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A verde rebentação da vaga  

A espuma o nevoeiro o horizonte a praia  

Guardam intacta a impetuosa  

Juventude antiga -  
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E colher a estrela do mar em minha mão.” 
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ABSTRACT 

The Sines Contourite Drift, located in the Southwest Portuguese margin, is a distal drift of the Contourite 

Depositional System of the Gulf of Cadiz, built by the influence of the Mediterranean Outflow Water 

(MOW). This drift is located between 1000 and 2000 m water depth on the Alentejo margin continental 

slope. The Sines Drift is bounded by four major morphologic features: the 1.4 km high Pereira de Sousa 

Fault escarpment to the west, the upper continental slope to the east and the Setúbal and São Vicente 

canyons to the north and south, respectively. 

This work presents a seismic stratigraphic analysis and proposes an evolutionary model for the Sines 

Drift, as well as the identification of its main driving mechanisms and constraints. In pursuing such 

objectives, the following dataset was used: i) new and unpublished seismic reflection profiles acquired 

during the MOWER/CONDRIBER cruise in September-October 2014; ii) pre-existent multichannel 

seismic profiles BIGSETS, STEAM and GSI; iii) SWIM multibeam bathymetry; iv) lithostratigraphic 

and chronological data from Site U1391 of IODP (Integrated Ocean Drilling Program) Expedition 339 

carried out in 2011-2012. 

Three evolutionary phases are identified for the Sines Drift development: 1) a sheeted-contourite-drift 

phase (<5.3-3.2 Ma) built since the Late Miocene by an initially weak flowing MOW; 2) a mounded-

contourite-drift phase (3.2-0.7 Ma) from Late Pliocene to Early Quaternary times characterized by a 

mounded drift in the south and sheeted in the north, with a succession of sinuous N-S paleomoats in the 

east built as a result of a MOW enhancement; and 3) a plastered-contourite-drift phase from Mid-

Pleistocene (0.7 Ma) till the present-day, characterized by the present depositional (sandy-muddy drifts) 

and erosional (moats) contourite features associated with two major events of MOW intensification. 

The growth of the Sines Drift was constrained by seafloor paleomorphologies that resulted from the 

rifting processes of the Southwest Portuguese margin, inherited from the Mesozoic rifting phases. The 

paleomorphologies provided accommodation space for drift growth and conditioned its overall 

architecture. The N-S horsts and grabens built during the Mesozoic rifting confined drift deposition and 

did not allow its lateral migration. 

The formation of the Sines Drift has also been influenced by climatic fluctuations and sea-level changes 

especially during the Quaternary. The succession of sinuous paleomoats beneath the present-day moat 

suggests a persistent and northward flowing MOW with several phases of enhancement. 

It was also perceived that the São Vicente and Setúbal canyons took most of the downslope sediment 

supply, as well as the occurrence of mass-movement processes in the west associated with the steep 

gradient of the Pereira de Sousa escarpment. All these results suggest the Sines Drift had a complex 

evolution controlled by several factors at different scales. 

 

Keywords: Sines Contourite Drift, Southwest Portuguese margin, Mediterranean Outflow Water, 

seismic interpretation, IODP Site U1391  
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RESUMO 

Contornitos são corpos sedimentares depositados ou retrabalhados por correntes de fundo que circulam 

paralelamente aos contornos batimétricos da margem. A formação dos contornitos é afetada, a longo e 

curto prazo, por fatores externos e/ou internos que podem modificar o padrão de circulação das 

correntes. Os depósitos contorníticos podem atingir dimensões consideráveis com vários quilómetros 

de largura e comprimento, os quais conservam informação paleoclimática e paleoceanográfica. Os 

contornitos também desempenham um papel importante no estudo dos riscos naturais submarinos, 

associados à ocorrência de deslizamentos, e na indústria de exploração petrolífera, como potenciais 

reservatórios e selantes. 

Um extenso Sistema Deposicional Contornítico (CDS, Contourite Depositional System) formou-se no 

Golfo de Cádis, desde o fim do Miocénico Superior (5.33 Ma), pela ação da Água de Saída 

Mediterrânica (MOW, Mediterranean Outflow Water). Este CDS abrange vários depósitos contorníticos 

e outras formas sedimentares, deposicionais e erosivas, ao longo da margem continental Sul e Sudoeste 

Ibérica. 

O Contornito de Sines, localizado na margem Sudoeste Portuguesa, é um contornito distal do CDS do 

Golfo de Cádis. Este corpo situa-se entre 1000 e 2000 m de profundidade na Bacia do Alentejo, com 

aproximadamente 70 km de comprimento, 40 km de largura, 1 km de espessura, morfologia assimétrica 

e configuração agradante com inclinação para oeste. O Contornito de Sines está limitado por quatro 

morfoestruturas: a escarpa da Falha Pereira de Sousa com 1.4 km de altura a oeste, a plataforma 

continental a este e os canhões de Setúbal e São Vicente a norte e sul, respetivamente.  

Este trabalho apresenta uma análise sismostratigráfica e propõe um modelo evolutivo para o Contornito 

de Sines, além da identificação dos principais mecanismos e constrangimentos que controlaram a sua 

evolução. Para atingir estes objetivos, recorreu-se ao seguinte conjunto de dados: i) linhas de reflexão 

sísmica multicanal não publicadas, adquiridas durante a campanha MOWER/CONDRIBER em 

setembro-outubro de 2014; ii) linhas de reflexão sísmica multicanal, pré-existentes, dos projetos 

BIGSETS, STEAM e GSI; iii) batimetria multifeixe SWIM e iv) dados litostratigráficos e cronológicos 

da sondagem U1391 da Expedição 339 do IODP (Integrated Ocean Drilling Program), realizada em 

2011-2012. 

A metodologia utilizada durante este trabalho consistiu em interpretação de estratigrafia sísmica, análise 

batimétrica, calibração e correlação cronostratigráfica dos horizontes e unidades sísmicas com a 

sondagem U1391 e representação gráfica das propriedades litológicas e físicas da sondagem referida. 

A interpretação sismostratigráfica dos dados apresentados permitiu identificar seis unidades sísmicas 

(U1 a U6), com idades compreendidas entre o Miocénico Superior e o Presente. Estas unidades foram 

depositadas sobre uma superfície basal erosiva (B) e estão separadas por cinco horizontes sísmicos (H2 

a H6), que marcam descontinuidades na sucessão sísmica. As unidades sísmicas apresentam fácies 

transparente a maior profundidade, com configuração em cunha, que transita para uma fácies 

estratificada de elevada amplitude e configuração lobular a menor profundidade. 

A análise litostratigráfica da sondagem U1391 permitiu a calibração cronostratigráfica das unidades 

sísmicas interpretadas, bem como a caracterização da sua litologia. As unidades U2 (onde a sondagem 

U1391 atingiu a sua máxima profundidade) e U3, situadas entre os 671.5 e 566.1 m de profundidade, 

têm idades compreendidas entre o Pliocénico Superior e o Quaternário Inferior (3.2-2.5 Ma). Estas 

unidades são constituídas por vasa carbonatada, de composição dolomítica (~0.87 m) aos 632 m de 

profundidade e um debrito (~0.35 m) aos 604 m de profundidade. Às unidades U4 e U5, recuperadas 

entre 566.1 e 196.1 m de profundidade, foram atribuídas idades entre o Pleistocénico Inferior a Médio 
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(2.5-0.7 Ma) e são constituídas por contornitos finos intercalados por sucessões de vasa carbonatada. A 

unidade sedimentar mais recente, U6, depositou-se desde o Pleistocénico Médio (0.7 Ma) até ao 

Presente. A unidade U6 é composta por alternância de depósitos contorníticos finos e grosseiros 

recuperados entre 196.1 m de profundidade e o fundo oceânico. Estes depósitos apresentam sucessões 

com bigradação, gradação normal e inversa (separadas por contactos gradacionais, bioturbados e, mais 

raramente, descontinuidades). Esta unidade contém seis intervalos contorníticos arenosos, areias finas a 

grosseiras, a 2, 50, 83, 96, 115 e 150 m de profundidade. 

Foram identificadas três fases na evolução deposicional do Contornito de Sines: 1) uma primeira fase 

de contornito com configuração em camada (sheeted drift) (<5.3-3.2 Ma), construída desde o final do 

Miocénico Superior, por uma corrente MOW de fraca intensidade; 2) uma fase de contornito monticular 

(mounded drift) (3.2-0.7 Ma), desde o Pliocénico Superior ao Quaternário Inferior, caracterizada por 

uma morfologia monticular a sul e agradante a norte, com uma sucessão de paleo-fossas sinuosas ao 

longo da margem continental a este, que atestam a ocorrência de uma intensificação moderada a elevada 

da MOW e 3) uma fase final de contornito agradante (plastered drift), desde o Pleistocénico Médio (0.7 

Ma) até ao Presente, caracterizada pelas atuais formas deposicionais (contornitos argilosos a arenosos) 

e erosivas (fossas), associadas a dois eventos de intensificação da MOW. 

A formação do Contornito de Sines terá tido início no Miocénico Superior, possivelmente após o final 

da Crise de Salinidade do Messiniano, que afetou a região Mediterrânica entre 5.33 e 5.96 Ma, a qual 

teve repercussões drásticas para a circulação oceânica entre o Mediterrâneo e o Atlântico. Após a Crise 

de Salinidade do Messiniano e o restabelecimento da circulação através do Estreito de Gibraltar, a MOW 

possuía fraca intensidade. A sucessão de paleo-fossas subjacentes à fossa atual sugere uma corrente 

semipermanente e persistente ao longo da margem Sudoeste Portuguesa, em direção a norte, com vários 

eventos de intensificação. 

A edificação do Contornito de Sines foi constrangida pelas paleo-morfologias do fundo do mar que 

resultaram dos processos de rifting, herdados das fases de rifting Mesozóicas na margem Sudoeste 

Portuguesa. Estas paleo-morfologias forneceram espaço de acomodação para o crescimento do 

contornito e condicionaram a sua arquitetura deposicional. Os horsts e grabens, com orientação 

aproximada N-S, resultantes do rifting Mesozóico, confinaram a formação do contornito impedindo a 

sua migração lateral.  

A edificação do Contornito de Sines foi também influenciada por variações climáticas e eustáticas, 

especialmente durante a sua última fase de desenvolvimento. Durante o Quaternário, os eventos de 

intensificação da MOW correlacionam-se com dois eventos climáticos do Pleistocénico, registados na 

região Mediterrânica e nos depósitos contorníticos do Golfo de Cádis: o Middle Pleistocene Revolution 

(0.7-0.78 Ma) e o Late Quaternary Discontinuity (0.4 Ma).  

Os sedimentos que constituem o Contornito de Sines são maioritariamente sucessões contorníticas de 

composição carbonatada, com uma maior componente biogénica na primeira fase de desenvolvimento 

(sheeted drift), e uma maior componente siliciclástica (contornitos arenosos), na última fase de 

desenvolvimento (plastered drift). A componente biogénica na primeira fase provavelmente indica a 

ocorrência de fenómenos de afloramento costeiro e deposição hemipelágica ao longo da margem Oeste 

Portuguesa, enquanto que a maior contribuição siliciclástica na última fase está associada a eventos de 

intensificação da MOW. O Contornito de Sines evoluiu de um sistema deposicional inicialmente 

carbonatado para siliciclástico na última fase de desenvolvimento, testemunhando variações de 

intensidade da MOW. 

Os sedimentos carreados para a margem do Alentejo são maioritariamente fornecidos por deposição 

hemipelágica, fenómenos de afloramento costeiro e resultante de erosão da margem continental pela 
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circulação da MOW. O Contornito de Sines não é significativamente afetado por processos gravíticos, 

sendo registado apenas uma ocorrência no Pliocénico (debrito de ~0.35 m). A baixa incidência de 

processos gravíticos resulta, provavelmente, da morfologia da margem e da existência dos canhões de 

Setúbal e São Vicente, que canalizam grande parte do material deslocado. No entanto, existem depósitos 

de movimento de massa que afetam o sector ocidental do Contornito de Sines, que estão associados ao 

elevado declive da escarpa da Falha Pereira de Sousa. A formação destes depósitos poderá estar 

associada a vários fatores intrínsecos e extrínsecos à área em estudo. No que se refere aos fatores 

intrínsecos, destaca-se a potencial geração de planos de descolamento nas interfaces entre sedimentos 

contorníticos arenosos e vasosos caso se encontrem sobre pressão, com excesso de fluídos e/ou 

intercalados por sedimentos menos porosos. No que respeita aos fatores extrínsecos, a atividade sísmica 

registada na margem Sudoeste Ibérica poderá espoletar a ocorrência de deslizamentos submarinos no 

Contornito de Sines. Os resultados obtidos sugerem que o Contornito de Sines teve uma evolução 

complexa, controlada por vários fatores, a diferentes escalas. 

 

Palavras-chave: Contornito de Sines, Margem Sudoeste Portuguesa, Água de Saída Mediterrânica, 

interpretação sísmica, Sondagem IODP U1391 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Scope and objectives 

Contourite drifts are sedimentary products of bottom-currents reworking and shaping continental 

margins (Rebesco and Stow, 2001). These currents flow parallel to the continental margins building up 

thick sedimentary features as a result of erosion, transport, reworking and re-deposition of sediments. 

Contourite drifts can reach up to several kilometers in width and in length, holding important 

information in their stratigraphic contents. Therefore, contourite drifts represent an important record for 

paleoceanographic, paleoclimatic and geohazard studies, as well as potential reservoirs for the oil 

industry (Faugères et al., 1993; Mulder et al., 2003; Bryn et al., 2005; Laberg et al., 2005; Rebesco, 

2005; Shanmugam, 2006; Viana et al., 2007; Rebesco and Camerlenghi, 2008; Brackenridge et al., 

2013; Stow et al., 2013; Rebesco et al., 2014).  

The Contourite Depositional System of the Gulf of Cadiz (GCCDS) has been targeted due to its complex 

nature and direct relation with the circulation of the Mediterranean Outflow Water (MOW) into the 

Atlantic Ocean. This CDS results from the dynamics of the MOW since Messinian times, formed by the 

opening of the Strait of Gibraltar and the end of the Messinian Salinity Crisis (5.33 to 5.96 Ma ago) 

(Cita, 2001; Bache et al., 2012). The GCCDS comprehends contourite drifts in the South and Southwest 

Iberian margin, namely the Albufeira, Bartolomeu Dias, Faro, Guadalquivir, Huelva, Lagos, Portimão, 

Sagres and the Sines drifts (e.g. Vanney and Mougenot, 1981; Nelson et al., 1993; Sierro et al., 1999; 

Llave et al., 2001, 2006, 2007, 2011, 2015; Hernández-Molina et al., 2003, 2006, 2011, 2015; Marchès 

et al., 2007, 2010; Roque et al., 2012). The construction of the GCCDS was influenced by several factors 

associated with its tectonic and climatic settings, seafloor morphology and bottom-current dynamics 

(Faugères et al., 1993; Rebesco and Camerlenghi, 2008; Rebesco et al., 2014). The GCCDS is also 

influenced by the evolution of the Iberian margin through geological times, since it is located near the 

convergent plate boundary between the Eurasia and the African plate (Gutscher et al., 2002, 2012). 

Hence, the tectonic setting of the Gulf of Cadiz and the evolution of the Atlantic Ocean are associated 

with the tectonic features of the study area and affect contourite drift deposition.  

The Sines Contourite Drift (SD) belongs to the extensive CDS of the Gulf of Cadiz (Hernández-Molina 

et al., 2015). The SD is a sedimentary body located on the Southwest Portuguese margin, between 1000 

and 2000 m water depth on the Alentejo continental slope (Figure 1.1). The SD is bounded by four major 

morphologic features, the 1.4 km high Pereira de Sousa Fault escarpment to the west, the continental 

shelf edge to the east, and the Setúbal and São Vicente canyons to the north and south, respectively. The 

SD consists of Late Neogene to Quaternary contourite deposits (Pereira and Alves, 2010, 2011, 2013; 

Hernández-Molina et al., 2015) and was classified as a plastered drift based on seismic data (Hernández-

Molina et al., 2015). Mougenot (1976) was the first author to identify the SD, based on seismic reflection 

profiles and samples of seabed sediments. His work presented the characterization of the main seismic 

and stratigraphic sequences of the Southwest Portuguese margin, the present-day morphology, structures 

and the geodynamic evolution of the Portuguese continental shelf. The depositional evolution of the SD 

is still undefined, with the works of Alves et al. (2000, 2003) and Pereira and Alves (2010, 2011, 2013) 

establishing the stratigraphic record for the older syn-rift sequences in the Alentejo margin and 

Hernández-Molina et al. (2015) studying the GCCDS and its tectonic, sedimentary and 
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paleoceanographic evidences. Thus, the objective of this work is to propose a seismostratigraphic model 

for the Sines Contourite Drift, complemented by an analysis of its depositional evolution, structural 

control and paleoceanographic implications.  

 
Figure 1.1 – Location of the Sines Drift in the Southwest Portuguese margin, between the Setúbal Canyon (North) and the São 

Vicente Canyon (South). RLB – Rincão do Lebre Basin; SC – Setúbal Canyon; SVC – São Vicente Canyon; LC – Lisboa 
Canyon; PAS – Príncipe de Avis Seamounts; PSF – Pereira de Sousa Fault. 

 

1.2 Historical overview on contourite research 

Contourite deposits have been the focus of several studies since the 1960’s (Figure 1.2). The pioneer 

works by Heezen and Hollister (1964) and Hollister (1967) established the beginning of a new research 

field, the study of sedimentary features formed by the influence of contour bottom-currents in the deep-

sea.  

Contourites were recognized in the seismic record, however their classification and characterization was 

still poorly defined. McCave and Tucholke (1986) and Faugères et al. (1999) established the first 

classification systems based on seismic features. Other works also focused on seismic reflection profiles 

to diagnostic drifts, with a comprehensive review of all the known drift types and representative 

examples (Rebesco and Stow, 2001; Stow et al., 2002a,b; Rebesco, 2005; Shanmugam, 2006, 2008; 

Rebesco and Camerlenghi, 2008). The steady growth of knowledge allowed for a better understanding 

of the geometry and temporal evolution of contourite processes and led to the definition of Contourite 

Depositional Systems and Contourite Depositional Complexes (Hernández-Molina et al., 2003; Rebesco 

and Camerlenghi, 2008). Most of this knowledge emerged from studying contourites formed by the 

influence of the MOW (García et al., 2009; Hernández-Molina et al., 2011, 2015; Roque et al., 2012; 

Rebesco et al., 2014; Llave et al., 2015). Contourite research also grew in the technological domain, 

thanks to IODP and ODP Expeditions, such as IODP Expedition 339 in 2011-2012 that focused on the 

study of MOW paleocirculation along the Iberian margin. These expeditions contributed to a better 
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knowledge of paleo-climate, oceanic gateways, sea-level and tectonic controls on sediment architecture 

along continental margins, in the Mediterranean (ODP Leg 107), North Atlantic (IODP 303, IODP 306, 

IODP 307, IODP 319 and IODP 342), Pacific and Southern Oceans (ODP Leg 181, ODP Leg 194, IODP 

317 and IODP 318). 

The deep-water processes and environments behind contourite formation in the GCCDS are closely 

related to the paleoceanography and physical oceanography of the MOW (Nelson et al., 1999) (Figure 

1.2). The hydrography of the present MOW and its pathways were laid down by Zenk (1970, 1975), 

Ambar and Howe (1979) Ambar (1983), Harvey (1982) and Baringer and Price (1999). In the 2000’s, 

the use of floats established precise MOW trajectories and allowed the identification of meddies 

formation along the Southwest Iberian margin (Bower et al., 1994; Johnson et al., 2002; Ambar et al., 

2002, 2008; Serra and Ambar, 2002; Serra et al., 2005).  

 

Figure 1.2 – Timeline of previous works made in contourite research till the present-day, with a considerable increase since 
1999, depicting the evolution of knowledge and importance in the marine geology and the oceanography study fields.  

 

The circulation of the MOW through the Pliocene and the Quaternary, and its relation to climate 

changes, has been studied through several methods: i) planktonic and benthic foraminiferal δ18O records 

in the Mediterranean Sea (Becker et al., 2006); ii) molecular biomarkers (C37 alkenones, n-nonacosane 

and n-hexacosanol) together with benthic δ18O and δ13C data on the Alboran Sea (Cacho et al., 2000, 

2002, 2006); iii) comparison of Nd isotopes, δ18O, Mg/Ca-based temperature and bottom water salinity 

on the Alboran Sea and Northeast Atlantic margin (Khélifi et al., 2009); iv) Nd and Pb isotope records 

from authigenic ferromanganese coatings of sediments in gravity cores, on the Gulf of Cadiz and along 

the Portuguese margin (Stumpf et al., 2010); v) decline and extinction of certain deep-water benthic 

foraminifers in the Mediterranean Sea and outside this region (Hayward et al., 2009).  

The MOW shows a distinct behaviour under different climatic conditions, therefore global climatic 

indicators were also studied through different approaches and in different regions: i) comparison of 

oxygen isotopic, δ18O, composition of benthic foraminifera on ODP Site 1014 with δ18O record from 
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ODP Site 846, from different regions of the Pacific (Ravelo et al., 2004); ii) analysis of planktic 

foraminifers and ostracods of sediment records in the North Atlantic Ocean (Dowsett et al., 1992) and 

at IODP Site U1391 in the Southwest Iberian margin (Singh et al., 2015); iii) paleoclimate modelling 

simulations in the Mediterranean and European region, supported by geologic data (Haywood et al., 

2000, 2002; Tzanova and Herbert, 2015); iv) parameters from cores of sediment records on the Gulf of 

Cadiz (grainsize, sediment composition, benthic foraminiferal assemblage and benthic foraminiferal 

stable isotope analysis) (Rogerson et al., 2006, 2011; Hodell et al., 2015; Voelker et al., 2015; Kaboth 

et al., 2016; Sánchez Goñi et al., 2016);  

 

1.3 Outline at a glance 

This dissertation comprises eight chapters:  

 Chapter 1: Introduction 

In the first chapter the character and objectives of this work are outlined, as well as the database, thesis 

outline and previous contourite works in the Southwest Portuguese margin and Gulf of Cadiz.  

 

 Chapter 2: Geological Setting 

This chapter focuses on the stratigraphy and tectonics of the study area in the scope of the geodynamic 

evolution of SW Iberia and Africa-Eurasia plate boundary. 

 

 Chapter 3: Contourite Deposits in the Seismic Record 

The third chapter presents the characteristics of contourite drifts, their identification in the seismic record 

and their economic relevance. The different contourite features and factors contributing to contourite 

formation are also included.  

 

 Chapter 4: Contourites in Iberia  

The fourth chapter presents the oceanographic setting of the Southwest Iberia margin and a brief 

overview on the contourite depositional systems of West Iberia and Gulf of Cadiz. 

 

 Chapter 5: Data & Methodology 

This chapter contains the data used in this work and their provenance, as well as the used methodology 

and procedures. 

 

 Chapter 6: Results 

The sixth chapter reports the main results of this study, with a stratigraphic and structural interpretation 

of the Sines Drift and an analysis of the lithological and geophysical properties from IODP well data.  

 

 Chapter 7: Discussion 

This chapter discusses the Sines Drift depositional evolution, structural control and the role of bottom-

currents and climatic fluctuations. 

 

 Chapter 8: Conclusions & Future Work 

The last chapter contains the conclusions of this study and suggestions for future works.  
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CHAPTER 2 

 

GEOLOGICAL SETTING 

 

The SD is located on the Southwest Iberian margin as shown in Figure 2.1 between depths of 1000 and 

2000 m. The Southwest Iberian margin has a continental slope gently dipping to the west, cut in the 

south by the São Vicente Canyon that sources the Horseshore Abyssal Plain, and in the north by the 

Setúbal and Lisboa Canyons that reach the Tagus Abyssal Plain (Mougenot et al., 1979; Alves et al., 

2003; Terrinha et al., 2009; Figure 2.1). The continental margin deepens west of the Pereira de Sousa 

Scarp to the Tagus Abyssal Plain, at depths of ~5000 m. The Southwest Iberian margin has other 

prominent features, such as the Príncipe de Avis Seamounts, the Descobridores Seamounts and the 

Marquês de Pombal Plateau (Mougenot et al., 1979).  

 

Figure 2.1 – Localization of the Sines Drift and the main Portuguese sedimentary basins and their relation with the other basins 
in the Central and North Atlantic due to the rifting of the North Atlantic (Pereira and Alves, 2011). 

 

2.1 Geodynamic Evolution of the Southwest Iberian margin 

The Southwest Iberian margin is located near the Eurasia-Nubia plate boundary in the North Atlantic. 

The Iberian margin began to develop during the early stages of continental rifting from the Triassic to 

the Early Cretaceous, which led to the Opening of the North Atlantic Ocean (Pinheiro et al., 1996; 

Rasmussen et al., 1998; Alves et al., 2002, 2006, 2009; Figure 2.2). In the Iberian margin, a group of 

Mesozoic rift basins evolved from south to north: the Algarve, Alentejo, Peniche, Lusitanian, Porto and 

Galicia Basins, which share a common rift-to-drift evolution insered in the context of the Mediterranean 

and the Atlantic regions (Alves et al., 2009, 2013; Pereira and Alves, 2010, 2011; Ribeiro, 2013b; 

  SD 
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Terrinha et al., 2013a; Terrinha et al., 2013b). The rocks that constitute the basement are part of the 

Hesperian Massif, which incorporates Precambrian and Paleozoic rocks. During the Cenozoic, the 

Southwest Iberian margin evolved as a passive margin subjected to various pulses of compression, 

related to the Alpine Orogeny (Alves et al., 2003, 2006; Pereira and Alves, 2011, 2013). 

