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Abstract 
 

Spinal cord injury (SCI) is a disabling condition affecting millions of people worldwide. In order to 

improve functional recovery, new therapies are being devised to counteract the non-regenerative 

environment of the mammalian spinal cord. Ependymal cells (EC) of the spinal cord central canal have 

been proven to hold neural stem cell properties in vitro, suggesting that a pro-neurogenic fate could 

potentially be promoted in vivo after a lesion. The zebrafish Danio rerio has proved a valuable tool for 

developmental studies and, in recent years, for regenerative processes due to its remarkable ability to 

regenerate several organs and tissues. After SCI new neurons and glia are generated by the cells lining 

the central canal, which hold a strong resemblance to mammalian EC. Both mammalian and zebrafish 

EC have in common the expression of the transcription factor responsible for cilia formation: 

Foxj1/Foxj1a. However, no study has been performed to discover the progeny of zebrafish foxj1a+ cells 

after a lesion or their functional role in regeneration. This work aimed at generating stable transgenic 

zebrafish lines that allowed the investigation of foxj1a+ ependymal cell progeny after SCI, using lineage 

tracing, and also their specific ablation with a suicide gene. 

A total of three constructs for lineage tracing lines and two constructs for cell ablation lines was injected 

with transposase mRNA into one-cell stage embryos but only one of the lineage tracing constructs 

resulted in clear germline transmission to F1 embryos. All the other four constructs proved very difficult 

to generate stable expression in injected embryos as well as an adequate number of positives, even after 

several optimization attempts. Reasons for this lack of transgenesis efficiency are not completely 

understood but may include inadequate coding sequence features, undetected problems in untranslated 

regions, or obstacles to transposition such as mutations in transposase recognition sequences.  

Since the lineage tracing is based on the CreERT2/LoxP technology, optimization of CreERT2 activation 

was also performed. It was found that recombination efficiency is directly influenced by 4-OHT 

concentration and enhanced by treatment with pronase. However, when using a lineage tracing line no 

recombination was detected in foxj1a+ cells even after induced proliferation, prompting the need to 

validate CreERT2 function in this line. 
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Resumo Alargado1 
 

As lesões da espinal medula afectam actualmente milhões de pessoas em todo o mundo, que se deparam 

com um agravamento radical da sua qualidade de vida que, na maioria dos casos, não poderá ser 

recuperada. A Organização Mundial de Saúde define “lesão da espinal medula” como a perda total ou 

parcial de função neural provocada por um trauma ou uma patologia da espinal medula, resultando na 

diminuição do controlo motor abaixo do local da lesão assim como na perda de sensibilidade e regulação 

do sistema nervoso autónomo. A resposta clínica padrão actual tem como objectivo apenas tentar 

impedir o alastramento da lesão e consiste na realização de cirurgias para estabilizar a estrutura da coluna 

vertebral e descomprimir o local da lesão, seguidas de tratamento com metilprednisolona. No entanto, 

dado que o ambiente da lesão em mamíferos é extremamente inibitório para a ocorrência de regeneração, 

novos estudos têm tentado obter soluções terapêuticas que actuem na promoção de um ambiente pró-

regenerativo, assim como na protecção dos tecidos que permanecerem intactos e funcionais após a lesão. 

A maior parte destas novas terapêuticas tem como objectivo prevenir o aparecimento de fenómenos 

associados à chamada lesão secundária ou de mitigar o seu efeito, dado que estes são em grande parte 

responsáveis pelo grau da lesão a longo prazo.  

Ao contrário do que se considerou durante décadas, investigações dos últimos 20 anos têm demonstrado 

que existem determinadas áreas no sistema nervoso central em que ocorre a formação de novos 

neurónios durante a vida adulta. Verificou-se também que existem células com capacidades estaminais 

neurais nestas e noutras zonas do sistema nervoso central, o que sugere que algumas células no adulto 

poderão ser estimuladas a originar novos neurónios e glia após uma lesão. As células ciliadas que 

revestem o interior do canal central na espinal medula, designadas células ependimárias, são um 

exemplo disso. Vários estudos observaram que estas células ependimárias respondem a uma lesão na 

espinal medula através da proliferação e migração para o local da lesão, onde originam astrócitos e 

oligodendrócitos; no entanto, são também capazes de originar neurónios quando cultivadas in vitro. O 

seu perfil de expressão inclui vários marcadores associados a células estaminais neurais, apoiando 

observações que indicam estas células como as únicas a possuir capacidades multipotentes no nicho do 

canal central. Pelo facto de serem as únicas células multiciliadas no canal central, as células 

ependimárias de mamífero podem ser identificadas pela expressão do factor de transcrição Foxj1, 

conhecido pelo seu papel como regulador da ciliogénese.  

O peixe-zebra (Danio rerio) já é conhecido como modelo em biologia do desenvolvimento há mais de 

30 anos, mas a sua utilização para o estudo da regeneração de tecidos e órgãos é bastante mais recente. 

As extraordinárias capacidades de regeneração deste organismo, aliadas à bateria de métodos genéticos 

e moleculares desenvolvidos e adaptados para este modelo, tornaram o peixe-zebra num aliado 

inestimável para entender processos regenerativos e compará-los com a situação dos mamíferos, cujas 

capacidades regenerativas são muito inferiores. As características biológicas do peixe-zebra são 

particularmente apelativas, por exemplo para geração de linhas transgénicas: são capazes de gerar um 

grande número de embriões – transparentes, que permitem a observação de fenótipos relativamente cedo 

– e atingem a maturidade aos 3 meses, acelerando o processo de geração da linha. Os métodos 

desenvolvidos para a geração de peixes transgénicos também têm demonstrado elevados níveis de 

sucesso, especialmente o sistema Tol2, que se baseia na injecção do DNA desejado juntamente com 

mRNA que codifica para uma transposase; esta reconhece sequências específicas que flanqueiam o 

                                                             
1 Nota: Este texto não foi escrito ao abrigo do Acordo Ortográfico da Língua Portuguesa de 1990. 
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DNA injectado e insere-o no genoma do embrião. Entre as várias estruturas que o peixe-zebra consegue 

regenerar encontra-se a espinal medula, que obtém uma recuperação funcional quase completa um mês 

após a lesão. Este resultado deve-se tanto ao crescimento de axónios seccionados como à formação de 

novos neurónios no local da lesão, mecanismos promovidos por um ambiente pró-regenerativo. Os 

novos neurónios e células da glia são produzidos por células que revestem o canal central da espinal 

medula, tendo por isso função de epêndima, mas que também apresentam outras características 

morfológicas reminiscentes das células da glia radial, progenitores neurais durante o desenvolvimento 

(tanto em peixe-zebra como em mamífero). A utilização de marcadores moleculares para identificação 

destas células tem sido controversa, mas existe um marcador que poderá ser utilizado de forma clara. 

Devido à sua função ependimária, estas células possuem cílios e expressam por isso o factor de 

transcrição Foxj1a, um dos ortólogos do Foxj1 de mamífero. Será por isso importante desenvolver 

ferramentas que permitam estudar o papel que as células foxj1a+ da espinal medula do peixe-zebra 

desempenham após uma lesão, que pode ser realizado através da identificação da sua descendência 

(experiência de lineage tracing) e da sua função real no contexto de uma lesão promovendo a sua ablação 

específica. Este trabalho apresentava assim como objectivo principal o estabelecimento de linhas 

transgénicas estáveis em peixe-zebra que permitissem efectuar de forma eficaz e separadamente: 1) a 

marcação permanente das células foxj1a+ e da sua descendência; 2) a ablação específica das células 

foxj1a+, em ambos os casos após uma lesão da espinal medula. 

Para a geração da linha para lineage tracing foram testados três constructs separadamente, mas apenas 

com um deles foi possível observar passagem evidente do transgene para embriões F1. Ainda assim, o 

sucesso desta transgénese foi inferior ao reportado para o método utilizado. Os outros dois constructs 

apresentaram percentagens muito baixas de embriões positivos e de níveis de expressão dos transgenes 

após injecção, mesmo depois de tentativas de optimização, e de todos os que cresceram até atingir 

maturidade não foram detectados peixes fundadores de forma inequívoca. Para a geração da linha para 

ablação das células foxj1a+ foram testados dois constructs com os quais não foi possível obter um 

número suficiente de embriões positivos para crescer. O primeiro foi abandonado quando se observou 

que várias características do plasmídeo em que estava inserido não seriam adequadas para manter um 

nível de expressão adequado à experiência, como a falta da sequência Kozak e do sinal de poliadenilação 

a flanquear a sequência codificante. O segundo foi desenhado de forma a optimizar todas as sequências 

para promover uma expressão eficiente do transgene, contendo sequências de reconhecimento da 

transposase e sequências regulatórias a 5’ e 3’ da sequência codificante vindas de um plasmídeo 

utilizado como controlo positivo para as injecções, assim como a sequência codificante de uma proteína 

fluorescente (como repórter) que apresentara bons níveis de expressão com o promotor foxj1a. Não 

obstante, este construct parece não ter sido integrado no genoma dos embriões em que foi injectado 

dado que praticamente toda a expressão observada às 24 horas-pós-fertilização tinha sido perdida 4 dias 

depois. As razões que levaram ao insucesso na obtenção de embriões positivos após a injecção são 

desconhecidas para a maioria dos constructs testados, mas poderão estar relacionadas com mutações 

não detectadas nas regiões regulatórias ou nas sequências de reconhecimento da transposase, que 

impediriam a correcta expressão do construct ou a sua inserção no genoma, respectivamente. 

A experiência de lineage tracing concebida baseia-se na utilização do sistema de recombinação 

CreERT2/LoxP, que utiliza uma versão modificada da enzima Cre a que foi acrescentado um receptor de 

estrogénio. Esta modificação adiciona um passo de controlo temporal à experiência visto que é 

necessário activar a CreERT2 com administração da droga 4-OHT para que a enzima possa efectuar a 

recombinação entre locais LoxP e assim promover a marcação de células foxj1a+. O segundo objectivo 

deste trabalho foi então a optimização do protocolo de activação da CreERT2, que foi conseguido pela 

primeira vez neste laboratório. Inicialmente foram utilizados embriões que expressavam a CreERT2 e a 

cassete repórter na maioria das células (expressão induzida pelo promotor de uma proteína heat shock), 
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tendo-se verificado que a eficácia da recombinação foi directamente influenciada pela concentração de 

4-OHT administrada. A remoção do córion dos embriões por adição de pronase também promoveu este 

efeito ao permitir um acesso mais rápido da droga aos tecidos. Embriões e larvas F1 dos fundadores 

obtidos com a injecção de um dos constructs para lineage tracing foram também utilizados para testar 

a activação da CreERT2, mas neste caso não se observou a ocorrência de recombinação em células 

foxj1a+, mesmo após a sua proliferação ter sido induzida através da realização de uma lesão na espinal 

medula. 

Devido ao insucesso em gerar linhas transgénicas funcionais neste trabalho, será necessário utilizar 

novos métodos e/ou novos constructs para obter ferramentas biológicas que permitam no futuro 

compreender a função das células foxj1a+ durante a regeneração da espinal medula no peixe-zebra. 

 

 

 

 

Palavras-chave: peixe-zebra, regeneração, espinal medula, células ependimárias, foxj1a 

 

 

 

 

 

 

 

 

 

 

  



 

VII 
 

Table of Contents 
 

Acknowledgements ..............................................................................................................................II 

Abstract .............................................................................................................................................. III 

Resumo Alargado .............................................................................................................................. IV 

List of Figures .................................................................................................................................... IX 

List of Tables ....................................................................................................................................... X 

Abbreviations .................................................................................................................................... XI 

 

INTRODUCTION ................................................................................................................................ 1 

1. Spinal cord injury ......................................................................................................................... 1 

1.1 The uninjured and injured spinal cord of mammals .................................................................... 1 

1.1.1 Obstacles to mammalian regeneration in the CNS .................................................................. 2 

1.2 Neurogenesis in the adult CNS ................................................................................................... 2 

1.2.1 Neural progenitors in the spinal cord ...................................................................................... 2 

2. The zebrafish ................................................................................................................................ 3 

2.1 Lessons in regeneration .............................................................................................................. 4 

3. Objectives ...................................................................................................................................... 5 

 

MATERIALS AND METHODS ......................................................................................................... 6 

Zebrafish lines and husbandry ............................................................................................................ 6 

Generation of new transgenic lines ..................................................................................................... 6 

Alternative screening techniques for Tg(foxj1a:mCherry-T2a-CreERT2) .......................................... 8 

Agarose gel electrophoresis ................................................................................................................. 9 

4-hydroxytamoxifen and heat shock treatment .................................................................................. 9 

Immunohistochemistry ...................................................................................................................... 10 

Image acquisition and processing ..................................................................................................... 10 

Bioinformatics and statistical analysis .............................................................................................. 10 

 

RESULTS ........................................................................................................................................... 12 

1. Generation of zebrafish transgenic lines ................................................................................... 12 

1.1 Tg(foxj1a:CreERT2; cmlc2:EGFP) ........................................................................................... 12 

1.2 Tg(foxj1a:mCherry-T2a-CreERT2) ............................................................................................ 13 

1.3 Tg(foxj1a:DsRed2(floxed)-EGFP) ............................................................................................ 17 



 

VIII 
 

1.4 Lines for genetic ablation of foxj1a+ cells................................................................................. 18 

1.4.1 Tg(foxj1a:TK-GFP) .............................................................................................................. 19 

1.4.2 Tg(foxj1a:TK-T2a-EGFP) .................................................................................................... 21 

2. CreERT2 activation with 4-OHT ................................................................................................ 23 

2.1 Recombination in the whole embryo: Tg(hs:mCh-Cre)xTg(hs:Red2Green) ............................. 23 

2.2 Recombination in foxj1a+ cells: Tg(ubi:Switch)x(foxj1a:CreERT2; cmlc2:EGFP).................... 25 

 

DISCUSSION ..................................................................................................................................... 26 

 

REFERENCES ................................................................................................................................... 30 

 

APPENDIX ......................................................................................................................................... 39 

I. Restriction enzymes ........................................................................................................................ 39 

II. Microinjection ............................................................................................................................... 39 

III. Oligonucleotide primer sequences .............................................................................................. 40 

IV. Supplementary Figures................................................................................................................ 42 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

IX 
 

List of Figures 
 

 

Figure 1.1 Screening of Tg(ubi:Switch) embryos injected with (foxj1a:CreERT2; cmlc2:EGFP) 

construct and selection of founder fish  ................................................................................................ 13 

Figure 1.2 Molecular cloning scheme of pTol(foxj1a:mCherry-T2a-CreERT2) plasmid, screening of 

injected Tg(hs:Red2Green) embryos and microinjection statistics  ...................................................... 14 

Figure 1.3 Alternative molecular methods for detection of founder fish carrying the (foxj1a:mCherry-

T2a-CreERT2) construct.  ...................................................................................................................... 16 

Figure 1.4 Molecular cloning scheme of pTol(foxj1a:DsRed2(floxed)-EGFP) plasmid, screening of 

injected Tg(hs:mCh-Cre) embryos and microinjection statistics  ......................................................... 17 

Figure 1.5 Molecular cloning scheme of pTol(foxj1a:TK-GFP) plasmid, screening of injected embryos 

and microinjection statistics  ................................................................................................................ 20 

Figure 1.6 Molecular cloning scheme of pTol(foxj1a:TK-T2a-EGFP) plasmid, microinjection statistics 

and screening of embryos injected with (foxj1a:TK-T2a-EGFP) or (foxj1a:EGFP) constructs  .......... 22 

Figure 2.1 4-OHT treatment was tested in Tg(hs:mCh-Cre)xTg(hs:Red2Green) embryos after heat-

shock induced CreERT2 expression.  .................................................................................................... 24 

Figure 2.2 4-OHT treatment was tested in Tg(ubi:Switch)x(fox:CreERT2; cmlc2:EGFP) larvae after SCI. 

