identify 

which samples could be considered for further analysis, as explained in methods. Files with quality 

problems were either subjected to post-processing (namely trimming and removing adapter 

sequences) or discarded from the analysis, in the latest case when the quality check was very poor. As 

seen in Figure 3.1C, around 40% of all ChIP-seq data was discarded due to poor quality as well as 

around 30% of BS-seq data. In contrast, around 80% and 90% of DNase Hypersensitivity and RNA-

seq data were classified as high quality data sets. Thus, overall around 150 sequencing replicates from 

NIH Epigenetics Roadmap displayed very low levels of quality and could not be included in the 

downstream analyses. Due to quality problems and complex post-processing steps in WGBS-seq that 

require more complex analysis, we decided not to integrate this data in the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

C 

D 

B 

Figure 3.1 Data Quality Analysis for NIH Roadmap Project data (A) Per base sequence quality from FastQC report. In 

this box whisker it is shown the quality score associated with each base pair from the reads in a representative replicate. The 

score associated with each base pair is drastically decreasing throughout the length of the read indicating a bad replicate. (B) 

Overrepresented sequences in FastQC report. Example of replicate with high amount of overrepresented sequences (C) 

Quality Number of sequencing files (runs) within each dataset (D) Number of sequencing files before and after Quality 

Assessment for each dataset.  
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3.2 Pseudogene transcription 

 

 To assess pseudogenes expression levels, we used transcriptome data (RNA-seq) from H1, H1N 

and H1M cell lines. First, we assessed the expression alterations during neural and mesenchymal 

differentiation to verify if the brain-specific expression of pseudogenes could be established during 

early development stages  (Pei et al. 2012; Guo et al. 2014).  Overall, pseudogenes and lincRNAs 

expression decreases throughout neural and mesenchymal differentiation (Figure 3.2A), which might 

be explained by the  absence of repressive histone modifications in early embryonic stages (Zhu et al. 

2013). However, we observed a higher number of pseudogenes being upregulated in neural 

differentiation relatively to mesenchymal differentiation (Figure 3.2A). The same was also observed 

for lincRNAs which suggests that not only pseudogenes but other non-coding RNAs might be 

upregulated in neuronal differentiation. Second, we evaluated the expression levels to define sets of 

transcribed pseudogenes on each cell type. However, only around 500 pseudogenes could be 

identified as expressed (TPMs > 1) in H1 (Figure 3.2B). Although, the neural progenitor cell line 

(H1N) containing the highest number of expressed pseudogenes, only 587 could be detected. Since 

RNA-seq technology determines steady-state RNA levels (dependent of transcription activity and 

RNA stability) we decided to assess pseudogenes expression by directly measuring nascent RNA 

production (GRO-seq).  
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Figure 3.2. Quantification of gene expression in neural (H1-H1N) and mesenchymal differentiation (H1-H1M). (A) 

Differentially expressed genes according to gene type in neural and mesenchymal differentiation. (B) Expressed genes 

divided according to gene type in each cell line. 

*** *** 

*** p-value < 0.0005 
Fisher’s Test 
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Thus, we assessed the number of expressed genes detected by RNA-seq and GRO-seq in H1 cell 

line. The overall number of expressed genes was higher in GRO-seq, as observed in panel A from 

Figure 3.3. However, the proportion of pseudogenes (14.7%) and lincRNAs (14.45%) increased 

relative to all expressed genes (Fisher’s Exact Test p-value < 0.001). Second, we compared the RNA-

seq and GRO-seq expression levels (normalized RPKMs) for each gene set (Figure 3.3B). Higher 

association was obtained for protein-coding genes, whereas pseudogenes showed the lowest 

correlation value. Moreover, a large fraction of pseudogenes and lincRNAs appear to be actively 

transcribed but with low final transcript levels, which might suggest a fast degradation of these RNA 

species. Overall these results are in agreement of previous studies showing general lower RNA 

stability for pseudogenes and lincRNAs (Thomson and Dinger 2016). 