 

2.1.1 The Late Paleozoic Evolution  

 The Variscan Orogeny 

The basement of the Southwest Iberian margin is comprised by rocks of the Hesperian Massif, a segment 

of the Variscan Orogenic Belt that extends all over Europe. The orogenic belt, formed during the Late 

Paleozoic (Devonian-Permian) by the convergence and collision of two major continents, Laurasia and 

Gondwana, led to the creation of the supercontinent Pangea (Ribeiro, 2013a). The Paleozoic basement 

of the Southwest Iberian margin is comprised by deformed and metamorphosed rocks from the South 

Portuguese Zone (Ribeiro, 2013a).  

 

2.1.2 The Mesozoic Evolution 

During the Mesozoic, the Southwest Iberian margin suffered continental rifting, oceanic breakup and 

subsequent drifting, associated with the opening of the North Atlantic Ocean. The rifting started in the 

Triassic, leading to the formation of epicontinental seas during Jurassic and Cretaceous times (Ribeiro, 

2013b). This process begun with the thinning of the continental lithosphere, which created graben and 

half-graben structures with the deposition of evaporites and continental deposits, followed by whole 

lithospheric rupture, which accommodated the initial formation of oceanic lithosphere and the formation 

and development of a passive margin.  

The Iberian margin is considered a type of conjugate magma-poor asymmetric rift margin that recorded 

the distinct periods of continental extension (Pinheiro et al., 1996; Tucholke et al., 2007). However, a 

consensus has yet to be reached regarding the number and magnitude of rifting events, their exact age 

and more often their regional implications (Pinheiro et al., 1996; Alves et al., 2009).  

It has been considered that the Iberian margin evolved as a conjugate of the Newfoundland and Nova 

Scotia margins after four rifting events, namely in the Late Triassic, Early-Middle Jurassic, Late Jurassic 

and Early Cretaceous (Pinheiro et al., 1996; Rasmussen et al., 1998; Alves et al., 2002, 2006, 2009; 

Figure 2.3). As a result of the Atlantic tectonic extension, the Southwest Iberian margin was segmented 

in distinct structural domains: the inner proximal margin, the outer proximal margin and the distal 

margin (Alves et al., 2009; Pereira and Alves, 2011, 2013; Figure 2.2). 

 

 

 

 

 

 

 

 

 

A 

Figure 2.2 – Line drawings depicting the distinct structural domains of the Southwest Iberian margin (Alves et al., 2013). 
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 Rift Phase I 

The first rift phase in the Late Triassic (to earliest Jurassic) was established above a pre-existent 

Paleozoic continental crust (Ribeiro et al., 1979). Continental extension begun in the Late Triassic with 

a wide rift mode in a widespread rift basin between the Labrador and Nova Scotia margin, and from the 

south (Alentejo) to the north (Galicia) along the margin (Pinheiro et al., 1996; Figure 2.3). Subsidence 

and thinning was accommodated in grabens and half‐grabens during this period (Stapel et al., 1996), 

marked by the deposition of continental red beds overlain by successions of Hettangian shales and 

evaporites (Azerêdo et al., 2003). This first phase of extension is synchronous with continental rifting 

between North Africa and North America (Welsink et al., 1989) and between the Labrador margin and 

the North Sea (Sinclair, 1995). 

 

 Rift Phase II  

The second extensional phase is initially marked by magmatic activity from the Rhaetian to the 

Hettangian. The magmatic activity occurs as dispersed volcano-sedimentary successions throughout the 

Southwest Iberian margin (in Sesimbra, Santiago Cacém and Algarve Basin) (Ribeiro et al., 1979; 

Azerêdo et al., 2003; Martins et al., 2008). These volcano‐sedimentary successions have ages and 

geochemical signatures related to the Central Atlantic Magmatic Province (CAMP) (Martins et al., 

2008). 

The second rift phase marks the transition from wide rift to focused extension mode (Tucholke and 

Sibuet, 2007; Pereira and Alves, 2013), displaying seaward migration of the rift locus and preceding 

continental breakup (Alves et al., 2009). The Early to Middle Jurassic is described as a period when 

West Iberia and Newfoundland experienced limited epeirogenic subsidence, with minor continental 

extension (Tucholke and Sibuet, 2007; Pereira, 2013; Figure 2.3). During this phase the Iberian margin 

recorded a progressive influence of open marine environments with episodes of basin inversion, 

observed on the Toarcian‐Aalenian of the Alentejo Basin (Terrinha et al., 2002; Azerêdo et al., 2003). 

The southern North Atlantic was segmented during continental extension and subsequent seafloor 

spreading (which also affected the offshore Moroccan and Nova Scotia margins), bounded by first‐order 

transfer faults that formed correlative geodynamic provinces (Tankard and Balkwill, 1989) (Figure 2.3). 

These transfer zones include the Newfoundland‐Gibraltar Transform Zone, the Collector Fault Zone, 

the Avalon Transfer Zone or the Dominion Transfer Zone and the Messejana‐Plasencia Fault Zone 

(Tankard and Balkwill, 1989; Tucholke and Sibuet, 2007). 

 

 Rift Phase III  

The third rifting phase in the Late Jurassic overlays a regional angular unconformity that extends from 

the Callovian to the Mid-Oxfordian (Azerêdo et al., 1998, 2002), which shows a new period of intense 

tectonic subsidence (Hiscott et al., 1990; Cunha et al., 2009). As a result, West Iberia developed two 

major N‐S to NE‐SW rift axes bound by first order transfer zones (the Aveiro Fault, the Nazaré Fault, 

the Tagus Fault and the Messejana‐Plasencia Fault Zone) (Alves et al., 2009; Figure 2.3). 

The Late Jurassic is characterized by a transition towards seafloor spreading, with increased seaward 

thinning of the continental crust, and the main axes of subsidence in the proximal margins of the southern 

Alentejo and Lusitanian Basins (Alves et al., 2009). A moderately long phase of extension continued 

from the Tithonian to the Berriasian‐Hauterivian (Tucholke et al., 2007; Bronner et al., 2011).  
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 Rift Phase IV  

The final rifting phase occurred in the Early Cretaceous (Berriasian to Aptian‐Albian) (Figure 2.3) and 

is mainly observed on the North Iberian margin with a period of tectonic subsidence followed by 

formation of oceanic crust (Tucholke et al., 2007). The separation of the continental crust between the 

Galicia Bank and North Newfoundland was completed by the Barremian, but continued till the Aptian-

Albian boundary with the exhumation of mantle, when the oceanic breakup occurred (Tucholke et al., 

2007; Figure 2.3). Seafloor spreading off the Southwest Iberian margin occurred by late Aptian-Albian 

times (Tucholke et al., 2007).  

The Late Cretaceous is marked by the opening of the Bay of Biscay, which exerted significant rotational 

component on the Iberian microplate (Garcia-Mondejar, 1989). During this period, sediment deposition 

along the margin was controlled by thermal subsidence, loading and eustasy.  

The Late Cretaceous is also marked by magmatic activity, with the intrusion of the alkaline massifs of 

Monchique, Sines and Sintra, as well as volcanics, dykes and sills in the Lisboa and Algarve regions 

(Miranda et al., 2009, Grange et al., 2010). 

 

 

 

Figure 2.3 – Schematic evolution of the North Atlantic, showing the continental breakup from the Upper Jurassic to the Upper 
Cretaceous. Modified from Alves et al. (2013). 
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2.1.3 The Cenozoic Evolution 

 Alpine Orogeny 

The Southwest Iberian margin is a passive margin since the break-up discontinuity in the Early 

Cretaceous (Alves et al., 2000, 2003). However, the margin is in close proximity to the plate boundary 

between Eurasia and Africa, thus affected by the collision and compression events of the Alpine 

Orogeny during the Cenozoic (Pyrenean and Betic phases) (Alves et al., 2003, 2006; Pereira and Alves, 

2011, 2013).  

 

 Tectonic inversion of the Iberian margin 

The Meso-Cenozoic of the West Iberian margin is marked by several periods of tectonic inversion with 

ancient and recent features (Mougenot et al., 1979; Alves et al., 2003, 2009; Terrinha et al., 2003, 2013b; 

Zitellini et al., 2004; Neves et al., 2009). The most intensive periods occurred from the latest Cretaceous 

onwards, associated with the collision of the Iberian microplate with the Eurasia and Africa plates 

(Mougenot et al., 1979). Since the Late Cretaceous, nine tectonic phases of shortening, inversion and 

uplift are recorded, according to Alves et al. (2003).  

From the Late Cretaceous to the Middle Eocene a significant period of shortening and inversion occurred 

(Pinheiro et al., 1996). This period is associated with N-S to NE-SW convergence towards the Pyrenees, 

when Iberia was connected to North Africa and the active plate boundary was located at the Bay of 

Biscay (Mougenot et al., 1979; Ribeiro et al., 1990). During this period, the proximal margin was also 

deformed by the intrusion of the igneous bodies of Sintra, Monchique and Sines (Miranda et al., 2009).  

The Eocene is characterized by a new episode of inversion widely expressed throughout the Iberian 

margin, caused by a reactivation of the inherited NE-SW rift faults (Mougenot et al., 1979). A relatively 

important period of inversion occurred from the Late Oligocene to the Miocene, associated with the 

NNE-SSW collision between the Iberian microplate and North Africa, during the Atlas phase of the 

Alpine Orogeny (Ribeiro et al., 1990; Pinheiro et al., 1996). In the Miocene, the Alpine compression is 

also associated with the subduction of the Tethyan oceanic crust in the western Mediterranean and the 

collision between Iberia and North Africa (Figure 2.4). This led to the formation of the Betic-Rif 

orogenic arc, the submarine accretionary wedge of the Gulf of Cadiz and the closure of the gateway 

between the Tethys and the Atlantic Ocean (Gutscher et al., 2002, 2012; Gràcia et al., 2003a; Cunha et 

al., 2012; Duarte et al., 2013; Figure 2.4). Inversion and shortening events continued from the Miocene 

till the Present along the Southwest Iberia margin, with the reactivation of the NE-SW to WSW-ENE 

extensional faults (Ribeiro et al., 1990; Gràcia et al., 2003a; Terrinha et al., 2003, 2013b; Zitellini et al., 

2004; Neves et al., 2009). 



10 

 

 
                                                                                   

            

 

Figure 2.4 – Schematic reconstruction of the tectonic evolution of the Southwest Iberian margin and Western Mediterranean, 
from the Mesozoic to the Present (Duarte et al., 2011). 
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2.2 Stratigraphy of the Southwest Iberian margin 

The sedimentary record of the Southwest Iberian margin spans from Mesozoic to Cenozoic deposits that 

lay over the Paleozoic deformed basement. The sedimentary fill recorded the evolution of the Iberian 

margin, from the North Atlantic rifting to the present-day (Hiscott et al., 1990; Pinheiro et al., 1996; 

Pereira and Alves, 2011, 2013).  

The lithostratigraphy of the Southwest Iberian margin presented here is based on information gathered 

by Pereira (2013), from outcrops in the areas of Sagres, Bordeira, Santiago do Cacém and Sines, as well 

as the regional stratigraphy and previous seismostratigraphic studies, exploration wells and dredges 

samples analysis (Mougenot et al., 1979; Hiscott et al., 1990; Pinheiro et al., 1996; Pereira and Alves, 

2010, 2011, 2013; Figure 2.5 and 2.6).  

 

 Figure 2.5 – Lithostratigraphy and seismic stratigraphy of the Southwest Iberian margin with the major tectonic events of the 

Alentejo Basin. From Pereira and Alves (2013), based on Alves et al. (2003, 2009), Azerêdo et al. (2003) and Rey et al. (2006). 
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2.2.1 The Paleozoic basement 

The Paleozoic units in the Southwest Iberian margin are characterized by moderately to highly deformed 

successions of the South Portuguese Zone (Figure 2.6). These successions occur as outcrops in the 

Southwest and in Cercal-Rio Mira (Oliveira, 1984). The Southwest includes, from base to top: the 

Tercenas Formation, the Carrapateira Group and the Brejeira Formation. The Tercenas Formation is 

characterized as Late Devonian deep marine shales and sandstones. The Carrapateira Group of the 

Carboniferous comprises: 

 The Bordalete Formation, composed by metasedimentary black shales and sandstones 

interbedded by siliceous nodules; 

 The Murração Formation, characterized by silts, limestones and black to red schists and shales; 

 The Quebradas Formation, defined by black schists, silts, shales and rare interbedded 

limestones; 

The Brejeira Formation is made of widespread turbidites from the Late Carboniferous. The Cercal-Rio 

Moura consists of the Volcanic Complex of Cercal and the Mira Formation. The Volcanic Complex of 

Cercal was formed since the Late Devonian to the Tournaisian(?). The Mira Formation belongs to the 

Flysch do Baixo Alentejo Group and is characterized by turbidites in the Namurian, conglomerates and 

sporadic interbedded limestones. 

 

2.2.2 The Mesozoic deposition 

The Mesozoic deposits of the Southwest Iberian margin, which recorded the syn-rift phases, are initially 

represented by Late Triassic fluvial red beds with rarer marls and dolomites of the Silves Formation, 

above a regional angular unconformity and the deformed Late Paleozoic (Oliveira, 1984; Ribeiro et al., 

1987; Inverno et al., 1993, Azerêdo et al., 2003; Figure 2.5). These deposits are observed at the Telheiro 

beach and in Bordeira. The Silves Formation is overlain by the extensive continental Dagorda 

Formation, characterized by evaporites, dolomites, marls and shales from the Norian to the Hettangian 

(Oliveira, 1984; Ribeiro et al., 1987; Inverno et al., 1993; Azerêdo et al., 2003; Figure 2.5 and 2.6).  

The transition to the second rift phase in the Early Jurassic is marked by the evolution of the Central to 

North Atlantic, with the setting up of widespread shallow marine conditions and the formation of 

carbonate successions (Azerêdo et al., 2003). In the Alentejo Basin, this event is marked by the 

occurrence of low energy dolomitic carbonate ramps of the Coimbra Formation (Azerêdo et al., 2003; 

Figure 2.5). This early inclusion of marine deposits is preceded by the occurrence of magmatic activity 

of the CAMP, marking the initiation of an extensional rift phase in the Rhaetian-Hettangian (Martins et 

al., 2008). The Southwest Iberian margin in the Pliensbachian is marked by a new period of tectonic 

subsidence (Cunha et al., 2009) with the accumulation of deep-water sediments and marly limestones 

in the southern Alentejo Basin, the Forno unit (Oliveira, 1984; Ribeiro et al., 1987). Other areas of the 

Alentejo Basin are characterized by dolomites (Inverno et al., 1993).  

The continuous deepening of the margin associated with a period of tectonic latency, resulted in the 

formation of a carbonate ramp along the margin, and by the Toarcian-Aalenian a period of regional 

uplift in Southwest Iberia resulted in a hiatus (Ribeiro et al., 1987; Terrinha et al., 2002). Deposition 

begun again in the Bajocian, when the carbonate ramp became shallower and the landward domains 

were uplifted to exposure, which resulted in the extensive unconformity from the Mid-Callovian to the 

Early Oxfordian (Azerêdo et al., 1998, 2002, 2003). In Bordeira, the carbonate ramp includes 

Toarcian(?)-Callovian dolomites (Dolomias Inferiores unit), while in Santiago do Cacém the Bathonian-

Callovian was constrained to open shallow marine limestones with marls and dolomites, the Rodeado 

and Monte Branco Formations (Inverno et al., 1993). 
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The Late Jurassic is marked by a new rift phase and tectonic subsidence in the margin (Mougenot et al., 

1979; Hiscott et al., 1990; Cunha et al., 2009). The Late Callovian to Middle Oxfordian interval is 

characterized by a widespread angular unconformity at the base (Azerêdo et al., 1998, 2002). In Santiago 

do Cacém the Oxfordian-Kimmeridgian is characterized by the Deixa-o-Resto Formation with an 

angular unconformity at the base and a succession of polygenic conglomerate and marine limestones 

and marls (Inverno et al., 1993). In Bordeira, the basal unit (probably Kimmeridgian) is comprised by 

limestones, dolomites and shales of the Zimbreirinha, overlain by a coral bearing unit (Três Angras 

Formation), covered by volcanic tuffs, limestones and conglomerates (Ribeiro et al., 1987).  

In the Alentejo Basin, the basal Oxfordian units are correlated to the Cabaços Formation (Figure 2.5), 

of lacustrine to shallow marine marls and limestones (Azerêdo et al., 2002; Pereira, 2013), while the 

Oxfordian-Kimmeridgian is characterized by deep-marine to transitional limestones associated with the 

period of maximum subsidence (Alves et al., 2009). The Late Jurassic deposits in the Alentejo Basin 

are characterized by shallow marine sandstones, pelagic limestones and marls (Inverno et al., 1993; 

Figure 2.5). The Late Kimmeridgian-Berriasian interval is absent in Santiago do Cacém and Bordeira 

(Ribeiro et al., 1987; Inverno et al., 1993), however offshore dredges collected shallow marine 

limestones and dolomites, that mark this interval as a major subsidence period (Mougenot et al., 1979). 

The final rift phase is marked by an angular unconformity in the Berriasian, related to a shift in the 

nature and architecture of the depositional units and in the locus of active rift subsidence (along the 

principal N-S axis on the margin) (Pinheiro et al., 1996; Rey et al., 2006; Alves et al., 2009, 2013). In 

the Alentejo Basin this period is absent, but exploration wells in the Southwest Iberian margin revealed 

siliciclastics and carbonates that are roughly correlated to the fluvial-deltaic and shoreline siliciclastics 

of the Torres Vedras Formation, north of the Lusitanian Basin, and to the shallow marine limestones of 

the Cascais Formation, south of the Lusitanian Basin (Mougenot et al., 1979; Mougenot, 1989).  

The Berriasian-Aptian in the Iberian margin is characterized at its top by a widespread unconformity, 

the breakup unconformity (Tucholke et al., 2007). Afterwards, the conjugate Iberia-Newfoundland 

margins evolved as drifting tectonic plates and deposition was mainly controlled by eustasy, periods of 

post-rift compression and sediment input into the inherited accommodation space and on the oceanwards 

domains (Mougenot et al., 1979; Alves et al., 2009, 2013; Neves et al., 2009; Cunha et al., 2010). The 

final period of the Cretaceous (Campanian) is marked by the occurrence of magmatism with the 

intrusions of Monchique, Sines and Sintra (Miranda et al., 2009; Grange et al., 2010).  

 
 

Pereira (2013) 

Figure 2.6 – Schematic lithostratigraphy, depositional environments and T-R trends from outcrops at Monte Paio, Santiago 

do Cacém and Bordeira. From Pereira (2013). 
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2.2.3 The Cenozoic deposition 

The Cenozoic in the Alentejo Basin is comprised by Paleogene to Quaternary sediments. These 

sediments are sourced by the surroundings areas and by canyon sediment bypass, from the Cenozoic 

continental depocenters (Oliveira, 1984; Alves et al., 2003). The canyon sediment bypass is related to 

the Lisboa and Setúbal Canyons to the north and the São Vicente Canyon to the south, which control 

the sediment input into the margin (Llave et al., 2006; Pereira and Alves, 2010; Valadares, 2012). 

The Paleogene in the offshore is characterized by limestones, dolomites and continental to shallow 

marine siliciclastics assigned to the Benfica and Moreia Formations (Mougenot et al., 1979; Figure 2.6). 

The Eocene is possibly characterized by mass-movement deposits associated with the margin inversion, 

(Mougenot et al., 1979), while the Oligocene is marked by a widespread erosion surface, which resulted 

from tectonic uplift of the margin, and is subsequently covered by fault-bounded successions due to a 

rise of sea-level from the Chattian onwards (Alves et al., 2000). 

The Neogene is marked by several phases of inversion from the Burdigalian to the Miocene, with 

deposition of shallow marine siliciclastics. Afterwards, from the Pliocene to the Pleistocene, deep-water 

limestones and marls were deposited above (Mougenot et al., 1979). According to the present 

knowledge, the formation of a Contourite Depositional System in the Southwest Iberian margin and 

Gulf of Cadiz began when the Strait of Gibraltar opened, following the end of Messinian Salinity Crisis 

(5.33 to 5.96 Ma; Cita, 2001; Bache et al., 2012). The establishment of this gateway allowed the 

exchange between Mediterranean and Atlantic water masses and the formation of a complex drift system 

on the South and Western Iberian margin (Hernández-Molina et al., 2006; 2015). 

 

2.2.4 Magmatism 

The West Iberian margin is considered a typical magma-poor rifted margin with distinct and widespread 

cycles of magmatic activity throughout the Mesozoic:  

1) The tholeiitic cycle (203-198 Ma), represented by extrusive lava flows in Algarve, Bordeira, 

Santiago do Cacém and Sesimbra (Martins et al., 2008) and the Messejana-Plasencia doleritic 

dyke system (Silva et al., 2008). This is associated with the Central Atlantic Magmatic Province 

(CAMP) (Verati et al., 2007). 

2) The early alkaline cycle (146-142 Ma), represented by the occurrence of alkaline magmatism in 

the center of the Lusitanian Basin (Grange et al., 2008).  

3) The transitional cycle (135-130 Ma), which occurs mainly in the Lusitanian Basin and in 

Algarve, as dykes of dolerites, gabbros and diorites. Minor hypovolcanics also occur in Nazaré 

and Montejunto (Miranda et al., 2009).  

4) The alkaline cycle (100-71 Ma), which occurred in two pulses: the Foz da Fonte, Paço d’Ilhas 

and Ribamar as part of the sill and dyke complex of Mafra (100 Ma) (Miranda et al., 2009) and 

the Lisboa Basaltic Complex (73 Ma), intrusive Sines, Sintra and Monchique massifs (84-71 

Ma) (Miranda et al., 2009; Grange et al., 2010). 

The first three cycles are associated with the main phases of continental rifting, while the fourth cycle 

is associated with the post-rift evolution of the West Iberian margin (Pinheiro et al., 1996).  
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CHAPTER 3 

 

CONTOURITE DEPOSITS IN THE SEISMIC RECORD 

 

3.1 Bottom-Currents 

Bottom-currents can shape the seafloor by eroding, re-suspending and transporting sediments. This type 

of current is influenced by several forces that can alter current speed and direction. The erosive, transport 

or deposition capacity of bottom-currents varies in time and along their track, forming what is known 

as drifts, and particularly contourites (Figure 3.1).  

 

Figure 3.1 – Diagram of the main bottom-current features and interaction between bottom-currents and local topography. 

Modified from Stow et al. (2008). 

 

Bottom-current is a generic term that includes different types of currents (Stow et al., 2008; Shanmugam, 

2008). Most bottom-currents start as density currents sinking to their buoyancy level. These currents are 

mainly unidirectional subsurface currents in contact with the seafloor. They follow a quasi-geostrophic 

balance and a quasi-steady flow that can be affected by tides, seasonal changes or migrating eddies 

(Shanmugam, 2008; Zenk, 2008). Thus, their direction is subparallel to the seafloor topography, flowing 

alongslope as a single broad core, branding them as “contour-currents” (Stow et al., 2008; Figure 3.1). 

Not all currents are directly involved in contourite formation and a few play only a secondary role. The 

different currents involved in contourite construction are described as follows (Shanmugam, 2008): 

 Contour-currents: with a net flow alongslope, subparallel to the topographic contours. Despite 

their path, they can also flow upslope, downslope, around and over topographic obstacles or 

irregularities. The Coriolis force and the meridional distribution of continents force the 

intensification of these currents along the western and eastern boundaries of the oceans; 

 Abyssal currents (also named “ocean currents”): characterized as equivalent of large-scale 

bottom-currents flowing in the bottom-deep sea, below the edge of the continental slope, with 

the topography and the Coriolis force playing an important role in determining their pathway; 



16 

 Thermohaline currents: formed as a result of uneven density distributions and variable 

temperature and salt content in the water masses. The horizontal transport of a water mass 

determines the oceanic conveyor-belt, called the Meridional Overturning Circulation on the 

Atlantic Ocean (AMOC) (Figure 3.2); 

 Geostrophic currents: characterized by long-lasting equilibrium conditions between the 

horizontal pressure gradient and the Coriolis force. The flow is forced to follow the bathymetric 

contours, since these currents have zero vertical velocity; 

 Deep-water currents: formed by deep-water tidal currents in submarine canyons, long-wave 

baroclinic currents (internal waves, tides, solitary waves) and tsunami-related traction currents. 

 

 
Figure 3.2 – Representation of the global oceanic conveyor-belt and the so called Atlantic Meridional Overturning Circulation 

(Rahmstorf, 2002, 2006). 

 

Two other processes occur interstratified with the processes involved in contourite formation, although 

they are not related to the construction of contourites: 

 Upwelling: which involves the rise of deep-water masses, and produces bottom-currents against 

topographic barriers and continental margins, mainly at low latitudes; 

 Downwelling: characterized by a downward transport of cooled water masses from the surface. 

This transport occurs mainly at polar latitudes, resulting in bottom-currents (not necessarily at 

the ocean margins, therefore it does not affect the seafloor sometimes).  

 

3.2 Contourites 

Contourites are sediments deposited on continental margins or ocean basins, due to the effect of bottom-

currents and several processes (such as tides, internal waves, barotropic waves, dynamic instabilities 

and gravitational flux) on the seafloor (Stow et al., 2002b; Rebesco, 2005; Faugères and Stow, 2008). 