 ............................................................................................................................................................. 25 

Supplementary Figure S.1 Confirmation of major molecular cloning steps by sequencing  .............. 42 

Supplementary Figure S.2 Protein alignment between mmGFP and EGFP aminoacid sequences reveal 

exact matches for all but 8 residues  ..................................................................................................... 42 

Supplementary Figure S.3 Sequence features influencing expression of transgenic proteins  ........... 43 

Supplementary Figure S.4 Schematic representation of the fusion PCR reactions leading to the 

assembly of (TK-T2a-EGFP) coding sequence  ................................................................................... 43 

 

 

 

 

  



 

X 
 

List of Tables 

 

Table S.1 Designation and features of restriction enzymes used for molecular cloning steps   ............ 39 

Table S.2 Microinjection conditions for each line   ............................................................................. 39 

Table S.3 Designation and features of oligonucleotides used for PCR amplification and/or sequencing

 ............................................................................................................................................................. 40 

 

 

  



 

XI 
 

Abbreviations 
 

4-OHT: 4-hydroxytamoxifen 

aa.: Aminoacid2 

actb1: β-actin1 gene 

BLAST: Basic Local Alignment Search Tool 

BLBP: Brain Lipid Binding Protein 

bp: Base pairs (multiple: kbp, kilo base pairs, 103 bp) 

BSA: Bovine serum albumin 

(c)DNA: (complementary) Deoxyribonucleic acid 

CNS: Central nervous system 

CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats 

CU: Codon usage 

CUPS: Codon usage preference score 

DMSO: Dimethyl sulfoxide 

dpi: Days-post-injury 

dpf: Days-post-fertilization 

EC: Ependymal cell(s) 

(E)GFP: (Enhanced) Green Fluorescent Protein 

ERG: Ependymo-radial glial cell(s) 

EtOH: Ethanol 

GFAP: Glial Fibrillary Acid Protein 

GLAST: Glutamate Aspartate Transporter 

h: Hours 

HDAC5: Histone Deacetylase 5 

hpf: Hours-post-fertilization 

IMM: Instituto de Medicina Molecular 

MeOH: Methanol 

min: Minutes 

                                                             
2 Individual aminoacids are referred throughout the text by the standard 3-letter abbreviations. 



 

XII 
 

(m)RNA: (messenger) Ribonucleic acid 

mTOR: Mammalian Target of Rapamycin 

M&M: Materials and Methods 

NCBI: National Center for Biotechnology Information 

NEB: New England Biolabs 

NSC: Neural stem cell 

nt: Nucleotides 

OMIM: Online Mendelian Inheritance in Man  

ON: Overnight 

ORF: Open reading frame 

PBS: Phosphate buffered saline 

PCR: Polymerase Chain Reaction 

PFA: Paraformaldehyde 

PNS: Peripheral nervous system 

PTU: 1-phenyl-2-thiourea 

rpm: Revolutions per minute 

RT: Room temperature 

RT-PCR: Reverse Transcription Polymerase Chain Reaction 

s: Seconds 

SC: Spinal cord 

SCI: Spinal cord injury 

SGZ: Sub-granular zone (hippocampus) 

STAT3: Signal Transducer and Activator of Transcription 3 

SVZ: Sub-ventricular zone 

TAE: Tris/Acetate/EDTA buffer 

TALEN: Transcription Activator-Like Effector Nuclease 

TK: Thymidine kinase enzyme (from Herpes Simplex Virus) 

Tm: Melting temperature 

Tu: Tübingen zebrafish line 

WHO: World Health Organization 

WISH: Whole-mount in situ hybridization 



 

1 
 

Introduction 
 

1. Spinal cord injury 

Spinal cord injury (SCI) is defined by the World Health Organization (WHO) as damage inflicted to the 

spinal cord by means of a traumatic event or an underlying pathology that results in partial or complete 

loss of neural function posteriorly to the lesion site [1]. Immediate consequences of SCI span not only 

impairment of motor control but also of sensory input and autonomic regulation, leading to several other 

clinical conditions, like loss of bowel and bladder control, even in mild cases. The level and permanency 

of the disabilities caused by SCI call for an immediate joint action from the scientific and medical 

communities in order to find better ways to ameliorate, and preferably eliminate, these patients’ 

symptoms. 

1.1 The uninjured and injured spinal cord of mammals 

The spinal cord is the component of the central nervous system (CNS) responsible for mediating 

communication between the encephalon and the peripheral nervous system (PNS) [2, 3]. Anatomically, 

the spinal cord consists of a cylinder of soft tissue encased inside the vertebral column and surrounded 

by three layers of connective tissue (meninges): dura mater, arachnoid mater and pia mater. The centre 

of the spinal cord is composed of a lumen, the central canal, lined by an epithelium of ciliated ependymal 

cells (EC) that promote cerebrospinal fluid flow. In a transverse section of the cord it is possible to 

distinguish two major areas: the grey matter, located centrally and containing interneurons, the cell 

bodies and dendrites of efferent neurons, afferent fibres and glial cells; and the white matter, comprising 

the surrounding myelinated fibres of interneurons that run longitudinally. The spinal cord proper ends 

at the level of L1 vertebra (in human; L3 in rats) [4] and is followed posteriorly by descending spinal 

roots composing the terminal filament and cauda equina [3]. 

SCI comprises damage affecting any part of the spinal cord down to cauda equina and starts with an 

immediate mechanic lesion to the cord tissue, designated primary injury. During the first two hours post 

trauma [5] there is disruption of neural tissue [6] and cord vasculature, causing defective blood flow to 

the lesion site and haemorrhage. The extent of the primary injury can be a strong indication of prognosis 

[6], but it is also known that the severity of these lesions is mostly dependent on damage derived from 

secondary injury [5], which comprises all the secondary phenomena that occur from the first minutes to 

the first weeks post trauma [4]. These include lesion extension and consequences of blood flow 

disruption, like ischemia, leucocyte infiltration  and consequent enhanced inflammation, as well as 

extravasation of excitatory aminoacids [4-8]. All these factors potentiate cytotoxicity, leading to 

oligodendrocyte and neuron death by necrosis and apoptosis and release of factors inhibiting 

regeneration. The chronic phase involves further irreversible damage to the spinal cord, such as white 

matter demyelination, progression of apoptosis in both orthograde and retrograde directions and reactive 

astrocyte activation [4-8], which leads to the formation of a glial scar preventing axon regrowth [4]. 

Permanent excitability of some neurons may also develop, leading to chronic pain and even mood-

related disorders. 

The current clinical approach to SCI consists in decompression surgery and administration of 

methylprednisolone, which has proved ineffective in promoting substantial motor recovery [4, 9-11]. 

Current investigations focus on finding novel treatment strategies associating bioactive molecules with 

new delivery systems. These can be grouped according to their main goal: 1) modulation of extracellular 

matrix composition and endogenous cell response to prevent secondary injury and the onset of a non-
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regenerative environment; 2) stimulation of intrinsic regeneration capabilities in cells at the lesion site 

(including axon regrowth and cell differentiation); 3) transplantation of cells with regenerative abilities 

to the lesion site [4, 7, 12-14]. 

1.1.1 Obstacles to mammalian regeneration in the CNS 

After a SCI, the injury site is invaded with a multitude of chemical signals that modulate cellular 

responses and contribute to a non-regenerative environment [4, 13]. Oligodendrocyte death causes 

myelin debris to aggregate around neurons, increasing concentrations of myelin-associated inhibitors 

like Nogo-A protein and myelin-associated glycoprotein, which act synergistically to inhibit axon 

regrowth [4, 15]. Secretion of chondroitin sulphate proteoglycans (CSPGs) by reactive astrocytes further 

exacerbates this effect due to the inhibitory action of these molecules, expressed during neural 

development as negative cues for neurite growth [13]. Other molecules expressed in astrocytes or 

fibroblasts, such as Ephrin-B2 and Semaphorin3, are known to also inhibit regeneration by inducing the 

formation of the glial scar cellular pattern and preventing growing neurites from entering the glial scar 

[13]. CNS neurons may also lack some intrinsic features capable of supporting effective axon regrowth 

after an injury. Activation of the mTOR and STAT3 pathways, both proved to contribute to peripheral 

axon regrowth, is absent in CNS neurons after an injury. Likewise, chromatin remodelling via HDAC5 

does not show the same level of activation as in injured PNS neurons, where it promotes expression of 

regeneration-associated genes [16].   

1.2 Neurogenesis in the adult CNS 

For many decades it was believed that the CNS was not capable of regeneration [17], but that view has 

been changing as new areas of the adult brain are found to possess cells with neural stem cell (NSC) 

properties both in vitro and in vivo [18]. NSC are adult multipotent stem cells, meaning that they are 

found in adult tissues and exhibit the capacity for proliferation and self-renewal as well as for generating 

progeny of all three neural lineages: neurons, oligodendrocytes and astroglia [19]. The first brain areas 

where adult neurogenesis was confirmed were the subventricular zone (SVZ) of the forebrain and the 

subgranular zone (SGZ) of the hippocampus [18-21], both in mammalian models and in humans, but 

more recently neural progenitor activity has also been found in other brain areas, such as neocortex, 

cerebellum, amygdala, hypothalamus and the meninges [18, 21]. 

1.2.1 Neural progenitors in the spinal cord 

In addition to the encephalon, the spinal cord has also been reported to harbour cells with NSC 

properties. Initial reports in the late 1990’s showed the existence of cells in the ventricular layer of the 

central canal capable of self-renewal and differentiation into the three neural lineages when cultured in 

vitro [22-24]. These correspond to the epithelium-forming ependymal cells that can be found lining the 

central canal lumen and have since been associated with other NSC features. Several studies 

characterized EC as being a quiescent population of cells with a very slow division rate [24-26] and a 

symmetric division plane [26], indicating that homeostatic division serves mainly to maintain the 

population size. In these conditions, all EC are found to express Vimentin and neural stemness markers 

such as Sox2 [27], Sox9 [28] and Musashi1 [25, 26, 29, 30]. A subpopulation of these cells was also 

found to express Nestin, another protein associated with NSC [31]. Regarding expression of the 

astrocyte marker GFAP [32], some authors claim to have observed its expression in a fraction of dorsally 

located EC [26], while most studies report all EC as GFAP– [25, 30, 33]. Nevertheless, EC located at 

the dorsal tip of the central canal exhibit some differences in morphology from the more common 

cuboidal EC or tanycytes [34], presenting radial processes that extend dorsally and can reach the pial 

surface [26, 30]. These features show clear similarities both with type B cells, which are considered 
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NSC residing in the forebrain SVZ, and with radial glial cells, which functioned as NSC during prenatal 

neurogenesis before giving rise to EC [35]. Interestingly, most of these features have also been found in 

adult human ependymal cells extracted from the spinal cord, which have also been proved to hold 

multilineage differentiation potential in vitro [36]. 

More importantly, EC are known to develop an acute response to lesions in the spinal cord, within which 

three main hallmarks can be defined: proliferation, migration and increased multipotent capacity. 

Immediately after a SCI is inflicted, ependymal cells start to proliferate [24, 25, 30, 37-39] at an 

increasing rate that peaks at 3 days-post-injury (dpi) and then declines slowly [37]. Contrary to their 

quiescent state, mitotic divisions after an injury are mostly asymmetrical, indicating EC are not only 

self-renewing but also generating new cells to be differentiated [24]. During this time, EC also show a 

higher capacity to differentiate into the three neural lineages in vitro [25, 30, 40], which can be due in 

part to the strong upregulation of Nestin expression seen in the first 24 hours post injury [33, 37, 39]. 

Starting from 3 dpi, EC are observed to migrate from the central canal to the injury centre where they 

differentiate into astrocytes and contribute to the inner portion of the glial scar [24, 25, 30, 37, 38], 

stabilizing the lesion core and preventing cavity formation and injury spreading [41]. A minor fraction 

of EC migrate to the spinal cord parenchyma to give rise to oligodendrocytes [25, 30], but so far there 

has been no proof of neuron generation in vivo. Transplantation experiments have also shown that 

ependymal cells’ response as NSC may be greatly dependent on the environment in which they are 

placed. For instance, spinal cord EC transplanted to the dentate gyrus of the hippocampus were able to 

generate neurons, recapitulating the endogenous neurogenic activity of that site [42]. 

Moreover, EC were confirmed to be the only cell type in the central canal niche to hold NSC properties 

[25, 30, 43], rejecting former hypothesis that GFAP+ astrocytes or oligodendrocyte precursors in the 

subventricular zone could also hold similar potential. Ependymal cells can be precisely identified by the 

expression of the forkhead domain-containing Foxj1 transcription factor (formerly known as HFH-4; 

OMIM entry *602291). Foxj1 is considered a major regulator of motile cilia formation [44-47] found 

necessary for EC differentiation [48]; since EC are the only multiciliated cells in the central canal niche 

[3], expression of this transcription factor identifies exclusively ependymal cells in this context. 

2. The zebrafish 

Danio rerio (F. Hamilton, 1822), commonly known as zebrafish, is a small freshwater teleost fish of the 

Cypriniformes order natural of shallow streams or pools in North-eastern India [49, 50] that had been 

kept as an aquarium fish for many years before being recognized as an excellent model organism for 

biological studies [51]. In laboratory, adults can reach up to 4-5 cm in length, growing continuously 

during the average lifespan of 2-3 years [49]. Reproductive maturity, however, can be reached at 90 

days-post-fertilization (dpf) in optimal growing conditions, granting this species a short generation time 

that greatly facilitates genetic screens or procedures like transgenesis. Like many other fish species, 

fertilization is external, which allows control over the amount of embryos generated by managing the 

time for which male and female fish are kept together. Reproductively active couples can spawn up to 

300 embryos per week [52], each about 0.7 mm in diameter [53], visible to the naked eye and easily 

examined under a stereo microscope. Embryo development is also external which, adding to the natural 

transparency maintained until 24 hours-post-fertilization (hpf), makes the zebrafish an ideal model to 

study early developmental processes (for description of developmental stages up to 72 hpf please refer 

to [53]). For all these reasons, and the relative low cost of maintaining a fish facility (compared to a 

mouse facility with the same number of animals) [54], the zebrafish has risen as one of the major tools 

for studying developmental biology in the last three decades [55, 56]. 
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The growing significance of this vertebrate model also led to the development of a battery of genetic 

and molecular techniques, as well as genomic data. Forward and reverse genetic methods were 

optimized and today it is possible to precisely mutate a gene using zinc-finger nucleases [57], TALENs 

[58] or the CRISPR/Cas9 system [59], or to knock down its expression with antisense morpholino 

oligonucleotides [60]. Transgenesis can be carried out with various genome integration systems, from 

transposons [61] to phage integrases [62] and meganucleases [63], and diverse strategies exist for 

conditional [64, 65] and inducible [66-68] expression of transgenes. The sequencing and ongoing 

annotation of the zebrafish genome [69] was also a major contribution to the field, bringing to light the 

relevant similarities between zebrafish systems and genes and those of humans and highlighting D. rerio 

as an ideal model to study human disease [54, 70]. 

So far, the zebrafish has been used to uncover disease mechanisms ranging from metabolic [71], heart 

[72] and hematopoietic [73] disorders to muscular dystrophies [74], neurodegenerative conditions [75] 

and several cancer types (including solid tumours) [76]. More recently, it has also emerged as a very 

efficient platform for drug discovery [77] allowing large scale toxicity and efficacy analysis to be 

performed on disease models relatable to the human condition. 

2.1 Lessons in regeneration 

Post embryonic regeneration is a trait heterogeneously dispersed throughout the animal kingdom [78]. 

It seems to follow a pattern in which simpler, more ancient organisms are provided with higher 

regenerative abilities, that weaken during the course of evolution. For instance, hydras are well known 

for their ability to regenerate their whole body [79] while some amphibians like the newt are able to 

replace a missing limb [80]; on the opposite side of the spectrum lie mammals, whose regenerative 

abilities are far less extensive.  

Some teleost fish, and specifically the zebrafish, have also proved to hold amazing regeneration abilities. 

The fins were the first structures observed to undergo successful regeneration [81] and the more recent 

ascension of D. rerio as a model organism brought a deeper understanding of the underlying 

mechanisms. But zebrafish regeneration can also be used as an approach to human disease. Several 

injury methods have been used to mimic the effects of a myocardial infarction by cardiomyocyte loss in 

the zebrafish and all resulted in replacement of the lost tissue with new cardiac muscle cells. In fact, it 

was found that spared cardiomyocytes responded to injury by proliferating, dedifferentiating and re-

differentiating in a permissive environment to replace the missing tissue [82, 83]. Additionally the 

zebrafish has also been studied for its ability to regenerate the kidneys (pro- and mesonephros) [84], 

pancreas [85], liver [86], lateral line (hair cells) [87] and other body parts. 