Since we aim to assess the regulatory features of actively transcribed pseudogenes, the expressed 

genes for downstream analyses were determined using GRO-seq data. However, due to the 

unavailability of GRO-seq data for H1N and H1M cell lines, expressed genes were determined using 

RNA-seq data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Gene transcription defined using GRO-seq and RNA-seq (A) Number of expressed genes divided by 

gene type defined by GRO-seq or RNA-seq. Fisher’s test was performed comparing protein-coding genes with both 

pseudogenes and lincRNAs in GRO-seq and RNA-seq. (B) (C) (D) Comparison between RPKMs for all protein-

coding, lincRNAs and pseudogenes respectively. Protein-coding genes are represented in red, pseudogenes in blue 

and lncRNA in green. The dashed line represents y = x correlation. Estimated correlation coefficients were obtained 

using Pearson’s correlation.     
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3.3 Canonical Histone Modifications in Pseudogenes 

To understand if transcribed pseudogenes bear the canonical histone modifications associated with 

transcription (Black et al. 2012),  we examined H3K4me3, H3K9me3, H3K27me3 and H3K36me3. 

However, to guarantee that the effect of these histone modifications is specific to the subset of genes 

we defined, we decided to filter genes that overlapped with other genes to a minimum of 2 kb before 

or after the TSS or TTS, respectively. Then, due to the problem of pseudogenes being highly similar 

to their parental genes, we only selected genes at least 80% mappable. In the final filtering stages, we 

removed all genes that had an alternative 5’SS splice site and possible translated pseudogenes, as 

described by Ji et al. (Zhe Ji et al. 2015). These filtering steps are mentioned in Table 2.2 in methods. 

These genes were then divided according to gene type and expression as seen in Table 3.1. 

 

 

 

 

 

Protein-Coding 

Genes 
Pseudogenes LincRNAs 

Initial Genome Count 19815 14505 7674 

After filtering 2650 3083 2416 

Divided by expression group    

Expressed 1452 201 596 

Silent 1198 2882 1820 

 

 

 

First, we studied the histone modification H3K4me3, typical of the promoter region in actively 

transcribed genes. As described before (Pei et al. 2012), pseudogenes presented a subtle peak of 

H3K4me3 around the TSS, smaller that the promoter mark in lincRNAs and protein-coding genes. 

Then, we explored the H3K9me3 and H3K27me3 histone modifications, that are defined as repressive 

marks and correlate inversely with transcription (Pérez-Lluch et al. 2015). Indeed, we observed a 

notorious enrichment in both H3K27me3 and H3K9me3 for silent protein-coding genes. However, for 

pseudogenes and lincRNAs, the enrichment of presence of repressive signals was not so obvious. 

Indeed, expressed pseudogenes appear to have an H3K9me3 enrichment right after the TSS region, as 

previously described (Guo et al. 2014). The same results were obtained for H1N and H1M (data not 

shown).   

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 – Number of genes divided according to gene type and expression after filtering. 
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Second, we explored the H3K36me3 histone modification that is found to be enriched in the body 

of intron-containing protein-coding genes, correlating with expression levels (de Almeida et al. 2011). 

Thus, we segregated our genes sets based on the presence and absence of introns. As expected, intron-

containing protein-coding genes showed an enrichment of H3K36me3 towards the end of the gene 

body, as opposed to intronless protein-coding genes (Figure 3.5A). Surprisingly, H3K36me3 levels 

were higher in intronless pseudogenes. To deeply explore the distribution of H3K36me3 in 

pseudogenes, we evaluated individual profiles for all the expressed pseudogenes. Notably, some 

pseudogenes revealed transcription activity upstream and downstream of the annotated region (Figure 

3.5B). Indeed, the patterns of nascent transcription suggested that the transcription initiated in the 

upstream gene GALTN1 and proceeded throughout the pseudogene. Moreover, the absence of 

regulatory features (DNase hypersensitive sites and H3K4me3) in the pseudogene promoter supports 

this hypothesis. Overall, all these results suggest that some pseudogenes are transcribed by 

“hitchhiking” the transcriptional machinery of the upstream genes. This hypothesis can explain the 

low levels of the promoter histone mark H3K4me3 observed in pseudogenes. 
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Figure 3.4. Canonical histone modifications distribution in the gene body of expressed (full line) and silent (dashed 

line) protein-coding genes, pseudogenes and lincRNA in H1.  