Contourite deposition often involves multi-phase entrainment, long distance transport, and interaction 

among depositional processes induced by the various types of bottom-current (McCave, 2008; Stow et 

al., 2008). Yet, the different types of bottom-currents are known to influence to a greater or lesser extent 

many depositional environments. They affect various types of sediment, both during and after 

deposition. Thus, it is generally accepted that contourite sedimentary facies also include sediments, 

Surface Flow 
Deep Flow 
Bottom Flow 

Salinity > 36 %o  
Salinity < 34 %o  
Deep Water Formation 
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usually interbedded, that are not deposited under the influence of bottom-currents (Figure 3.3). The 

occurrence of sediments other than contourites is due to the interaction between alongslope, downslope 

and pelagic processes. Turbidites, for example, can occur frequently within contourite successions, even 

if the bottom-current influence is large enough to control the overall geometry of the deposits and 

generate a contourite drift (Faugères et al., 1999; Rebesco, 2005; Rebesco et al., 2014).  

 

 
Figure 3.3 – Examples of other sediment facies interbedded with contourite facies at Expedition 339 Sites U1386 and U1387 

in the Faro Drift, Algarve Basin (adapted from Hernández-Molina et al., 2014a, 2015). 

 

Bottom-currents are capable of building thick and extensive accumulations of sediments, if a significant 

sediment input is available, from the abyssal floor to the outer shelf (Faugères and Stow, 2008). The 

term contourite drifts should be used for sediment accumulations deposited, or significantly affected, by 

currents flowing along the contours. However, it was highlighted already that different types of bottom-

current exist and therefore, the term contourite drifts should be used for sediment accumulations 

deposited by bottom-currents in general. 
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3.3 Depositional and erosional features related to bottom-currents 

The formation of contourites along any continental margin involves the construction of several erosional 

and depositional features. When alongslope processes dominate over other processes, such as mass 

wasting, turbidity currents or pelagic settling, erosional and depositional features are formed as a result 

of bottom-current variations (Figure 3.4 and 3.5) and are usually linked to a Contourite Depositional 

System (CDS). If this CDS is distinct but connected within the same water mass, it can be considered a 

Contourite Depositional Complex (CDC) (Hernández-Molina et al., 2003, 2006). The formation of a 

CDS ends when the transport capacity of the bottom-current diminishes till it no longer dominates over 

other depositional processes. Therefore, mixing with other deep-water facies types occurs, with the 

formation of erosional and depositional features at different scales, from small crossbed layers to large 

sediment drifts (Rebesco, 2005; Rebesco et al., 2014).  

In the seismic record, contourites are easy to recognize due to unambiguous diagnostic criteria at the 

mesoscale. The classification of contourite drifts, established by Faugères et al. (1999) and Rebesco et 

al. (2014), focuses on the definition of different drift types by location, morphology and drift 

development for each geological and hydrological context. These classifications are not mutually 

exclusive, due to gradation and overlap between all types and mixed drifts (Figure 3.5 and 3.6). Most 

drifts have sheeted or mounded morphology, but the mounded forms are also further classified based on 

other physiographic features (Faugères et al., 1999). Large-scale surface and linear erosional features 

are also common, usually associated with contourite deposits. Surface features are reported as terraces 

or abraded surfaces, while linear features are channels, moats or marginal valleys (Figure 3.4 and 3.6). 

 

CONTOURITE CHANNEL 

 

CONTOURITE MOAT 

 

MARGINAL VALLEY 

 

Figure 3.4 – Main characteristics of linear large-scale contourite erosional features Rebesco et al. (2014). 
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Figure 3.5 – Drift classifications and related bottom-current paths. Modified from Faugères et al. (1999) and Rebesco et al. 

(2014). 
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Figure 3.6 – Seismic profiles examples of different drift types and large-scale features: (A1) sheeted drift and contourite 

Guadalquivir and Cadiz channels, bound by the Guadalquivir Diapiric Ridge, in the Gulf of Cadiz (Hernández-Molina et al., 

2006); (A2) confined Sumba Drift in the forearc Sunda Basin, Indonesia (Reed et al. 1987). 

 

3.4 Identification of Onshore Contourite Features 

Contourites have been identified mostly in the North and South Atlantic basins, usually associated with 

deep water masses (e.g. North Atlantic Deep Water or Antarctic Bottom Water). However, contourite 

features have also been described in the Mediterranean, Indian, Pacific, Arctic and Antarctic basins in 

different settings and associated with either deep-intermediate or shallow water masses (Faugères et al., 

1999; Rebesco et al., 2014; Figure 3.8).  

While their identification in the offshore has been rather successful, the detection of contourite deposits 

in the onshore sedimentary record is extremely difficult since it is not possible to identify their overall 

morphology. Their identification in the onshore geological record is also obscured by the occurrence of 

geological processes such as bioturbation, sedimentation, erosion, compaction, tectonics and 

metamorphosing (Rebesco and Camerlenghi, 2008; Rebesco et al., 2014). The identification of 

contourite outcrops needs to consider the context behind their formation, associated with the 

paleogeographic and tectonic frameworks. The most ancient records of contourites come from the 

Cambro-Ordovician to the Neogene (Figure 3.7), trending in an east-westward tendency across the 

globe, associated with the evolution of the Paleo Tethys Ocean (Huneke and Stow, 2008; Rebesco et 

al., 2014; Figure 3.8). 

A1 

 A2 
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Figure 3.7 – Ancient contourite outcrops of the Lefkara Formation, Cyprus (Paleogene to Early Neogene). From Rebesco et 
al. (2014). 

 

 

Figure 3.8 – Compilation of contourite deposits in the offshore (yellow areas) and contourite outcrops in the sedimentary 

record (red dots). From Rebesco et al. (2014). 

 

3.5 Contourite Drifts: Economic and Oceanographic Relevance 

Contourites have been given growing attention in three main research areas, paleoceanography and 

paleoclimatology, hydrocarbon exploration and slope stability.  

The academy is by far the field that has given greater interest and contributions to the study of 

contourites. Contourites were usually confined to more academic studies in the past, since they were 

rarely associated with hydrocarbon bearing reservoirs and most of the hydrocarbon reserves found in 

deep-waters were related to turbidite reservoirs (e.g. Viana et al., 2007; Viana and Rebesco, 2007; 

Viana, 2008).  In more recent years, the number of contourite systems identified in deep-water settings 
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has increased, (Faugères et al., 1993; Rebesco et al., 2014) and sandy contourites have been discovered 

during IODP Expedition 339 in 2011-2012 (Brackenridge, 2014; Stow et al., 2014), which shows their 

potential to act as reservoirs and seals. As a result, the economic value of contourites increased and the 

petroleum industry started to invest in the research of contourites (Rebesco, 2005; Shanmugam, 2006; 

Stow et al., 2013; Brackenridge et al., 2013). The economic interest in contourites has gradually 

increased thanks to the academic research and the need to investigate hydrocarbon reservoirs other than 

the classic turbidites (Viana et al., 2007; Rebesco et al., 2014).  

In parallel with the petroleum industry uses, two other main research areas are depicted as having 

considerable importance: paleoceanography-paleoclimatology and slope stability. The 

paleoceanographic record, driven by climate changes, can be studied through contourite deposits 

(Faugères et al., 1993; Rebesco et al., 2014). The sedimentary stacking pattern of contourite drifts 

change due to important paleoceanographic, climatic or sea-level fluctuations, which affect sediment 

influx and deposition. Therefore, their stacking pattern can be used to identify phases and modifications 

of oceanic current activity, as well as the factors that induce local- and global-scale variations in 

thermohaline circulation, fundamental to understanding climate changes (Faugères et al., 1999; Rebesco 

et al., 2014). 

The analysis of slope stability in areas affected by contour-currents and contourite deposition is another 

important aspect to study (Rebesco and Camerlenghi, 2008). Vigorous contour-currents can locally 

erode the seafloor, provoking sediment instability and triggering potentially hazardous mass-flow events 

(Mulder et al., 2003; Laberg et al., 2005; Viana et al., 2007). Several studies have shown that contourites 

act as a predispositioning factor for slope instability. For example, the development of the Storegga 

Slide in Norway. The Storegga slide corresponds to a collapse of ~290 km along the Norwegian margin 

on an area of ~3500 km3 (Bondevik et al., 2012). This event was triggered in the Holocene by seismic 

activity or methane hydrates dissociation (Bünz et al., 2003; Lisa, 2014). However, it was also shown 

that contourites with high mud content, plasticity and water content worked as weak layers for shear 

stress movements and predisposed the occurrence of the Storegga slide (Bryn et al., 2005).   
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CHAPTER 4 

 

CONTOURITES IN IBERIA 

 

4.1 Oceanography of SW Iberia  

The present oceanic circulation in the Gulf of Cadiz is motivated by the exchange system established 

between the Atlantic Ocean and the Mediterranean Sea through the Strait of Gibraltar (Baringer and 

Price, 1999). This gateway allows the exchange between the warm saline Mediterranean Outflow Water 

(MOW) and the overlying Atlantic Inflow Water (AIW) (Ambar et al., 2002; Serra et al., 2005).  

The AIW is a 0-500 m layer formed by the North Atlantic Surface Water (NASW), which flows from 

the surface to approximately 100 m depth with temperatures above 16ºC and salinity of 36.40‰, and by 

the North Atlantic Central Water (NACW), which flows between 100 and 700 m depth with 

temperatures of 11-17ºC and salinity of 35.6-36.5‰ (Criado-Aldeanueva et al., 2006). The NASW has 

its origin in shallow NACW that was modified by air-sea interactions (Criado-Aldeanueva et al., 2006). 

The NACW is comprised by two distinct layers: the northward upper layer of sub-tropical origin 

(NACWt) at >45ºN (with 12.2-18.5ºC and 35.66-36.75‰) and the southward lower sub-polar layer 

(NACWp), which prevails up to 35ºN (with 4-12ºC and 34.96-35.66‰) (Pérez et al., 1993; Fiúza et al., 

1998; Mason et al., 2006; Padin et al., 2011). Over the continental shelf of the Gulf of Cadiz, warmer 

and fresher Shelf Waters (SW) have been detected at the surface with temperatures of 14-18ºC and 

salinity of 35.9-36.5‰ (Criado-Aldeanueva et al., 2006). 

The Mediterranean Water is originated in the Mediterranean Sea as a result of higher evaporation than 

precipitation and runoff, consisting of the mixture of two water masses from the Mediterranean Basin, 

the Levantine Intermediate Water (LIW) and a small component of the Western Mediterranean Deep 

Water (WMDW). The constricted basin and arid climate provides the necessary conditions for the 

formation of warm, dense saline water of 13ºC and 36.5‰ (Ambar and Howe, 1979). The WMDW is 

formed in the Gulf of Lion, filling the Mediterranean Basin below 500 m water depth, and flows around 

the Iberian Peninsula and the Balearic Islands, before exiting by the Alboran Sea and through the Strait 

of Gibraltar. The LIW is formed in the eastern Mediterranean Basin, and flows between 150 and 500 m 

water depth, over the upper and mid-continental slopes, through the Sicilian Strait, towards the Alboran 

Sea and Strait of Gibraltar (Millot 1999, 2009).  

The MOW is restricted to a core approximately 10 km wide as it passes through the Strait of Gibraltar 

(Ambar and Howe, 1979). The MOW accelerates through the Strait of Gibraltar (reaching velocities up 

to 250 cm s-1) as a warm (13ºC) and dense (37‰) water mass and forms a turbulent gravity driven flow 

before sinking downslope towards northwest (Ambar and Howe, 1979; Mulder et al., 2003; García et 

al., 2009; Figure 4.1). The MOW sinks as a result of its high salinity and the seafloor morphology at the 

exit of the Strait of Gibraltar. In the Gulf of Cadiz, the MOW begins to raft above the NADW and 

deflects northward due to the Coriolis force (Zenk 1970, 1975; Baringer and Price, 1997; Ambar et al., 

1999). The MOW can exceed 80 km in width and forms a broad water mass along the continental slope, 

with lower velocities of 80-40 cm s-1 towards northwest (Baringer and Price, 1997). The MOW’s reaches 

its lowest velocity (about 10 cm s-1) on the South Iberian margin (Ambar and Howe, 1979) due to diapiric 

ridges oblique to its flow direction (Nelson et al., 1993). Eventually, it settles as an intermediate contour-

current offshore the Cape São Vicente, between 400 and 1400 m water depth.  
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The MOW’s main water core is separated into two major cores and two minor ones (westwards of 6º20’ 

– 7º W), which flow at different depths with distinct oceanographic properties (Zenk 1970; Ambar and 

Howe, 1979; Ambar et al., 2002). The two major cores are the Mediterranean Upper Water (MU) and 

the Mediterranean Lower Water (ML), and the minor cores are the Shallow Core and the Deep Core 

(Zenk 1970; Ambar and Howe 1979; Ambar et al., 2002, 2008; Figure 4.1). The MU is a warmer and 

more saline water (13–14ºC and 35.7-37‰) than the ML (10.5–11.5°C and 36.5–37.5‰) and flows 

northward, along the continental slope of southwest Iberia, between 600 and 1000 m depth, but centered 

at 700-800 m depth. The ML flows northwest between 1000 and 1300 m depth, stabilizing around 1200-

1300 m depth with 20-30 cm s-1 velocity average (Bower et al., 2002; Llave et al., 2007b). At 7ºW, a 

branch detaches from the southern part of the ML to veer off towards southwest. At 7º 20’W, the ML is 

divided into three distinct branches: the Southern Branch (SB), the Principal Branch (PB) and the 

Intermediate Branch (IB). They flow in a general northwestern direction and join around 8º 20’W (Llave 

et al., 2007b; García et al., 2009; Figure 4.1). 

The Shallow Core flows between 400 and 600 m depth along the continental slope of southwest Iberia, 

and possesses higher temperatures than the Deep Core (Ambar et al., 2002, 2008). The Deep Core is 

recognized from the Portimão Canyon to Cape São Vicente, between 1300 and 1600 m depth (Ambar 

et al., 2002, 2008; Bower et al., 2002). The Deep Core branch is detached from the ML in association 

with pulses of dense water, forced to descend to greater depths due to interaction with the canyon 

topography (Bower et al., 2002; Ambar et al., 2008). Both the Portimão Canyon and Cape São Vicente 

act as a source of meddies formation. The Portimão Canyon is a source of meddies detached from the 

Deep Core and found downstream from the canyon, while Cape São Vicente is a source of meddies 

detached from the ML (Ambar et al., 2002, 2008; Serra et al., 2005). 

Underneath the MOW, the North Atlantic Deep Water (NADW) from the Greenland-Norwegian Sea 

flows southward at depths >1500 m. This water is characterized as a cold (3º-8ºC) and less saline (34.95–

35.20‰) water mass (Reid, 1979). In the Gulf of Cadiz, the NADW is joined by part of the MOW, 

flowing southwards down the eastern part of the Atlantic Ocean (Reid, 1979). 

  
Figure 4.1. – Main water masses flowing around the Iberian Peninsula (Stow et al., 2013). 

NASW: North Atlantic Superficial  
Water 
NADW: North Atlantic Deep  
Water 
AIW: Atlantic Inflow Water 

MOW: Mediterranean Outflow 
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4.1.1 Pliocene-Quaternary Paleoceanography of the MOW 

While present-day MOW circulation is well constrained, the paleoceanography of the MOW is still 

poorly known. The interaction between the MOW and the Atlantic Ocean is marked by the Messinian 

Salinity Crisis, an event during which the Mediterranean Sea underwent desiccation. Data from the 

Mediterranean Basin pinpoints the Messinian Salinity Crisis between 5.96 and 5.33 Ma (Cita, 2001; 

Bache et al., 2012). The occurrence of the Messinian Salinity Crisis in the Miocene is associated with 

several events of tectonic activity and sea-level and climatic fluctuations, which led to the closure of the 

Strait of Gibraltar and the isolation of the Mediterranean Basin in multiple stages (Bache et al., 2012). 

The Messinian Salinity Crisis ended with the Zanclean flood, which signified the beginning of water 

masses exchange between the Mediterranean and the Atlantic (Garcia-Castellanos et al., 2009). Several 

authors also suggest water formation in the Mediterranean Basin after an influx of Atlantic water into 

the basin, around the Early to Mid-Pliocene (Hsü et al., 1973; Llave et al., 2011; Bache et al., 2012).  

The circulation of the MOW through the Pliocene and Quaternary, and its relation to past climatic 

conditions, was studied through several methods, previously mentioned in Chapter 1. With the 

establishment of the MOW circulation in the Early Pliocene, climatic fluctuations influence and cause 

variations. Climatic fluctuations are responsible for the formation of two periods of cooler, saltier and 

more oxygenated Mediterranean deep water, with an enhanced circulation regime: the first period at, 

3.4-3.0 Ma, occurred moderately close to the onset of the Northern Hemisphere glaciations (3.1-2.7 Ma) 

(Hayward et al., 2009; Khélifi et al., 2009); and the second period, at 1.3-1.0 Ma, corresponds to the 

Mid-Pleistocene Transition (1.2-0.55 Ma) (Hayward et al., 2009).  These variations are characterized 

by MOW enhancement during glacial times, with a saltier, denser and more vigorous lower branch of 

the MOW (Cacho et al., 2000, 2002; Hernández-Molina et al., 2003, 2006; Rogerson et al., 2005; Llave 

et al., 2006; Voelker et al., 2006; Toucanne et al., 2007; García et al., 2009; Kaboth et al., 2016). While 

during the interglacials, a weaker MOW was split into several branches (Stow et al., 2002c). A few 

authors also propose highly dynamic outflow waters, with up and downslope movements on numerous 

timescales, in response to the density contrasts between the Atlantic and the Mediterranean water masses 

and their relation to climatic changes (Rogerson et al., 2005, 2012).  

 

4.2 Contourites in the Iberian margin 

The MOW has affected the Iberian margin since the Late Miocene and its interaction with the seafloor 

developed erosional and depositional features. This current has affected the sediments deposited in this 

region and lead to the formation of variable drifts from the Strait of Gibraltar to the Northwest Iberian 

margin (the Albufeira, Bartolomeus Dias, Faro, Guadalquivir, Huelvas, Lagos, Portimão and Sagres 

drifts; in the Camarinal and Spartel sills and around the Galicia Bank; Vanney and Mougenot, 1981; 

Llave et al., 2001, 2006, 2007, 2011; Hernández-Molina et al., 2003, 2006, 2011, 2015; Roque et al., 

2012; Figure 4.2). Therefore, this complex sedimentary system is referred to as the Gulf of Cadiz 

Contourite Depositional System (GCCDS) (Hernández-Molina et al., 2003, 2006).  

The occurrence of contourite deposits in the West Portuguese margin is scarce and poorly characterized, 

with a few examples identified near structural highs and geomorphologic irregularities (Alves et al., 

2003; Badagola, 2008). Their development is associated with the circulation of the MOW or the deeper 

NADW (Hernández-Molina et al., 2011). The Sines Drift is one of the main features of the GCCDS in 

the Southwest Portuguese margin, firstly identified by its general plastered morphology and stratified 

acoustic character (Mougenot, 1989; Hernández-Molina et al., 2015). Moreover, Hernández-Molina et 

al. (2011) has made a numeric simulation of bottom-current velocities (at regional scale) to detect 
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potential zones for drift formation in the West Portuguese margin. The results include the Extremadura 

Spur, off Porto at the continental slope and off Aveiro at the continental rise (Figure 4.2).  

 

Figure 4.2 – Examples of contourite drifts identified from the Galicia Bank (1) to the Western Iberian margin (2) and the Strait 

of Gibraltar (3). Modified from Hernández-Molina et al. (2011), with seismic profiles from Hernández-Molina et al. (2011) 

and Alves et al. (2003). 

 

4.3 Contourite Depositional System of the Gulf of Cadiz 

The GCCDS is well characterized in the South Iberia margin (Figure 4.3). Many authors have studied 

its erosional and depositional features (e.g. Gonthier et al., 1984; Nelson et al., 1993, 1999; Llave et al., 

2001, 2006, 2007b, 2011, 2015; Stow et al., 2002c, 2013; Hernández-Molina et al., 2003, 2006, 2014a,b, 

2015; Mulder et al., 2003, 2006; Roque et al., 2012; Brackenridge et al., 2013). The features in the 

eastern Gulf of Cadiz are associated with the erosive capacity of the bottom water mass and its 

interaction with local seafloor morphology. In this area, laterally extensive abraded surfaces are moving 

to discrete contourite channels, where diapiric structures control bottom-current flow. The northern Gulf 

of Cadiz is linked with contourite moats and large-scale depositional features (Figure 4.3). Depositional 

features, such as contourites, also occur along the Iberian margin. These features have distinct but similar 

characteristics, related to the decrease in transport capacity of the MOW and the increasing distance 

from the Strait of Gibraltar (Hernández-Molina et al., 2006, 2015).  

The main depositional features in the GCCDS are sediment wave fields, sediment lobes, mixed drifts, 

plastered drifts, elongated mounded and separate drifts and sheeted drifts. The main erosional features 

identified are contourite channels, furrows, marginal valleys and moats. Their characteristics and 

distribution along the margin define five morphosedimentary sectors (Hernández-Molina et al., 2006; 

Figure 4.3): 1) proximal scours and ribbons sector; 2) overflow sedimentary lobes sector; 3) channels 

and ridges sector; 4) contourite drifts sector; 5) submarine canyons sector. The main characteristics of 

each sector are reviewed herein.  
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Figure 4.3 – GCCDS sectors differentiated by large-scale erosional and depositional features (Hernández-Molina et al., 2006). 
 

Sector 1: Proximal scours and ribbons sector  

The sector 1 of the GCCDS is located near the Strait of Gibraltar. It is characterized by high energy 

bottom-currents (Kenyon and Belderson, 1973) and gravity-driven overflow features (Mulder et al., 

2003). The turbulent and gravity-driven cascade of the MOW over the Camarinal Sill, which is the sill 

that separates the Mediterranean and the Atlantic Ocean, led to the formation of two deep erosional 

channels and outcrop features (Hernández-Molina et al., 2014b; Figure 4.4). Recent campaigns have 

identified additional drift features, with plastered drifts along the upper slope and two mounded drifts 

on two broad erosional terraces (Hernández-Molina et al., 2014b, 2015). These terraces form a major 

abraded surface, from 500 to 800 m water depths, dominated by erosional processes (Hernández-Molina 

et al., 2014b). 

Closer to the Strait of Gibraltar, the region is characterized by rock outcrops on the seafloor and coarse 

grained sediments (Mulder et al., 2003). These features suggest a highly vigorous current regime along 

the route of the MOW proximal to the Strait of Gibraltar. Although, there are depositional features in 

this sector, which suggest a reduction in MOW velocity (and sediment transport capacity) away from 

the Strait of Gibraltar towards northwest and laterally from the MOW’s core to the east and west (Mulder 

et al., 2003). Gravel and sand lag deposits give way to sand ribbons and wave deposits (Mulder et al., 

2003). The orientation of all features follow the route of the MOW alongslope, as it leaves the Strait of 

Gibraltar towards west and bends northward due to the Coriolis force.  
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Figure 4.4 - Swath bathymetry with the location of the main depositional and erosional features at the exit of the Strait of 

Gibraltar (Hernández-Molina et al., 2014b). 

 

Sector 2: Overflow sedimentary lobes sector  

Sector 2, characterized by overflow sedimentary lobes, is located downslope and seaward of the first 

sector, between 800 and 1600 m water depth. This sector is characterized by sand-rich contourite 

deposits, with sedimentary wave fields, downslope orientated channels, furrow erosive features and 

associated depositional lobes (Hernández-Molina et al., 2006, 2014b; Hanquiez et al., 2010). The main 

depositional feature is a large contourite drift, located near the border with Sector 1. This large contourite 

is topped by an extensive sediment wave field (Figure 4.5). These sediment wave fields are incised by 

a series of downslope orientated channels and furrows. The largest channel is the Gil Eanes Channel, 

with an extension of 40 km and a reach of 1200 m water depth (Nelson et al., 1993). The Gil Eanes 

Channel and two major channels are U-shaped in cross section, with bioclastic sands in their axes and 

sediment lobe deposits at their terminus. These lobe deposits are thought to be formed by incision and 

induced gravity processes, related to a periodic deepening of the MOW (Rogerson et al., 2012). Other 

features in this sector include mud volcanoes, topographic highs on the seafloor that can redirect 

channels and that have important roles as conduits for gas migration (Hanquiez et al., 2010).  

 

 

 

 

 

 

 

 

 

Figure 4.5 – High-resolution bathymetry of the Aveiro channel-lobe depositional system located in sector 2 of the 

GCCDS (Hanquiez et al., 2010). 



29 

Sector 3: Channels and ridges sector 

The channels and ridges sector is located northwest of the first sector. This sector is characterized by 

diapiric ridges orientated NE-SW, perpendicular to the MOW flow, and tectonic basement highs. The 

interaction between the MOW’s branches with the seafloor creates the distinct channels in this sector 

(Nelson et al., 1993, 1999). This also provokes a morphological enhancement of the MOW branches, 

which leads to a higher erosional capacity. The major channels are named from the upper continental 

slope seaward: Gusano, Huelva, Diego Cao, Guadalquivir and Cadiz channels, with lengths over 100 

km (Hernández-Molina et al., 2006; Stow et al., 2013; Figure 4.6). Unlike the channels and furrows in 

Sector 2, these contourite channels tend to be sinuous and asymmetrical in cross section (Stow et al., 

2013). The channels incise the upper slope sheeted drifts, mid-slope deformed sheeted and buried 

mounded drifts (Llave et al., 2007a; Figure 4.6). 