Regarding CNS injuries, zebrafish exhibit both axonal regeneration (regrowth of axons after transection) 

and neuronal regeneration (generation of new neurons and glia) [88], which have been extensively 

studied due to the relevant similarities with the human CNS anatomy [54]. Particularly in what concerns 

the spinal cord, it was found that zebrafish regenerate the majority of severed axons after SCI [89], 

exhibiting an almost complete functional recovery one month after a crush injury [90]. Axon regrowth 

occurs in the presence of myelin [91] (considered inhibitory for mammalian axon regrowth) and other 

molecules that constitute a pro-regenerative environment, with gliosis and inflammation being transient 

events [92]. The source of new neurons and glial cells after a lesion has been identified as ependymo-

radial glial cells (ERG), so called for the presence of both ependymal and radial glial features [91]: while 

composing the ependymal layer of the spinal cord, they also extend projections that touch the pial 

surface, strongly resembling mammalian radial glia and type B cells of the adult brain. After an injury, 

ERG exhibit strong proliferation [90, 91, 93-97] and upregulate NSC markers such as Oct4, Sox2, 

Nestin, Sox11b and Vimentin [93-95, 97]. From 3 dpi, ERG migrate [90, 94, 95] and some differentiate 
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into GFAP+ glial cells that will form the glial bridge, a structure connecting both sides of the transected 

spinal cord that works as a scaffold for regenerating axons traversing the lesion site [94]. Other ERG 

give rise to new neurons while migrating, as was observed by the co-localization of ERG and 

proliferation markers with HuC/D [90, 91, 95], a marker of early neurogenesis [98]. Moreover, different 

neuron types are generated according to the dorsal-ventral position of the source ERG, mirroring the 

neural marker patterning observed during embryonic neurogenesis [96, 99]. 

Identification criteria for ERG have not been consensual [100]. While most studies recognized these 

cells solely based on their morphology and localization, others have used molecular markers like 

GLAST, BLBP [93], Olig2 (for motor neuron generating ERG) [91, 99, 101] or GFAP [94], which is 

downregulated upon injury [90, 94, 97]. Alternatively, given that these cells compose the ventricular 

layer of the spinal cord and have ependymal function, a different marker could be used to label ERG. 

The forkhead box transcription factor Foxj1a (one of the zebrafish orthologs of mouse Foxj1) is known 

to control motile ciliogenesis in zebrafish [46, 47, 102], thus being expressed in cells possessing motile 

cilia such as in Kupffer’s vesicle, pronephric ducts and also ependymal cells [103, 104]. One report has 

in fact observed an upregulation of foxj1a expression in ependymal cells after a SCI [103], probably 

associated with the ERG proliferative response, promoting further use of this transcription factor to 

identify ERG in a context of zebrafish spinal cord lesion. 

3. Objectives 

The zebrafish as a model organism presenting remarkable regenerating abilities can provide a privileged 

insight into the mechanisms underlying functional repair after SCI. Moreover, given the structural 

similarities between zebrafish and human SC, understanding how this fish regenerates can point to 

existing features in mammalian systems that can be exploited or stimulated to promote a more efficient 

recovery, and even regeneration, after a lesion. One such similarity is the presence and nature of 

ependymal cells in the SC central canal, which have been proved to hold NSC properties in both systems 

(in vivo in the zebrafish, in vitro in mammals). These EC are also comparable in morphology and are 

thought to originate from the same embryonic cell type (radial glia), even though D. rerio EC remain 

more similar to their progenitor during adulthood. In mouse models these cells are easily identified by 

the expression of Foxj1 transcription factor, which is the ortholog of zebrafish Foxj1a. However, Foxj1a 

has only been used once as a spinal cord EC marker and no specific analysis was made into the NSC 

abilities of foxj1a+ ependymal cells or their functional role during SC regeneration.  

To bridge that gap, two different approaches were conceived: 1) a lineage tracing experiment in which 

foxj1a+ cells are labelled right before a SCI and their progeny can be traced at several time points after 

the lesion due to permanent expression of a reporter protein; 2) a functional ablation experiment in which 

foxj1a+ cells are selectively eliminated right after a SCI so that their effective role in regeneration can 

be assessed. Both approaches depend on the previous establishment of stable transgenic lines 

possessing: 1) a reporter construct with coding sequences for two fluorescent proteins in tandem, in 

which the first is flanked by equal LoxP sites, and a Cre driver construct to promote recombination only 

in foxj1a+ cells (lineage tracing); 2) the “suicide gene” thymidine kinase (TK) from Herpes Simplex 

Virus driven by the foxj1a promoter, whose enzyme catalyses the conversion of the harmless substrate 

ganciclovir into a toxic product that selectively kills proliferating cells (functional ablation) [105]. 

The first objective of this work is then to generate the transgenic lines with which both approaches can 

be performed. Given previous difficulties in generating a functional transgenic line for lineage tracing, 

three different lines will be established to improve the likelihood that one will be effective. Additionally, 

since this version of Cre requires activation with an oestrogen analogue [106, 107], the protocol for Cre 

activation must also be optimized.  
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Materials and Methods 
 

Zebrafish lines and husbandry 

Fish were kept at the IMM Fish Facility at controlled standard conditions [52] including temperature 

(28ºC) and light/dark cycle (14h/10h). Embryos were raised in embryo medium-containing Petri dishes 

(embryo medium: 5mM NaCl, 160μM KCl, 340μM CaCl2.2H2O, 340μM MgSO4.7H2O, 0.3mg.L-1 

methylene blue) placed in an incubator at the same temperature and light/dark cycle until 5 or 6 days-

post-fertilization (dpf) and were then transferred to main system tanks with approximately 60 larvae per 

tank. Developmental staging of embryos and larvae was performed according to Kimmel et al [53]. 

Animals were considered fit for mating at 3 months of age or after reaching 2-3 cm in length [49]. Two 

zebrafish wild-type lines were used, AB [55] and Tübingen [108]. The following transgenic lines already 

available at the facility were used: Tg(hsp70l:mCherry-T2a-CreERT2)#12 (referred as hs:mCh-Cre) [109]; 

Tg(–3.5ubi:EGFP(floxed)-mCherry) (referred as ubi:Switch) [110]; Tg(hsp70l:DsRed2(floxed)-EGFP) 

(referred as hs:Red2Green) [111]; Tg(0.6foxj1a:gfp) (referred as foxj1a:EGFP) [112]; Tg(fli1:CreERT2; 

gCrystallin:EGFP; ubi:Switch) (referred as fli:Cre; ubi:Switch). 

All experiments and manipulations were approved by IMM internal ethics committee, in accordance 

with standards issued by Direcção-Geral de Alimentação e Veterinária, in order to minimize animal 

suffering and the number of fish and embryos used. 

 

Generation of new transgenic lines  

Plasmid cloning 

To generate the construct pTol(foxj1a:mCherry-T2a-CreERT2) the promoter sequence of D. rerio foxj1a 

gene was first PCR amplified (primers: A1, A2) using the plasmid pTol(foxj1a:EGFP) [112] as template 

and adding recognition sites for ApaI and FseI restriction enzymes next to the 5’ and 3’ borders of the 

promoter, respectively. This sequence was then cloned into pTol(her4.1:mCherry-T2a-CreERT2) [111] 

using blunt ligation after hydrolysis of the plasmid with ApaI and FseI to remove the her4.1 promoter 

followed by Klenow fragment (Invitrogen)-mediated cohesive end filling. 

To generate the construct pTol(foxj1a:DsRed2(floxed)-EGFP) the EGFP coding sequence was first PCR 

amplified (primers: A3, A4) using pTol(foxj1a:EGFP) as template and adding recognition sites for SmaI 

and AscI restriction enzymes next to the 5’ and 3’ borders of the amplicon, respectively. This fragment 

was ligated to pTol(ef1α:DsRed2(floxed)-ntr-EGFP) (a gift from Michael Brand) after hydrolysis of the 

plasmid with the same enzymes for removal of the (ntr-EGFP) ORF. The second part of the cloning 

procedure involved amplifying the promoter sequence of D. rerio foxj1a gene by PCR (primers: A5, 

A2) using the plasmid pTol(foxj1a:EGFP) as template and adding recognition sites for XhoI and FseI 

restriction enzymes next to the 5’ and 3’ borders of the promoter, respectively. This sequence was then 

switched for the ef1α promoter in the plasmid pTol(ef1α:DsRed2(floxed)-EGFP) using cohesive 5’/blunt 

3’ ligation after hydrolysis of the plasmid with FseI followed by Klenow fragment-mediated cohesive 

end filling and hydrolysis of both the plasmid and the promoter with XhoI.  

To generate the construct pTol(foxj1a:TK-GFP) the promoter sequence of D. rerio foxj1a gene was first 

amplified by PCR (primers: A6, A7) using the plasmid pTol(foxj1a:EGFP) as template and adding 

recognition sites for HindIII and BamHI restriction enzymes next to the 5’ and 3’ borders of the 
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promoter, respectively. This sequence was then ligated to the plasmid pG1(ins:TK-GFP) [113] after 

hydrolysis with both restriction enzymes and removal of the ins promoter. The expression cassette 

(foxj1a:TK-GFP) was then amplified by PCR (first primer set: A5,  A4; second primer set: A5, A8) 

from the newly made pG1(foxj1a:TK-GFP) adding restriction sites for XhoI and AscI restriction 

enzymes next to the 5’ and 3’ borders of the cassette, respectively. Plasmid pTol(ef1α:DsRed2(floxed)-

ntr-EGFP) was hydrolysed with the same enzymes to remove its expression cassette and allow ligation 

of the (foxj1a:TK-GFP) cassette, thus inserting the desired construct in a Tol2-based vector. 

To generate the construct pTol(foxj1a:TK-T2a-EGFP) the coding sequences for TK, T2a peptide and 

EGFP were first amplified and fused in frame using fusion PCR (Supp. Fig. S.4) [114, 115]. Briefly, 

each coding sequence was first individually amplified by PCR using primers containing 20nt 

complementary to the adjoining coding sequence in the final assembly (TK: primers A9, A10; template: 

pG1(ins:TK-GFP). T2a peptide: primers A11, A12; template: pTol(her4.1:mCherry-T2a-CreERT2). 

EGFP: primers A13, A14; template: pTol(foxj1a:EGFP)). Then the sequences for TK and T2a peptide 

were fused in a second round of PCR (primers: A9, A12) and this product was finally fused to the EGFP 

sequence in the final PCR step (primers: A9, A14). Plasmid pTol(foxj1a:EGFP) was hydrolysed with 

BamHI and ClaI, for removal of EGFP coding sequence, prior to incubation with Klenow fragment for 

fill-in of 3’ recessive ends; blunt ligation was promoted between the remaining part of 

pTol(foxj1a:EGFP) and intact PCR product TK-T2a-EGFP.  

All expression cassettes sequences were confirmed by sequencing prior to microinjection: 

pTol(foxj1a:mCherry-T2a-CreERT2), primers A1 and A2; pTol(foxj1a:DsRed2(floxed)-EGFP), primers 

A3 and A4 (EGFP insertion), A5 and A2 (promoter switch); pTol(foxj1a:TK-GFP), primers A6 and A7 

(promoter switch), A4, A7 and B2 (expression cassette ligation); pTol(foxj1a:TK-T2a-EGFP), primers 

A6 and A3. pG1(ins:TK-GFP) was partially sequenced with primers B1 and B2. 

All PCR reactions were conducted using Phusion DNA Polymerase (Thermo Scientific) according to 

the manufacturer’s instructions; annealing temperatures were calculated using the online tool NEB Tm 

Calculator (available at http://tmcalculator.neb.com). 

Restriction enzyme recognition sites, incubation temperatures and commercial sources are detailed in 

Appendix I. Primer sequences, special features (anything beyond template-complementary sequence) 

and melting temperature (Tm; obtained by the formula Tm=(#A + #T)*2 + (#G + #C)*4) are detailed in 

Appendix III. 

 

Microinjection and selection of founders 

The efficient Tol2 transposon system has been widely used in the zebrafish community to generate 

transgenics [107, 116] and was chosen to promote stable integration of the desired constructs in this 

work into the zebrafish genome. This system uses a transposase naturally found in the genome of the 

medaka fish (but not in D. rerio) [117] that recognizes two precise sequences at the borders of the 

construct [118] and transposes any DNA fragment up to 66kbp between those sequences to the host 

genome [119].  

Embryos from natural, healthy (>70 eggs) [52] spawning from incross of the lines mentioned in 

Appendix II were injected at one-cell stage with ~1.4nL of a mixture containing plasmid DNA and Tol2 

transposase mRNA in DNase/RNase-free water (Gibco) at the concentrations mentioned in Appendix 

II. 
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Briefly, a capillary-like glass needle was filled with up to 3μL of injection mixture, mounted on the 

microinjection apparatus and calibrated using a graticule [120, 121]; microinjection was performed by 

inserting the needle through the yolk and pumping one single shot of the mixture close to the egg cell.  

Embryos were kept at a density of approximately 30 per Petri dish until 5 dpf and the medium was 

changed when necessary to avoid contamination. Injected embryos grown to adulthood were crossed to 

either AB or Tübingen (Tu) wild-type fishes to screen for the presence of the transgenes in their progeny 

and thus identify founder fishes and calculate germline transmission rates as the percentage of embryos 

from the founder fish that carry the desired construct. 

 

Alternative screening techniques for Tg(foxj1a:mCherry-T2a-CreERT2) 

Genomic PCR 

24 hpf embryos from incross of potential founder fish (adult Tg(hs:Red2Green) fish that had been 

injected with (foxj1a:mCherry-T2a-CreERT2) construct as zygotes) were collected for DNA extraction 

according to an established method [122]. Briefly, every 10 embryos were placed in microcentrifuge 

tubes, immersed in 100μL NaOH 50mM and incubated at 95ºC for 10min, after which they were 

vortexed. After cooling down to 4ºC, 10μL Tris-HCl pH 8.0 were added and the tubes were centrifuged 

for 6min at 10000rpm. The supernatant was used immediately for the PCR, as suggested [122]. Plasmid 

pTol(her4.1:mCherry-T2a-CreERT2) was used as a positive control of the reaction. Amplification was 

conducted using DreamTaq DNA Polymerase (Fermentas), primers A15 and A17 and the following 

specific parameters: annealing temperature, 55ºC; extension time, 1min. 

 

Whole-mount in situ hybridization (WISH) 

24 hpf and 48 hpf embryos from incross of potential founder fish as well as AB and Tg(fli:Cre; 

ubi:Switch) lines were quickly dechorionated using 1mL of pronase 30mg.mL-1 (Sigma) and processed 

for WISH with methods adapted from The Zebrafish Book [123]. Significant protocol changes are: all 

wash steps made with PBST (PBS/0.5%Tween20); an additional permeabilization step with 2% H2O2 

in 100% MeOH; proteinase K (Roche) digestion time of 10min and 15min (24 hpf and 48 hpf embryos, 

respectively); no use of acetic anhydride; pre-hybridization with Hyb+ at 60ºC for at least 3h; probe 

denaturation in Hyb+ solution for 5min at 80ºC; Fab-AP incubation at 4ºC ON; use of BM Purple 

(Roche) for color reaction and after it is stopped embryos are fixed in PFA 4% for 20min, washed in 

PBST and stored in 10% glycerol in PBST.  

RNA probes used: foxj1a  [124], diluted 1:100; CreERT2  (construct generated by Ana Pereira from 

plasmid pCAG-CreERT2 [125]), diluted 1:500. 

 

Reverse Transcription PCR (RT-PCR) 

Embryos from incross of potential founder fish and AB fish were harvested and kept in standard 

conditions. At 24 hpf RNA extraction was performed using TRIzol Reagent (Life Technologies) 

according to manufacturer’s instructions (in this case: 1mL TRIzol for every 50 embryos), followed by 

incubation with RQ1 RNase-free DNase (Promega). Approximately 1μg RNA was used for the reverse 

transcription reaction, carried out with DyNAmo cDNA Synthesis Kit (Thermo Scientific) according to 

manufacturer’s instructions and using random hexamer primers for amplification. The PCR step was 
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conducted with Phusion DNA Polymerase using A16 and A17 primers for CreERT2 transcript detection 

and A18 and A19 for β-actin1 transcript detection as a positive control for the RT step. Specific reaction 

parameters were: annealing temperature, 69ºC; extension time: 26s. 