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. H3K36me3 is present in expressed pseudogenes (A) Distribution in the gene body of expressed (full line) and 

silent (dashed line) protein-coding genes, pseudogenes and lncRNAs (B) Individual profile of H3K36me3, H3K4me3 and 

expression of an expressed pseudogene (right) and genome browser screenshot of the same pseudogene (left).  
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3.4. Chromatin States and Dynamics of Pseudogenes 

In order to assess the epigenetic features associated with pseudogenes transcription, we used a 

more complex approach that identifies chromatin states based on a multivariate hidden Markov 

models (implemented in ChromHMM). The simplest model contained 18-states (defined by five core 

chromatin marks H3K4me1, H3K4me3, H3K36me3, H3K9me3, H3K27me3 and DNase 

Hypersensitive regions), revealed an enrichment of the bivalent marks H3K4me3 and H3K27me3 in 

TSS of expressed pseudogenes (state 10 in H1 and state 4 in H1N) (Figure 3.6). Bivalent chromatin 

domains were previously associated to developmental genes in embryonic stem cells and to genes 

expressed at low levels (Bernstein, et al 2006, Cell).  Notably, the region close to the TSS also 

possessed DNase hypersensitive sites (state 15) in H1, not observed for the 200-400nt downstream 

region of the TSS (state 10). More striking, the chromatin states approach confirmed the enrichment 

of H3K36me3 and H3K9me3 close to the TSS of expressed pseudogenes for both H1 and H1N (state 

4 in H1 and state 14 in H1N).  This association was not found for lincRNAs or protein-coding genes. 

Relative to the silent pseudogenes, an overall enrichment of H3K9me3 was observed for the entire 

loci and flanking regions. Overall, expressed pseudogenes present a more diversified chromatin 

arrangement in the transcription initiation regulatory region, when compared to silent pseudogenes, in 

which the most significant trait is the isolated presence of H3K9me3, as observed in Figure 3.6. 

Additionally, when compared to protein-coding and lncRNA genes, states attributed to active genes in 

the three defined classes resemble each other more than when compared to silent genes, in which the 

enrichment of H3K9me3 appears to be exclusive of pseudogenes.  

Finally, we extended the model to all histone modifications available and build a 51-state model 

(defined by 18 chromatin marks and DNase Hypersensitive regions) (Figures 3.7 and 3.8). Similarly, 

to the results for the 18-states, expressed pseudogenes were mostly associated with the presence of 

bivalent marks   H3K4me3 and H3K27me3 (states 22 in H1 and 11 in H1N). In addition, we could 

observe an enrichment of a chromatin state containing subtle levels of H3K4me1 and several histone 

acetylations (state 15 in H1). Silent pseudogenes were mostly associated to H3K9me3 in both H1 and 

H1N, coherent to the results from 18-state model. 
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Figure 3.6. 18-state ChromHMM model for expressed genes and silent genes divided according to gene type 

(protein-coding genes in red, pseudogenes in blue and lncRNAs in green). The first 2 heatmaps are a reference 

built by the program which associates each histone modification and each genomic regions to a specific state (row), 

respectively. The following heatmaps depict the overall state enrichment for each of the three gene groups. Heatmap 

7-12 represent the overall state enrichment centered on the TSS of all three gene groups.  
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Figure 3.7. 51-state ChromHMM model displaying overall state enrichment for expressed genes and silent 

genes divided according to gene type (protein-coding genes in red, pseudogenes in blue and lncRNAs in green) 

and expression level in H1 cell line. The first 2 heatmaps are a reference built by the program which associates each 

histone modification and each genomic regions to a specific state (row), respectively. The following heatmaps depict 

the overall state enrichment for each of the three gene groups divided according to expression level.  
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Figure 3.8. 51-state ChromHMM model displaying overall state enrichment for expressed genes and silent 

genes divided according to gene type (protein-coding genes in red, pseudogenes in blue and lncRNAs in green) 

and expression level in H1N cell line. The first 2 heatmaps are a reference built by the program which associates 

each histone modification and each genomic regions to a specific state (row), respectively. The following heatmaps 

depict the overall state enrichment for each of the three gene groups divided according to expression level. 
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4. Discussion and Concluding Remarks 