 
Figure 4.6 - Three-dimensional model from swath bathymetry with the main erosional features (contourite channels and 

furrows) and diapiric ridges of the Gulf of Cadiz (Hernández-Molina et al., 2003). 

 

Sector 4: Contourite drifts sector 

The contourite drifts sector is located in the West and South Iberian continental margin. The fourth 

sector has been recognized by the occurrence of contourite drifts (Mougenot and Vanney, 1982; 

Faugères et al., 1984; Gonthier et al., 1984). This sector is characterized by high sediment thickness, 

and hence shows a clear record of the influence of the MOW in the North Atlantic Ocean (Llave et al., 

2001, 2010, 2015; Roque et al., 2012; Stow et al., 2013; Hernández-Molina et al., 2014b, 2015).  

The largest feature in this sector is the Faro-Albufeira elongated mounded drifts, and the related Alvares-

Cabral contourite moat, which separates these features from the continental slope and funnels the MOW 

westward (Figure 4.7). These drifts show upslope progradation patterns and laterally extensive erosional 

discontinuities, which can be linked with fluctuations in the intensity of the MOW (Llave et al., 2001; 

Roque et al., 2012). Downslope, associated with the Faro-Albufeira elongated mounded drifts, are a set 

of aggradational sheeted contourite drifts: the Faro-Cadiz and the Bartolomeu Dias drifts (Hernández-

Molina et al., 2006; Llave et al., 2011; Roque et al., 2012). 

(m) 
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Figure 4.7 – Bathymetric map and seismic profile with interpretation of the main depositional (Faro mounded drift) and 

erosional (Alvares-Cabral moat) features in the South Iberian margin. Modified from Roque et al. (2012).  

 

Sector 5: Submarine canyons sector 

The submarine canyons sector is the western most sector of the GCCDS, mainly dominated by 

downslope erosive features and muddy plastered and sheeted contourite drifts (Hernández-Molina et al., 

2006; Roque et al., 2012; Figure 4.8). The largest feature in this sector is the São Vicente Canyon, 

orientated downslope (NE-SW), although other canyons also form significant features on the sea bed, 

the Portimão, the Lagos and Sagres canyons (Llave et al., 2001; Hernández-Molina et al., 2015). These 

canyons are surrounded by the Lagos, Portimão and Sagres sheeted drifts. These drifts are characterized 

by muddy sediments interbedded with sand-rich downslope deposits (Llave et al., 2001).  

This sector differs from Sector 4 due to the capture of the MOW as it flows over the Portimão Canyon. 

This implicates a reduction in bottom-current velocity and a decrease in average grain size across the 

canyon (Mulder et al., 2006; Marchès et al., 2010). This reduction has important implications for the 

controls on contourite sand and mud deposition and downslope/alongslope process interaction. 

Afterwards, the MOW flows towards southwest or turns north and flows along the West and 

Northwestern Iberian margin (Zenk 1970, 1975; Baringer and Price, 1997; Ambar et al., 1999). In the 

north, the MOW flows along the seafloor, leading to the formation of contourite drifts on the Galician 

and Cantabrian continental margins (Hernández-Molina et al., 2011).  

 

Figure 4.8 – Seismic profile with interpretation of the Lagos and Sagres drifts, separated from the São Vicente High by moats 

and bound by the Lagos Canyon (LC) and São Vicente Canyon (SVC), respectively (Roque et al., 2012).  

Portugal 
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CHAPTER 5 

 

DATA & METHODOLOGY 

 

5.1 Dataset 

The dataset used in this work consists of: i) unpublished seismic reflection profiles acquired in 2014 in 

the scope of the MOWER/CONDRIBER project, ii) seismic reflection profiles acquired in other 

academic surveys (BIGSETS, STEAM) and oil-industry survey (GSI), iii) downhole logging data 

acquired during the Integrated Ocean Drilling Program (IODP) Expedition 339 at Site U1391, iv) 

lithological, chronological and physical properties data from this Site, v) stratigraphic and logging data 

from Pescada-1 oil-well, and vi) SWIM multibeam bathymetry (Zitellini et al., 2009; Figure 5.1). 

 

5.1.1 Seismic reflection data 

The seismic reflection profiles used in this work were obtained either during several academic cruises, 

namely MOWER/CONDRIBER, STEAM 94 and BIGSETS 98, or in oil-industry surveys as GSI 84 

(Figure 5.1). The acquisition parameters of each seismic reflection survey are compiled in Table 5.1. 

 

Figure 5.1 – Location of the seismic datasets and IODP Site U1391 used in this work: CONDRIBER, STEAM, GSI and 

BIGSETS. 
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Table 5.1 – Acquisition parameters of each seismic survey: CONDRIBER, STEAM, GSI and BIGSETS (Steam report, 1994; 

Alves et al., 2000; Zitellini et al., 2001; Informe Técnico Campaña Mower, 2014).  
 

Dataset  Year 
Research 

Vessel 

Streamer 

Length 
Source 

Total 

volume 

Shot 

Interval 
Channels 

Channel 

Interval 

Sample 

Rate 

Total 

Seismic 

CONDRIBER  2014 RV 

Sarmiento 

de Gamboa 

250 m 8 G-GunII 

Sercel 

airguns 

910, 610 in3 

(2000 psi) 

50 m 3 (40 

hydrophones 

per group) 

50 m 0.5 ms 785 km 

STEAM 94  1994 MV Zirfae - 1 Airgun 10 in3 25 m 12  25 m 0.5 ms - 

GSI 84  1984 MV P.E. 

Haggerty 

3000 m Airgun  

array 

2775 in3 

(2000 psi) 

25 m 120 (27 

hydrophones  

per group) 

- 2 ms 4600 km 

BIGSETS 98  1998 RV Urania 1200 m 4 Sodera  

SSI GI-GUN 

airguns 

150-250 in3 25-50 m 48  25 m  

(group 

interval) 

1 ms 2715 km 

 

5.1.2 Pescada-1 oil-well data 

Oil industry well Pescada-1 data was attained from other works (Matias, 2002; Batista, 2009) to correlate 

the older seismic horizons. The well is located southwest of Setúbal (38º08'7.1''N, 09º02'8.6''W) on the 

continental shelf beneath 148.41 m of water depth and reached 3082.44 m in depth (Table 5.2). 

 
Table 5.2 – Coring summary of the oil industry well Pescada-1 (extracted from Matias, 2002; Batista, 2009). 

Coring Summary Pescada-1 

Longitude 09º02'8.6''W 

Latitude 38º08'7.1''N 

Water depth (m) 148.41 m 

Total penetration (mbsf) 3082.44 m 

Total length of cored section (m) 2951.7 m 

 

5.1.3 IODP Expedition 339 well data 

As part of the IODP Expedition 339 from 16th November 2011 to 16th January 2012, six sites were 

drilled across the Gulf of Cadiz and West Portuguese margin to research the influence of the 

Mediterranean Outflow Water on global circulation and climate.  

This study focus on Site U1391, drilled on the Southwest Iberian margin on the Sines Drift 

(37º21.5322′N, 9º24.6558′W) (Figure 5.1). Three holes were drilled at Site U1391: U1391A, U1391B 

and U1391C. The Site penetrated 671.5 mbsf (meters below seafloor), beneath 1073.7 m of water depth 

and cored a total of 1378.1 m with a recovery of 958.57 m, which corresponds to 92.3% (Table 5.3). 

During IODP Expedition 339, several analyses were carried on-board and downhole, including detailed 

visual assessment, smear slide analysis, sediment samples, physical properties and downhole logging 

measurements.  

In the present work, downhole logging measurements, physical properties and grain size data from Site 

U1391 were used to provide information about the lithostratigraphy, the chronostratigraphy and the 
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petrophysical properties of the drilled sediments. IODP Expedition 339 core datasets are available at 

IODP’s online database: http://iodp.tamu.edu/index.html. The tools and methods used during 

Expedition 339 to acquire the core data are reviewed herein. 

High-resolution non-destructive measurements of physical properties of sediments at Site U1391 

include gamma ray attenuation (GRA) bulk density, P-wave velocity and magnetic susceptibility in 2.5 

cm steps on the Whole-Round Multisensor Logger (WRMSL). Natural gamma ray (NGR) was measured 

on whole-round core sections at 10 and 20 cm spacing. Also, discrete P-wave velocities were measured 

on working-half sections and in Hole U1391A on every other section. However, the measurements were 

only considered viable for the upper 50 mbsf. Moisture and density (MAD) samples were obtained for 

every other section of each core in Holes U1391A and U1391C. Finally, color reflectance spectrometry 

and split-core pointlogger magnetic susceptibility were obtained for every section of each hole in 5 cm 

steps (Expedition 339 Scientists, 2012). 

The downhole logging measurements had to account for the placement of the pipe (the so called 

“baseline”) at 98.9 mbsf. The logging operations deployed two tool strings, the triple combination and 

the Formation MicroScanner Sonde (FMS). These tool strings also included Hostile Environment 

Natural Gamma Ray Sonde (HNGS), High-Resolution Laterolog Array (HRLA) and Hostile 

Environment Litho-Density Sonde (HLDS). The tool string reached the bottom of the hole at 671.5 mbsf 

and logging was made with multiple passes up to the seafloor. 

 

Table 5.3 – Coring summary of the three drilled holes at IODP Site U1391: U1391A, U1391B and U1391C (extracted from 

Expedition 339 Scientists, 2012). 

Coring Summary Hole U1391A Hole U1391B Hole U1391C 

Longitude 9º24.6601′W 9º24.6604′W 9º24.6468′W 

Latitude 37º21.5392′N 37º21.5288′N 37º21.5286′N 

Water depth (m) 1073.7 1073.3 1073.3 

Total penetration (mbsf) 353.1 353.5 671.5 

Total length of cored section (m) 353.1 353.5 331.5 

Total core recovered (m) 342.62 346.93 269.02 

Core recovery (%) 97.03 98.14 81.15 

 

5.2 Methodology 

5.2.1 General concepts of seismic reflection  

Seismic reflection is a geophysical method capable of obtaining data and acoustic 2D images of the 

geology under the seafloor. This method is based on the generation and detection of acoustic waves, 

which propagate through different geological layers. The process begins with the generation of a short 

pulse of sound (shot) from a source, for example an airgun. The released energy generates acoustic 

waves that travel through the water and rock layers. The acoustic waves will be reflected on different 

interfaces, due to acoustic impedance contrasts (Yilmaz, 1987; Sheriff and Geldart, 1995): 

𝐼 = 𝜌 ×𝑉    Equation 1 

Where I represents the acoustic impedance, ρ the density (g/cm3) and V the velocity (m/s).  

http://iodp.tamu.edu/index.html
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Subsequently, the reflected waves will be recorded at the surface by seismic receivers, for example 

hydrophones in the offshore acquisition (Sheriff and Geldart, 1995; Figure 5.2). The records will be 

processed and transformed into seismic profiles, images used to interpret the stratigraphy and geometry 

of the subsurface layers of the surveyed area.  

 

5.2.2 Seismic Data Acquisition and Processing 

The datasets used in this work form a heterogeneous group with different sources, acquisition parameters 

and seismic processing. This variability produces inconsistencies for the coverage of the study area and 

for the characteristics of each dataset (such as seismic processing, vertical and horizontal resolution, 

quality and positioning system). Therefore, this variability can constrict the results and conclusions 

obtained in the present work. Also, the older seismic profiles (GSI) correspond to digitalized paper 

formats, TIFF to SEG-Y (Batista, 2009). This transformation inserts a boundary for the application of 

further geological or geophysical software.  

And finally, another factor that can cause inconsistencies in seismic interpretation is the resolution vs. 

depth penetration challenge. A seismic dataset is always characterized by two distinct but related 

properties: resolution and penetration depth (Sheriff and Geldart, 1995). These properties are 

conditioned by the frequency of the signal and by the type of acoustic source. In seismic reflection, 

depth is measured in two-way travel time (in milliseconds or seconds) and it corresponds to the time the 

sound waves take since they leave the source, reflect on an interface and return to the receiver. With 

depth, the frequency of the signal decreases while velocity and wavelength increase. Therefore, seismic 

resolution will decrease and high frequencies will be preferably reflected on shallower reflectors while 

low frequencies reflect on deeper levels (Sheriff and Geldart, 1995). A seismic survey is a compromise 

between these two properties, since it favours one and damages the other. Therefore, the acquisition and 

the seismic processing must consider the objectives of the survey.  If a seismic survey has good 

resolution, it uses high frequencies and therefore does not reach the lower layers of the subsurface 

(Figure 5.2).  

The seismic datasets used in this study have good penetration with medium (BIGSETS and GSI, up to 

10 km depth) and high (CONDRIBER and STEAM, up to 4 km depth) resolution. The acquisition 

specifications of the CONDRIBER seismic survey are displayed in Appendix 10.1.  

 

 

Figure 5.2 – Example of offshore seismic reflection survey with classic source and receivers’ geometry. Modified from FLCT 

Services Ltd. (2009). 
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 Processing steps 

The aim of seismic data processing is to increase the signal-to-noise ratio, and thus improve the vertical 

resolution of the individual seismic traces (Sheriff and Geldart, 1995). The CONDRIBER survey is 

constituted by 16 multichannel high (to medium) resolution 2D seismic profiles, obtained with an airgun 

source during the MOWER/CONDRIBER cruise in 2014. The CONDRIBER data was processed by the 

Instituto de Ciencias Marinas in Barcelona (ICM-CSIC). The processing steps applied are outlined 

below (Informe Técnico Campaña Mower, 2014; Appendix 10.1).  

The processing flow begun by extracting the navigation of each shot and channel through export headers 

from Seisee. This step allows the calculation of the common depth point (CDP), of each profile, on the 

program CDP3. This sequence results in a SEG-Y file with shot, channel, CDP and UTM coordinates 

of each CDP and shot in the headers of the traces.  

The next step was the application of a noise filter. The noise of the SIG streamer usually comes with the 

same signal and other times with inverted signal due to multiple noise sources. Therefore, same signal 

noise auto-eliminated itself when the polarity of one of the channels was switched and summed. The 

noise with inverted signal was eliminated by applying a Matlab script (Seg4king), which replaced, for a 

certain time of the trace, values which are higher than a certain magnitude of the previous and next 

traces, for the measurement of these.  

The main processing flow was developed on the software Hotshot. Hotshot can create referenced 

bitmaps, which allow the digitalization of the seafloor depth and elimination of the water column. 

Afterwards, the signal of the reflections from channels 2 and 3 was switched (with function VNEG), 

since the channels had inverted polarity (regarding the reflections of channel 1).  

The next step was the application of a function (RABAL) to equalize channels and shots, followed by 

high-pass filtering to eliminate frequencies lower than 30 Hz. Filtering was also employed through 

several band-pass filters, progressively applied since the seafloor: 

 0 ms: 75 - 240 Hz; 

 100 ms: 25 – 180 Hz; 

 1000 ms: 25 - 100 Hz; 

 9000 ms: 20 - 100 Hz; 

Afterwards, a Mute removed the signal of channel 3 below 0.4 seconds.  

The profiles with sedimentary cover undertook another processing sequence: the elimination of the first 

150-200 ms (below the seafloor) of channels 1 and 2, to give more rebound to the high frequencies of 

channel 3. This sequence was followed by Sort and Stack of the traces by order of the shot, or by CDP’s 

for the more superficial profiles.  

The next step was the application of a new equalization of the traces and resampling at 1 ms (since the 

originals are sampled at 500 μs). Afterwards, it was necessary to apply an Automatic Gain Control 

(AGC) with a window of 0.7 seconds to normalize the traces. The last step was a Shift to eliminate the 

first 50 ms of the file and to allow synchronization between register and trigger. Finally, the resultant 

SEG-Y file was written.  

The use of different processing steps can constrain the quality of the seismic profiles and cause 

imprecisions during seismic interpretation.  This also shows in the display of the seismic data and when 

attempting a seismic to well tie.  
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5.2.3 Seismostratigraphic Calibration Method  

To take full advantage of Site U1391 physical properties data and to calibrate the well data with the 

crossing seismic profiles, it is possible to create a model of the seismic trace: the synthetic seismogram. 

A synthetic seismogram is a concept manufactured from sonic (or velocity) and density logs, which is 

compared to seismic data to identify reflections of particular interest (Sheriff and Geldart, 1995; 

Hardage, 2007). This process can also distinguish primary reflections from multiples or other events.  

First, the logs have to be converted from functions of depth to functions of vertical seismic travel time 

(Yilmaz, 1987; Holstein, 2007). This transformation is applied by a simple equation: 

𝐷 = 𝑉×𝑡    Equation 2 

Where D represents depth (m), V the velocity (m/s) and t the seismic travel time (second). 

Secondly, the sonic and density logs have to be multiplied to create a log of the acoustic impedance 

(Equation 1). This time-based impedance is converted into a series of reflection coefficients (Equation 

3) (Yilmaz, 1987):  

𝑅 =
𝐼1−𝐼2

𝐼1+𝐼2
=

𝜌1𝑉1−𝜌2𝑉2

𝜌1𝑉1+𝜌2𝑉2
   Equation 3 

R – Seismic reflection coefficient; 

ρ1 – bulk density of the layer above the reflection interface (g/cm3); 

ρ2 – bulk density of the layer below the reflection interface (g/cm3); 

V1 – velocity of the layer above the reflection interface (m/s); 

V2 – of the layer below the reflection interface (m/s). 

An estimated seismic wavelet is convolved with the reflectivity model to obtain a synthetic seismogram 

(Figure 5.3). Afterwards, the synthetic seismogram can be compared with the real seismic traces near 

the well for interpretation purposes and if necessary, to apply editing. Editing involves shifting the 

synthetic seismogram up and down in the time scale to determine the time shift required to position the 

synthetic seismogram with optimal alignment of reflection peaks and troughs with the seismic traces 

(Sheriff and Geldart, 1995). Other corrections are progressively applied until the synthetic model is 

considered sufficiently adjusted to the seismic trace (Anderson and Newric, 2008). As with all types of 

modelling, the result is not unique, since it is possible that another different model could produce an 

equally good match.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Procedure for generating a synthetic seismogram (Holstein, 2007). 
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Site U1391 has velocity (from DSI Tool, km/s) and density (g/cm3) logs available. These logs were 

edited for bad intervals and outliers, mostly identified at the top and the bottom portions of the data.  

Kingdom software (SynPAK module) generates a synthetic seismogram by following the process 

mentioned above (Figure 5.3 and 5.4). The wavelet chosen was minimum phase with the following 

parameters: 20 Hz for F1, 25 Hz for F2, 75 Hz for F3 and 240 Hz for F4. The chosen frequencies 

consider the band-pass filters applied during the CONDRIBER seismic processing and also the start of 

logging measurements, which register from the baseline (98.9 mbsf) to the bottom of the hole (671.5 

mbsf). However, it is generally preferable to extract the wavelet from the seismic data to be matched 

(Sheriff and Geldart, 1995; Anderson and Newric, 2008). The synthetic seismogram obtained is 

presented in normal and reverse polarity, alongside the velocity (km/s) and the density (g/cm3) logs, as 

well as the acoustic impedance and the resistivity (ohm.m) logs created, shown in Figure 6.2. This 

Kingdom software license does not possess the tools necessary to apply editing or other corrections to 

the synthetic seismogram. Therefore, the interpretation and calibration of said model with the real 

seismic traces (from the intersected seismic profiles: CL06 or BS19) cannot be completed. But an 

example of this process can be seen below (Figure 5.4). 

 

Figure 5.4 – Example of synthetic seismogram using the P-wave velocity (obtained from Logging-While-Drilling, LWD) and 

bulk density logs from the Ulleung Basin Gas Hydrate Drilling Expedition 1 Site UBGH1-4, in 2007 in the Ulleung Basin, 

offshore Korea and a seismic wavelet extracted from 3-D seismic data (Scholz et al., 2012). 

 

The lack of calibration between seismic reflections and the resulting seismogram can also derive from 

other factors: 

 A synthetic is an estimate of the seismic image if the imaging ray path travelled vertically 

downward from a source and then reflected vertically upward along the same travel path to a 

receiver located exactly at the source position. While seismic profile traces are a composite of 

several field traces, which represent wave field propagation along multiple oblique ray paths 

between sources and receivers (Sheriff and Geldart, 1995); 

 The effects of the near surface are not considered for a synthetic seismogram, since the velocity 

and density logs themselves are not recorded over shallow depths (since logging usually starts 

after the placement of the pipe). Although this effect can be corrected with co-derived velocity 

and density measurements to create relatively continuous profiles (Cunningham and Droxler, 

2000; Anderson and Newric, 2008). This factor also considers the alteration caused by drilling 

and drilling fluid invasion, which damage the rocks and therefore affect the measurements and 

representations of the petrophysical properties (Hardage, 2007).  



38 

5.2.4 Seismostratigraphic Correlation Method 

Seismostratigraphic correlation uses the data provided by seismic profiles and wells to establish 

temporal or lateral relations between stratigraphic units or between their bounding discontinuities, and 

can be applied for lithostratigraphic correlation or chronologic correlation studies (Vail et al., 1977; 

Snedden and Sarg, 2008).  

Lithostratigraphic correlation establishes a relation between strata or units with compatible lithological 

characteristics, without considering an equivalence in the geologic time scale (Vail et al., 1977; 

Mitchum et al., 1994). Lateral relation between lithostratigraphic units implicates recognizing lateral 

continuity and using consistent and unambiguous stratigraphic markers, which are the most reliable 

method to establish a relation.  

Chronologic correlation assumes the occurrence of geologic time equivalence between stratigraphic 

units, even with different lithology (Vail et al., 1977). This concept implicates knowing the age of the 

correlated units to establish relations between stratigraphic units of the same area and between units 

with the same geologic time interval. This is also used to ascertain the position of a unit in the 

chronostratigraphic table at a global scale (Vail et al., 1987).  

In seismic interpretation, correlation is simply the identification of seismic units or discontinuities based 

in similarities between character reflection and their arrival time in a crossing point of two or more 

seismic profiles (time-tie) (Sheriff and Geldart, 1995; Snedden and Sarg, 2008). This process was chosen 

since the synthetic seismogram created above was not used to tie seismic and well data. IODP’s database 

has a time-depth checkshot chart available for Expedition 339, Site U1391. Site U1391 time-depth chart 

and the stratigraphic events identified by Hernández-Molina et al. (2015) allow a correlation with the 

intersected seismic profiles, CL06 and BS19 (Table 5.4). 

 

Table 5.4 – Time-depth chart created from U1391 time-depth checkshot data and from the main stratigraphic discontinuities 
mentioned in Hernández-Molina et al. (2015).  

IODP U1391 Depth (mbsf) Depth (m) Two-way travel time (ms) 

Seafloor 0 1073.43 1430 

LQD 91 1164.43 1610 

MPD 196.1 1269.53 1700 

EQD 566.1 1639.53 2020 

BQD 575 1648.43 2050 

LPD 633.2 1706.63 2100 

Bottom of hole 671.5 1744.93 2170 

 

5.3 Seismic stratigraphy interpretation 

Interpretation of seismic reflection profiles involves a stratigraphic analysis and, if possible, calibration 

or correlation with lithological chronostratigraphic data (Vail et al., 1977; Snedden and Sarg, 2008). 

This method applies geological concepts of stratigraphy on the seismic data. The key concepts of seismic 

stratigraphy were defined in the Memoir 26 of American Association of Petroleum Geologists entitled 

“Seismic stratigraphy: Applications to hydrocarbon exploration” (Payton, 1977). This approach focuses 

on distinctive criteria available on seismic reflection data to interpret depositional sequences, geometry 

relations, geologic information, eustatic variations and tectonic events. 
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The concept of depositional sequence is outlined as a stratigraphic unit composed of genetically related 

strata (Figure 5.5), bounded by unconformities or their correlative conformities (Sloss, 1963). This 

concept is based on the repetitive nature of geological and sedimentary events and assumes 

chronostratigraphic significance for depositional sequences and their boundaries. Although not all 

reflections are generated by geological interfaces (such as coherent noise patterns: multiples or 

diffractions). This methodology defines the depositional sequence boundaries as discontinuities or 

correlative conformities, which represent marks of erosion or non-deposition, sometimes associated with 

a hiatus (a lapse of time that separates rocks of different ages, measured at the scale of the basin, 

Mitchum et al., 1977a,b). 

 

Figure 5.5 – Example of depositional sequence, limited by bounded unconformities and their relative conformities (surfaces 

A and B) and reflectors terminations (adapted from Mitchum et al., 1977b).  
 

A seismic sequence is a depositional sequence identified on a seismic section (Mitchum et al., 1977a, 

b). This concept defines a succession of reflections as genetically related strata, bounded at the top and 

base by surfaces of discontinuity (surfaces A and B in Figure 5.5), marked as reflection terminations 

(Mitchum et al.,1977c). However, the conventional concept of seismic sequence and the terminology 

involved is not fully applicable to contourite studies (Nielsen et al., 2008). The conventional concept of 

seismic sequence implies that sequences and their strata are formed as a result of base-level changes and 

downslope shelf-to-basin sediment transport, while contourites are mainly formed by bottom-currents 

regimes and sediment pathways orientated parallel to the continental margins. Also, the unconformities 

that bound the sequences are inferred to be autocyclic and result from foreseeable changes in 

accommodation space, while unconformities in contourites result from a non-predictable pattern related 

to variations in current regime (Nielsen et al., 2008).  

Therefore, it is preferable to use the term seismic succession, as suggested in Nielsen et al. (2008). 