Embryos from incross of Tg(hs:mCh-Cre) fish were harvested and kept in standard conditions. At 24hpf 

they were subjected to heat shock treatment (37ºC for 30min in embryo medium pre-heated to 42ºC) to 

promote expression of CreERT2. RNA extraction occurred 1h30min, 2h and 3h after heat shock ended 

using the same procedure detailed above, followed by the RT-PCR reaction. 

 

Agarose gel electrophoresis 

Results from PCR and hydrolysis reactions were visualized by electrophoresis using 0.8%-1% agarose 

(Lonza) gels (for fragments over 400bp) or 2% gels (for fragments under 400bp) in TAE buffer. DNA 

staining was performed with RedSafe (iNtRON Biotechnology). In all agarose gel pictures the leftmost 

lane depicts 5uL of 1Kb Plus DNA Ladder (Invitrogen), with relevant fragment dimensions (in bp) 

mentioned to the side of the picture. 

 

4-hydroxytamoxifen and heat shock treatment  

4-hydroxytamoxifen (4-OHT, Sigma) was diluted to 10mM in absolute EtOH and single use aliquots 

were kept at -20ºC in the dark to prevent drug breakdown. 

Double transgenic embryos from mating of Tg(hs:mC-Cre) and Tg(hs:Red2Green) fish were subjected 

at mid-gastrulation stage (shield to 75% epiboly) to heat shock according to published method [109] 

(37ºC for 30min in embryo medium pre-heated to 42ºC), after which they were returned to non-heated 

medium at the 28ºC incubator. At 24 hpf embryos were treated with 4μM, 8μM, 8μM (plus 14μg.mL-1 

pronase) or 10μM 4-OHT and kept at 33ºC in glass Petri dishes in the dark. Six hours after 4-OHT 

addition embryos were subjected to a second identical heat shock to promote reporter expression. At 48 

hpf embryos were observed and processed for immunochemical detection of EGFP (see below). 

Double transgenic embryos from incross of Tg(ubi:Switch)x(foxj1a:CreERT2; cmlc2:EGFP) founders 

were treated with 10μM 4-OHT and 14μg.mL-1 pronase at 24 hpf, and kept at 33ºC ON in glass Petri 

dishes in the dark.  

Separately, larvae from the same mating were subject to spinal cord injury (SCI) at 5 dpf (see below) 

and immediately treated with 10μM 4-OHT and kept in glass Petri dishes in the dark at 33ºC for 

4h30min, after which they were returned to 28ºC. 24h later a second dose of 4-OHT was added to the 

medium. 

To facilitate infiltration of the drug into tissues, 1%DMSO (Sigma) was added at the same time as 4-

OHT to all experiments including negative controls. To prevent embryo pigmentation and improve 

visualization, a 0.003% PTU (Sigma) solution in 10% Hank's saline was added to all embryos from 24 

hpf onwards. In all experiments, negative control was performed with embryos from the same lines by 

replicating all conditions but replacing 4-OHT with absolute EtOH (8μL). 
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Lesion assay 

5 dpf larvae were anesthetized in 1x Tricaine solution diluted in embryo medium and remained there 

during the procedure. When a larva no longer showed touch response, it was placed laterally on the floor 

of the Petri dish and the tip of a 20G syringe needle was used to make an incision through the dorsal 

lateral face at the level of the anal pore [126], transecting the whole width of the spinal cord but not 

cutting beyond the ventral edge of the notochord. Injured larvae were transferred to dishes with fresh 

embryo medium and checked daily to remove dead larvae. 

Tricaine solution (25x): 4g.L-1 Tricaine S (Western Chemical, Inc), 20mM Tris (pH 9), adjust to pH 7. 

 

Immunohistochemistry 

48 hpf embryos were dechorionated with 1mL pronase 30mg.mL-1 and fixed in PFA 4% for 4h at RT 

followed by one wash step in PBST, one wash step in PBST/0.5% TritonX100/100mM glycine for 1h 

and one wash step in PBST for 10min. Embryos were incubated in blocking buffer (PBST/ 1%BSA/ 

0.5%TritonX100/ 1%DMSO) for 3h and then incubated with primary antibody at 4ºC ON. The second 

day started with four washes of 30min in blocking buffer followed by incubation with secondary 

antibody at 4ºC in the dark ON. Embryos were then washed four times for 30min in PBST, fixed in PFA 

4% for 30min and stored in PBST for observation until the following day. Primary antibody: IgY 

chicken anti-GFP (Aves Labs, GFP-1020), diluted 1:500 in blocking buffer. Secondary antibody: IgG 

goat anti-chicken AlexaFluor 488 (Invitrogen, A11039), diluted 1:1000 in blocking buffer. 

 

Image acquisition and processing 

Fluorescence and stereo microscopy: All darkfield and fluorescence images were acquired with Zeiss 

AxioZoom V16 fluorescence stereo microscope equipped with AxioCam MRm, Zeiss filter sets 

FS38HE (for EGFP and mmGFP signal) and FS63HE (for mCherry and DsRed2 signal) and 

manufacturer’s software ZEN 2012 Blue Edition. All brightfield images were acquired with Leica Z6 

APO macroscope equipped with Leica DFC490 camera, and software Adobe Photoshop CS3. 

Image processing (cropping, rotating, pseudocolouring and exposure correction for gel pictures) was 

conducted in ImageJ and Adobe Photoshop CS2. 

 

Bioinformatics and statistical analysis  

Full sequences of  pTol(her4.1:mCherry-T2a-CreERT2) and pTol(ef1α:DsRed2(floxed)-ntr-EGFP) and 

partial sequence of pTol(foxj1a:EGFP) (including the complete expression cassette) were already 

available at the lab. TK, mGFP5 and D. rerio β-actin1 coding sequences were retrieved from NCBI 

database (Accession: HSV1 Thymidine Kinase, V00470; synthetic construct mGFP5, U87973; D. rerio 

actb1, BC165331). mmGFP sequence was constructed from mGFP5 by replicating the method 

described in [127]. Sequence manipulation and analysis was performed with ApE software. DNA and 

protein alignments were obtained with T-Coffee [128] by combining the output of several common 

aligners (M-Coffee package) for pairwise methods and multiple methods, respectively. 
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Codon usage data and comparisons 

Codon usage (CU) data for TK, mCherry, DsRed2, EGFP, mmGFP and actb1 was obtained with 

Sequence Manipulation Suite [129] (available online at 

http://www.bioinformatics.org/sms2/codon_usage.html). CU data for Danio rerio was obtained from 

the Codon Usage Database [130] (available online at http://www.kazusa.or.jp/codon/). Synonymous CU 

preference for each of the aforementioned genes was compared with D. rerio CU with a two-tailed 

Fisher’s Exact Test for 2xn contingency tables, computed in MATLAB software (MathWorks) using 

myfisher function [131]; this function returns an exact p-value for 2x2, 2x3 or 2x4 tables and a Monte 

Carlo approximation for larger ones. The absolute frequency of each codon in each of the two coding 

sequences being compared at a time (one of the genes and D. rerio overall CU) was listed in a table, 

grouping together synonymous codons for each amino acid (except Met and Trp, for which no 

synonymous codons are available). This created 18 contingency tables (one for each amino acid) with 2 

lines (one for each sequence) and n rows (one for each possible codon). For example, all tables for Ala 

are 2x4 tables given that either GCG, GCA, GCT and GCC can code for alanine: 

Alanine: GCG GCA GCT GCC p-value 

D. rerio* 13 25 32 30 
6E-6 

TK 12 0 8 26 

 

*-Given the higher difficulty in computing this test’s results with large observed values, the values used 

for D. rerio observed codon frequency correspond to: (absolute count for that codon)/(sum of counts for 

all synonymous codons on that aa.)*100.  

Ultimately, a p-value was obtained for each amino acid, and the amount of aa. with no statistically 

significant discrepancy (α=0.05) between the two compared sequences was taken as a measure of the 

CU similarity between those sequences, designated as codon usage preference score (CUPS). 

Relative codon usage for D. rerio and for each of the aforementioned genes was calculated, for each 

codon, as: (absolute count for that codon)/(sum of counts for all synonymous codons on that aa.). 

 

Data presentation 

For figures 1.2, 1.4, 1.5 and 1.6 survival rates of injected embryos were normalized to survival rates of 

non-injected embryos from the same batch; that is, non-injected survival was considered 100% and 

injected survival rate was adjusted proportionally. In the rare occasions when non-injected embryos 

were not kept until 24hpf, injected survival rates were normalized to the average survival of all non-

injected embryos of the same line. Percentage of positive embryos was calculated relative to the number 

of injected embryos alive at 24hpf. Survival and positive rates were calculated using Microsoft Excel.  

All plots were generated with Prism 6 software (GraphPad). 

Average values mentioned throughout the text are represented as average±SD. 
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Results 
 

1. Generation of zebrafish transgenic lines 

Given all the recent findings concerning the potential ability of spinal cord ependymal cells to aid in the 

regeneration process after a spinal cord injury in mammals, it was necessary to understand exactly how 

important these cells are during the same process in zebrafish. To that end, two major approaches can 

be taken: promoting genetic labelling of foxj1a+ cells before a spinal cord injury (SCI) in order to identify 

their progeny during the regeneration process (lineage tracing experiment), and inducing specific 

ablation of ependymal cells to uncover their functional role after SCI. This chapter details the attempts 

at generating several zebrafish transgenic lines that could be used to investigate the role of foxj1a+ cells 

in spinal cord regeneration using both approaches mentioned.  

 

1.1 Tg(foxj1a:CreERT2; cmlc2:EGFP) 

Specific labelling of foxj1a+ cells can be achieved by inserting a transgene for a fluorescent protein 

under the control of the foxj1a promoter. However, a lineage tracing experiment requires this labelling 

to be performed at a specific time (in this case, right before a spinal cord injury) and to persist not only 

in these cells but also in their progeny, regardless of their foxj1a expression status. Expressing the 

CreERT2 coding sequence under the control of the foxj1a promoter ensures recombination will occur 

only in foxj1a+ cells, while a ubiquitously expressed reporter protein will be able to maintain fluorescent 

labelling even if those cells stop expressing this transcription factor. This will ensure that the entire 

foxj1a+ cell progeny will remain permanently labelled. The use of the modified version of Cre, CreERT2 

[106], inserts a step of temporal control in the expression of a reporter protein, so that labelling of foxj1a+ 

cells is only achieved when fish are treated with 4-hydroxytamoxifen (4-OHT), thus promoting 

CreERT2-mediated recombination in the target cells at the desired time point. 

In order to establish a transgenic line that would allow for efficient labelling of foxj1a+ cells, a first 

attempt was made at recreating a line previously used in the lab: Tg(ubi:Switch)x(foxj1a:CreERT2; 

cmlc2:EGFP). Due to the presence of the (ubi:Switch) cassette these fish show a ubiquitous expression 

of EGFP that, upon action of a Cre recombinase, will be exchanged for mCherry expression, thus 

labelling foxj1a+ Cre+ cells in red. Double transgenics are easily identified by their green heart due to 

the expression of EGFP under the control of the cardiac muscle promoter cmlc2.  

Since both adult Tg(ubi:Switch) fish and the plasmid containing the (foxj1a:CreERT2; cmlc2:EGFP) 

cassette flanked by Tol2 recognition sites were already available, the plasmid was microinjected along 

with Tol2 transposase mRNA into one-cell stage Tg(ubi:Switch) embryos according to standard 

techniques. At 24 hpf, injected embryos were screened for the presence of the (foxj1a:CreERT2; 

cmlc2:EGFP) construct and positive embryos were selected based on EGFP expression in the heart 

(Figure 1.1 A, B). In a single injection event using 30ng.μL-1 DNA and 5ng.μL-1 mRNA, 121 (24%) 

positive embryos were selected and grown; of these, 57.9% survived to adulthood.  

To look for germline transmission of the injected construct, all adult fish that had been injected at the 

zygote stage (considered as potential founders) were crossed to wildtypes and their progeny analysed 

for the presence of (foxj1a:CreERT2; cmlc2:EGFP) cassette by EGFP fluorescence in the heart. Adult 

fish were considered founders when they showed the capacity to pass the injected transgenes to their 

offspring, despite any other factor like being hemizygous for the (ubi:Switch) cassette (which would 
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mean that only half the (foxj1a:CreERT2)+ progeny would also have the reporter transgene). In practice, 

this means that any potential founders that spawned at least one embryo with a green heart were 

considered effective founders. Of the 70 fish that survived to adulthood, only 11 (15.7%) were found to 

pass the desired transgenes to their offspring (Fig. 1.1 C), with the vast majority considered non-

founders. Furthermore, more than half of the founders showed very low levels of germline transmission 

(as low as 2.0%), passing the injected construct to less than 10% of their progeny. The highest rate of 

germline transmission was found in one male fish (33.3%) and one female (18.0%), which were used to 

obtain embryos for the CreERT2 activation assay (see Chapter 2.2, Results section). The negative results 

obtained in this assay suggest that this double transgenic line is not suitable for the intended lineage 

tracing experiment; for that reason, founders with the highest germline transmission rate were 

maintained but no further steps were taken to establish a stable transgenic line. 

 

Figure 1.1 Screening of Tg(ubi:Switch) embryos injected with (foxj1a:CreERT2; cmlc2:EGFP) construct and selection of 

founder fish. EGFP expression is clearly visible in the heart (arrow) of embryos possessing the desired construct containing 

CreERT2 (A), distinguishing them from (ubi:Switch)+ embryos that did not inherit the injected construct (B). Scale bar: 500μm. 

C: Most larvae grown to adulthood did not pass the construct to the germline; the few founder fish present low germline 
transmission rates. 

 

1.2 Tg(foxj1a:mCherry-T2a-CreERT2) 

Given that the double transgenic line Tg(ubi:Switch)x(foxj1a:CreERT2; cmlc2:EGFP) had been 

previously used with little success, a new strategy was devised for the time-specific labelling of foxj1a+ 

cells. Adding to the features of the previous transgenic line, two major improvements were included. A 

heat shock inducible promoter was used to drive the expression of the reporter cassette 

(Tg(hs:Red2Green)), which could increase the level of protein production and lead to better 

visualization of labelled cells [132] while at the same time adding an additional step of temporal control 

over the cell labelling process. The detection of CreERT2 expression in the right place and time was also 

facilitated by coupling mCherry to CreERT2 coding sequences in frame, separated by the sequence for 

the viral self-cleaving peptide T2a [133], thus leading to co-expression of both proteins without potential 

drawbacks of fusion proteins (like partial loss of function) [134]. Transcription of both proteins from 

the same open reading frame (ORF) also prevents the possibility of transcriptional silencing being 

exerted over one of two closely placed expression cassettes, as in the case of the (foxj1a:CreERT2; 

cmlc2:EGFP) construct. 

To generate this line it was necessary to obtain first a suitable Tol2-based plasmid with the (mCherry-

T2a-CreERT2) ORF under the control of the foxj1a promoter. This was accomplished by switching the 

her4.1 promoter in the pTol(her4.1:mCherry-T2a-CreERT2) plasmid for the foxj1a promoter using 

molecular cloning methods. The cloning procedure is depicted in Figure 1.2A. Positive ligation clones 
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were partially sequenced (Supp. Fig. S.1 A), confirming foxj1a promoter integrity and the success of 

ligation necessary for effective transgene expression. 

 

Figure 1.2 Molecular cloning scheme of pTol(foxj1a:mCherry-T2a-CreERT2) plasmid, screening of  injected 

Tg(hs:Red2Green) embryos and microinjection statistics. A: The her4.1 promoter was switched for the foxj1a promoter, 
generating the final plasmid. Grey boxes represent promoter regions. B: At 24 hpf, embryos containing the injected construct 

show mCherry expression in pronephros (not shown here), floor plate (arrow) and olfactory bulb (*) cells Scale bar: 500μm. 

C, D, E: Survival rate (normalized to non-injected survival – see M&M section for details) and percentage of positive embryos 

is heterogeneous and does not follow a clear trend when associated with either DNA concentration or total nucleic acid injected. 

Each dot/star represents one of the n=16 independent batches of injected embryos. Dashed lines connect average Y-axis values 
for each X-axis category. DNA and mRNA concentrations detailed in M&M section. 