Pseudogenes are copies of ancestral protein-coding genes that exhibit evolutionary conservation 

(Balakirev and Ayala 2003) and that, through the process of pseudogenization, accumulated mutations 

leading to the loss of coding function. However, recent evidence has shown that pseudogenes are 

transcribed and their transcription seems to play a fundamental biological role (Ye et al. 2015; 

Milligan and Lipovich 2015; Kalyana-Sundaram et al. 2012). In this project we aimed to understand 

which epigenetic mechanisms were responsible for the regulation of pseudogene expression. We 

characterized pseudogene transcription in neural differentiation and looked at the histone 

modifications present in expressed and silent pseudogenes.  

This project relied mostly on high-throughput sequencing data, a technology that largely pushed 

the emancipation of the field of bioinformatics. These advancements lead to the exponentially growth 

of the computational approaches aiming to analyse and simplify the enormous sets of genomic 

information, which otherwise would not be manually looked through. Throughout the past decade, a 

lot of effort has been put in the development of new consortiums responsible for the maintenance of 

public databases that are specialized in the storage of genome-wide datasets, such as the NIH 

Roadmap Epigenomics Mapping Consortium. However, sometimes public data presents low quality 

and further steps of the analysis might become compromised. When we started this analysis, we 

encountered several samples with poor quality, demanding the establishment of quality filters to 

process the data. Faced with the same problem in the analysis of 111 reference epigenomes 

(Consortium et al. 2015), the NIH Roadmap Epigenomics Mapping Consortium decided to merge data 

for the same sample for some datasets in order to improve data coherency, quality and decrease the 

possibility of noise or contamination in the analysis. This calls the attention to the importance of 

quality assessment steps when analysing sequencing data and challenges these genome-wide data 

consortiums to establish more stringent measurements regarding the quality of the available data.  

Previous studies have shown that pseudogenes are highly expressed in the brain (Pei et al. 2012) 

and play important roles in neural differentiation (Scarola et al. 2015; Poursani et al. 2016; Echols et 

al. 2002). Thus, we decided to explore if this brain-specific expression could be established during 

early stages of neural differentiation. Our analyses revealed higher number of pseudogenes transcripts 

in the neural progenitor cells (H1N) cell line and an increased expression of pseudogenes during 

neural differentiation. However, lncRNAs also seem to be strongly up-regulated, suggesting also an 

important role in neuronal development, which has also been described (Ng et al. 2012).  

The role of epigenetics in the regulation of gene expression is of great relevance in normal protein-

coding genes. Canonical histone modifications are associated with specific patterns and correlate 

either positively or negatively with transcription activity (Barth and Imhof 2010). In this project our 

main goal was to assess and understand the importance of epigenetic mechanisms in the regulation of 

pseudogene transcription. In order to evaluate if pseudogene transcription can be regulated through 

specific histone modifications, we looked at four canonical histones modifications which are known 

to be associated with transcription regulation (Black et al. 2012): H3K36me3, H3K4me3, H3K9me3 

and H3K27me3. As described previously (Pei et al. 2012), H3K4me3 seems to be present in 

expressed pseudogenes, displaying the same profile as in protein-coding genes. However, expressed 

pseudogenes showed a strong association with bivalent chromatin domains (H3K4me3 and 

H3K27me3). The presence of these bivalent domains in expressed pseudogenes further contributes to 

the hypothesis that pseudogene transcription is indeed regulated and that can play important roles in 

differentiation steps, since the existence of a bivalent promoter opens the possibility for the 

pseudogene to be transcribed, similarly to many protein-coding genes. Additionally, expressed 

pseudogenes also showed a more bizarre behaviour for H3K36me3 and H3K9me3 profiles. 