Seismic successions are not associated with any specific depositional environment to denote a 

stratigraphic subdivision of a drift succession. The separation of seismic successions is based on the 

analysis of reflection terminations and internal reflectors patterns, using the traditional techniques 

introduced by Mitchum et al. (1977a,b,c). These concepts allow the definition of seismic succession as 

a three-dimensional unit, limited by stratigraphic discontinuities and composed by a group of reflections, 

whose parameters diverge from the adjacent successions. This differentiation is drawn by seismic facies, 

a group of seismic parameters used to characterize a seismic succession and individualize it from the 

adjacent successions. 

 

5.3.1 Seismic Facies Analysis 

Seismic facies analysis is the description and geological interpretation of seismic reflection parameters, 

such as the geometry and character of the reflections, the internal configuration and the external form. 

The analysis of several parameters results in a coherent structural interpretation, providing considerable 

information on the depositional environment and geology of the subsurface (Mitchum et al. 1977a,b).  
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 Reflection Terminations 

Considering the geometric relations between reflections, five types of terminations can be identified to 

define discontinuities or limits of seismic upper and lower units: onlap, downlap, toplap, truncation 

(erosional or structural) and concordance. Baselap can also be defined if onlap and downlap are 

indistinguishable. Their presence indicates an important transition and depositional hiatus, as a result of 

erosion or non-deposition.  

Top-discordant relations include truncation or toplap (Figure 5.6). Truncation, erosional and 

structural, is a relation characterized by an abrupt lateral ending of the reflections against a discordant 

surface. It could be generated as a result of water currents action or due to tectonic tilting of a sequence, 

followed by erosion over large areas or confined to the flanks of submarine channels. Toplap is 

characterized as the termination of reflections, interpreted as strata, against an overlying surface. Toplap 

is usually formed due to non-deposition hiatus and minor erosion.  

Base-discordant relations include onlap and downlap (Figure 5.6). Onlap corresponds to a relation 

where seismic reflections are interpreted as initially horizontal strata terminating progressively on top 

of a dipping surface, or as initially inclined strata terminating progressively up dip against a surface of 

higher dip. These terminations are associated with seafloor irregularities, caused by non-depositional 

hiatus or by deposition on tilted blocks. Downlap is characterized as initially dipping strata terminating 

downdip against an initially dipping or horizontal surface, and results from non-deposition hiatus.  

 
Figure 5.6 – Seismic reflection terminations, according to Mitchum et al. (1977b), from Roque (2007). 
 

 Reflection Configurations 

The overall geometry of a seismic facies unit consists of the internal reflection configuration and the 

external form of the unit. The identification of different reflection configurations indicates a geological 

variation in the seismic unit and carries geological significance (Mitchum et al., 1977c). The variations 

are identified by the following parameters: reflection continuity, amplitude, frequency and signature.  

Continuity is identified by lateral juxtaposition of successive reflections of the same horizon and is 

related to the physical continuity of the strata. Therefore, continuous reflections suggest widespread, 

uniformly stratified deposits. Continuity of a given horizon is interpreted as preservation of the 

depositional conditions with no main changes in the energy of the environment. 

Amplitude is associated with the maximum amplitude of the reflected wave, which is dependent on the 

velocity and density contrasts through each individual interface and the spacing between interfaces (high 
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amplitudes reflect high acoustic impedance). If a high amplitude reflection diminishes rapidly, it usually 

indicates a high energy depositional environment and the opposite suggests a large continuity of the 

formations and a stable depositional environment. 

Frequency is the time interval between two successive reflections.  The frequency reflects the 

instrumental seismic characteristics but it is also influenced by other factors such as the thickness of the 

layered deposits and the presence of fluids. There is an inverse relation between strata thickness and 

reflection thickness: high frequencies correspond to thin strata.  

 

 Internal Reflection Configurations 

Considering the geometric relations between reflections, the description and interpretation of internal 

reflection configurations begins with simple patterns and continues to the more complex. The 

configurations occur as a result of the depositional rate, energy, lithology, erosion, deformation and 

paleomorphology of the basin (Mitchum et al., 1977c). 

The parallel and subparallel (even or wavy) patterns (Figure 5.7) refer to high amplitude, continuous 

and parallel reflections. These patterns suggest uniform depositional rates on a steady subsiding shelf or 

stable basin plain setting. 

The divergent pattern (Figure 5.7) is related to a wedge-shaped sequence of seismic horizons. It 

suggests lateral variations in depositional rates or the progressive tilting of the depositional surface.  

The chaotic pattern (Figure 5.7) is identified by discontinuous, discordant and disordered reflections. 

This pattern suggests a high energy setting with variable depositional conditions and it is generally found 

in slump structures, erosion derived deposits, cut-and-fill channel complexes and zones highly affected 

by faults or folds. 

The transparent pattern (Figure 5.7) is characterized by the total or partial absence of reflections or by 

the lack of lateral continuity. This pattern is associated with homogeneous rocks, highly deformed or 

metamorphosed rocks, salt features and large igneous bodies. Although thick and seismically 

homogeneous sequences of shales or sandstones can also appear reflection-free.  

 

Figure 5.7 – Seismic internal reflection patterns, according to Mitchum et al. (1977c). 
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The most common depositional features observed in seismic profiles are clinoforms, represented by 

complex reflection configurations.   

Prograding clinoforms configurations correspond to packages of oblique to sigmoidal shaped 

reflections. These configurations are interpreted as strata where significant deposition occurred as a 

result of prograding or lateral sedimentation outbuilding. There are several sub-types of prograding 

configurations, such as sigmoid, oblique, tangential and parallel, sigmoid-oblique, shingled and 

hummocky (Figure 5.8). The differences in prograding clinoform patterns occur due to variations in the 

depositional rate and water depth, and a wide variety of environmental settings is possible.  

 

Figure 5.8 – Seismic internal reflection patterns of prograding clinoforms (from Mitchum et al., 1977c). 
 

Sigmoid progradational configuration (Figure 5.8) is an S-shaped clinoform, interpreted as thin, gently 

dipping strata at the top and base with a thicker, steeper intermediate sector. This configuration suggests 

a low energy setting with low sediment supply, relatively rapid basin subsidence and/or rapid sea-level 

rise. 

Oblique progradational configuration (Figure 5.8) is interpreted as steep-dipping strata with a toplap 

termination at or near a horizontal or subhorizontal upper boundary and a downlap termination against 

the lower boundary. New strata build almost entirely laterally in a depositionally downdip direction, as 

a result of the foreset steepness.  

In the tangential oblique progradational pattern (Figure 5.8), the dip decreases gradually in the foreset, 

forming concave-upward strata that change into a gently dipping bottomset strata. The strata become 

thinner towards the lower boundary, with downlap terminations.  

In the parallel oblique progradational configuration (Figure 5.8), the foreset strata maintain a 

relatively steep dip from top to bottom and terminate with a high angle by downlap at the lower 

boundary. The oblique progradation configuration is related to high energy sedimentary settings with a 

high sedimentary supply, slow to no basin subsidence and a still stand of the sea-level, which allows 

sedimentary bypass or scouring of the upper depositional surface. 

The complex sigmoid-oblique progradational configuration (Figure 5.8) is a complex prograding 

clinoform, defined by a combination of variably alternating sigmoid and oblique progradational 

configurations in the same seismic unit. This variation suggests alternating up-building and depositional 

bypass on a high energy regime.  
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Shingled progradational configuration (Figure 5.8) is a thin prograding pattern, generally with parallel 

upper and lower boundaries and gently dipping parallel internal reflectors, which are oblique and 

terminate by toplap and downlap. This pattern suggests the formation of depositional units prograding 

into shallow water. 

The hummocky clinoform configuration (Figure 5.8) is characterized by irregular and subparallel 

reflection segments forming a rather irregular hummocky pattern, with non-systematic reflection 

terminations and splits. This configuration is interpreted as strata forming small, interfingering 

clinoforms lobes, which build into shallow water in a prodelta or inter-deltaic setting. 

 

 External Form 

The interpretation of depositional sequences comprehends an understanding of three-dimensional 

external forms and an association to different seismic facies units.  Therefore, the external form is used 

to individualize a seismic unit, characterized by variable extent and geometry. Several external forms 

can be distinguished: sheet, sheet drape, wedge, bank, lens, mound and fill (Figure 5.9). External shapes 

such as sheets, wedges, lens and banks (Figure 5.9) can reach large sizes and display parallel, divergent 

or prograding patterns as internal reflection configurations. 

Sheet drapes are generally related to the deposition of pelagic or hemipelagic sediments on the 

underlying topography in a low energy, deep-marine environment.  

Mound shapes are interpreted as strata that forms build ups, elevations or prominences. Mounds can 

have different origins as a result of carbonate edifications or diapirs. These shapes have usually small 

dimensions with diverse internal configurations. 

Fill patterns correspond to strata filling a negative-relief feature in the underlying strata. These deposits 

can have different internal configurations, such as onlap, chaotic, prograding and divergent. Fill deposits 

can reach over large areas (from meters to kilometres) when in a basin context or be smaller (from 

centimeters to meters) when in the dependency of a channel.  

 
Figure 5.9 – External forms of seismic facies units. Extracted from Mitchum et al. (1977c).  
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5.3.2 Seismic Interpretation Procedure 

The seismic interpretation procedure of a contourite depositional system is well-defined in Nielsen et 

al. (2008). This procedure can be applied on this study, since it orders the seismic interpretation by an 

increasing level of seismic detail (which are named seismic elements), and respects the previous 

seismostratigraphic concepts. The procedure is outlined as follows (Figure 5.10): 

 First-order elements represent large-scale features, such as the architecture of the drift, with 

emphasis on the geometry and larger depositional units; 
 

 Second-order elements are medium-scale features, which correspond to the internal architecture 

and focus on the sub-units of the large-scale depositional units; 
 

 Third-order elements consist of small-scale features, related to seismic attributes and the seismic 

facies configuration of the depositional sub-units. 

 

 
Figure 5.10 – Illustration of the seismic interpretation procedure applied to contourite studies, according to Nielsen et al. 

(2008).  

 

5.3.3 Software 

Landmark – Landmark developed by Landmark Graphic Corporation was used for the interpretation 

of seismic data, with the application of SeisWorks and PowerView tools. SeisWorks was used to view 

and interpret seismic profiles, through mapping of seismic horizons and faults. PowerView was used to 

view and create isobaths and isopachs maps, which represent the spatial distribution of a selected 

horizon’s depth and the spatial variation of a unit’s thickness. Also, a seismostratigraphic correlation of 

Site U1391 with the crossing seismic profiles was applied through Landmark Openworks Database 

Management.  

 

ArcGIS – the ArcGIS software developed by Environmental Systems Research Institute (ESRI) is a 

geographic information system (GIS) with different modules. The main module, ArcMap, was used for 

the compilation of data and creation of the isobaths and isopachs maps rendered in this study. Also, the 

ArcScene module was used to generate 3D displays of a few selected maps.  

 

Kingdom – the Kingdom software from IHS Corporation has multiple modules. SynPAK was used to 

create synthetic seismograms, using IODP well data and seismic data. This method generates a model, 

which can calibrate the seismic time data (in milliseconds) with depth data (meters) and the correct 

positioning of the well.   

Large-scale features: 

 Drift architecture; 

 Geometry; 

 Large units; 

FIRST-ORDER ELEMENTS 

SECOND-ORDER ELEMENTS 

THIRD-ORDER ELEMENTS 

Medium-scale features: 

 Internal architecture; 

 Sub-units; 

Small-scale features: 

 Seismic attributes; 

 Seismic facies  
configuration; 
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  CHAPTER 6 

 

RESULTS 

 

6.1 General description of main morphological features  

The joint analysis of SWIM multibeam bathymetry and seismic reflection profiles allowed the 

identification of three main morphological features in the study area, which are: i) the Sines Contourite 

Drift (SD) and moat; ii) submarine canyons and channels; iii) scarps and structural highs.  

 
Figure 6.1 – Bathymetric map of the study area with SWIM multibeam bathymetry (100 m cell grid from Zitellini et al., 2009) 

to show the main morphostructures. The global GEBCO (2003) data was used to fill in the gaps of the SWIM dataset. BS – 

Bow Spur; DS – Descobridores Seamounts; PAP – Príncipe de Avis Plateau; PAS – Príncipe de Avis Seamounts; PSF – Pereira 

de Sousa Fault; RLB – Rincão do Lebre Basin; SVC – São Vicente Canyon; SC – Setúbal Canyon. 
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The SD is located between 1000 and 2000 m water depth on the Alentejo continental slope and has 

approximately 70 km of extension and 40 km of width. In general, the SD displays an asymmetric shape 

with a steeper western slope (0-5ºW) and plastered morphology. The seafloor morphology on the SD 

can be divided in east and west sectors due to the presence of different morphologic features.  

The east sector is characterized by a smooth seafloor morphology. Also, the SD has an eastern moat, 70 

km long, 0.5-1 km wide and 150 m deep, located between 1000 m and 1250 m depth with NNW-SSE 

to NNE-SSW orientation. The moat starts at the south, from the SVC, and curves around the continental 

shelf towards the SC. The moat is probably scoured by the MOW’s upper core (MU) that flows between 

600-1000 m water depths (Bower et al., 2002; Llave et al., 2007b).  

The western sector is marked by numerous depressions at the Pereira de Sousa Scarp (approximately 

20º gradient, dip towards west, 50 km length and 1400 m height) between 1500 m and 2000 m depth. 

These occurrences are characterized by amphitheater shapes and head scarps, staggered till the slope 

(Figure 6.1) and were therefore interpreted as landslide scars and MTD from slope failure and gravity-

driven events. 

The SD is located between the distal segments of two canyons: the São Vicente at south and the Setúbal 

at north (Figure 6.1). Furthermore, the SD is seated on the steep scarp of the PSF and confined towards 

east by structurally controlled basement highs (<1000 m depth). The São Vicente Canyon is 

characterized by a NE-SW orientation and extends from 200 m close to the shore to 4900 m depths at 

the Horseshoe Abyssal Plain. The Setúbal Canyon is characterized by a meander shape and reaches 

depths around 5000 m at the Tagus Abyssal Plain.  

The SD is located east of the Rincão do Lebre Basin (RLB). The passage from the SD (at 1000 m depth) 

to the RLB (at 3200 m depth) is marked by the abrupt N-S slope of the Pereira de Sousa Scarp. The 

RLB is an inner basin of the Infante Dom Henrique Basin, located between 3200 and 4000 m depth and 

confined to the north and to the south by the Príncipe de Avis Plateau (PAP) and the Marquês de Pombal 

Plateau (MPP), respectively. The RLB gives the seafloor a smooth morphology, except near the base of 

the Pereira de Sousa Scarp where it receives gravity-driven deposits from the nearby relief.  

The SD is also surrounded by other morphostructures, which are from north to south (Figure 6.1): the 

Príncipe de Avis Seamounts and Plateau (PAS and PAP), the Bow Spur, and the Descobridores 

Seamounts (DS). The PAP is located between 1500 and 5000 m depth with an E-W elongated shape. 

The PAS separate the margin into two sub-basins, between the Setúbal and the São Vicente canyons. 

The Bow Spur is a relief advanced towards west (about 10 km), related to the Pereira de Sousa Scarp. 

Little can be said about the DS due to the absence of bathymetric data in this area, but the DS have been 

described by several authors as tectonic uplifted structures (e.g. Mougenot, 1989; Zitellini et al., 2004).  

 

6.2 Chronostratigraphic constraints 

An important aspect to better understand contourites is a detailed sedimentological work, which will aid 

in the identification of contourite facies. Therefore, based on acquired well data we can: i) correlate 

seismic units with contourite successions, ii) identify any diagnostic criteria for contourite deposits and 

iii) associate the resulting observations with contourite formation factors on the SW Portuguese margin. 

Well Pescada-1 and Site U1391 data gave the depths and ages of the main discontinuities (Table 6.1). 

The synthetic seismogram created in the Kingdom software to make a chronostratigraphic correlation is 

presented below, despite no editing applied.
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Figure 6.2 – Synthetic seismogram (normal and reverse polarities) based on velocity (km/s, from DSI Tool) and density (g/cm3) logs and the convolution of the resistivity (ohm.m) with a 

minimum phase wavelet. Despite no editing and calibration, the main stratigraphic discontinuities (Expedition 339 Scientists, 2012; Hernández-Molina et al., 2015) are represented to the 

right.  
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6.2.1 Correlation with Pescada-1 oil-well  

Oil industry well Pescada-1 data was correlated to the older seismic horizons. Pescada-1 well correlated 

the B unconformity, the lower boundary of the SD, to the Late Miocene (Figure 6.3). Therefore, seismic 

unit U1 is inferred as Late Miocene deposits.  

 

 

Figure 6.3 – Un-interpreted (A) and interpreted (B) section of seismic profile GSI68 displaying well Pescada-1 and the B 

unconformity. B: seismic horizon; FM: seafloor horizon. Location of seismic profile in Figure 6.5. 
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6.2.2 Correlation with IODP Expedition 339 data 

This section focus on well data acquired at IODP Expedition 339 Site U1391, which targeted the SD. 

The well data provide a wide-variety of information regarding lithology, downhole logging and physical 

properties (Chapter 5, Point 5.1.3). Therefore, a correlation between seismic horizons and units 

identified in the present work and the stratigraphic hiatus, lithology and physical properties variations 

found at Site U1391 was made. The crossing seismic reflection profiles BS19 and CL06 were calibrated 

using Site U1391 data (Figure 6.4).  

The bottom of the U1391C borehole at 671.5 mbsf reached Late Pliocene sediments (estimated to span 

3.31-3.5 Ma) below horizon H3, which corresponds to the top of seismic unit U2. Hence, a Late Pliocene 

age was assigned to the uppermost part of seismic unit U2 deposits (Figure 6.4 and Table 6.1).  

         

Figure 6.4 – Un-interpreted (A) and interpreted (B) section of seismic profile BS19 with Site U1391 and the correlated 

discontinuities. H3, H4, H6A and H6B: seismic horizons; FM: seafloor horizon. Location of seismic profile in Figure 6.5. 
 

To determine the ages of the seismic units, the seismic horizons were correlated with the main 

discontinuities of the Pliocene-Quaternary succession of Site U1391. The correlations are: horizon H3 

corresponds to the Late Pliocene Discontinuity (LPD); horizon H4 correlates to the Early Quaternary 

Discontinuity (EQD); horizon H6A corresponds to the Middle Pleistocene Discontinuity (MPD); and 

horizon H6B corresponds to the Late Quaternary Discontinuity (LQD). The seismostratigraphic 

correlation is presented in Figure 6.4 and Table 6.1.  

 

Table 6.1 – Correlation between the main seismic horizons identified in the present work and the stratigraphic hiatus and 

unconformities found at well Pescada-1 (Matias, 2002; Batista, 2009) and at IODP Expedition 339 Site U1391 (Expedition 339 

Scientists, 2012; Hernández-Molina et al., 2015). LPD – Late Pliocene Discontinuity; EQD – Early Quaternary Discontinuity; 
MPD – Middle Pleistocene Discontinuity; LQD – Late Quaternary Discontinuity.  

Wells 
This Study 

Seismic discontinuities 

Hernández-Molina et al. (2015) 

Stratigraphic discontinuities 
Age 

Site U1391 H6B 

H6A 

H4 

H3 

LQD 

MPD 

EQD 

LPD 

0.4 Ma 

0.7 – 0.78 Ma 

2.1 – 2.4 Ma 

3 – 3.2 Ma 

Pescada-1 B - Late Miocene 
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6.3 Seismic Stratigraphy  

Seismic reflection profiles acquired in the BIGSETS, CONDRIBER, STEAM and GSI surveys were 

interpreted using the seismic stratigraphic methodology presented in Chapter 5 (Figure 6.5). The seismic 

datasets were interpreted to assess the main depositional environmental changes and controlling factors, 

through the relation between seismic facies and the main structures and depocenters. This work focused 

on the Late Neogene through Quaternary sedimentary record, where six seismic units were identified 

(U1 to U6), bound by important seismic horizons (B to H6). See Appendix 10.3 for the complete 

interpreted seismic profiles.  

 

Figure 6.5 – Location of the seismic reflection profiles, IODP Expedition 339 Site U1391 and well Pescada-1. The black lines 
and numbers indicate the sections of the seismic profiles shown in this Chapter. 

 

The Neogene sedimentary succession is bounded by an important basal discontinuity, named in this 

work the B unconformity (Figure 6.6). The B unconformity is interpreted as an erosive and irregular 

surface, with high amplitude and excellent lateral continuity at the scale of the basin (Figure 6.8). The 

B unconformity is marked by truncation terminations of the older deposits (deformed and sometimes 

poorly imaged reflections) and by downlap terminations for the overlying unconformable sequence 

(characterized as quasi-conformable units).  
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Figure 6.6 – Un-interpreted (A) and interpreted (B) section of seismic profile BS07A. (U1 to U6): seismic units; B and H1 to 

H6C: seismic horizons; FM: seafloor horizon. F: faults; black arrows: reflections terminations; M: multiple. Location of 

seismic profile in Figure 6.5. 
 

6.3.1 Seismic Unit U1 

The older seismic unit identified in this study is U1 of Late Miocene deposits, which lies on the B 

unconformity and is topped by horizon H2 (Figure 6.6). Horizon H2 shows high amplitude and good 

lateral continuity, marked by reflections of U1 with toplap terminations. Horizon H2 is generally 

conformable with the overlying seismic unit U2.  

Seismic unit U1 is characterized by parallel low amplitude and continuous reflections with onlap 

terminations towards SE, with semi-transparent facies and a wedge configuration (Figure 6.7). In the 

north sector, this unit is thicker over the western horst h1, bounded by the PSF, with average thickness 

of 200 ms TWT and maximum thickness of 530 ms TWT (Figure 6.8). This unit is further subdivided 

into two seismic sub-units, U1A and U1B, since it is possibly to identify reflections with toplap 

terminations on U1A and onlap terminations on U1B, marking a local discontinuity identified as horizon 

H1. Horizon H1 marks a vertical amplitude decrease from U1A (characterized by semi-transparent 

facies) to U1B (with transparent facies).  
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6.3.2 Seismic Unit U2 

Seismic unit U2 of Early Pliocene deposits is bounded at the base by horizon H2 and at the top by 

horizon H3. Horizon H3 is a high amplitude reflection, laterally continuous and marked by toplap 

terminations of U2 (Figure 6.6).  

Seismic unit U2 shows a similar facies (transparent) and configuration when compared to seismic unit 

U1, with low amplitude, continuous and subparallel reflections and divergent reflections when it 

counters structural highs at the boundaries of the basin (Figure 6.7). Unit U2 is characterized as a thick 

and widespread unit, with lens configuration and average thickness of 220 ms TWT and maximum 

thickness of 250 ms TWT. 

 
 

Figure 6.7 – Un-interpreted (A) and interpreted (B) seismic profile CL01E displaying the drift’s asymmetric shape and MTD 

identified in the west. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: seafloor 

horizon. F: faults; black arrows: reflections terminations; shaded areas: paleomoats; M: multiple. Location of seismic profile 

in Figure 6.5. 
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6.3.3 Seismic Unit U3 

Seismic unit U3, of Late Pliocene age, lies on top of H3 and is topped by H4. Horizon H4 is a high 

amplitude and laterally continuous reflection, marked by toplap and truncation reflections of the 

underlying units (U1 to U3), denoting, respectively, its non-depositional and erosive character (Figure 

6.7). Horizon H4 changes laterally to concordance with the overlying seismic unit (U4) in the middle of 

the basin. 

Seismic unit U3 shows variable low to medium amplitude, parallel reflections with good lateral 

continuity and semi-transparent facies. The distribution of unit U3 is extensive laterally, in a lens 

configuration, with average thickness of 130 ms TWT and maximum thickness of 150 ms TWT.  

 

6.3.4 Seismic Unit U4 

Seismic unit U4, of Early Pleistocene deposits, is bound by horizon H4 at the base and horizon H5 at 

the top. Horizon H5 is a high amplitude reflection with good lateral continuity, marked by toplap 

terminations of U4 internal reflections and downlap terminations of U5 reflections. Horizon H5 changes 

laterally to conformable with the subsequently deposited unit, seismic unit U5. 

Seismic unit U4 is characterized by a significant change in acoustic facies, with stratified facies and 

high amplitude, parallel and laterally continuous reflections (Figure 6.8). Although this unit is also 

characterized by highly chaotic and irregular reflections in the east, with multiple erosive surfaces, 

related to the erosion and fill of a channel feature interpreted as a paleomoat (Figure 6.19). This unit 

reaches an average thickness of 110 ms TWT and maximum thickness of 280 ms TWT.  

 

6.3.5 Seismic Unit U5 

Seismic unit U5 of Early Pleistocene deposits is bound by horizon H5 at the base and horizon H6A at 

the top. Horizon H6A is a high amplitude, continuous and parallel reflection. Horizon H6A is marked 

by toplap terminations of unit U5 (Figure 6.7).  

Unit U5 has stratified facies with high amplitude and continuous reflections in the center of the basin 

and chaotic to semi-transparent reflections related to the fill of a paleomoat. This unit has an average 

thickness of 190 ms TWT and maximum thickness of 330 ms TWT. Units U4 and U5 mark the 

beginning of the build-up of a mounded drift towards south, with a small upslope progradation of the 

unit towards the continental shelf and a prominent paleomoat along the continental shelf (Figure 6.19).  

 

  6.3.6 Seismic Unit U6 

The most recent seismic unit is U6, of Middle Pleistocene to Holocene age, which is bound by horizon 

H6A at the base and by the seafloor at the top (horizon FM). Unit U6 is defined as a widespread unit 

with stratified facies characterized by parallel and high amplitude internal reflections, defining a sheet 

configuration (Figure 6.7). Unit U6 reaches a maximum thickness of 340 ms TWT with an average of 

280 ms TWT.  