 

Ligation clone #3 was selected for microinjection into one-cell stage Tg(hs:Red2Green) embryos along 

with Tol2 transposase mRNA according to standard techniques. Given that the reporter cassette is only 

expressed upon heat shock treatment, embryos are easily screened for the presence of (foxj1a:mCherry-

T2a-CreERT2) cassette by mCherry expression on foxj1a+ cells. At 24 hpf, positive injected embryos 

were identified by red fluorescence in the floor plate of the neural tube, pronephros and olfactory bulb 

cells [104] (Fig. 1.2 B).  

Common practices in zebrafish husbandry suggest that a minimum of 25-30 5 dpf larvae must be moved 

at once to grow on regular tanks due to higher likelihood of larvae death occurring in the first two weeks. 

Additionally, since Tol2-based transgenesis is known to originate variable rates of transgene integration 

and germline transmission [116], it is advisable that no less than 100-120 larvae are grown to adulthood. 

For these reasons, and because first attempts at injecting with lower DNA and mRNA concentrations 

yielded very few positive embryos, an optimization approach was implemented. A total of 8 

combinations of DNA and mRNA concentrations were injected in order to find the injection mix that 

resulted in the higher yield of positive embryos without compromising embryo health. Figures 1.2 C-E 

relate survival rate of the injected embryos at 24 hpf (when screening for positives was conducted) and 

percentage of positives found in each of the 16 independent injection events to concentration and total 

amount of DNA and mRNA used. At first glance, increasing mRNA concentration seems to exert a 

negative influence on both variables, despite the large heterogeneity of values for the same mRNA 

concentration. A greater influence of mRNA concentration may explain the absence of any clear trend 

relating embryo survival and transgene integration with either DNA concentration and total nucleic acid. 

The lowest values for each variable are obtained with the highest amount of total nucleic acid, 

confirming that high concentrations of DNA and mRNA become toxic to the embryos. 

Nevertheless, the rate of transgene integration was always under 15%, except for one injection event. 

Given that each day an average of 658 ± 237 embryos were injected, and absolute number of positives 

ranged from 2 (0.9%) to 63 (13.4%), only three injection events yielded enough positive embryos to be 
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grown: 86 with 5ng.μL-1 mRNA and 33 with 15ng.μL-1 mRNA (both with 30ng.μL-1 DNA). Embryos 

injected with 37.5ng.μL-1 DNA could not be grown because most of them presented severe 

developmental anomalies (like neural tube defects) probably due to toxic effects of DNA concentration, 

causing premature death before 5 dpf. 

A total of 68 larvae survived to adulthood and were crossed to wildtype fish for observation of progeny 

and assessment of transgene germline transmission. Eight (12%) potential founders generated a very 

small fraction (4.6±1.7%) of embryos with red fluorescent labelling of a few cells that seemed to localize 

to the floor plate and pronephros at 24 hpf (similar to Fig. 1.6 C). However, this signal had disappeared 

completely by 28 hpf in some embryos and by 48 hpf in all the remaining ones. Following reported 

findings that a (mCherry-T2a-[protein of interest]) cassette may result in protein of interest expression 

without mCherry fluorescence [135], it was hypothesized that a similar phenomenon could be happening 

with these embryos. Since functionality of (mCherry-T2a-CreERT2) cassette for lineage tracing is bound 

to CreERT2 expression and function, and not to mCherry signal,  mCherry – embryos that prove positive 

for CreERT2 are still useful. This pointed to the need of finding a different method to investigate the 

presence of the CreERT2 transgene in these embryos. 

The first approach taken was to extract genomic DNA from F1 embryos of two incrosses of potential 

founders (Couple #1 and Couple #2) and perform PCR with CreERT2 specific primers that generated a 

943bp amplicon located in the second half of the coding sequence. Results reveal that DNA extracted 

from embryos of both crosses generated a fragment matching in size to the predicted amplicon and to 

the positive control (a plasmid containing the CreERT2 coding sequence) (Fig. 1.3 A), suggesting these 

embryos carry the CreERT2 transgene. Several other fragments of lower molecular weight, consistent 

between lanes, are also visible, indicating that there was unforeseen amplification from other zebrafish 

sequences. This is not surprising given that a BLAST search of both primers used returned partial 

sequence similarity with some regions of the zebrafish genome (data not shown). However, the presence 

of visible faint bands for the negative control suggests template contamination may have occurred, 

prompting these results to be confirmed. 

While looking for transgene presence in the genome can give a measure of transgenesis efficiency, the 

ultimate goal is to have the CreERT2 protein expressed and functional. One way to assess gene expression 

is to look for the presence of gene-specific transcripts; therefore, an in situ hybridization assay was 

performed to assess CreERT2 transcription at 24 hpf and 48 hpf using embryos from the incross of Couple 

#1. Staining for CreERT2 probe was found to span the entire length of floor plate and pronephros of 3 

(12.5%) 24 hpf embryos (Fig. 1.3 B), matching the expression pattern of foxj1a gene, in which all AB 

embryos were found to express foxj1a (Fig. 1.3 E). However, the majority of 24 hpf embryos (Fig. 1.3 

C), as well as all 48 hpf embryos (Fig. 1.3 D), did not show a specific foxj1a expression pattern, similarly 

to AB embryos tested for CreERT2 probe (Fig. 1.3 F, G), suggesting that CreERT2 was not being 

expressed. Embryos from incross of Tg(fli:Cre; ubi:Switch) fish were also assayed for CreERT2 

transcription and intended to act as positive control for the probe. However, no specific staining was 

obtained either in 24 hpf or 48 hpf embryos (Fig. 1.3 H and I); these showed only unspecific staining in 

the general head area, very different from the expected expression pattern in the blood vessels typical 

of the fli1 promoter. This result may have two readouts: either there is a problem with CreERT2 

expression in the Tg(fli:Cre; ubi:Switch) line (and this would be consistent with the absence of 

recombination in a CreERT2 activation assay (data not shown)) or the CreERT2 probe was not working. 

It is then necessary to test the probe with another CreERT2-expressing line and to further validate the 

results from embryos of potential founder fish. 
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Figure 1.3 Alternative molecular methods for detection of founder fish carrying the (foxj1a:mCherry-T2a-CreERT2) construct. 

A: Genomic PCR detected the presence of a DNA fragment matching predicted CreERT2 amplicon size (943bp) in progeny 
from two couples of potential founders (Couple 1: I-IV; couple 2: V). Lane VI: pTol(her4.1:mCherry-T2a-CreERT2) as template 

for positive control. Lane VII: no DNA template for negative control. DNA Ladder (L) as molecular weight reference. B-I: 

WISH results identify some 24 hpf embryos from potential founders as positive (B) for CreERT2 expression, with the majority 

being negative (C).  At 48 hpf, all embryos from the same batch stained negative (D), as well as AB (F, 24 hpf; G, 48 hpf) and 
Tg(fli:Cre) (H, 24 hpf; I, 48 hpf) embryos. 24 hpf AB embryos stained positive for foxj1a probe (E), validating the protocol. 

FP: floor plate; PN: pronephros. n=24(B,C), 28(D), 13(E), 14(F), 22(G), 28(H), 22(I) embryos. Scale bar: 300μm. J: RT-PCR 

reveals CreERT2 transcript absent from progeny of potential founders (II) and AB fish (I) but present 1h30min (IV) after heat 

shock in Tg(hs:mCh-Cre) embryos. Embryos collected 2h (V) and 3h (VI) after heat shock do not show trace of CreERT2 

mRNA. Lanes III and VII: same as lanes II and IV (respectively) but without addition of reverse transcriptase enzyme. Lanes 
VIII: pTol(her4.1:mCherry-T2a-CreERT2). Lanes IX: no template. β-actin1 amplification validates RT-PCR protocol. DNA 

Ladder (L) as molecular weight reference. 

 

In order to determine whether the CreERT2 transcript is present in the progeny of potential founders for 

(foxj1a:mCherry-T2a-CreERT2) cassette, total RNA was extracted from 24 hpf embryos from incross of 

Couple #1 (see above) and RT-PCR was performed using CreERT2 specific primers (Fig. 1.3 J). This 

time there was no detection of the desired transcript in the test embryos, contrary to Tg(hs:mCh-Cre) 

embryos, acting as positive control for the method. In these, the 1758bp fragment is clearly visible for 

embryos collected 1h30min after heat shock (necessary to activate transcription from the hsp70l 

promoter). Surprisingly, embryos collected 2h and 3h after heat shock do not reveal the presence of 

CreERT2 mRNA, suggesting it may have already been degraded. It is worth to mention as a reference 

that mCherry fluorescence becomes visible from 2h30min after heat shock (data not shown). Given that  

foxj1a+ cells constitute a very small fraction of the embryo, it is possible that mCherry-T2a-CreERT2 

mRNA existed in concentrations too small for PCR detection, even considering that the RT reaction was 

performed with pooled RNA from 60 embryos. This would not have been a problem for Tg(hs:mCh-

Cre) embryos since the hsp70l promoter is expressed throughout the embryo upon heat shock. 

Conversely, this could also mean these embryos were negative for the transgenic construct, calling into 

question the results from previous screening approaches. 
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Overall, these three screening methods seem to indicate that genomic integration of the 

(foxj1a:mCherry-T2a-CreERT2) cassette occurred in some of the injected embryos and was passed to 

their germline, generating some F1 embryos with the desired transgene. However, it was not possible to 

establish a stable transgenic line due to the low transmission efficiency and the absence of 

straightforward screening methods. 

 

1.3 Tg(foxj1a:DsRed2(floxed)-EGFP) 

In order to maximize the probability of having at least one functional transgenic line to perform the 

lineage tracing experiment, a third strategy was planned to generate a line reciprocal to the one presented 

in Chapter 1.2 (Results section). This new line would then use the same coding sequences for the Cre 

driver construct and for the reporter construct, but each would be driven by the promoter sequence 

assigned to the other construct in 1.2. In practice, the goal was to generate the double transgenic line 

Tg(hs:mCh-Cre)x(foxj1a:DsRed2(floxed)-EGFP), with the CreERT2 enzyme being expressed in the 

whole embryo upon heat shock and foxj1a+ cells changing from a DsRed2+ to a EGFP+ phenotype after 

recombination. 

To generate this transgenic line it was necessary to assemble a Tol2-based plasmid with the 

(foxj1a:DsRed2(floxed)-EGFP) cassette. This was accomplished by first replacing the ntr-EGFP coding 

sequence in plasmid pTol(ef1α:DsRed2(floxed)-ntr-EGFP) for the EGFP coding sequence obtained 

from PCR amplification. The resulting pTol(ef1α:DsRed2(floxed)-EGFP) had the ef1α promoter 

switched for the foxj1a promoter obtained from PCR amplification, originating the final 

pTol(foxj1a:DsRed2(floxed)-EGFP). Figure 1.4 A depicts main events in the cloning process. Positive 

ligation clones were partially sequenced (Supp. Fig. S.1 B and C), confirming both ligation events were 

successful. 

 

Figure 1.4 Molecular cloning scheme of pTol(foxj1a:DsRed2(floxed)-EGFP) plasmid, screening of  injected Tg(hs:mCh-Cre) 
embryos and microinjection statistics. A: The ef1α promoter was switched for the foxj1a promoter and the ntr-EGFP ORF was 

switched for the EGFP ORF, generating the final plasmid. Grey boxes represent promoter regions. B: At 24 hpf, embryos 

containing the injected construct show DsRed2 expression in pronephros, olfactory bulb (not shown here) and floor plate cells. 

Scale bar: 500μm. C: Embryos injected with (ef1α:DsRed2(floxed)-ntr-EGFP) construct show overall DsRed2 expression at 

24 hpf. Scale bar: 500μm. D, E, F: Survival rate (normalized to non-injected survival – see M&M section for details) and 

percentage of positive embryos is heterogeneous and does not follow a clear trend when associated with either DNA or RNA 

concentration or total nucleic acid injected. Each dot/star represents one of the n=14 independent batches of injected embryos. 

Dashed lines connect average Y-axis values for each X-axis category. DNA and mRNA concentrations detailed in M&M 

section. 
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Ligation clone #7 was selected for microinjection into one-cell stage Tg(hs:mCh-Cre) embryos along 

with Tol2 transposase mRNA according to standard techniques. Embryos were screened for the presence 

of the (foxj1a:DsRed2(floxed)-EGFP) cassette at 24 hpf by looking for DsRed2 fluorescence in foxj1a+ 

cells, which could be found in the neural tube floor plate (Fig. 1.4 B), pronephros and olfactory bulbs 

by that developmental stage.  

Injection of this construct presented similar problems to the ones found with pTol(foxj1a:mCherry-T2a-

CreERT2): the number of positive embryos was seldom enough to be worth growing and in many cases 

embryos showed only a very small number of DsRed+ cells. An identical optimization approach was 

undertaken, using 8 combinations of DNA and mRNA concentrations in order to achieve a better yield 

of positive embryos without the toxic effects of high nucleic acid concentration. Figures 1.4 D-F relate 

survival rate of the injected embryos at 24 hpf (when screening for positives was conducted) and 

percentage of positives found in each of the 14 independent injection events to DNA and mRNA 

concentration used, as well as to the total amount of nucleic acid for each injection event. It is clear at 

first that there is no monotonic trend determining embryo survival or transgene integration rate based 

on nucleic acid concentration. Nevertheless, increasing DNA concentrations and decreasing mRNA 

concentrations seem to associate with a higher yield of positives, while an increase of both 

concentrations appears to have a negative impact in transgene integration. Survival rates are generally 

high and heterogeneous but still appear to follow a similar trend to the rate of positives. The general low 

rate of positives (always under 15% in an average of 632 ± 206 injected embryos per event) made it 

difficult to gather in one day at least 30 embryos to grow. The peak on both variables observed in Figure 

1.4 D (34ng.μL-1) corresponds to one of the 4 injection events yielding enough positives; others were 

obtained with 33ng-μL-1 and 37ng.μL-1, to a total of 116 DsRed2+ embryos.  

It was postulated during the optimization process that lack of DsRed2 signal could be due to the fact 

that the protein emission spectrum is only partially captured by the stereo microscope emission filters. 

The original plasmid pTol(ef1α:DsRed2(floxed)-ntr-EGFP) was injected in embryos from the same line, 

using 30ng.μL-1 DNA and 10ng.μL-1 mRNA, to assess if DsRed2 signal could be easily seen with the 

same filters. At 24 hpf, red fluorescence could  be seen throughout the whole embryo (Fig. 1.4 C) in 

65.7% of injected embryos, not only validating this emission filter as ideal for DsRed2 visualization but 

also confirming functionality of the Tol2 transposition sites in the vector backbone. 

In order to determine whether any of the 30 (25.9%) fish that survived to adulthood passed the transgenic 

cassette to the germline and could then be used as a line founder, each of them was crossed to wildtype 

fish and their progeny was observed at 24 hpf. All potential founders were considered negative for 

germline transmission given that DsRed2 fluorescence could not be observed in any of the progeny 

embryos. To ensure that even small rates of germline integration would be detected, only clutches of at 

least 100 embryos were analysed. It was considered that any founder fish with a germline transmission 

rate lower than 1% would not generate in one spawning enough embryos for growing or for lineage 

tracing experiments. 

Contrary to what was done with (foxj1a:mCherry-T2a-CreERT2) potential founders, no further screening 

strategies were attempted for this line given that DsRed2 fluorescence is essential for the lineage tracing 

experiments, being the reporter protein that signals absence of CreERT2-driven recombination. 

 

1.4 Lines for genetic ablation of foxj1a+ cells 

In biology, one classical experimental design used to discover whether one element of a given system 

has an important role, and what that role may be, is to deprive the system of that one element and 
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measure how the system is affected by that loss. This means that to study the functional role of 

ependymal cells in zebrafish spinal cord (SC) regeneration, it is essential to remove these cells from the 

central canal of a regenerating SC. A genetic ablation strategy was employed because it allows specific 

targeting for ependymal cells (with the use of the foxj1a promoter) and temporal control over the cell 

ablation process, which is triggered by delivering a specific drug to the organism. The choice of the 

HSV Thymidine Kinase enzyme was due to the fact that this enzyme is only active in proliferating cells, 

thus ablating only those that respond to injury while maintaining the integrity of the rest of the central 

canal [105]. 