H3K36me3 is known to be present throughout the gene body of intron-containing protein-coding 
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genes, in a gradual enrichment towards the transcription termination site in a transcription-dependent 

manner (de Almeida et al. 2011). Intriguingly, in pseudogenes had been described an enrichment near 

the transcription initiation site (Pei et al. 2012) as well as for lncRNAs (Sati et al. 2012) but in none of 

these analyses the metagene profiles were normalized for gene size. Due to the smaller size of 

pseudogenes when compared to protein-coding genes, the apparent TSS enrichment may belong to 

terminal region of the pseudogenes. Nonetheless, when we plotted the length-normalized profile of 

H3K36me3 for expressed pseudogenes, we observed a supplementation of this histone modification 

through the length of the pseudogene body, especially for intronless pseudogenes. Intrigued, we 

looked individually for some pseudogenes using the genome browser (Kent et al. 2002) and found 

that pseudogenes seem to be transcribed as consequence of transcription read-through. Accordingly, 

these pseudogenes showed higher level of H3K36me3, similar to last exons of intron-containing 

genes. This expression could have two explanations: 1) as described before (Vinckenbosch et al. 

2006), pseudogenes could be inserted in other loci or contributing, for example, as a 3’ terminal exon 

of the gene upstream, therefore taking advantage of the transcription machinery of these loci; 2) 

annotation problems could result in the wrong classification of these pseudogenes, that could be, in 

fact, other genomic elements. Besides H3K36me3, also H3K9me3 seems to have an enrichment in 

both expressed and silent pseudogenes. This association has been previously described in a 

transcription dependent manner and more intensely in pseudogenes that produced small-RNAs (Guo 

et al. 2014). A similar relationship was observed in expressed lncRNAs (Melé et al. 2016). These 

findings suggest that small-RNAs derived from pseudogene transcription might modulate the 

repression of pseudogene transcription. Another explanation may be related to the cell heterogeneity 

from genome-wide profiles produced from bulk cell population. In this case, pseudogenes could be 

actively transcribed in some cells and repressed in others. One way to test this would be to use single 

cell technology which could allow us to relate expression and epigenomic data from the same cell 

(Angermueller et al. 2016). In addition, one cannot discard the possibility that H3K9me3 acts 

repressively in the non-transcribed allele. Further analysis of histone modifications using more 

complex approaches are necessary to identify chromatin states identified an association between 

expressed pseudogenes and chromatin features.  

Additional work is needed, namely to deeply characterize the pseudogenes promoter regions 

according to the presence of other regulatory features, namely transcription factor binding sites. 

Overall, the transcription activation signals are located around the TSS, sometimes invading the first 

exon and introns. Since processed pseudogenes arise from retrotransposition events, the transcription 

of pseudogenes could depend on the presence of the regulatory regions downstream of the TSS. Also, 

the role of DNA methylation in the regulation of pseudogene expression is still in need of clarification 

and analysis, however there is the indication that this modification might have a very important role in 

pseudogene transcription (Grunau et al. 2000). 

The study of pseudogenes presents many challenges and limitations. First, mapping of high-

throughput sequencing data in pseudogenes genomic regions is technically demanding. The fact that 

pseudogenes sequences are very similar to their parental genes can produce valid alignments where 

the reads from the parental gene are mistakenly aligned to the pseudogene region. In this project, we 

bypassed this problem by accepting the reads with unique alignments (only one equal sequence in the 

genome) and we filtered out pseudogenes with low mappability. These strict filters reduce drastically 

the number of feasible pseudogenes available for the study and limited the downstream analyses. One 

way to overcome this could be by the generation of longer reads in genome-wide technologies.  

Second, considering that pseudogenes resemble their parental genes and therefore can act as 

microRNA sponges which are consequently degraded by the RNA-induced silencing complex (RISC) 

(Thomson and Dinger 2016), using RNA-seq data to determine pseudogene expression might lead to 

an underestimation of the transcription levels of pseudogenes. Indeed, when we compared steady-state 
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(RNA-seq) and the nascent transcript levels (GRO-seq), we observed higher number and expression 

levels of pseudogenes in the active transcription dataset. Thus, the study of low expressed and 

unstable transcripts derived from repeated genomic regions demands new advances in library 

protocols and sequencing technologies. Finally, during the current work we could identify 

pseudogenes that are being transcribed by transcription read-through that continues beyond the TTS 

of the upstream gene. This observation could highlight the existence of annotation issues even in the 

latest database versions, such as Gencode v23, claiming the need of throughout effort to deeply define 

the genome. 