Seismic unit U6 can be divided into three sub-units (from bottom to top, U6A, U6B and U6C) separated 

by two internal discontinuities, horizons H6B and H6C, both marked by toplap terminations on the 

underlying sub-units and downlap terminations on the overlying sub-units. These discontinuities 

represent erosional unconformities on the basin margins, close to the flanks of structural highs, changing 

laterally to concordance in the middle of the basins. This unit is characterized by small paleomoats in 

the east, marked by toplap terminations of the underlying sub-units and semi-transparent facies.  
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Figure 6.8 – Un-interpreted (A) and interpreted (B) seismic profile CL07 showing the seismic character of the seismic units and their configuration. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: seafloor horizon. F: faults; black arrows: reflections 

terminations; M: multiple. Location of seismic profile in Figure 6.5. 
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6.4 Lithostratigraphy of Site U1391  

The lithological and physical properties characterization of seismic horizons and units was also made 

by correlation with IODP Expedition 339 data provided at IODP’s online database: 

http://iodp.tamu.edu/index.html. Visual description of cores and high-resolution photos taken during the 

Expedition 339 allowed a lithological and facies variations characterization. The main lithology 

recognized at Site U1391 was calcareous silty mud with few intervals of coarse-grained deposits, namely 

calcareous silty sand, mostly in the first 200 mbsf, and a debrite (~0.35 m) at 604 mbsf with muddy 

intraclasts and matrix (Figure 6.10 A to C). These lithologies are associated with bigradational contourite 

depositional successions with gradational contacts and bioturbation, which coarsens upwards from 

nannofossil muds through calcareous silty muds to calcareous silty sands and then fine up in the opposite 

order to calcareous silty mud and nannofossil muds, between 0 and 196.1 mbsf (Figure 6.10 C). Sharp 

contacts or rarer discontinuities occur between 0 and 196.1 mbsf and cut the contourite depositional 

successions and therefore partial bigradational, normal or reverse grading are also common (Appendix 

10.2). Other sediments also occur interbedded with the contourites, such as calcareous muds between 

196.1 and 566 mbsf, hemipelagites from 196.1 to 671.5 mbsf, biosiliceous muds between 562 and 671.5 

mbsf and a dolomitic mudstone of ~0.87 m at 632 mbsf. 

 

6.4.1 Downhole Logging  

The downhole logging data obtained at Site U1391 was analysed in the present work to better 

characterize the spatial and temporal variability of the depositional record in the given sedimentological 

context. The physical parameters used in this characterization were resistivity (ohm.m), density (g/cm3), 

gamma ray (gAPI) and sonic velocity (km/s). The grain size rank was also used to determine potential 

correlations with referred logging properties. The resistivity log is used to characterize the sediments by 

measuring their electrical resistivity (Cannon, 2016). The resistivity log shows highly variable values, 

0.2 to 3 ohm.m, between 107 and 153 mbsf (Figure 6.9). These increased values probably mark the 

presence of coarse-grained sediments. In general, the resistivity log shows an increase with depth, from 

1.5 to 5.5 ohm.m, between 153 and 562 mbsf.  

The sonic velocity and density logs track rock composition changes and the effective stress (Cannon, 

2016). If effective stress increases, sediment compaction occurs and the logs show increasing values. 

Low values of sonic velocity and density can indicate an increase of clay minerals, organic matter or 

porosity. At Site U1391, the sonic velocity and density logs show a general increase with depth, 

reaching, respectively, 1.6 to 2.2 km/s and 1.4 to 2.1 g/cm3 between 96 and 562 mbsf (Figure 6.9). These 

increased values show the effect of compaction and a sequence characterized by silt to clay mud facies.  

All rocks possess some natural gamma radioactivity, due to the presence of potassium, thorium or 

uranium (Ellis and Singer, 2007). Gamma ray is used mainly to track clay content in the sediment, since 

high gamma ray values usually identify fine-grained sediments with potassium rich clay minerals and 

absorbed uranium and thorium components (Cannon, 2016). Conversely, low values indicate no 

radioactive elements and usually identify quartz and calcite (Lofi et al., 2016). The gamma ray downhole 

logging values obtained at site U1391 range between 30 and 65 gAPI until 153 mbsf, and between 30 

and 75 gAPI from 153 to 562 mbsf (Figure 6.9). The higher values are probably tracking the clay content.  

Resistivity, density and gamma ray logs show a decrease at 562 mbsf, with no high values of gamma 

ray below (30-50 gAPI), which indicates a decrease in clay content and probable presence of sandy 

intervals, especially between 562-582 mbsf and 593-605 mbsf with 30 gAPI lows (Figure 6.8). This 

indicates a change in sediment facies at 562 mbsf and therefore separates the sediment column into two 

sub-units, IA and IB. This limit could be placed in the transition from seismic unit U3 to U4 and 

corresponds to seismic horizon H4, which is close to the Quaternary-Pliocene boundary (Table 6.2). 

Higher values of resistivity (3 ohm.m), density (2.5 g/cm3) and velocity (2.9 km/s) and low values of 

gamma ray occur at 632 mbsf corresponding to a well-consolidated dolomite mudstone (Figure 6.10 B). 
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Figure 6.9 – U1391 logging and sedimentological properties, from left to right: U1391A and U1391B major lithology (average and maximum) grain size rank; resistivity log (ohm.m); HROM 

density (g/cm3); gamma ray log (gAPI); U1391C and U1391A velocity (km/s) with DSI Tool; IODP U1391 lithological, physical properties and logging units; seismic units identified on this study. 

Orange lines: sand layers; blue lines: main stratigraphic discontinuities. 

 Resistivity  Density 
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6.4.2 Physical Properties 

The physical properties from Site U1391 were used in this work to study the sedimentological and 

mineralogical variations of the contouritic successions. The grain size rank, reflectance (L*, a* and b*), 

natural gamma ray total counts (cps), bulk density (g/cm3) and magnetic susceptibility (instrumental 

units) were used to identify the main sedimentary units of the SD and their relation to the seismic units.  

Grain size variations in contourites usually result from changes in the strength of the predominant 

bottom-current (Stow et al., 2013). However, it is still difficult to determine whether a change in mean 

grain size indicates variations in mean speed, frequency and amplitude of the current velocity or an 

increase of sediment supply by rivers and downslope processes (Mulder et al., 2013). In general, coarser 

grain size present higher gamma ray attenuation (GRA), density, magnetic susceptibility and a* 

measurements. The major lithology, calcareous silty mud, is interbedded by six sandy layers in the first 

150 mbsf at 2, 50, 83, 96, 115 and 150 mbsf with variable thickness. The average grain size at Site 

U1391 is mostly clay to silt with bigradational, normal or reverse grading successions (Figure 6.11).  

Magnetic susceptibility reveals changes in the mineralogical composition, mainly the concentration of 

ferromagnetic grains in the sediment (Blum, 1997). Measurement of this parameter at Site U1391 

revealed cyclic variations between 5 x 10-5 SI and 60 x 10-5 SI with a decrease at 28 mbsf, from 65 x 10-

5 SI to -10 x 10-5 SI. Also, the magnetic susceptibility is lower after 105 mbsf, under 20 x 10-5 SI in the 

first 100 mbsf and lower than 10 x 10-5 SI below that level (Figure 6.11). The natural gamma ray (NGR) 

trend mirrors the clay content, with values between 20 and 55 cps. NGR has regular values between 35 

and 50 cps in the first 200 mbsf, which can be correlated to the higher number of sandy layers. Although 

at 560 mbsf, occurs a change to values between 30 and 45 cps which indicates facies variation and the 

separation of the lithostratigraphic column into two sub-units, III and IV.  

Color and lightness changes in sediments are caused by the abundance and variations of different 

sedimentary phases (Blum, 1997). These variations can be seen in magnetic susceptibility, bulk density, 

and other physical parameters. Measurements of color reflectance at Site U1391 show an alternation of 

greenish and reddish intervals, with the disappearance of the reddish intervals below 200 mbsf (Figure 

6.11). The values of a* are positive for the reddish intervals and negative and less variable below 200 

mbsf. The color reflectance measurements (L*, a* and b*) show a positive relation for most of the Site, 

with a few intervals with slightly higher values. The bulk density has values ranging from 1.4 to 2.1 

g/cm3 and shows variations between 1.85 and 1.9 g/cm3 from 250 to 400 mbsf. Bulk density is variable 

for the first 250 mbsf and this variation is also visible in the other measurements, indicating a possible 

separation of different sedimentary units. At 632 mbsf, bulk density reaches a maximum of 2.4 g/cm3, 

related to the presence of a dolomitic mudstone. 

Several correlations between the different  physical properties described above were deduced in this 

work as follows: i) between 0-150 mbsf occurs a positive correlation between NGR, grain size, magnetic 

susceptibility and a* with low bulk density and widely fluctuating a* values; ii) a distinct second interval 

at 150-200 mbsf displays negative correlation between NGR and a* and reduced scatter of data; iii) a 

third interval from 200-560 mbsf has a positive correlation between NGR, magnetic susceptibility and 

bulk density with lower magnetic susceptibility; iv) a last interval from 560 mbsf to the bottom of the 

hole is clearly recognized by low NGR and magnetic susceptibility, and a considerably reduced scatter 

of data (Figure 6.11); v) at 604 mbsf, a ~35 cm debrite occurs, although its presence is not clear in the 

visual logs (Figure 6.10 A and 6.11); vi) at 632 mbsf, a dolomitic mudstone is identified by low NGR 

and bulk density and higher color reflectance measurements (L*, a* and b*).  

During the IODP Expedition 339 the shipboard scientists divided the sedimentary record retrieved at 

Site U1391 into two lithological units based on visual core description, core logging and smear slides 
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analysis (Expedition 339 Scientists, 2012; Figure 6.9 and 6.11): i) Unit I (0-566.1 mbsf) and ii) Unit II 

(566.1-671.5 mbsf). Unit I is made of contourite rich layers with two sub-units separated by facies 

variation, IA and IB. Unit IA (0-196.1 mbsf) is clearly dominated by calcareous muds with few intervals 

of siliciclastic sediments, silty and sandy muds. In contrast, unit IB (196.1-353.5 mbsf) is characterized 

by calcareous mud, silty mud and very few sandy mud layers. Unit I has an estimated sedimentation rate 

of 17 cm/k.y from 2.58 to 1.5 Ma in the Pleistocene and 27 cm/k.y from ~1.5 Ma to the seafloor. Unit 

II has mixed facies with thin contourite beds with calcareous and bioclastic sediments, a debrite and a 

dolomitic mudstone and low sedimentation rate of 13 cm/k.y during the Pliocene. 

The integration of the sedimentological and physical properties analysis with the seismic model shows 

a clear correlation between U1391 lithological units and the seismic units identified in this work. Unit 

IA corresponds to seismic unit U6, unit IB to seismic units U4 and U5 and unit II to seismic unit U3 and 

top of U2 (Table 6.2). The occurrence of lithological variations throughout the sedimentary record is 

related to the depositional environment. Therefore, we can probably infer that during the deposition of 

unit II (seismic units U2 and U3) in the Late Pliocene to Early Quaternary, the MOW probably flowed 

as a weak bottom-current and upwelling and downslope processes occurred intersected. Afterwards, 

during the deposition of unit IB (seismic unit U4 and U5) in the Early Pleistocene, upwelling occurred 

with an increase of the MOW, probably related to bottom-current enhancement. And finally, from the 

Middle Pleistocene to the Present, the deposition of unit IA (seismic unit U6) indicates the MOW had a 

slight increase of strength and velocity and possibly six episodes of bottom-current enhancement, related 

to the presence of the sandy intervals. 

   

 

 

Figure 6.10 A to C – High-

resolution photos taken onboard 

the IODP Expedition 339 Site 

U1391 showing selected 

examples of the main sedimentary 

facies for contourites, dolomite 

mudstone and debrite recovered at 

Site U1391. 
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Figure 6.11 – U1391 physical and sedimentological properties, from left to right: U1391A and U1391B major lithology (average and maximum) grain size rank; U1391B grain density (g/cm3); 

Reflectance (L*, a* and b*); natural gamma ray total counts (cps); bulk density (g/cm3); magnetic susceptibility (instrumental units); IODP U1391 lithological, physical properties and logging 

units; seismic units identified on this study. Orange lines: sand layers; blue lines: main stratigraphic discontinuities. 
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Table 6.2 – Characterization of the main seismic units identified by seismic data, correlated with IODP U1391 well data. Legend: red line marks the bottom of the hole, while different colors 

indicate changes in lithology and dark grey denotes contourite beds; LPD – Late Pliocene Discontinuity; EQD – Early Quaternary Discontinuity; MPD – Middle Pleistocene Discontinuity; LQD 

– Late Quaternary Discontinuity. 
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6.5 Structural Control of Sines Drift Deposition  

The interpretation of the seismic datasets allowed the identification of several faults and structural highs, 

which played an important role controlling the evolution of the SD. 

BIGSETS and GSI profiles have lower resolution, thus allow a better understanding of deeper and older 

structures, whereas higher-resolution CONDRIBER and STEAM profiles display shallower structures 

in great detail. The different but complementary resolutions of these profiles allowed a multi-scale 

analysis of the main tectonic structures in the study area. 

 

6.5.1 Main tectonic structures 

Two major structurally controlled basement highs were identified: the western horst h1 limited by the 

PSF and the eastern horst h2 limited by fault F2.  

Horst h1 is limited by the PSF at the west and by the fault F1 at the east. The PSF is a key feature of 

this study area and is characterized by a NNE-SSW orientation, steep ~1400 m high scarp wall and 50 

km of extension (Figure 6.12).  F1 is a normal NNE-SSW trending fault with 40 km length.  

The horst h1, bounded by PSF and F1, controlled the deposition of seismic units U1 through U6 (Late 

Miocene to Holocene deposits) reducing the accommodation space available for the Sines Contourite 

Drift development. Therefore, this drift is thinner above the horst. Other smaller NNE-SSW steep 

normal and reverse faults offset the older seismic units, U1 to U3 (Late Miocene to Early Pleistocene) 

(Figure 6.13 and 6.14).  

The referred normal faults illustrate the Mesozoic extensional architecture and the segmentation of the 

West Iberian margin and later a few were reversed by the tectonic inversion events related to the Alpine 

Orogeny, since they affected the sedimentary succession. Fault F1 is a structure buried under the post-

rift sequence, while the PSF shows a well-developed scarp, suggesting passive exhumation (Figure 

6.12). 

  

Figure 6.12 – Un-interpreted (A) and interpreted (B) section of seismic profile BS19 displaying the PSF and associated MTD 

accumulation. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: seafloor horizon. F: 

faults; black arrows: reflections terminations; shaded areas: paleomoats; M: multiple. Location of seismic profile in Figure 

6.5. 
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Figure 6.13 – Un-interpreted (A) and interpreted (B) seismic profile CL02 displaying two main faults, F1 and F2, which 

constrict the drift’s development. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: 

seafloor horizon. F: faults; black arrows: reflections terminations; shaded areas: paleomoats; M: multiple. Location of seismic 

profile in Figure 6.5. 
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The horst h2 is a structural high limited by normal fault F2 of NNW-SSE orientation and 75 km of 

extension (Figure 6.13). This fault was inherited from the Mesozoic rifting of the West Iberian margin, 

which segmented the margin into multiple planes. 

The fault F2 is also responsible for a block uplift at the southwest, since the sediments on its hanging 

wall show signs of a NE-SW compressive event (see Appendix 10.3). Fault F2 was reactivated as a 

reverse fault and deformed seismic units U1 to U5 (Late Miocene to Middle Pleistocene deposits), which 

suggests the NE-SW compressive event occurred in the Middle Pleistocene. This compressive event 

does not disturb the most recent seismic unit U6 of Middle Pleistocene to Holocene age and is therefore 

probably related to neotectonics on the Iberian margin. 

 

 

Figure 6.14 – Un-interpreted (A) and interpreted (B) seismic profile CL06 with Site U1391 projected and numerous normal 

faults affect units U1 to U5. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; FM: seafloor horizon. F: faults; 

black arrows: reflections terminations; M: multiple. Location of seismic profile in Figure 6.5.  

 

Seismic unit U6 shows little to almost no deformation, while U1 to U5 were affected by numerous N-S 

steep normal faults with variable slope, located close to the SVC, the continental shelf and the Príncipe 

de Avis Seamounts (Figure 6.15). These faults that dip west are buried in the sedimentary column and 

rooted in the normal faults F2 and F1 (Figure 6.15). These are interpreted as growth faults which 

deformed the sedimentary cover.  

The development of the SD was restricted to the west and to east by horsts h1 and h2, respectively. 

Thus, this contourite drift developed in a north-south elongated corridor. 



64 

   

Figure 6.15 – Un-interpreted (A) and interpreted (B) section of seismic profile ST11C with numerous normal faults. U1 to U6: 

seismic units; B and H1 to H6C: seismic horizons; FM: seafloor horizon. F: faults; black arrows: reflections terminations; 

shaded areas: paleomoats; M: multiple. Location of seismic profile in Figure 6.5. 

 

 Horizons isobaths and structural mapping 

Isobath maps are depth maps, usually given in TWT units that allow for the interpretation of morphology 

and tectonic deformation of a selected horizon. Thus, they could be interpreted as the paleotopographic 

surface prior to the deposition of the overlying seismic unit. This representation is illustrated in a colored 

scale, where the deeper zones are blue and the shallower zones are red. Maps for all horizons interpreted 

in this work were generated, including the seafloor. Isobaths maps for each seismic horizon and 

respective interpretation are shown in Figure 6.17.  

The isobath map for horizon B, corresponding to the base of the SD and lower boundary of the older 

seismic unit U1, provides information about the preserved paleomorphology at the Late Miocene (Figure 

6.16). An inspection of the map allowed the identification of deeper basins to the west consisting of the 

RLB and the PAP. 

Faults PSF and F1 limit the western NNE-SSW oriented horst h1. Towards east of horst h1, faults F1 

and F2 limit a graben g1 and create space accommodation, registered as elongated NNW-SSE 

depressions in the center of the continental slope (Figure 6.16). This depression is observed in BS19, 

CL01E, and CL02 seismic profiles and reaches a maximum depth of 2578 ms TWT. The graben g1 is 

bounded towards east by horst h2 and by its associated fault F2 (inherited from the Mesozoic rifting 

episodes). The NNW-SSE normal fault switches to NNE-SSW as it crosses the PAS. These 

morphological features are also conveyed by a related structure, the Príncipe de Avis Ridge. The 

Príncipe de Avis Ridge is the expression of a ENE-WSW strike-slip fault, responsible for the 

displacement of the normal faults orientation. The strike slip fault extends over 60 km and is the 

submarine prolongation of the Sines promontory (Batista, 2009).  

The isobath map of seismic horizon H2 (Early Pliocene) shows a diminution of the N-S middle 

depressions, probably related to sediment accumulation of the overlying seismic unit U2 (Figure 6.17 

B). The isobath map of seismic horizon H3 (Late Pliocene) follows the same trend with the near 

disappearance of the central depressions. This isobath map shows that horizon H3 is still affected by the 

paleo-reliefs created by horsts h1 and h2 (Figure 6.17 C). 
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The isobath map of horizon H4 (Early Pleistocene) is characterized by the burial of the western horst 

h1. This development is visible in the seismic profiles (see Appendix 10. 3) where the deposition of the 

overlying seismic unit U4 covered the relief created by the horst. This isobath map starts to show 

resemblance with present-day seafloor morphology, with a smooth paleomorphology (Figure 6.17 D). 

The isobath map of seismic horizon H5 (Early Pleistocene) is quite similar to the map of horizon H4 

(Figure 6.17 D and E), with an even paleotopography.   

The isobaths maps of the younger seismic horizon H6A (Middle Pleistocene), H6B (Middle Pleistocene) 

and H6C (Upper Pleistocene) show a close resemblance with present-day seafloor morphology (Figure 

6.17 F to H). The isobaths maps display a similar evolution from horizon H6A to horizon H6C, with the 

complete disappearance of the central depressions associated with graben g1.  

In synthesis, the analysis of the precedent isobaths maps indicated that the construction of the Sines 

Contourite Drift through time was controlled by the existence of paleotopographic features and 

structures, such as the PSF, structural highs, seamounts and the SVC. The SD was deposited over the 

existing paleomorphology (Figure 6.16), despite its early construction being restricted by the structural 

highs (horsts h1 and h2) which implicated a higher vertical growth for the drift, with little to no lateral 

migration.  

 

Figure 6.16 – 3D representation of the isobath map of seismic horizon B (Late Miocene) and main structures (5 times vertical 

amplification). BS – Bow Spur; PAP – Príncipe de Avis Plateau; PAS – Príncipe de Avis Seamounts; PSF – Pereira de Sousa 

Fault; RLB – Rincão do Lebre Basin. 

RLB 

BS 

PAP 

PAS 
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Figure 6.17A to H – Isobath maps for all seismic horizons (B to H6C). Legend: plus and minus signs mark depressions and elevations; h1 and h2 correspond to horsts and g1 to a graben; BS – Bow Spur; PAP – Príncipe de Avis Plateau; PAS – Príncipe de Avis Seamounts; PSF – Pereira de 

Sousa Fault. RLB – Rincão do Lebre Basin. Equidistance: 250 ms.
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6.6 Depositional evolution  

The spatial distribution of the SD deposits from Late Miocene to Holocene age was established through 

the analysis of seismic units isopachs mapping, which represent the thickness in TWT units (ms) of one 

or more seismic units. These maps reveal the location and shape of the main depocenters and erosional 

areas, as well as their migration pattern and evolution through time.  

 

6.6.1 Late Miocene 

The isopach map of seismic unit U1 (Upper Miocene deposits) shows variable thickness from 200 to 

560 ms TWT (Figure 6.20 A). This map shows two main depocenters in the west, (D1 and D2) 

corresponding to the RLB and the PAP respectively. This map also reveals the existence of two other 

minor depocenters, D1 in the south and D2 in the north. The southern depocenter D1 is divided by a 

NNE-SSW basement high. This is probably a buried horst, which controlled the area available for 

deposition of the first units. Also, at the east of said structural high, the seismic units are folded as a 

synform with N-S axis, as a result of compressive neotectonic events (see Appendix 10.3). Depocenters 

D1 and D2 correspond to the earliest development of the SD, a sheeted drift onlapping seismic horizon 

B (Figure 6.6). The deposition of the drift is restricted by the horsts h1 and h2, with deeper and thicker 

accumulation in D1 and shallower above the horsts (100 ms TWT) (Figure 6.20 A). In the northern 

sector, the continental shelf gains relevance and seismic unit U1 has a thinner depocenter D2 (200 ms 

TWT), which lines around the continental shelf with variable configuration (from NW-SE to NE-SW). 

This configuration is also visible for fault F2, since its orientation goes from NNW-SSE to NNE-SSW 

(Figure 6.17 A to H). This deviation occurs as a manifestation of the NE-SW strike-slip fault previously 

mentioned, associated with the PAS. 

The configuration of the margin is responsible for the SD’s deepest depocenter D1 (to the west of it) 

with approximately 1 km depth (Figure 6.13) and the deposition of a sheeted drift. The continental slope 

relays considerable leverage over sediment deposition, since it forces the drift to develop in the south 

and north (depocenters D1 and D2), where there is space accommodation thanks to graben g1 (Figure 

6.20 A to H). The drift reaches its maximum thickness with 1612 ms TWT in an N-S elongation. Despite 

being a barrier to contourite development, a small upslope progradation of the SD was observed in the 

seismic profiles (Figure 6.18 and 6.19). 

   

Figure 6.18 – Un-interpreted (A) and interpreted (B) section of seismic profile CL11 displaying paleo-channels and paleomoats 

against the continental shelf. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; FM: seafloor horizon. F: faults; black 

arrows: reflections terminations; shaded areas: paleomoats. Location of seismic profile in Figure 6.5. 
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6.6.2 Early Pliocene 

The isopach map of seismic unit U2 (Early Pliocene) shows variable but overall thickening of sediments 

in the south (depocenter D1) and small build up over structural highs (50 ms TWT). Unit U2 was 

partially eroded in the north, due to the formation of a NNW-SSE elongated paleomoat, during the 

deposition of the upper units (Figure 6.20 B). This suggests a N-S migration of the main depocenter 

through time, related to the development and initiation of drift formation. The construction of the drift 

begun in the south sector of the map since Late Miocene and it developed vertically and towards north. 

The structural restrictions channeled the MOW’s pathways, thus aiding in the development of drift 

bodies along the SW Portuguese margin.  

In the study area, erosive features mark the construction of the SD, such as the paleochannels located 

south, near the continental shelf (Figure 6.18). These paleochannels were incised during the deposition 

of units U1 and U2.  The paleochannels are filled by low amplitude to semi-transparent facies, with a 

discontinuity which marks the boundary between units U1 and U2, designed horizon H2. The 

paleochannels mark a local increase of bottom-current strength as a result of abutting against the paleo-

reliefs of the inherited structures. The deposition of seismic unit U3 sealed the paleochannels, which are 

the expression of a bottom-current system at work. 

A current erosive channel is located north of the PSF. This channel curves over an area of 15 km width 

and 20 km length (Figure 6.1). This channel was carved at least since the deposition of seismic unit U1. 

The formation of this channel results from the passage of bottom-currents and shows a probable 

alignment with PSF and F1 N-S orientation. (Figure 6.1). The channel is being carved in the lineation 

of the PSF, thus suggests water passage was favored by the relief created by the Pereira de Sousa Scarp. 