 

1.4.1 Tg(foxj1a:TK-GFP) 

The generation of a transgenic line expressing the thymidine kinase (TK) gene under the control of the 

foxj1a promoter depended on the insertion of TK coding sequence into a Tol2-based plasmid (Fig. 1.5 

A). Using molecular cloning methods and plasmid pG1(ins:TK-GFP), the ins promoter was first 

switched for the foxj1a promoter that had been PCR amplified, generating pG1(foxj1a:TK-GFP). PCR 

amplification of the expression cassette (foxj1a:TK-GFP) was required to insert it into a Tol2-based 

plasmid; several optimization attempts were made using a forward primer for the foxj1a promoter and a 

reverse primer for EGFP, but unspecific amplification could still not be prevented. Despite this setback, 

the fragment of expected size was inserted into the backbone of pTol(ef1α:DsRed2(floxed)-ntr-EGFP) 

and partially sequenced to confirm ligation success. 

Sequencing results revealed that the GFP coding sequence present in this construct did not match the 

EGFP coding sequence present in other plasmids used before, which could explain all the previous 

problems in amplifying this construct. In the Methods section of the publication where the original 

pG1(ins:TK-GFP) was used [113], it is mentioned the use of mmGFP coding sequence to create the 

fusion protein TK-GFP. Since a search in the NCBI nucleotide database did not return any match to this 

particular gene designation, the coding sequence of mmGFP had to be recreated from mGFP5 sequence 

using the method described in [127]. The resulting sequence proved an exact match to the partial 

sequence of pG1(ins:TK-GFP) that had since been obtained by sequencing, confirming mmGFP as the 

gene present in this construct. Alignment of EGFP and mmGFP coding sequences reveals major 

sequence mismatches (data not shown), mostly in the third position of codons, which results in small 

differences in aminoacid composition between the proteins (Supp. Fig. S.2) but explains why a EGFP 

primer did not effectively amplify the mmGFP sequence. For this reason, a reverse primer was designed 

specifically for the 3’ end of mmGFP and used to repeat PCR amplification of (foxj1a:TK-GFP) cassette, 

leading to a second ligation event to the backbone of pTol(ef1α:DsRed2(floxed)-ntr-EGFP).  

Partial sequencing of ligation clone #6 confirmed a successful ligation and the absence of PCR-

introduced mutations, enabling the use of this plasmid for microinjection. Wildtype embryos at one-cell 

stage were used for injection of pTol(foxj1a:TK-GFP) along with Tol2 transposase mRNA and embryos 

were screened at 24 hpf for transgene integration. Positive embryos showed mmGFP expression in a 

few scattered cells matching the known localization of foxj1a+ cells, like pronephros and floor plate cells 

(Fig. 1.5 B). Despite optimization attempts with 5 combinations of DNA and mRNA concentrations, the 

average amount of mmGFP+ cells per embryo remained unchanged. Relative yield of positive embryos 

was also low in all 13 injection events (Fig. 1.5 C-E), never reaching more than 10% in an average of  

700 ± 243 injected embryos per day. 
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Figure 1.5 Molecular cloning scheme of pTol(foxj1a:TK-GFP) plasmid, screening of  injected embryos and microinjection 
statistics. A: The ins promoter was switched for the foxj1a promoter and the whole expression cassette was cloned into a Tol2-

based plasmid backbone, generating the final plasmid. Grey boxes represent promoter regions. B: At 24 hpf, embryos 

containing the injected construct show mmGFP expression in olfactory bulb (not shown here), pronephros (*) and floor plate 

(arrow) cells. Scale bar: 500μm. C, D, E: Survival rate (normalized to non-injected survival – see Materials and Methods 

section for details) and percentage of positive embryos is heterogeneous and does not follow a clear trend when associated with 
either DNA or RNA concentration or total nucleic acid injected. Each dot/star represents one of the n=13 independent batches 

of injected embryos. Dashed lines connect average Y-axis values for each X-axis category. DNA and mRNA concentrations 

detailed in M&M section. 

 

As mentioned in Chapter 1.3 (Results section), injection of pTol(ef1α:DsRed2(floxed)-ntr-EGFP) 

resulted in a high yield of positive embryos with strong DsRed2 signal. Given that this plasmid’s 

backbone was used to insert the construct (foxj1a:TK-GFP), it seemed safe to assume that defective 

Tol2 sites in pTol(foxj1a:TK-GFP) were not responsible for the observed low levels of mmGFP 

expression. Attention was then turned to other sequence features that could interfere with gene 

expression levels [136], namely the Kozak sequence, associated with the targeting of the small ribosomal 

unit to the correct translational start site in a mRNA molecule, and the polyadenylation (poly(A)) signal, 

responsible for 3’ cleavage of mRNA and addition of poly(A) tail preventing premature mRNA 

degradation [137]. Sequencing data from ligation clone #6 revealed the absence of any previously 

described Kozak sequence (Figure S.3 A), including original Kozak and the natural D. rerio variant. 

Moreover, of the two key nucleotides conserved across vertebrate groups, only the G in position +4 is 

found at the start of TK coding sequence (with the other being a purine in position -3 [138]). When 

comparing the sequence downstream of the mmGFP stop codon with available sequences of other 

plasmids, it was also observed that the injected plasmid did not seem to contain a poly(A) signal. A 

BLAST search of the same sequence also failed to identify any polyadenylation signal in that region.  

Codon usage (CU) preference is also known to be associated with transcription rate through the relative 

abundance of charged tRNA isoacceptors for each codon [136, 139]. It was predicted that genes with 

codon usage preferences similar to the general zebrafish CU would be more easily transcribed than 

genes with greater dissimilarities. To measure the level of CU similarity between TK and D. rerio protein 

coding genes, two variables were analysed: the correlation between the relative codon usage (a measure 

of how often a given codon was used among all codon for that aminoacid) of all TK and D. rerio codons 

(Supp. Fig. S.3 B-G) and the codon usage preference score (CUPS), which shows the fraction of 

aminoacids sharing a similar CU between TK and D. rerio. The same comparisons were made between 

D. rerio CU and mmGFP, EGFP, DsRed2 and mCherry; zebrafish β-actin1 (actb1) gene was also added 

for reference as a housekeeping gene. Surprisingly, TK and mmGFP genes proved to be the genes with 

higher similarities to the overall zebrafish codon usage (Supp. Fig. S.3 B, C), both with a higher score 

in CUPS than even endogenous β-actin1 (Supp. Fig. S.3 G). Conversely, genes coding for proteins that 
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had already shown a high expression level in zebrafish, like EGFP (Supp. Fig. S.3 D), score very low 

on codon usage preference and show minimal correlation to zebrafish CU. This results may mean that, 

for zebrafish transgenesis, codon usage is not a critical factor in determining expression levels of 

heterologous genes. It was later found that hydrolysis of pTol(ef1α:DsRed2(floxed)-ntr-EGFP) for the 

cloning procedure had unintentionally removed the poly(A) signal of said plasmid, which likely 

explained the low number of EGFP+ cells. 

In any case, even though codon usage preferences do not seem to favour a slower transcription rate for 

either TK or mmGFP, it was considered that a construct without a Kozak sequence and a poly(A) signal 

would not be able to sustain an adequate level of transgene expression for the intended cell ablation 

experiment. The use of (foxj1a:TK-GFP) construct was therefore rejected in favour of a new strategy 

for expression of the TK gene in foxj1a+ cells. 

 

1.4.2 Tg(foxj1a:TK-T2a-EGFP) 

A new strategy to generate a transgenic line expressing the TK protein in foxj1a+ cells depended on the 

creation of a different construct containing the best possible features for transgene integration and 

expression. Construct (foxj1a:TK-T2a-EGFP) was then designed bearing in mind the need to include 

the natural variant of D. rerio Kozak sequence flanking the TK start codon, as well as using a plasmid 

backbone with reliable Tol2-recognition sequences and a good poly(A) signal (pTol(foxj1a:EGFP) 

plasmid). To remove potential problems in protein folding and function arising from a fusion of TK with 

a fluorescent reporter protein (as was the case in the previous construct), coding sequences for both 

proteins were separated by the sequence for the self-cleaving peptide T2a, which also ensures they are 

produced in equimolar amounts. EGFP was chosen as the fluorescent reporter given that this particular 

sequence had already proved to result in high protein expression levels under the control of the foxj1a 

promoter. 

To assemble the three coding sequences forming the (TK-T2a-EGFP) ORF, a series of fusion PCR [114, 

115] reactions was set up as depicted in Supp. Figure S.4. Fusion PCR is a technique that allows joining 

of DNA sequences without the use of restriction enzymes, by adding to the amplified sequences a stretch 

of nucleotides that is complementary between those sequences, allowing them to be joined in a second 

PCR reaction. Supp. Figure S.4 depicts the method applied to this particular construct, in which a first 

set of reactions was used to amplify individual coding sequences and the following two reactions were 

used to join them in the intended order. The complete sequence was then cloned into pTol(foxj1a:EGFP) 

after removal of its EGFP coding sequence, thus creating pTol(foxj1a:TK-T2a-EGFP) (Fig. 1.6 A). 

Positive ligation clones were partially sequenced, confirming ligation success (Supp. Fig. S.1 D). 

Ligation clone #11 was selected for injection into one-cell stage wildtype embryos along with Tol2 

transposase mRNA and at 24 hpf embryos expressing EGFP in pronephros, floor plate and olfactory 

bulb cells were identified by fluorescence stereo microscopy (Fig. 1.6 C-D). Of the 5 independent 

injection events, only one exceeded the established minimum of positive embryos for growing, resulting 

in 52 (12.4%) EGFP+ embryos injected with 30ng.μL-1 DNA and 25ng.μL-1 mRNA. Other injection 

events, using higher and lower nucleic acid concentrations, yielded from 0.0% to 10.8% of positives in 

an average of 514±367 injected embryos per day.  

At 5 dpf, the same 52 larvae were observed again to confirm transgene expression before being 

transferred to the main aquaria system for growing. However, this second observation revealed that in 

four days these larvae had lost most of their initial EGFP expression (Fig. 1.6 B, G), with only 6 larvae 

retaining some green-labelled cells. In fact, detection of EGFP+ cells was only possible using higher 
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magnifications, and these seemed to reside now in the posterior-most part of the brain, with no cells 

being observed either in the spinal cord or olfactory bulbs. Interestingly, larvae that had been injected 

with a much lower mRNA concentration show similar levels of EGFP expression at 5 dpf (Fig. 1.6 F), 

despite having had much fewer positive cells at 24 hpf (Fig. 1.6 C) than embryos injected with more 

nucleic acid (Fig. 1.6 D). The ratio of positive embryos is also unaltered from 24 hpf to 5 dpf (Fig. 1.6 

B). These results suggested that, contrary to what had been thought, transposase mRNA might not be 

promoting genome integration. Moreover, this could mean that reporter expression levels at 24 hpf may 

not be considered a reliable measure of transgene integration, thus not an adequate criterion for selection 

of positives. To understand whether this could be due to an undetected problem with the plasmid 

backbone (namely with Tol2 recognition sequences) or with transposase translation or function, plasmid 

pTol(foxj1a:EGFP) was injected in one-cell stage embryos from the same wildtype line, using the lower 

DNA and mRNA concentrations from before (25ng.μL-1 and 5ng.μL-1, respectively), and embryos were 

observed at 24 hpf and as 5 dpf larvae.  

 

Figure 1.6 Molecular cloning scheme of pTol(foxj1a:TK-T2a-EGFP) plasmid, microinjection statistics and screening of 
embryos injected with (foxj1a:TK-T2a-EGFP) or (foxj1a:EGFP) constructs. A: The (TK-T2a-EGFP) coding sequence was 

inserted into a Tol2-based plasmid that retained the foxj1a promoter, generating the final plasmid. Grey boxes represent 

promoter regions. B: Injection of higher mRNA concentration yields more positives at 24 hpf for the (foxj1a:TK-T2a-EGFP) 

construct but at 5 dpf this number is equal to the obtained with low concentrations. (foxj1a:EGFP) construct yields the highest 

positive rate even at low mRNA concentrations. Absolute number of positives displayed above each column. C-H’: Screening 

of injected embryos. Embryos injected with low mRNA concentration (C, C’) show fewer EGFP+ cells (arrow) than when 

injected with higher concentrations (D). At 5 dpf, larvae from both situations (F, low; G, high) retain similar low numbers of 

EGFP+ cells (arrow). Embryos injected with low mRNA concentrations and (foxj1a:EGFP) construct display stronger 
widespread labelling of foxj1a+ cells from 24 hpf (E) until 5 dpf (H, H’), including in floor plate (arrow) and olfactory bulb (*) 

cells. C’ and H’ show boxed areas of C and H respectively. C, C’, D, F and G show merged images from green channel and 

darkfield. Scale bar: 500μm. 

 

When observed at 24 hpf, embryos injected with (foxj1a:EGFP) construct present strong EGFP signal 

in cells from the floor plate (Fig. 1.6 E) and olfactory bulbs, with pronephros labelling being evident in 

some cases. Contrary to construct (foxj1a:TK-T2a-EGFP) injected previously, EGFP labelling is found 
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in the majority of floor plate foxj1a+ cells, highlighting the whole structure from the posterior-most part 

of the brain to the end of the tail. This plasmid was also able to yield a higher number of positives, with 

36.9% of the 478 injected embryos being EGFP+ (Fig. 1.6 B); it is worth noting that this was the highest 

expression efficiency ever obtained among all the injected constructs. Four days later, the larvae were 

observed for the second time and it was visible that EGFP expression was still present in the structures 

identified at 24 hpf in most larvae (Fig. 1.6 B, H, H’). Despite the appearance of some foxj1a– structures 

also expressing EGFP (which is a common artefact found when injecting some plasmids), floor plate 

and olfactory bulb cells can be easily identified by a strong green fluorescence, thus confirming the 

injected construct is still expressed five days after injection. These observations indicate that the 

(foxj1a:EGFP) cassette has probably been inserted in these embryos’ genomes upon injection, 

depending by necessity on the Tol2 transposase mRNA that was co-injected. Given that the same mRNA 

concentration was unable to sustain a similar level of transgene integration with the (foxj1a:TK-T2a-

EGFP) cassette, it can be assumed that transgenesis efficiency is being limited by the injected DNA and 

not by the quality of the mRNA or its protein product. The reasons leading to this discrepancy between 

two constructs that share the same plasmid backbone are not clear. Nevertheless, it seems clear that the 

level of transgene integration obtained with this plasmid may not result in a sufficient number of positive 

embryos for the cell ablation experiment or for the generation of a transgenic line. 

 

 

2. CreERT2 activation with 4-OHT 

The role of ependymal cells during spinal cord regeneration can be studied by the genetic labelling of 

foxj1a+ cells and subsequent tracing of their progeny, making use of one of the CreERT2/LoxP transgenic 

zebrafish lines [140, 141] mentioned before. Each of these lines would be composed of two main 

expression cassettes: a reporter construct, consisting of two ORFs for different fluorescent proteins in 

which the first would be flanked by LoxP sites, and a driver construct, coding for a version of Cre 

recombinase (CreERT2) that is able to promote recombination only upon activation with 4-OHT [106]. 

Thus, to ensure the success of lineage tracing experiments, and since previous attempts with this strategy 

were not fortunate, a protocol for efficient CreERT2 activation had to be formulated. Optimization was 

conducted in embryos or larvae of different transgenic lines given that drug access to tissues would be 

more difficult in adult fish and also because embryos are easier to obtain in larger numbers.  

 

2.1 Recombination in the whole embryo: Tg(hs:mCh-Cre)xTg(hs:Red2Green) 

Activation of CreERT2 is known to occur in a mosaic fashion, with the recombination rate of CreERT2+ 

cells never reaching 100% [30]. Thus, to improve the likelihood of observing even small recombination 

rates, CreERT2 activation was attempted in embryos that express both the reporter and the driver 

constructs in the majority of their cells. Embryos obtained from mating of Tg(hs:mCh-Cre) with 

Tg(hs:Red2Green) fish were subject to heat shock to promote expression of CreERT2 at 7 hpf. At 24 hpf 

(16h after the heat shock) mCherry expression was confirmed by fluorescence microscopy and embryos 

were treated with 4μM, 8μM or 10μM 4-OHT and left at 33ºC in the dark for 6h. In a second group of 

embryos treated with 8μM 4-OHT there was addition of pronase to promote embryo release from the 

chorion and thus investigate if the chorion posed a substantial barrier to drug diffusion. Two negative 

controls were also performed: a control for the function of CreERT2, with embryos from the same batch 

that did not express any red fluorescent protein after heat shock (mCh-Cre– Red2Green–) being treated 

in the same conditions as test embryos, and a control for the function of 4-OHT, with the same embryos 
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used for testing but using EtOH instead of the drug. To induce expression of the reporter proteins, a 

second heat shock was performed at the end of the 6h of 4-OHT treatment. 