Pseudogene tissue specific expression (Kalyana-Sundaram et al. 2012) puts forward the idea that, 

indeed, pseudogenes are important in the epigenetic regulation of other genes themselves contracting 

the “pseudo-” suffix in pseudogenes, at least functionally. Although this contribution seems to be 

clear and this work has tried to confirm these observations, the epigenetic regulation of pseudogene 

transcription still needs further clarification in order to fully understand how epigenetic mechanisms 

can contribute to the regulation of pseudogenes.     
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6. Supplementary Material  

 

 

Cell Line Library type 
Chromatin 

Modification 
Number of Replicates 

H1 BS-seq - 5 

H1N BS-seq - 5 

H1M BS-seq - 2 

H1 ChIP-seq Input - 13 

H1M ChIP-seq Input - 1 

H1N ChIP-seq Input - 4 

H1 ChIP-seq H2AK5ac 2 

H1M ChIP-seq H2AK5ac 2 

H1N ChIP-seq H2AK5ac 2 

H1 ChIP-seq H2BK120ac 3 

H1M ChIP-seq H2BK120ac 1 

H1N ChIP-seq H2BK120ac 2 

H1 ChIP-seq H2BK12ac 2 

H1M ChIP-seq H2BK12ac 2 

H1N ChIP-seq H2BK12ac 1 

H1 ChIP-seq H2BK15ac 2 

H1M ChIP-seq H2BK15ac 1 

H1N ChIP-seq H2BK15ac 2 

H1 ChIP-seq H2BK5ac 2 

H1M ChIP-seq H2BK5ac 2 

H1N ChIP-seq H2BK5ac 1 

H1 ChIP-seq H3K14ac 2 

H1M ChIP-seq H3K14ac 2 

H1N ChIP-seq H3K14ac 1 

H1 ChIP-seq H3K18ac 2 

H1M ChIP-seq H3K18ac 2 

H1N ChIP-seq H3K18ac 2 

H1 ChIP-seq H3K23ac 2 

H1M ChIP-seq H3K23ac 2 

H1N ChIP-seq H3K23ac 3 

H1 ChIP-seq H3K27ac 2 

H1M ChIP-seq H3K27ac 2 

H1N ChIP-seq H3K27ac 5 

H1 ChIP-seq H3K27me3 7 

H1M ChIP-seq H3K27me3 2 

H1N ChIP-seq H3K27me3 4 

H1 ChIP-seq H3K36me3 7 

H1M ChIP-seq H3K36me3 2 

Table 6.1. All replicates initially processed for this analysis identified by the respective cell line, library type and 

mark (for ChIP-seq data). The GEO IDs to assess all of these samples are GSE16256, GSE16368 and GSE18927.   
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H1N ChIP-seq H3K36me3 3 

H1 ChIP-seq H3K4ac 2 

H1M ChIP-seq H3K4ac 2 

H1N ChIP-seq H3K4ac 2 

H1 ChIP-seq H3K4me1 6 

H1M ChIP-seq H3K4me1 2 

H1N ChIP-seq H3K4me1 3 

H1 ChIP-seq H3K4me2 2 

H1M ChIP-seq H3K4me2 2 

H1N ChIP-seq H3K4me2 1 

H1 ChIP-seq H3K4me3 8 

H1M ChIP-seq H3K4me3 2 

H1N ChIP-seq H3K4me3 4 

H1 ChIP-seq H3K79me1 3 

H1M ChIP-seq H3K79me1 2 

H1N ChIP-seq H3K79me1 1 

H1 ChIP-seq H3K9ac 5 

H1M ChIP-seq H3K9ac 2 

H1N ChIP-seq H3K9ac 1 

H1 ChIP-seq H3K9me3 7 

H1M ChIP-seq H3K9me3 2 

H1N ChIP-seq H3K9me3 3 

H1 ChIP-seq H4K8ac 2 

H1M ChIP-seq H4K8ac 2 

H1N ChIP-seq H4K8ac 1 

H1 ChIP-seq H4K91ac 2 

H1M ChIP-seq H4K91ac 1 

H1N ChIP-seq H4K91ac 1 

H1 DNase - 2 

H1N DNase - 2 

H1M DNase - 2 

H1 mRNA-seq - 4 

H1M mRNA-seq - 2 

H1N mRNA-seq - 2 

 