 

6.6.3 Late Pliocene-Early Pleistocene 

The isopach map of seismic unit U3 (Late Pliocene to Early Pleistocene) is similar to the map of U2, 

due to the thicker accumulation in D1 and the northward migration of said depocenter (Figure 6.20 C). 

This unit smoothens the sharp cuts of the paleo-reliefs and, as U1 and U2, was also eroded by the 

formation of the eastern paleomoat.   

The isopach map of seismic unit U4 (Early Pleistocene deposits) shows a widespread thickness with 

310 ms TWT (Figure 6.20 D). An important characteristic is the paleomoats along the continental shelf. 

These paleomoats were carved by a bottom-current, which eroded the older units (U1 to U3), in ~70 km 

of extension and were subsequently filled during the deposition of U4 and U5. The paleomoats are an 

evidence of a previous mounded morphology of the drift. 

 

6.6.4 Early-Middle Pleistocene 

The isopach map of seismic unit U5 (Early-Middle Pleistocene) has 391 ms TWT thickness (Figure 6.20 

E). This map shows the fill and seal of the paleomoat, which translates to a deeper depocenter D2 

towards east. Paleomoats began to develop during the deposition of seismic units U4 and U5, which 

extended for 70 km along the continental shelf. Seismic units U1 to U3 were eroded by the paleomoats, 

prior to the deposition of the overlying units U4 and U5 (Figure 6.19). The paleomoats are filled by 

highly chaotic and irregular reflections and multiple erosive surfaces. The fill itself is characterized by 

an increase of amplitude for the internal seismic facies, separated by an erosive surface. This surface 

designed horizon H5 shows a decrease in acoustic turbidity and marks the boundary between units U4 

and U5 (Figure 6.18 and 6.19). The paleomoats are wider and deeper due to higher incision when 

bottom-currents were constrained by morphological features (~2 km wide near the SVC; ~2.5 km wide 

near the PAS).  
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Figure 6.19 – Un-interpreted (A) and interpreted (B) section of seismic profile CL04 displaying the erosion of seismic units 

U1 to U3 with paleomoats formed during the deposition of U4 and U5. U1 to U6: seismic units; B and H1 to H6C: seismic 

horizons; HMTD: base of MTD; FM: seafloor horizon. F: faults; black arrows: reflections terminations; shaded areas: 

paleomoats. Location of seismic profile in Figure 6.5. 

 

6.6.5 Middle Pleistocene-Holocene  

The isopach maps for the sub-units of U6 have a much higher thickness, reaching 190 ms TWT (Figure 

6.20 F to H). Seismic unit U6 (Middle Pleistocene-Holocene) has a fuller depocenter in the north. This 

unit has variations among its sub-units, due to water current variations and the incision of the current 

moat (which is an extension of the previous paleomoats). Although all sub-units were deposited in a 

widespread manner (following the main inclination of the SD with migration of the depocenters towards 

north) (Figure 6.20 A to H). At the present time, the SD is characterized by a plastered morphology, an 

asymmetric shape and a smooth western slope. Seismic unit U6 also has small paleomoats towards 

northeast, 40 km long along the continental shelf (Figure 6.18 and 6.19). These paleomoats developed 

during the deposition of seismic sub-units U6B and U6C and eroded the underlying sub-units, U6A and 

U6B, respectively. The paleomoats have a fill of high amplitude subparallel reflections (Figure 6.18 and 

6.19). The paleomoats suggest the presence of a semi-permanent bottom-current, which contours the 

continental shelf since Late Miocene times. These paleomoats (created since unit U4) are the precursor 

for the present-day SD moat. The SD moat is carved by the northward flowing upper core of the MOW.  

From the interpretation of the isopach maps, all units show higher deposition in the south depocenter 

D1, with thinner deposition in the north (depocenter D2) due to a decrease in accommodation space 

(Figure 6.20 A to H). Sediment accumulation is restricted by the inherited topography, such as the barrier 

created by the continental shelf. As time progressed, there was a northward migration of D1. The 

evolution of the Pliocene-Quaternary sequence is probably related to the MOW’s passage and incision, 

with the formation of paleomoats along the continental shelf and higher sedimentation for recent units. 

This trend is misleading further up north, near the SC and towards southeast, near the SVC. Both 

canyons do not allow sediment accumulation and provoke slope failure due to canyon incision and the 

sharp slant of the canyon walls.  The seismic units are also affected by multiple landslide events along 

the PSF (Figure 6.21 and 6.22). Overall, the SD is characterized by a plastered morphology. In seismic 

units U4 to U5, the SD had a different configuration, with mounded morphology towards south and 

sheeted in the north. The change from mounded to plastered is indication of a strong MOW bottom-

current with diminuition of its strength towards north. 
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Figure 6.20 A to H – Isopach maps for the main seismic units (U1 to U6C). Legend: plus and minus signs mark depressions and elevations; h1 and h2 correspond to horsts and g1 to a graben; D1 and D2 mark the main depocenters. PAP – Príncipe de Avis Plateau; PAS – Príncipe de Avis 

Seamounts; PSF – Pereira de Sousa Fault. RLB – Rincão do Lebre Basin. Equidistance: 100 ms. 
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6.7 Slope failure and Mass Transport Deposits 

The term mass transport deposits (MTDs) includes gravity-driven deposits identified in seismic record, 

which could correspond to slides, slumps and debris flows. The Early Pleistocene-Holocene sedimentary 

record of the SD corresponding to seismic units U4 to U6 has been affected by slope failure processes. 

Several mass transport deposits were recognized either within the sedimentary column or affecting the 

present-day seafloor as describe previously on Chapter 6, Point 6.1.  

The MTDs were recognized by their typical chaotic acoustic facies on the west flank of the SD and 

associated with major topographic reliefs, such as the Pereira de Sousa Scarp, the PAS and the SVC. 

The MTDs occupy an area of 50 km by 20 km, along the N-S PSF (Figure 6.1). 

 

 
Figure 6.21 – Un-interpreted (A) and interpreted (B) section of seismic profile ST11B with MTD and paleo-MTD, which 

have occurred on the west flank of the SD since seismic unit U5. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; 

HMTD: base of MTD; FM: seafloor horizon. F: faults; black arrows: reflections terminations. Location of seismic profile 

in Figure 6.5. 
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Present-day and past MTDs concentrate on the hanging wall and footwall of the PSF (Figure. 6.21), 

which affect an area over 50 km long with a western slope towards the inner basin (RLB). The landslide 

scars are located between 1250-2500 m depth in a staggered succession and were identified by their 

asymmetric and amphitheater shapes, with variable dimensions and head scarps. These occurrences 

seem to affect mostly seismic units U4 to U6 deposited above horst h1 bound by the PSF (Figure. 6.21).  

Near the PAS, landslides move westward in a step pattern, separated by N-NE normal slope failure 

faults (Figure 6.22). This slope failure is related to the west dip of the SD and the current configuration 

of the seafloor morphology, with deeper basins RLB and PAP in the west.  

The SVC is another preferential site for the accumulation of several slumps and slides, probably 

resulting from slope instability on the southern flank of the SD. Besides that, the steep flanks of SVC 

(ranging between 5º and 30º) acted since Late Miocene (Valadares, 2012) as a source for gravity-driven 

deposits, which have been deposited at the axis and walls of the canyon and carried further south into 

the Horseshoe Abyssal Plain (Valadares, 2012). 

 

 

Figure 6.22 – Un-interpreted (A) and interpreted (B) section of seismic profile CL04 shows several MTD affecting the upper 

units, north of the SD. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: seafloor 

horizon. F: faults; black arrows: reflections terminations; M: multiple. Location of seismic profile in Figure 6.5.  
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CHAPTER 7 

 

DISCUSSION 

 

Based on the results presented in Chapter 6, a depositional model for the SD development is proposed. 

The conception of any depositional model needs to consider the different controls which influence either 

its preservation or erosion (Faugères and Stow, 2008). This chapter will discuss said model, assessing 

the role of tectonic, paleoceanographic, sediment supply, climatic and sea-level changes on the 

development of the depositional architecture shown by the SD. 

 

7.1 Depositional Model of the Sines Drift  

Through seismic stratigraphy interpretation and mapping of seismic units, three main phases of 

contourite sedimentation have been identified, being characterized by different morphologies and 

stacking patterns: 1) sheeted-contourite-drift phase, 2) mounded-contourite-drift phase and 3) plastered-

contourite-drift phase. These phases are described herein.  

 

1. Phase 1: Sheeted-Contourite-Drift (Late Miocene to Late Pliocene, at least <5.3-3.2 Ma) 

The sheeted-contourite-drift phase is represented by seismic units U1 and U2 and interpreted as a 

precursor phase of contourite formation (Figure 7.1). This phase occurred from Late Miocene to the 

Late Pliocene, after an erosional event during the Late Miocene (seismic horizon B). This was an erosive 

episode which changed the seafloor morphology of the Alentejo Basin. Although the precise age of this 

event remains unknown, it could be linked to regional tectonic and paleoceanographic changes that took 

place during the end of Late Miocene. Among them, are the closure and opening of the Mediterranean 

and Atlantic gateways (Flecker et al., 2015). The closure of the Rifian and Betic gateways at 5.96 Ma 

led to the Messinian Salinity Crisis (5.96-5.33 Ma) (Hsü et al., 1973; Sierro et al., 2008; Flecker et al., 

2015). According to Duggen et al. (2003), vertical movements at lithospheric scale were responsible for 

the closure of the Atlantic and Mediterranean gateways in the Late Miocene, thereby causing the 

Messinian Salinity Crisis.   

The end of the Late Miocene signifies the Messinian Salinity Crisis and the opening of the Strait of 

Gibraltar (Maldonado et al., 1999; Estrada et al., 2011), which allowed the MOW to flow through the 

Atlantic (5.33 Ma) and cause the Zanclean flooding (Garcia-Castellanos et al., 2009; Estrada et al., 

2011). Therefore, the onset of contourite drift accumulation along the Iberia margin begins associated 

with significant changes of oceanic circulation patterns (Hernández-Molina et al., 2002, 2006; Rogerson 

et al., 2012; Van der Schee et al., 2016) and the oldest phases seems to be well preserved on the SD.  

Phase 1 was dominated by deposition of a sheeted drift, indicating that a weak bottom-current flowed 

northward. This is corroborated by the recovery at site U1391 of mixed facies with mud rich contourites, 

biosiliceous muds, dolomite mudstone and a debrite, for seismic unit U2 (Table 6.2). The MOW would 

be initially weak and probably flowed as a single core along the continental margin (Stow et al., 2013; 

Hernández-Molina et al., 2014a). Therefore, a semi-permanent MOW begun flowing to deposit 

contourite sediments and construct a sheeted drift, which was restricted by the paleo-reliefs (horsts h1 

and h2, Figure 7.1). During this phase, upwelling events probably occurred along the West Iberian 

margin, responsible for the deposition of the biosiliceous muds and assemblages of benthic foraminifers 
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seen in Site U1391 (high amounts of Brizalina spp. or Cibicides/Cibicidoides spp. or Siphonodosaria 

spp. associated with variable amounts of Cibicidoides cf. wuellerstorfi, Melonis spp., Sigmoilopsis 

schlumbergeri and Uvigerina spp.; Expedition 339 Scientists, 2012). Gravity driven processes also 

occurred, marked by the debrite of ~35 cm thickness with muddy intraclasts and matrix (Figure 6.10 A).  

 

2. Phase 2: Mounded-Contourite-Drift (Late Pliocene to Early Quaternary, 3.2-0.7 Ma) 

The second phase of sedimentation is characterized by the development of a mounded-contourite-drift 

which is constituted by seismic units U4 and U5 (Figure 7.1). The transition from sheeted drift to 

mounded drift is marked by a hiatus (seismic horizon H4), small upslope migration and incision of 

prominent and precursory paleomoats (Figure 7.1). This change is not only seen in drift morphology 

and stacking pattern, from sheeted to mounded, but also in Site U1391 lithologic and physical properties 

data. The lithologic character shows a shift from mixed system (debrite and mud rich contourites) that 

dominated Phase 1 to muddy contourites which predominate during Phase 2. Therefore, this shift reflects 

a significant variation of the oceanic circulation patterns and its beginning was correlated to the LPD 

(seismic horizon H3, 3-3.2 Ma) and its ending to the EQD (seismic horizon H4, 2-2.4 Ma), recognized 

by Hernández-Molina et al. (2015).  

The LPD and EQD events coincide with a regional compression due to the reorganization of Eurasia 

(Iberia)-Africa (Nubia) plate boundary from NW-SE to WNW-ESSE during the Early Quaternary 

(Rosas et al., 2009; Zitellini et al., 2009; Duarte et al., 2013). This affected the sediments in some 

regions, most notably in the east of the study area with the reactivation of NNW-SSE normal faults, 

rooted in the Mesozoic faults that bound structural highs (Figure 6.8 and 6.14). 

As for the MOW, the period between the LPD and EQD marks an intensification of its strength from 

3.2 Ma to 2.4 Ma (Hernández-Molina et al., 2015). The LPD event is marked by a lower sedimentation 

rate during the Pliocene, with 13 cm/k.y (Expedition 339 Scientists, 2012), associated with the higher 

erosive action of the MOW. This suggests the MOW’s main core flowed through in a persistent 

northward direction (Figure 7.2 and 7.3). This intensification is attributed to a prominent rise in 

Mediterranean summer aridity, which translates to enhanced deep-water convection in the 

Mediterranean Sea and active circulation in the North Atlantic Ocean (Khélifi et al., 2009, 2011, 2014). 

The MOW enhancement also improved the Thermohaline Circulation, AMOC and Northern 

Hemisphere deep-water formation due to its contribution of saline and warm waters to the intermediate 

depths in the northern Atlantic waters (Hernández-Molina et al., 2014a). The LPD and EQD events also 

coincide with the final intensification of the Northern Hemisphere Glaciations, marked by global cooling 

and sea-level fall (Bartoli et al., 2005; Miller et al., 2011). 

 

3. Phase 3: Plastered-Contourite-Drift (Middle Pleistocene to Present, 0.7 Ma) 

The third and final phase of sedimentation led to the build-up of a plastered contourite drift from Middle 

Pleistocene to the present-day, which is represented by seismic unit U6 (Figure 7.1). The transition from 

the mounded-contourite-drift phase to the plastered-contourite-drift phase is marked by an important 

change in drift architecture (Figure 6.22). The SD stacking pattern shifts from mounded to plastered, 

with higher sedimentation rate at 27 cm/k.y (Expedition 339 Scientists, 2012). Site U1391 data shows 

that this change is marked by an increase of coarser-grained intervals and the presence of bigradational 

contourite successions. Phase 3 is also characterized by small precursory paleomoats along the 

continental shelf (Figure 7.1). Therefore, this phase is characterized by the formation of a moat and thick 

accumulation, which suggests more vigorous bottom-currents and substantial MOW outflow into the 

Atlantic Ocean (Sierro et al., 1991; Flinch and Vail, 1998).  
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The development of the present-day MOW occurs during this last stage with two phases of MOW 

intensification, marked by two important discontinuities: the MPD (0.7-0.9 Ma) and the LQD (~0.4 Ma) 

(Hernández-Molina et al., 2002, 2015; Llave et al., 2007b; Lofi et al., 2016). Hernández-Molina et al. 

(2015) attributes the formation of the MOW pathways to tectonic constriction and deformation in the 

Gulf of Cadiz. The SW Portuguese margin shows the exact opposite, with the absence of deformation 

and tectonic influence since the Middle Pleistocene (Pereira and Alves, 2011, 2013; Hernández-Molina 

et al., 2015). The plastered contourite drift phase is not affected by deformation, thus indicating that 

tectonics do not play a major role in the evolution of this depositional phase. 

 

  

Figure 7.1 – Representation of the depositional evolution of the SD and possible changes in MOW intensification and drift 

architecture. 

 

The first phase of MOW intensification is marked by the MPD (seismic horizon H6A), which shows the 

change in drift morphology and the increase of sandier deposits. The MPD is related to an important 

climatic change, the Middle Pleistocene Revolution (0.7-0.78 Ma) (Hayward et al., 2009; Hernández-

Molina et al., 2015). Several authors show this is the most important hiatus for the Quaternary deposits 

(Hernández-Molina et al., 2006, 2015; Llave et al., 2007b, 2011; Lofi et al., 2016) which is also verified 

for the SD Quaternary deposits.  

The second phase of MOW intensification is marked by the LQD (seismic horizon H6B), which is also 

related to an important climatic change at ~0.4 Ma (Hayward et al., 2009; Lofi et al., 2016). The MPD 

and the LQD coincide with eustatic falls of the sea-level (Miller et al., 2005; Rogerson et al., 2012; 

Table 7.1) and enhancement of the AMOC (Knutz, 2008). Hence, since the Middle Pleistocene, two 

episodes of MOW intensification increased bottom-current strength. The second phase of MOW 

intensification matches one coarse-grained interval at Site U1391 in the Middle Pleistocene. However, 

Site U1391 has a total of six coarser-grained intervals from the Middle Pleistocene to the Present (see 

Chapter 6, Point 6.4), which suggests at least six episodes of bottom-current enhancement during this 

stage. 

Overall, the MOW was capable of constructing the SD on the left and its moat on the right side. The SD 

did not migrate considerably since Late Miocene, as the flow pathway remained almost unchanged due 
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to the paleomorphologic constraints. Therefore, a long-term MOW current has consistently been flowing 

along the SW Portuguese margin since that time till the present-day. 

 

7.2 Controls of Sines Drift Edification 

7.2.1 Structural Control  

Tectonic activity can influence the available accommodation space and confine drift growth. During the 

Mesozoic, the multiple rifting phases segmented the Southwest Portuguese margin into continental 

shelf, upper slope (Alentejo Basin) and distal slope (Rincão do Lebre Basin) (Figure 7.2). The growth 

of the SD was constrained by the seafloor morphologies that resulted from the Mesozoic rifting 

processes, inherited from the Mesozoic rifting phases. The paleomorphologies provided accommodation 

space for drift growth and conditioned its overall architecture. The N-S horsts built during the Mesozoic 

rifting did not allow a lateral migration and instead permitted a more vertical growth (Figure 7.2). The 

paleomorphologies also contributed to bottom-current acceleration. The boundary input by the 

continental slope probably aids the acceleration of the MOW current as it turns São Vicente Cape and 

flows northward. This generates alongslope current erosion and contributes for drift growth, with the 

MOW flowing along and eroding the continental slope. 

The construction of the drift begun after a major erosive event in the Late Miocene, which affected the 

seafloor morphology of the Alentejo Basin. Although the precise age of this event is unknown, it could 

be related to regional tectonic and paleoceanographic changes that occurred during the end of Late 

Miocene, such as the closure and opening of the Mediterranean and the Atlantic gateways (Flecker et 

al., 2015). 

 

  

Figure 7.2 – Model of the SD and the factors that control its depositional evolution: tectonics, paleomorphology, 
paleoceanography and slope instability. 

7.2.2 Paleoceanographic Implications 

Paleoceanographic changes can control contourite drift growth and its internal configuration (i.e. 

progradation and/or aggradation). The construction of the SD was influenced by variations in the MOW, 
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which shows distinct behavior under different climatic and eustatic conditions and under different 

bottom-current regime in the Mediterranean and the Atlantic. 

The deposition of contourites on the GCCDS only occurred after the end of the Messinian Salinity Crisis, 

when the interaction between the Atlantic and the Mediterranean was rekindled. The Messinian Salinity 

Crisis affected the Mediterranean between 5.96 and 5.33 Ma (Cita, 2001; Bache et al., 2012) and had 

drastic consequences for the bottom-current circulation between the Mediterranean and the Atlantic. 

The Messinian Salinity Crisis occurred as a result of the closure of the Rifian and Betic gateways at 5.96 

Ma (Hsü et al., 1973; Sierro et al., 2008; Flecker et al., 2015) due to tectonic movements between the 

Eurasian and the African plates (Duggen et al., 2003). This led to the progressive isolation of the 

Mediterranean region and caused desiccation and precipitation of massive evaporites (Krijgsman et al., 

1999). 

The end of the Messinian Salinity Crisis occurred near the Early Pliocene with the Zanclean flood, which 

was the inundation of the Mediterranean Basin by Atlantic waters (Garcia-Castellanos et al., 2009). 

There is a general agreement that the circulation between the Atlantic and the Mediterranean was fully 

established in the Early Pliocene, allowing the MOW to flow along the Iberian margin and interact with 

the seafloor to create contourite sheeted drifts.  

Therefore, the first phase of the SD, which is characterized by the formation of a sheeted drift since the 

Late Miocene, suggests the existence of enhanced bottom-current circulation to aid the incipient MOW 

with the deposition of contourites.  

Several works show that humid climate conditions prevailed in the Mediterranean until 3.4 Ma (Béthoux 

and Pierre, 1999), until it changed to cold and arid, which triggered enhanced production of cooler, 

saltier and oxygenated Mediterranean deep water (Hayward et al., 2009; Khélifi et al., 2009). The first 

phase of development of the SD is also characterized by assemblages of benthic foraminifers in a 

carbonated biogenic system (in the Late Pliocene at Site U1391), which marks the occurrence of 

upwelling events on the Southwest Portuguese margin. At the present time, upwelling events usually 

occur over the continental shelf and slope of the West Portuguese margin in the summer and carry cold 

nutrient-rich NACWp in the north and colder nutrient-poor NACWt in the south (Mason et al., 2006). 

During the Early to Late Pliocene times, there were warmer waters in the Mediterranean and Atlantic, 

although upwelling events also occurred under similar oceanographic conditions to today’s (Dowsett et 

al., 1996, 1999; Silva et al., 2008).  

The transition to the Quaternary is characterized by the development of a mounded drift since 3.2 Ma 

and a plastered drift since 0.7 Ma, with erosional contourite features (moats and paleomoats). The 

formation of these features is associated with several events of MOW intensification and climatic and 

eustatic fluctuations (Hernández-Molina et al., 2002, 2015; Llave et al., 2007b; Lofi et al., 2016).  

The location of the moats/paleomoats allowed the reconstruction of the MOW’s pathway along the 

Southwest Portuguese margin, from the Early Quaternary to the Present (Figure 7.3). It is possible to 

observe that the MOW remained in a persistent and semi-permanent pathway towards north and along 

the contours of the upper continental slope. The constant pathway of the MOW is probably related to 

the paleomorphology of the Alentejo margin, which was inherited from the Mesozoic rifting phases.  

In the past, the MOW flowed as a single core along the South and West Iberian margin. Therefore, it is 

not possible to recreate or separate the pathways of the MOW’s Upper Core (MU) from the MOW’s 

Lower Core (ML).  
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Figure 7.3 – Reconstruction from the Early Quaternary (MOW*) to the Present (MOW) of the paleoceanographic pathways of 

the MOW along the SW Portuguese margin, inferred by the seafloor morphology and moat/paleomoats formed since seismic 

units U4 to U6 (Early Quaternary to Holocene age). Bathymetric map with SWIM bathymetry (100 m cell grid from Zitellini 

et al., 2009) and GEBCO (2003) data. BS – Bow Spur; DS – Descobridores Seamounts; PAP – Príncipe de Avis Plateau; PAS 

– Príncipe de Avis Seamounts; PSF – Pereira de Sousa Fault; RLB – Rincão do Lebre Basin; SVC – São Vicente Canyon; SC 
– Setúbal Canyon. 

 

7.2.3 Sedimentary record and bottom-current circulation 

Contourite drift formation is also controlled by sediment influx and consequently certain conditions 

must be maintained over a prolonged period of time for deposition to take place. In general, the sediment 

supply by bottom-currents must be greater than background pelagic and hemipelagic accumulation for 

contourite development to occur (Rebesco and Camerlenghi, 2008). Bottom-currents are capable of 

reworking and transporting sediments, so sediment influx can be provided by turbidity currents, pro-

delta plumes, slope spillover, hemipelagic and pelagic settling both upstream, downstream and directly 

at the drift’s location (Stow et al., 2008).  

Bottom-currents are capable of eroding the continental slope and reworking previously deposited 

sediments. Therefore vigorous and persistent bottom-currents are required for the deposition of 

contourites and particularly contourite sands (Stow et al., 2008). Not only are strong bottom-currents 

required, but their persitence over geological timescales is imperative for any significant thickness to 

accumulate. Also, sediment influx, distance and type of transportation plays a major role for contourite 

deposition (Stow et al., 2008; Figure 7.4). For example, larger grain size sediments can have a higher 

biogenic component, such as foraminifera, which are significantly lighter than clasts, and require lower 

velocities for transportation (McCave, 1984), and fine-grained sediments (mud or silt) could be 
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deposited by pelagic settling, since contourites have a combination of sediments sourced by alongslope, 

downslope and pelagic or hemipelagic processes (Rebesco and Camerlenghi, 2008).  

 

The sediment supply for the edification of the SD was inferred based on the lithological character and 

physical properties at Site U1391 and the paleomorphology of the SW Portuguese margin.  

The lithological record at Site U1391 showed a predominantly calcareous mud rich facies (Figure 6.8 

in Chapter 6). The mud-dominated contourites have interbedded pelagic and hemipelagic muds, since 

these processes can occur at the same time. The first phase of contourite drift deposition (Late Pliocene) 

was characterized by a mixed system at Site U1391, composed of fine-grained sediments (mainly 

calcareous and biogenic components) with a debrite and a dolomitic mudstone, with low amplitude 

reflections in the seismic data (seismic units U1 to U3; Figure 6.7). These characteristics suggest a low 

energy system, with almost no gradational successions and multiple ongoing depositional processes, 

with interbedded sediments derived both from downslope and alongslope.  