At 48 hpf embryos were observed again, and this time it was possible to detect several EGFP+ cells in 

most treated embryos with all 4-OHT concentrations, indicating that CreERT2-mediated recombination 

had occurred. In order to improve visualization and confirm that the observed green fluorescence was 

in fact generated by EGFP proteins, embryos were immediately fixed and processed for 

immunochemical detection of EGFP. 

Figure 2.1 4-OHT treatment was tested in Tg(hs:mCh-Cre)xTg(hs:Red2Green) embryos after heat-shock induced CreERT2 

expression. Negative controls for the transgenes (CreERT2– DsRed2– with 4μM 4-OHT)(A, B) and for the drug (CreERT2+ 

DsRed2+ without 4-OHT)(C, D) show absence of Cre-mediated recombination. Embryos treated with 4μM 4-OHT (E, E’) 

show fewer recombined EGFP+ cells than embryos treated with 8μM (F, F’), or with 8μM+pronase (G, G’), with the latter 

showing the highest recombination efficiency. Treatment with 10μM was heterogeneous, resulting in low (I), medium (H, H’) 

and high (J) recombination efficiencies. E’, F’, G’ and H’ show zoomed areas of embryos treated with the same conditions as 

E, F, G and H respectively. All embryos show red fluorescence similar to C. All pictures depict 48 hpf embryos processed for 

immunochemical detection of EGFP. Scale bar: 500μm. 

 

Figure 2.1 depicts representative images of embryos from each treatment, along with both controls, 

confirming that EGFP+ cells are present in embryos from all treatment groups. Recombined cells were 

found in different tissues throughout the body of the embryos, both deep and superficial. It was also 

observed that the activation effect of 4-OHT increased as drug concentration doubled from 4μM (Fig. 

2.1 E, E’) to 8μM (Fig. 2.1 F, F’), as was expected, and was further enhanced by addition of pronase 

(Fig. 2.1 G, G’). In fact, even though embryos treated with 10μM 4-OHT showed variable amounts of 

EGFP+ cells (Fig. 2.1 H-J), with some similar to 4μM treated embryos (Fig. 2.1 I), they never reached 

the maximum level of recombined cells visible in embryos treated with 8μM+pronase. Nevertheless, a 

concentration of 10μM 4-OHT resulted in a higher total number of embryos showing recombined cells 

than treatment with 8μM+pronase. Both negative controls showed that in absence of CreERT2, reporter 

protein or 4-OHT there was no phenotype switch from DsRed2+ to EGFP+  (Fig. 2.1 A-D) (green spots 

in Figure 2.1 D are artefacts introduced by the processing of embryos for antibody staining). 

This assay confirmed for the first time in this lab the functionality of a CreERT2 driver line to perform 

recombination of LoxP sites and generate a phenotype switch. Using this protocol as a starting point, it 

may then be possible to achieve recombination of foxj1a+ cells in other transgenic lines. 
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2.2 Recombination in foxj1a+ cells: Tg(ubi:Switch)x(foxj1a:CreERT2; cmlc2:EGFP) 

After finding a protocol that effectively led to CreERT2 activation, it was necessary to test it in one of 

the lineage tracing transgenic lines, and adapt it if required. Adult fish carrying both constructs 

(ubi:Switch) and (foxj1a:CreERT2; cmlc2:EGFP) were already available (see Chapter 1.1, Results 

section) so embryos were obtained from incross of these fish. Double positives were selected at 24 hpf, 

treated with 10μM 4-OHT and pronase to improve drug accessibility and kept at 33ºC in the dark. 

Following reports that this drug takes approximately 2 hours to promote CreERT2 activation and 

recombination but fluorescent protein expression and maturation may need 90 minutes to 4 hours [142], 

observation was first conducted 6h after 4-OHT addition to the medium and again at 48 hpf. However, 

detection of DsRed2+ cells was never possible (data not shown). 

 

 

 

 

 

 

 

Figure 2.2 4-OHT treatment was tested in Tg(ubi:Switch)x(fox:CreERT2; cmlc2:EGFP) larvae after SCI. A, A’: SCI was 

performed in 5 dpf larvae by transecting the spinal cord (SC) without affecting the whole width of the notochord. B, B’:  At 1 

dpl cell proliferation at the lesion site had created a blastema that would lead to wound closure and tissue regeneration. A’ and 

B’ show boxed areas of A and B respectively. A and B show merged images from green channel and darkfield. Scale bar: 

500μm. 

 

Because the CreERT2 enzyme was only expressed in foxj1a+ cells, it was possible that recombination 

was occurring at a rate too low to be detected. It has been described that one of the hallmarks of spinal 

cord ependymal cell reaction to injury is a strong proliferative response [91]. Therefore, one way to 

invoke a proliferative response in foxj1a+ cells, thus increasing the likelihood of detecting recombined 

cells, would be to inflict a spinal cord injury (SCI) before treatment with 4-OHT. To accomplish this, 

double transgenic embryos from an incross of the same founder fish were selected and as 5 dpf larvae 

they were subjected to SCI according to standard techniques (Fig. 2.2 A, A’). Immediately after the 

surgery, larvae were transferred to medium with 10μM 4-OHT and kept at 33ºC in the dark, this time 

for 4h30min due their higher fragility. At 6 dpf larvae were observed and, while no recombination was 

detected, it seemed that the regeneration process had not been affected by treatment conditions (Fig. 2.2 

B, B’). Regenerating larvae were incubated in 10μM 4-OHT at 33ºC for a second time, but observation 

at 7 dpf did not reveal the presence of any DsRed2+ cells, indicating that the protocol used is not efficient 

in promoting CreERT2 activation in this line. Given that foxj1a+ cells reside deep within the larvae it 

may be a problem of drug accessibility to the tissue, which could be solved by using a permeabilization 

agent other than DMSO or in higher concentrations; raising 4-OHT concentration may not be advisable 

since 10μM has been described as the maximum non-toxic concentration [107, 142]. On the other hand, 

the negative results observed in this experiment could be due to an intrinsic problem of this transgenic 

line, which had already been used by others with little success, thus prompting the need to try variations 

of this protocol in other lines that use a different CreERT2 construct.  
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Discussion 
 

Spinal cord injury is a debilitating condition to which there is yet no cure or effective treatment. In 

contrast to mammals, the zebrafish displays remarkable regeneration capacities that are being studied in 

order to find key features that can be activated or inactivated in humans to promote functional recovery. 

This is only possible due to the existent structural similarities between D. rerio and mammalian models, 

such as the presence of ependymal cells lining the central canal of the SC that derive from similar 

precursors in both models and exhibit hallmark features of NSC (in vivo in zebrafish, in vitro in 

mammals). Understanding how EC are able to generate new neurons and promote axonal regeneration 

after a SCI in fish can give invaluable insight into how endogenous human EC can potentially be 

manipulated to obtain the same functional output. 

Zebrafish ependymal cells are multiciliated and therefore can be identified by the expression of Foxj1a 

transcription factor. The major aim of this work was to generate transgenic fish lines that used this 

marker to label spinal cord EC and track and identify their progeny after a SCI and, in a parallel manner, 

to ablate proliferating EC responding to injury and determine their role in regeneration. A widely used 

method for transgene integration, the Tol2 system [117], was chosen to generate transgenics. This 

method relies on the co-injection in one-cell stage embryos of a donor plasmid, carrying the desired 

construct between Tol2 recognition sequences, and mRNA for the Tol2 transposase; the enzyme is 

translated inside the early embryo and catalyses the transposition of the construct from the donor plasmid 

to the embryo genome. Germline transmission depends on this transposition event occurring early in 

development so that the primordial germ cells (PGC) already carry this insertion and can pass it to their 

progeny, the germ cells [143]. In this work, five separate constructs were injected along with transposase 

mRNA in order to produce transgenic fish, of which: the (foxj1a:TK-T2a-EGFP) did not yield enough 

positive embryos for growing, the (foxj1a:TK-GFP) resulted in almost imperceptible levels of transient 

expression, the (foxj1a:DsRed2(floxed)-EGFP) did not produce any founders and the (foxj1a:mCherry-

T2a-CreERT2) resulted in inconclusive founder screening. Only with the construct (foxj1a:CreERT2; 

cmlc2:EGFP) was it possible to obtain an adequate rate of positive injected embryos that were grown 

and passed the transgene to their offspring. Nevertheless, the success rate of this transgenesis was below 

that expected for the Tol2 system, which has been reported to result in 50-70% of founders and a 

germline transmission rate between 3 and 100% among the injected embryos using much lower DNA 

and mRNA concentrations [116] (against 15.7%  and 2-33% observed in this work, respectively).  

For the four other constructs several optimization attempts were made to improve both the level of 

transient transgene expression and the number of positive embryos, adjusting DNA and mRNA 

concentrations in the range of 10-37.5ng.μL-1 and 5-27.5ng.μL-1 respectively. It was found that each 

construct had a different optimal concentration for each variable (DNA or mRNA concentration or total 

nucleic acid) and that survival rate and percentage of positives could not always be predicted from the 

same variable (Figures 1.2, 1.4, 1.5). In fact, both percentages were highly fluctuating even for the same 

value of DNA or mRNA concentration or total nucleic acid, suggesting the role of an unknown 

stochastic factor (such as egg quality) that could not be eliminated by normalizing survival rates. 

Differences between constructs can also be attributed to the fact that injected embryos possessed distinct 

genetic backgrounds which could confer separate receptivity and sensitivity to transgenesis. 

Nevertheless, the number and quality of positive embryos remained unsatisfactorily low and could not 

be justified in some constructs. Sequencing results revealed no mutations either in promoter regions or 

in the coding sequences of (foxj1a:mCherry-T2a-CreERT2) and (foxj1a:DsRed2(floxed)-EGFP), also 

confirming the success of ligation procedures (Supp. Fig. S.1). Injection of (ef1α:DsRed2(floxed)-ntr-
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EGFP) as a positive control (Fig. 1.4 C) also dismissed concerns that construct size might be impairing 

transposition (this construct is longer than any of the others) or that (foxj1a:DsRed2(floxed)-EGFP) was 

not being integrated into the genome due to undetected mutations in Tol2 recognition sequences (these 

constructs share the same backbone). Additionally, Tol2 mediated transgenesis ensures that only a single 

copy of a construct is inserted in a given locus [144], preventing transgene silencing that is known to 

occur when transgenes are inserted in concatamers [61, 145] or when there are several copies of the 

promoter [146].  

Low GFP expression obtained with injection of (foxj1a:TK-GFP) construct was also investigated by 

looking at sequence features known to impact translation rate (Supp. Fig. S.3). Codon usage (CU) is 

known to not be random but, on the opposite, to present specific frequencies depending on the taxon, 

including at the species level [139, 147]. Therefore, it was hypothesized that coding sequences whose 

codon usage presented more dissimilar to the Danio rerio codon usage (obtained from analysis of all 

known protein coding genes [130]) would be translated at a slower rate in zebrafish, with a potential 

negative impact on protein expression levels. Examination of the relationship between mmGFP and D. 

rerio CU did not expose the differences expected for an impairment in protein translation when 

compared with an endogenous housekeeping zebrafish protein coding gene (β-actin1), which presented 

more differences to D. rerio CU than mmGFP did (CUPS score of 16/18 for mmGFP and 9/18 for β-

actin1). The same analysis was extended to the rest of the sequences coding for fluorescent proteins 

used in this work, with another unexpected result arising from the EGFP sequence. While EGFP was 

by far the gene that showed the best foxj1a expression pattern when injected ((foxj1a:EGFP) construct, 

Fig 1.6 E), CU comparisons resulted in a CUPS score of only 3/18 (very few similarities in CU). On 

one hand, this result may mean that, despite not being “finely tuned” to the zebrafish codon usage, EGFP 

coding sequence can still be translated at an adequate rate and, conversely, impairment of mmGFP 

expression is due to other factors (see further below). On the other hand, these results may reflect an 

incorrect approach to CU comparisons. One of the main theories explaining codon usage evolution 

posits that it is biased towards the use of synonymous codons for which there is a higher abundance of 

isoaccepting tRNAs, while at the same time diminishing the frequency of codons for which there are 

less tRNAs (translational selection) [147-149]. Logically, it follows that if such selection exists then 

highly expressed and more essential genes will display a CU more biased towards tRNA abundance than 

less expressed genes [136, 147, 150]. In this perspective, only the codon usage of these highly expressed 

genes will be optimized to produce high protein expression levels, thus being the preferred comparison 

to the coding sequences under study. In fact, more than one platform has been created to optimize coding 

sequences relative to the CU of highly expressed genes of a given organism [136, 150]. The approach 

used in this work would have been more appropriate to compare two individual coding sequences, as 

was done by Plotkin et al [139] to show that tissue-specific genes differ in CU from genes of other 

tissues. The Kozak sequence is also known to impact gene expression due to its role in signalling the 

initiation codon [137, 151]. The original sequence compiled by Marilyn Kozak in 1987 was obtained 

mainly from analysis of mammalian genes; only recently have individual organisms’ genomes been 

studied for the occurrence of natural Kozak sequence variants [152]. In particular, D. rerio natural 

variant was found to be more abundant and almost twice as efficient as the original Kozak sequence for 

promoting translation initiation of exogenous genes in zebrafish. Analysis of the 5’ UTR of the (TK-

GFP) coding sequence revealed the absence of a sequence with Kozak-like features (Supp.Fig. S.3 A), 

namely a correct alignment to either the original Kozak or the D. rerio variant in the positions closer to 

the starting ATG or the presence of a purine in position -3 (considered a critical component of any Kozak 

sequence [138]). In vivo studies have shown that a translational start site consisting of a non-Kozak 

sequence lead to a measurable impairment in translation efficiency and protein expression levels [152]; 

it is then expected that a construct without a Kozak sequence, such as the (foxj1a:TK-GFP) construct, 
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would show reduced expression levels. Finally, it was found by further sequencing that plasmid 

pTol(foxj1a:TK-GFP) lacked a transcription termination and polyadenylation (poly(A)) signal, 

inadvertently removed during cloning procedure. The role of poly(A) signals in transcription termination 

and mRNA processing has been long known [153], and functions such as mRNA stabilization and 

promotion of translation initiation are essential to ensure an adequate level of protein expression [154, 

155]. In that view, a construct intended for heterologous expression that does not possess a poly(A) 

signal will probably result in very low expression levels, such as the ones observed after injection of 

pTol(foxj1a:TK-GFP). Compared to the other reasons presented before, it is likely that lack of a poly(A) 

signal is the major obstacle preventing correct expression of TK-GFP fusion protein. In contrast, 

constructs (foxj1a:mCherry-T2a-CreERT2), (foxj1a:DsRed2(floxed)-EGFP) and (foxj1a:EGFP) were 

confirmed for the presence of both Kozak sequence and poly(A) signal for each ORF. 

The construct (foxj1a:TK-T2a-EGFP) is a particular case in which transient expression after injection 

(at 24 hpf) proved successful but was lost at 5 dpf (retained only in 11.5% of initially detected larvae 

and in a very restricted domain) (Fig. 1.6). Previous studies have shown that one day after injection up 

to 50% of the inserted DNA has still resisted degradation, persisting extrachromosomally and potentially 

contributing to the observed expression [145, 156]. However, it is arguable whether a relevant fraction 

of the initial injected DNA that was not integrated still persists after five days and is capable of sustaining 

considerable expression levels; for this reason, it was considered that 5 dpf expression derives from 

transgene copies integrated into the host genome. From this perspective, it appeared that the efficiency 

of transgene integration (seen by expression at 5 dpf) was independent of the transposase mRNA 

concentration used, despite transient expression levels being higher when more mRNA was injected. 

This pointed to a failure in the transposition mechanism, either on the part of the construct or of the 

enzyme. Injection of pTol(foxj1a:EGFP) as a positive control suggests the transposase is functional, 

given that reporter expression remains high at 5 dpf. However, sequence features of the (foxj1a:TK-T2a-

EGFP) construct were planned during its construction so that it should be capable of sustaining adequate 

reporter expression. This plasmid contains Tol2 recognition sequences, promoter sequence, EGFP 

coding sequence and poly(A) signal derived from plasmid pTol(foxj1a:EGFP) (used as a positive 

control throughout this work) as well as the zebrafish Kozak sequence variant; the T2a peptide sequence 

is the same as in Tg(hs:mCh-Cre) embryos, in which both mCherry and CreERT2 are expressed and 

functional (see further below and Chapter 2.1 of Results section). Additionally, the whole ORF and 

ligation sites of pTol(foxj1a:TK-T2a-EGFP) were sequenced before injection and no mutations were 

detected, supporting 24 hpf observations in which there was EGFP expression in foxj1a+ cells.  

Ultimately, it was possible to obtain enough positive embryos from injection of (foxj1a:DsRed2(floxed)-

EGFP) and (foxj1a:mCherry-T2a-CreERT2) constructs, which were grown to adulthood. While no 

founders were obtained with the first construct, results from the second one were not conclusive. The 

first screening approach (looking for mCherry fluorescence in F1 embryos) indicated that there had been 

no germline transmission in any of the potential founders. However, it was possible that the construct 

was present and being expressed in F1 embryos without detectable mCherry fluorescence, as observed 

by others [135]. Alternative screening approaches were then applied, revealing conflicting results (Fig. 

1.3). PCR detection of the CreERT2 coding sequence performed on DNA extracted from F1 embryos 

revealed the presence of  the transgene in progeny of two couples of potential founders, suggesting that 

at least two of these fish passed the transgene to their germline. However, there was also unforeseen 

amplification thought to derive from other unknown genomic regions (since the primers used have 

partial sequence similarity to the zebrafish genome), bringing into question the identity of the CreERT2-

sized amplicon observed. CreERT2 transcription was analysed separately by WISH and RT-PCR: while 

the first revealed the presence of CreERT2 expression in the great majority of foxj1a+ cells in a fraction 

of F1 embryos (consistent with an expected low germline transmission rate, as observed with the 
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(foxj1a:CreERT2; cmlc2:EGFP) construct), it was not possible to detect the presence of CreERT2 

transcripts using RT-PCR. However, one of the positive controls may indicate this negative result as a 

consequence of the lower detection threshold (or sensitivity) of the method. When RNA was extracted 

from Tg(hs:mCh-Cre) embryos that had been subjected to heat shock-induced expression of CreERT2, 

the band resulting from RT-PCR was very faint compared to the other positive control (a plasmid 

containing the CreERT2 coding sequence). If this reflects accurately the level of CreERT2 expression in 

these embryos, which occurs in the great majority of cells after a heat shock, then the amount of CreERT2 

mRNA produced by positive F1 test embryos (in foxj1a+ cells only) may be so low as to be undetectable 

by this RT-PCR protocol. Overall, these screening methods suggest that some of the potential founder 

fish may have passed the transgene to their germline, and these F1 embryos could be used to establish a 

stable line. Still, a fast identification of founders requires methods that can be easily applied with no 

doubt as to their results, contrary to the ones described above. Furthermore, since these methods involve 

killing the embryos, lineage tracing experiments would have to be conducted without screening them, 

leading to the use of a much higher number of embryos to ensure a minimum amount of positives in 

each batch. This problem would be minimized with the establishment of the transgenic line, when all 

fish would be hemizygous and 75% of the progeny from an incross would carry the transgene. However, 

the time required to establish a transgenic line with these screening methods would be too long to allow 

generation of results to be included in this work. 

Overall, it is clear that the simple, straightforward Tol2 method for generation of transgenics in zebrafish 

did not yield the expected results, and the transgenic lines necessary for lineage tracing and cell ablation 

experiments could not be obtained. One of the main reasons for this, the low germline transmission rate, 

could in the future be overcome by the addition of the nanos1 3’ UTR to the transposase mRNA, which 

has been observed to promote mRNA accumulation in PGC [157]. As a result, recombination in PCG 

is increased and germline transmission rates rise. Still, one of the drawbacks of the Tol2 system is that 

transgene insertion can happen in any region of the host genome, being affected by the chromatin 

dynamics of that site [156]. In practice, this means that different F0 organisms injected with the same 

construct often display significant levels of variability in transgene expression pattern and level and 

even transgene silencing [62, 158]. Recently, a novel method for zebrafish transgenesis was developed 

in which a phage integrase can be targeted for a desired genome sequence [62, 158]. This method has 

been used for Drosophila transgenesis with great success for more than a decade but depends on the 

previous establishment of several “recipient” lines, containing the phage integration site in specific 

genomic regions. The future development of recipient zebrafish lines will facilitate the generation of 

transgenics with this new site-specific integration method, overcoming the undesirable position effects 

resulting from Tol2 transposition. 

 

For the lineage tracing experiment, all three different lines designed to permanently label foxj1a+ cells 

and their progeny relied on the CreERT2/LoxP system. Adding to the known properties of conditional 

expression of conventional Cre/LoxP technology, the fusion of a modified version of the oestrogen 

receptor (ERT2) to Cre makes the system inducible, since it is necessary to add tamoxifen (or its 

metabolite 4-OHT) for CreERT2 to be translocated to the nucleus and promote recombination [106, 159]. 

This system has been used in zebrafish to promote inducible and conditional gene expression [64, 160, 

161], but so far it had not been possible to activate CreERT2-mediated recombination with 4-OHT in this 

lab. The first attempt to obtain a functional protocol was performed in double transgenic embryos that 

expressed both the Cre-driver construct and the reporter construct in the majority of cells after heat 

shock induction (Tg(hs:mCh-Cre)xTg(hs:Red2Green)). The protocol consisted in 4-OHT application 

16h after induction of CreERT2 expression, followed by a second heat shock to promote a second wave 
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of expression from the reporter gene (DsRed2 before recombination and EGFP afterwards). 

Recombination efficiency increased as 4-OHT concentration was raised and it was noted that removal 

of the chorion with pronase further enhanced this effect by improving drug accessibility to tissues (Fig. 

2.1). Nevertheless, the best results obtained (with 8μM 4-OHT plus pronase) indicate that recombination 

efficiency was probably lower than previously reported even with inferior 4-OHT concentrations [162], 

given that recombined cells can almost be individualized at any plane of focus (showing that they are 

few compared with all embryo cells). Despite the success of this protocol in this specific line, attempts 

to promote recombination in foxj1a+ cells of embryos carrying the (ubi:Switch) and 

(foxj1a:CreERT2;cmlc2:EGFP) constructs (F1 of identified founders) were fruitless, even after foxj1a+ 

cell proliferation was induced by SCI (Fig.2.2). It is possible that a low recombination rate resulted in a 

DsRed2 signal below the threshold of visual detection, even though a small number of EGFP+ cells had 

been detected before, after injection of some constructs (Fig.1.6). However, it is also possible that 

recombination in these cells has failed, either due to problems in enzyme activity or in CreERT2 

expression. Chromatin dynamics are known to be closely associated with transcription status (activation 

vs repression), with chromatin modulation factors (such as DNA methyltransferases and histone 

methyltransferases and acetyltransferases) working synergistically with promoter sequence binding 

proteins to activate or prevent transcription [163-165]. The construct (foxj1a:CreERT2; cmlc2:EGFP) 

includes coding sequences whose expression is driven by promoters that are not active in the same cell 

type at any time (cmlc2 is specific of cardiac muscle cells [166], which are not multiciliated, therefore 

not expressing foxj1a). It is then conceivable that foxj1a+ cells may be repressing cmlc2 expression by 

imposing a state of compressed chromatin to any loci possessing the cmlc2 promoter, in this case the 

endogenous cmlc2 locus and the construct insertion site. Such a repressive state would make the foxj1a 

promoter present in the inserted construct also inaccessible to its cognate transcription factor. 

Assessment of CreERT2 transcription status in these embryos (by RT-PCR for instance) is then necessary 

to determine whether this line may be used for further optimization of 4-OHT mediated CreERT2 

activation and lineage tracing experiments. 

Given the impossibility to generate functional transgenic lines in this work, further studies will be 

necessary to obtain biological tools with which to understand the role of foxj1a+ cells in the zebrafish 

spinal cord regeneration. 
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Appendix  
 

I. Restriction enzymes  

Table S.1 Designation and features of restriction enzymes used for molecular cloning steps 

Enzyme 
Restriction site 

(5’  3’) 
Cleavage ends  

Incubation 

temperature 
Brand 

ApaI GGGCC^C Cohesive 25ºC Promega 

AscI GG^CGCGCC Cohesive 37ºC NEB 

BamHI G^GATCC Cohesive 37ºC NEB 

ClaI AT^CGAT Cohesive 37ºC NEB 

FseI GGCCGG^CC Cohesive 37ºC NEB 

HindIII A^ACGTT Cohesive 37ºC NEB 

SmaI CCC^GGG Blunt 25ºC NEB 

XhoI C^TCGAG Cohesive 37ºC Promega 

 

 

 

 

II. Microinjection 

Table S.2 Microinjection conditions for each line 

Construct Injected into line… 

[DNA] 

(ng.μL-1) 

[mRNA] 

(ng.μL-1) 

foxj1a:CreERT2; cmlc2:EGFP 

(generated by José Ramalho, 

FMUNL) 

Tg(ubi:Switch) 30 5 

foxj1a:mCherry-T2a-CreERT2 Tg(hs:Red2Green) 10, 20, 25, 30, 33, 37.5 5, 10, 15 

foxj1a:DsRed2(floxed)-EGFP Tg(hs:mCh-Cre) 30, 33, 34, 35, 37 5, 6, 7, 15, 20 

foxj1a:TK-GFP AB 30, 32, 33, 35 5, 6, 7, 15 

foxj1a:TK-T2a-EGFP AB 25, 30, 35 5, 10, 25, 27.5 

ef1α:DsRed2(floxed)-ntr-EGFP AB 30 10 

foxj1a:EGFP AB 25 5 
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III. Oligonucleotide primer sequences  

Table S.3 Designation and features of oligonucleotides used for PCR amplification and/or sequencing 

A. Primers for DNA amplification 

Reference  

number Designation Sequence (5’ 3’) Tm (ºC) Features 

A1* foxj1a-For-ApaI CGCGGGGCCCTGTGTGTGTGTTTGAGAAGC 58 
5’: CGCG; ApaI 

restriction site 

A2* foxj1a-Rev-FseI GCGCGGCCGGCCAGTGGTAGTTGATGGTCAGCAG 66 
5’: GCGC; FseI restriction 

site 

A3* EGFP-For-SmaI CGCGCCCGGGATGGTGAGCAAGGGCGAGGAGC 72 
5’: CGCG; SmaI 

restriction site 

A4* EGFP-Rev-AscI GCGCGGCGCGCCTTACTTGTACAGCTCGTCCATGC 68 
5’:GCGC; AscI restriction 

site 

A5* foxj1a-For-XhoI CGCGCTCGAGTGTGTGTGTGTTTGAGAAGC 58 
5’: CGCG; XhoI 

restriction site 

A6* foxj1a-For-HindIII CGCGAAGCTTTGTGTGTGTGTTTGAGAAGC 58 
5’: CGCG; HindIII 

restriction site 

A7* foxj1a-Rev-BamHI GCGCGGATCCAGTGGTAGTTGATGGTCAGCAG 66 
5’: GCGC; BamHI 

restriction site 

A8 mmGFP-Rev-AscI GCGCGGCGCGCCTTATTTGTATAGTTCATCCA 50 
5’: GCGC; AscI restriction 

site 

A9 TK-For-BamHI CGCGGATCCAAACATGGCTTCGTACCCCGGC 60 
5’: CGC; BamHI 

restriction site 

A10 TK-Rev-T2a AGAAGACTTCCTCTGCCCTCTCCGTTAGCCTCCCCCATC 62 
5’: 20nt complementary to 

T2a peptide (fusion PCR) 

A11 T2a-For-TK AGATGGGGGAGGCTAACGGAGAGGGCAGAGGAAGTCTTC 60 
5’: 20nt complementary to 

TK (fusion PCR) 
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A12 T2a-Rev-EGFP TCCTCGCCCTTGCTCACCATAGGGCCGGGATTCTCCTC 60 
5’: 20nt complementary to 

EGFP (fusion PCR) 

A13 EGFP-For-T2a TGGAGGAGAATCCCGGCCCTATGGTGAGCAAGGGCGAGG 62 
5’: 20nt complementary to 

T2a peptide (fusion PCR) 

A14 EGFP-Rev-NotI GTCGCGGCCGCTTTACTTG 62 
5’: GTC; NotI restriction 

site 

A15 Cre-For-1 CGCGGGCTGGAGACATGAGAGCTG 64 5’: CGCG 

A16 Cre-For-2 CGCGTATATCTTCAGGCGCGCGGT 62 5’: CGCG 

A17 Cre-Rev-2 GCGCATCAAGCTGTGGCAGGGAAA 60 5’: GCGC 

A18 βactin-For TGGCATTGCTGACCGTATGCAG 68 -- 

A19 βactin-Rev ACTCCTGCTTGCTGATCCACATC 70 -- 

 

 

B. Primers for sequencing 

Reference  

number Designation Sequence (5’ 3’) Tm (ºC) Features 

B1 TK-For-497 ATCGCCGCCCTCCTGTGCTA 66 -- 

B2 mmGFP-For ATGAGTAAAGGAGAAGAAC 52 -- 

     

Note: all amplification primers marked with * were also used for sequencing purposes. 

 

 



 

42 
 

IV. Supplementary Figures 

 

 

 

 

 

Supplementary Figure S.1  Confirmation of major molecular cloning steps by sequencing. A: Sequencing data from clone #3 

confirming a successful ligation with a perfect alignment (*) to the predicted sequence of pTol(foxj1a:mCherry-T2a-CreERT2) 

in both 5’ (top) and 3’ (bottom) insert ends. Blue shading indicates beginning (top) and end (bottom) of foxj1a promoter, red 

shading indicates beginning of mCherry coding sequence. B: Sequencing data from a positive clone confirming a successful 
ligation of EGFP coding sequence with a perfect alignment (*) of the ligation site to the predicted sequence of 

pTol(ef1α:DsRed2(floxed)-EGFP) in both 5’ (top) and 3’ (bottom) insert ends. Green shading indicates beginning (top) and 

end (bottom) of EGFP sequence. C: Sequencing data from clone #7 confirming a successful ligation with a perfect alignment 
(*) to the predicted sequence of pTol(foxj1a:DsRed2(floxed)-EGFP) in both 5’ (top) and 3’ (bottom) insert ends. Blue shading 

indicates beginning (top) and end (bottom) of foxj1a promoter, grey shading indicates beginning of loxP sequence. D: 

Sequencing data from clone #11 confirming a successful ligation with a perfect alignment (*) to the predicted sequence of 

pTol(foxj1a:TK-T2a-EGFP) in both 5’ (top) and 3’ (bottom) insert ends. Blue shading indicates beginning of foxj1a promoter, 
purple shading indicates beginning of TK coding sequence, green shading indicates end of EGFP coding sequence. In all 

alignments red sequences indicate ligation sites. 

 

 

 

 

 

 

Supplementary Figure S.2  Protein alignment between mmGFP and EGFP aminoacid sequences reveal exact matches (*) for 

all but 8 residues. (:) marks aminoacids of same size and hydropathy, (.) marks aminoacids of similar size or evolutionary 

preserved hydropathy. 
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Supplementary Figure S.3 Sequence features influencing expression of transgenic proteins. A: Unlike other injected 
constructs, (foxj1a:TK-GFP) does not display a Kozak sequence similar to the original one or the zebrafish natural variant. D. 

rerio, M. musculus and original Kozak sequences obtained from [152]. Reference nucleotide positions relative to start codon 

are depicted above the alignment. B-G: Relative codon usage for selected genes used in this work versus D. rerio protein 

coding genes with linear regression displayed as a purple line. Each circle represents one codon; Met, Trp and stop codons not 
included. CUPS score reads as fraction of aminoacids with a similar codon usage between the set of genes in question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S.4 Schematic representation of the fusion PCR reactions leading to the assembly of (TK-T2a-EGFP) 

coding sequence. 1-6 depict individual primers used (see M&M section for details). 

 

2nd: TK + T2a 3rd: TK-T2a + EGFP 

1st: TK, T2a, EGFP 