The second phase (mounded-contourite-drift, from the Late Pliocene to the Early Quaternary) was 

marked by muddy contourites and calcareous muds (Figure 6.10 C). During this stage, the formation of 

a mounded drift with a succession of paleomoats was probably associated with intensification of the 

MOW from the Late Pliocene to the Early Quaternary. This observation does not take into account the 

grain size of the sediments which fill the paleomoats, since Site U1391 is located on the center of the 

study area. Although, it is possible to speculate that the paleomoats probably hold coarser-grained 

sediments (marked by low to high amplitude reflections in seismic units U4 and U5) as a result of 

enhanced bottom-current velocity.  

The transition to the plastered-contourite-drift stage in the Middle Pleistocene is marked by a change in 

sedimentation. This is testified by an increase to six sandy contourite layers and numerous bigradational 

contourite successions of calcareous and siliciclastic natures (Figure 6.10 C in Chapter 6). On seismic 

data, this phase has high amplitude reflections (seismic unit U6), which reflects the coarse-grained 

nature of the sediments. This phase is also characterized by a cyclic pattern of transparent facies with 

thick reflective facies at the top and minor erosional surfaces (Figure 6.14). This variation is probably 

correlated with the alternations from fine- to coarse-grained contourite deposits and the bigradational 

contourite successions. The alternations could indicate periods of strengthening and waning bottom-

current velocity and probably result from climatic and sea-level changes, observed mainly since the 

Middle Pleistocene. This shows sediment supply has varied at numerous timescales, with variations of 

sediment grain size as a result of bottom-current fluctuations. Therefore, in the SD a relation exists 

between bottom-current velocity and average grain size.  

The relation between sediment input and bottom-currents for the SD should also consider the Gulf of 

Cadiz Contourite Depositional System (GCCDS), since the SD is formed by the MOW, which comes 

from the Strait of Gibraltar.  

The GCCDS is characterized as a silici-bioclastic system since the Early Pliocene to the Present, with 

mean grain sizes of 6 µm to ~1000 µm (Brackenbrige, 2014; Alonso et al., 2016; Nishida et al., 2016). 

The GCCDS is characterized by a reduction of grain size away from the Strait of Gibraltar (Stow et al., 

2013; Figure 7.4) and away from the main bottom-currents (Nelson et al., 1993; Brackenridge, 2014; 

Hernández-Molina et al., 2014a). This CDS also has a broad relation between the accumulation of 

coarse-grained sediments in zones of bottom-current acceleration (channels, valleys) or in zones of 

bottom-current deceleration (exit of a channel) (Stow et al., 2013; Figure 7.4).  Also, shelf spillover 

plays an important role in the GCCDS, with sand spilling off the shelf closer to the Strait of Gibraltar 

and being entrained into the MOW (Stow et al., 2013; Brackenridge, 2014; Hernández-Molina et al., 
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2014a; Ducassou et al., 2015; Figure 7.4). This sand can be transported alongslope for many kilometers 

before being deposited.  

The SD is constituted by a mixed carbonated-bioclastic system from the Late Pliocene to the Present, 

with a higher siliciclastic component for the plastered-contourite drift stage from the Mid-Pleistocene 

till the present-day. The difference between the SD carbonated-bioclastic system and the Gulf of Cadiz 

silici-bioclastic system is probably related to the location of the SD, which slightly changes the main 

processes involved in sediment deposition. The difference also implicates different clast transport 

thresholds and a different response to bottom-current fluctuations. Although the change in the SD from 

a carbonated-bioclastic system to a more siliciclastic occurrence denotes the existence of bottom-current 

variations and enhancements. 

 

Figure 7.4 – Actual sand distribution across the Gulf of Cadiz. Brackenridge (2014) modified from Nelson et al. (1993).  

 

7.2.4 Climatic Fluctuations 

As previously mentioned, contourite formation is associated with intensifications and variations of 

bottom-currents (Stow et al., 2008, 2009). Bottom-current strength and velocity controls drift 

morphology and facies, in addition to the erosion or deposition of the seafloor. Bottom-currents need to 

be stable and semi-permanent to have effective re-working, transportation and deposition of sediments. 

Velocities at > 0.1 ms-1 establish this premise and velocities < 0.5 ms-1 force seafloor erosion and non-

deposition (Stow et al., 2009). This variation of velocities translates to long or short-term cyclicity in 

the seismic facies. The cyclicity has been interpreted as related to climatic and sea-level changes, which 

induce bottom-current fluctuations.  

The conventional depositional model usually shows second- and third-order changes of sea-level (1-10 

Ma duration), while parasequences show third- and fourth-order changes (100 ky to 1 Ma duration), and 

internal variations of the successions reflect higher frequency (10 to 100 ky intervals) (Myers and 



81 

Milton, 1996). Drift systems can however span two or more normal depositional successions (Fulthorpe 

et al., 2010).  

The GCCDS was developed in the last 5 Ma due to the MOW’s outflow (Hernández-Molina et al., 2003, 

2006; Llave et al., 2007b). The contourite drifts of the GCCDS have cyclical facies with numerous 

seismic successions and sub-successions (Llave et al., 2001, 2006; Stow et al., 2002c). This cyclicity is 

also observed in the stacking pattern of the SD. Therefore, climatic and eustatic variations have affected 

the SD since the establishment of the MOW in the Early Pliocene.  

In the Late Pliocene, the period between the LPD and the EQD (seismic horizon H3 to H4, 3.2-2.4 Ma) 

marks a major enhancement of the MOW with higher salinity and density (Hernández-Molina et al., 

2015). This event is characterized by enhanced bottom-current circulation, derived from the growth and 

southward advance of ice-sheets in the Northern Hemisphere and increasing arid and cold conditions in 

the Mediterranean and Atlantic regions (Hayward et al., 2009; Khélifi et al., 2009, 2014). These 

conditions triggered the formation of saltier and intense MOW and a shift from sheeted to mounded drift 

in the SD, with considerable paleomoat formation (Table 7.1). 

Although other influential climatic and sea-level changes also occurred in the Middle Pleistocene, which 

generated MOW intensifications. In the Middle Pleistocene, two important climatic events seem to have 

affected the SD depositional evolution: the MPR (0.7-0.78 Ma) and the LQD (~0.4 Ma) (Miller et al., 

2005; Llave et al., 2007b; Lofi et al., 2016). The MPR, marked by seismic horizon H6A, is considered 

as one of the most important climatic changes in the Northern Hemisphere (Hernández-Molina et al., 

2014a). The MPR occurred due to the growth of ice sheets in the Northern Hemisphere and coincided 

with a shift to longer glaciations and shorter interglaciations (Hayward et al., 2009; Lofi et al., 2016). 

Seismic data shows the MPR is marked by a change in drift architecture, from mounded to plastered, as 

well as highly cyclical facies with high to low amplitude reflections and minor erosive surfaces (Figure 

6.14 and Figure 6.22). At Site U1391, the MPR is characterized by an increase of coarser-grained 

sediments and bigradational contourite successions. The LQD, marked by seismic horizon H6B, 

coincides with a cold period in the Mediterranean region during the Pleistocene, formed by the advance 

of ice sheets towards lower latitudes (Hayward et al., 2009; Lofi et al., 2016). Seismic data shows the 

LQD is characterized by a small paleomoat and high amplitude basal reflections.  Therefore, the 

cyclicity of the SD seismic facies have been interpreted as a result of major long-term variations of 

bottom-current intensity and depth, controlled by climatic-eustatic fluctuations (Table 7.1).  

The available evidence suggests that the greatest contourite accumulation occurred during times of 

glacio-eustatic lowstand with sediment directly supplied to the slope from the continental shelf and a 

vigorous deep and dense MOW flowing along the margin. Several authors have described a saltier, 

denser and enhanced MOW during glacial times, settling at 700 m deeper than today (the MOW’s main 

core flows at ~800 m depth in the Present and flowed at 1600-2200 m depth in the past) (Cacho et al., 

2000, 2002; Rogerson et al., 2005, 2012; Voelker et al., 2006; Toucanne et al., 2007; García et al., 2009; 

Hernández-Molina et al., 2014a). The enhancement of the MOW probably occurred during Heinrich 

events, Dansgaard-Oeschger stadials and Younger Dryas (Sierro et al., 2005, Llave et al., 2006, Voelker 

et al., 2006). By contrast, during the interglacials and warm-water highstands the MOW was weaker 

and sub-divided into several branches, with the upper branch flowing at 600-1000 m depth (Stow et al., 

2002c; Rogerson et al., 2005). The present circulation was established after the Younger Dryas, between 

7.5 and 5.5 ka (Rogerson et al., 2005, 2006; García et al., 2009). 
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Table 7.1. – Late Miocene to Quaternary evolution of the SD, characterized by three growth phases with distinct seismic and lithological character. Paleogeographic events, glacio-eustatic sea-

level changes and transgressive-regressive cycles associated with the formation of the SD are also included. Glacio-eustatic data and T-R cycles extracted from Haq et al. (1987), Llave et al. 
(2007b), Hernández-Molina et al. (2002, 2015), Ogg and Ogg (2008), De Boer et al. (2010) and Miller et al. (2011). 
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7.2.5 Slope Instability 

The occurrence of MTD is usually related to slope instability. MTD can occur as a result of 

predispositioning and triggering factors that predispose the slope to become unstable (Leroueil et al., 

2005). The formation of MTD can generate other hazards, although their danger depends on their size, 

type, scale, location and process (Rebesco and Camerlenghi, 2008). For example, tsunamis are a well-

known associated risk. There are historical tsunamis attributed to the formation of slides or slumps: 

Grand Banks, 1929; Sagami Bay, Great Tokyo Earthquake, 1923; Port Royal, Jamaica, 1692; Ishigaki 

Island, Japan, 1771; Valdez, Alaska, 1964; Lituya Bay, Alaska, 1958 (Bryant, 2001).  

 

From the several triggers of slope failure, we will only refer to the ones active in the study area: 

oversteepening and seismic activity (Leroueil et al., 2005).  

The joint analysis of the multibeam bathymetry and the seismic profiles showed that the western sector 

of the SD is affected by slope failure while resulting MTD accumulated at the footwall of the PSF, in 

the Rincão do Lebre Basin (Figure 7.5). The area of the SD affected by slope failure extends for over 

50 km long and 20 km wide (Roque et al., 2015; Figure 6.1). It was previously seen in Chapter 6, Point 

6.7 that the MTD occur mainly after the deposition of seismic unit U4 of Early Quaternary age. The 

MTD also seem to be associated with the steep slope of the PSF escarpment (~20º gradient, dipping 

towards west). The steepness of the PSF escarpment seems to favor the occurrence of slope failure 

(Figure 7.5).  

The eastward extension of the SD is not significantly affected by downslope processes (notwithstanding 

the debrite of ~0.35 m in the Late Pliocene at Site U1391) due to the paleomorphology of the margin 

and due to the São Vicente and Setúbal canyons, which take most of the downslope sediment supply.  

 

 

Figure 7.5 – Representation of the formation and accumulation of MTD and paleo-MTD, associated with the PSF escarpment.  

 

Another triggering factor to take in consideration is seismic activity (Gràcia et al., 2003b; Masson et al., 

2006; Stigall and Dugan, 2010; Urlaub et al., 2013). Instrumental seismic activity on the offshore SW 

Portugal is moderated (M<5) but this area has been stroked by higher magnitude events, such as the 
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1969’s tsunami and earthquake (M=7.8; Fukao, 1973) and the Great Lisbon Earthquake and Tsunami 

on the 1st November 1755 (M=8,5-9; Johnston, 1996). Another important historical seismic event is the 

1531 Lisbon Earthquake on the 26th January 1531, which was felt on the Lisbon and Tagus margin (Justo 

and Salwa, 1998; Miranda et al., 2012). It is not known if these events are associated with the formation 

of MTD, although it proves that high magnitude earthquakes can occur in the study area and potentially 

trigger downslope events (Terrinha et al., 2003). 

Predispositioning factors also influence slope instability, such as the properties of the sediments, high 

sedimentation rates, excess pore pressure, unfavorable layering or weak layers (Leroueil et al., 2005). 

The joint occurrence of contourites and mass movement deposits is recognized in several geological and 

oceanographic settings (Bryn et al., 2005; Hernández-Molina et al., 2014a,b; Roque et al., 2015). This 

association has been studied for the development of the Storegga Slide in Norway. The Storegga Slide 

is the largest known submarine slide with ~3500 km3 (Bondevik et al., 2003, 2006, 2012). This slide 

corresponds to a collapse of ~290 km along the Norwegian margin and a movement over 500 km with 

>50 m/s velocity (Bondevik et al., 2003, 2006, 2012). It is constituted by deposits with average and 

maximum thicknesses of 88 m and 450 m, respectively. According to Lisa (2014), this event occurred 

in the Holocene due to seismic activity, which caused dissociation of methane hydrates. However, the 

existence of contourite sediments was considered as a potential predisposition for the submarine slide 

(Bryn et al., 2005). The contourites are characterized by high mud contents, plasticity and water content, 

and therefore might have worked as weak predispositioning layers for the slide (Bryn et al., 2005). Also, 

the quick sedimentation of glacial deposits over the contourites could have caused a rapid increase of 

pore pressure inside the contouritic sediments and the occurrence of the submarine slide (Bondevik et 

al., 2003; Bünz et al., 2003).  

In the case of the SD, it shows a considerable thickness (1000-1200 m) due to the paleomorphology of 

the margin and a moderate to high sedimentation rate, estimated at 13 cm/k.y during the Pliocene, 17 

cm/k.y for the Early Pleistocene (2.588-1.5 Ma) and 27 cm/k.y for the Pleistocene (from ~1.5 Ma to the 

seafloor) (Expedition 339 Scientists, 2012). This thickness would create overloading and excessive pore 

pressure inside the contourites, overcoming the hydrostatic pressure (Iverson, 1997). The excess pore 

pressure supports most of the weight of the sedimentary column above and reduces tension, triggering 

an MTD (Iverson, 1997).   

It was previously seen that seismic units U4 to U6 ranging from the Early Quaternary to the present-day 

are constituted by numerous bigradational contourite successions and six coarse to fine-grained sandy 

intervals (see Chapter 6, Point 6.4). These sandy intervals can be under excess pore pressure due to their 

own characteristics (density, porosity and water content) and due to unfavorable layering (dense material 

deposited above less dense material or loose sand under a low permeability layer). Therefore, the 

presence of contouritic sediments within the sedimentary column might act as a pre-conditioning factor 

for slope instability (Bryn et al., 2005; Roque et al., 2015).  
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CHAPTER 8 

 

CONCLUSIONS 

 

This work proposed an evolutionary model for the Sines Drift as well as the identification of its main 

driving mechanisms and constraints. The main conclusions of this study can be summarized as follows: 

 Seismic stratigraphy interpretation of a newly acquired seismic reflection dataset on the Sines 

Contourite Drift allowed the identification of six seismic units (U1 to U6) from Late Miocene 

to Holocene age: the Late Miocene unit (U1) overlaying the B unconformity; the Pliocene to 

Early Quaternary units (U2 and U3) characterized by a mixed system; the Early to Mid-

Pleistocene units (U4 and U5) marked by muddy contourites and severe paleomoats along the 

east; and the Mid-Pleistocene to Holocene unit (U6) characterized by interbedded sandy-muddy 

contourites and moats; 

 Three evolutionary phases are identified for the SD development: 1) a sheeted-contourite-drift 

phase (<5.3-3.2 Ma) built since the Late Miocene by an initially weak flowing MOW; 2) a 

mounded-contourite-drift phase (3.2-0.7 Ma) from Late Pliocene to Early Quaternary times 

characterized by a mounded drift in the south and sheeted in the north, with a succession of 

sinuous N-S paleomoats in the east built as a result of MOW enhancement; and 3) a plastered-

contourite-drift phase from Mid-Pleistocene (0.7 Ma) till the present-day, characterized by the 

present depositional (sandy-muddy drifts) and erosional (moats) contourite features associated 

with two major events of MOW intensification; 

 The growth of the Sines Drift was constrained, in a long-term, by seafloor morphologies that 

resulted from the Mesozoic rifting processes of the Southwest Portuguese margin. The 

paleomorphology provided ample accommodation space for drift growth and conditioned its 

overall architecture. The N-S horsts (h1 and h2) built during the Mesozoic rifting, confined drift 

formation and did not allow lateral migration. This indicates that past-tectonics considerably 

restrained general basin geometry and contourite drift deposition and edification; 

 The formation of the Sines Drift has been influenced, in short-term, by climatic fluctuations and 

sea-level changes, especially during the Quaternary. Since the Mid-Pleistocene the architecture 

of the drift was mainly influenced by climatic and sea-level changes instead of tectonics, since 

there is no tectonic deformation during this stage and the drift presents a change in morphology 

(from mounded to plastered) with a higher number of sandy contourite layers (six in total), 

probably related to several episodes of bottom-current enhancement and therefore associated 

with climatic and sea-level changes;  

 The higher thickness of the Late Miocene unit U1 may point to the occurrence of enhanced 

bottom-current circulation. Since the Early Pliocene, the exit of the warmer and more saline 

MOW from the Strait of Gibraltar into the intermediate depths of the North Atlantic Ocean 

probably enhanced bottom water generation and aided the initially weak MOW to construct the 

sheeted drift; 
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 The occurrence in the Early to Late Quaternary (seismic units U4 to U6) of a succession of 

staking N-S paleomoats beneath the present-day moat suggests a persistent and semi-permanent, 

northward flowing MOW with several phases of enhancement;  

 Sediment supply was mainly sourced by alongslope and pelagic processes, as well as erosion of 

the continental slope by the MOW and its interaction with the seafloor. It was also perceived 

that the São Vicente and Setúbal canyons took most of the downslope sediment supply since 

they bound the drift to the south and north, respectively; 

 The occurrence of mass-movement processes in the west is mainly associated with the steep 

gradient of the Pereira de Sousa Scarp. These processes occurred since the deposition of seismic 

units U4 to U6, which are characterized by sandy-muddy contourites and these sediments could 

act as a predispositioning factor. However, a complex mix of triggering and predispositioning 

factors are at work, such as seismicity, oversteepening, the properties of the sediments, high 

sedimentation rates and excess pore pressure. 

All these results suggest the Sines Drift had a complex evolution from the Late Miocene to the Present, 

controlled by several factors at different scales and by the interactions between them. Therefore, the 

build-up of the Sines Drift in the Alentejo margin has been controlled by a complex combination of 

tectonics, bottom-current circulation, variations of sediment supply, climatic fluctuations and sea-level 

changes. 

 

8.1 Future Work 

This work was a step forward, to better understand the evolution of the distal sector of the Gulf of Cadiz 

Contourite Depositional System in the framework of the Mediterranean-Atlantic exchanges previously, 

during and after the Messinian Salinity Crisis. Hence, there is a need to investigate the questions that 

remained unanswered: i) how was the MOW circulation in the bottom-current system of the Late 

Miocene, ii) are there drifts further north, associated with the MOW or with another bottom-current 

system, iii) what is the lithology of the Late Miocene units, and iv) what is the age of the MTD 

accumulated along the Pereira de Sousa Scarp? In order to answer these questions, a few works will be 

needed:  

 New data as seismic reflection profiles and wells for a detailed chronologic and lithologic study 

of the Miocene sedimentary record; 

 A detailed microscopic and geochemical characterization of the sandy contourite layers, as well 

as the debrite and the dolomitic mudstone observed in the cores of Expedition 339 Site U1391, 

to understand their genesis; 

 Construction of computational models to predict the pathway of the MOW along the western 

Portuguese margin to investigate the formation of other distal and older drifts. 
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10. APPENDIX 

10.1 Seismic Data Acquisition  

Acquisition parameters and processing flow of the CONDRIBER seismic data. 

 

Table 10.1 – Technical specifications of the CONDRIBER seismic survey during the MOWER/CONDRIBER cruise (from 

Informe Técnico Campaña Mower, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONDRIBER Acquisition Parameters 

Year 2014 

Source 8 G-GunII airguns 

Total volume 610 and 910 in3 (150+150, 110+110, 45+45 in3) 

Record length 4, 6 and 9 s (controlled by time) 

Shot Interval 50 m 

Sample Rate 0.5 ms 

Source depth 5 m 

Synchronization Error +/- 0.1 ms 

Source compressors 2 LMF25/138-207E 

Entry air pressure 1.013 bar – 14.65 psi 

Working air pressure 140 bar – 2000 psi 

Maximum air volume 25 m3/min – 900 cfm 

Streamer configuration 3-channel SIG 16.3 x 40.175 

Active section 150 m 

Total length 250 m 

Streamer depth 0.5 – 1.5 m 

Penetration 50 – 4500 m 

Vertical Resolution High/medium 

Channels 3 

Channel interval 50 m 

Hydrophones sensibility SIG 16 – 90 dB, re 1 V/μbar 

Hydrophones per channel 40 

Frequency range 10 – 1000 Hz +/- 1 dB 
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Figure 10.1 – Processing steps applied to the CONDRIBER seismic data, based on Informe Técnico Campaña Mower (2014). 

 

 

 

 

 

 

 

 

1. SEG-Y import 

2. Calculation of CDP 

3. Noise filter 

4. Equalisation of channels and shots  

5. High-pass filter 

6. Band-pass filters 

7. Mute 

8. Sort and Stack 

9. Trace equalisation 

10. Resample 

11. Automatic Gain Control (AGC) 

12. Shift 
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10.2 Site U1391 Core Images 

Selected examples of high-resolution photos taken onboard the IODP Expedition 339 Site U1391 to 

illustrate the gradational contourite successions and their facies variations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 10.2 D to F – High-resolution photos taken onboard the IODP Expedition 

339 Site U1391, characterized by alternations of calcareous silty sand, calcareous 
sandy mud, calcareous silty mud and calcareous mud. 
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Figure 10.2 G and H – High-resolution photos from IODP 

Expedition 339 Site U1391, displaying contourite gradational 

successions. The photos analyzed in this study represent 

different core sections and depths, as shown in the 
lithostratigraphic column.  

Gradational contact 

(also sharp) 

Discontinuity 

Contourites 

Mixed system 

Debrite 

Dolomite mudstone 
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10.3 Seismic Reflection Profiles  

Seismic reflection profiles from the CONDRIBER, STEAM, BIGSET, and GSI surveys with seismic 

stratigraphic interpretations.  

 
 

 

Figure 10.3 – Un-interpreted (A) and interpreted (B) seismic profile CL11, showing the paleomoats formed since seismic unit 

U4 and paleochannels affecting seismic units U1 to U3. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: 

base of MTD; FM: seafloor horizon. F: faults; black arrows: reflections terminations; shaded areas: paleomoats; M: multiple. 
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Channel 

Figure 10.4 – Un-interpreted (A) and interpreted (B) seismic profile CL10, showing a basement high west of the SD, with 

an associated channel and MTD accumulation. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base 

of MTD; FM: seafloor horizon. F: faults; black arrows: reflections terminations; shaded areas: paleomoats; M: multiple.  
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Figure 10.5 – Un-interpreted (A) and interpreted (B) seismic profile ST14G shows MTD accumulation and slope failure 

related faults. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: seafloor horizon. F: 

faults; black arrows: reflections terminations. 
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Figure 10.6 – Un-interpreted (A) and interpreted (B) seismic profile BS07A displaying the internal configurations of the SD seismic units. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; FM: seafloor horizon. F: faults; black arrows: reflections terminations; shaded areas: 

paleomoats; M: multiple.  
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Figure 10.7 – Un-interpreted (A) and interpreted (B) seismic profile BS08 displaying MTD accumulation and a compressive event related to fault F2. U1 to U6: seismic units; B and H1 to H6C: 

seismic horizons; HMTD: base of MTD; FM: seafloor horizon. F: faults; black arrows: reflections terminations; M: multiple.  
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Figure 10.8 – Un-interpreted (A) and interpreted (B) seismic profile BS19 shows MTD accumulation related to the Pereira de Sousa escarpment and the correlation with Site U1391 stratigraphic 
discontinuities. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: seafloor horizon. F: faults; black arrows: reflections terminations; M: multiple. 
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Figure 10.9 – Un-interpreted (A) and interpreted (B) seismic profile GSI67 displaying the seismic character of the SD seismic units. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; 

HMTD: base of MTD; FM: seafloor horizon. F: faults; black arrows: reflections terminations; shaded areas: paleomoats.  
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Figure 10.10 – Un-interpreted (A) and interpreted (B) seismic profile GSI69 displaying the internal reflection configurations 

of seismic units U1 to U6. U1 to U6: seismic units; B and H1 to H6C: seismic horizons; HMTD: base of MTD; FM: seafloor 

horizon. F: faults; black arrows: reflections terminations; shaded areas: paleomoats.  
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10.4 Isopach Maps 

Isopach maps of the thickness for the Sines Drift total sedimentary package and for the MTD.  

 

 

 

Figure 10.11 –  Isopach map of the SD total thickness (comprises seismic units U1 to U6). Legend: plus and minus signs mark 

depressions and elevations; h1 and h2 correspond to horsts and g1 to a graben; D1 and D2 mark the main depocenters; PAP – 

Príncipe de Avis Plateau; PAS – Príncipe de Avis Seamounts; PSF – Pereira de Sousa Fault. RLB – Rincão do Lebre Basin. 
Equidistance: 250 ms. 
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Figure 10.12 –  Isopach map for the MTD. Legend: PSF – Pereira de Sousa Fault. RLB – Rincão do Lebre Basin. Equidistance: 
50 m. 


