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ABSTRACT 

 

Nowadays, there is an increased interest in biological active compounds derived from natural sources, 

especially compounds with medical applications, nutrient rich food and feed, and health promoting 

compounds. Microalgae are a potential valuable resource for a biotech purposes, as new sources of 

biomolecules such as pigments, lipids, carbohydrates and proteins. Natural pigments have 

pharmacological properties and have increased marketability of products advantages over synthetic 

products. Commercial production of natural carotenoids from microalgae is an eco-friendlier and safer 

approach than synthetic manufacture by chemical procedures. Of several naturally occurring 

carotenoids, astaxanthin is considered one of the best, being able to protect cells, lipids and membrane 

lipoproteins against oxidative damage. Haematococcus pluvialis is the richest source of natural 

astaxanthin and is produced at large scale.  

The work herein described had the objective to improve H. pluvialis strains with an enhanced 

accumulation of astaxanthin content. For the strain improvement three approaches have been used: (i) 

screening of different strains to select those with a superior performance; (ii) flow cytometry assisted 

cell sorting of cells subpopulations with increased astaxanthin production and (iii) random mutagenesis 

by UV-C irradiation and mutants selection. For this purpose, seven H. pluvialis strains were used and a 

characterization was conducted throughout the 3-steps cultivation experimental strategy: green 

vegetative growth, induction of astaxanthin accumulation and additional salinity stress stages. This 

integrative characterization focused on a number of microalgae physiological properties, intending to 

thoroughly assess the evolution and heterogeneity of their vitality and astaxanthin accumulation 

capacity.  

HP_02 and HP_03 were the most promising selected strains, reaching respectively 3.8 % and 4.4 % (of 

their DW) of astaxanthin content, and presenting high growth rates of 0.58 day-1 and 0.52 day-1. The two 

strains were submitted to fluorescence activated cell sorting for enrichment of astaxanthin over-

producers. Both strains showed similar performances and no specific cell properties and/or stresses 

responses could be point as particularly relevant. The HP_03 strain was further subjected to random 

mutagenesis by exposure to UV-C radiation in order to promote heterogeneity in the cell population. 

The isolation of cells sub-populations of interest, with high recovery and high degree of purity, was not 

achieved, due to the homogeneity of the populations of the analyzed strains, and due to technical 

impossibility of the sorting device. However, it is noteworthy that, flow cytometry allowed the 

monitoring of astaxanthin content during the induction phase of the culture, and showed that the 

autofluorescence of this pigment can be a good indicator of its intracellular accumulation and can 

therefore be monitored in real time by flow cytometry. The results of the preliminary random 

mutagenesis assay, by exposure to UV-C radiation seem to indicate that this strategy is promising to 

increase the subpopulation of astaxanthin producing cells. Further similar studies with different strains 

and additional parameters should be performed to better clarify this subject.  

 

Keywords: astaxanthin; Haematococcus pluvialis; flow cytometry; cell sorting; UV mutagenesis.  
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RESUMO 

 

As microalgas estão a emergir como uma das mais promissoras fontes sustentáveis de biomassa, 

combustível, alimentação, rações e outros produtos. Estes microrganismos têm um potencial enorme na 

área da biotecnologia por serem uma fonte valiosa de metabolitos como pigmentos (ex. astaxantina, β-

caroteno), proteínas (ex. ficocianina), lípidos (ex. ómega-3, DHA, EPA) e hidratos de carbono. Embora 

os seus compostos ativos apresentem vantagens relativamente aos produtos sintéticos ou outros produtos 

de fontes naturais, têm contudo, desvantagens a nível de custos (Borowitzka, 2013; Demirbas, 2011; 

Milledge, 2010). O maior desafio na aplicação das microalgas para fins comerciais tem sido minimizar 

os custos de produção e extração dos compostos, devido à complexidade da fase de cultivo e dos 

processos a jusante (ex. extração dos compostos de valor acrescentado).  

Entre os metabolitos de elevado valor acrescentado, a astaxantina (3,3’-dihidroxi-β,β’-caroteno-

4,4’diona), carotenoide secundário, é considerada um composto valioso com um elevado número de 

aplicações, desde sectores alimentares, cosméticos a farmacêuticos. Este pigmento tem como fonte 

natural microalgas como Chlorella zofingiensis, Chlorococcum, Haematococcus pluvialis, leveduras 

vermelhas, Phaffia rhodozyma e bactérias, Paracoccus carotinifaciens. Haematococcus pluvialis, é 

considerada a maior fonte natural de astaxantina, podendo acumular até 6 % do seu peso seco e é a 

melhor fonte natural de astaxanthina para consumo humano (Ambati et al., 2014; Lorenz, 1999; 

Olaizola, 2003; Yuan et al., 2010).  

A acumulação de carotenoides secundários, como a astaxantina, é uma característica de resposta ao 

stress de certas microalgas como é o caso de H. pluvialis. Quando há privação de nutrientes, aumento 

da intensidade luminosa, salinidade, etanol e hormonas entre outros fatores desfavoráveis ao 

crescimento da microalga, esta começa a induzir (Sarada et al., 2002a; Su et al., 2014; Zhang et al., 

2014). A fase de indução, também conhecida como fase vermelha, corresponde à produção e 

acumulação da astaxantina, essencial para H. pluvialis sobreviver a condições adversas (Hagen et al., 

2002; Wayama et al., 2013). Devido às flutuações das condições de stress que podem ser aplicadas para 

iniciar o processo de indução, todas as estratégias devem ser otimizadas para que a acumulação de 

astaxantina seja o mais reprodutível possível. O desenvolvimento de novas tecnologias para produção 

de microalgas, em sistemas abertos (ex. raceways) e sistemas fechados (ex. fotobioreactores), assim 

como a otimização das condições de cultivo (um ou duas fases de produção) têm maximizado o 

crescimento e a produção de biomassa, teor de pigmentos e outros produtos, reduzindo os custos de 

produção à escala industrial (Der Rio et al., 2007; Fábregas et al., 2001; Shah et al., 2016).  

Contudo, existem ainda muitos desafios e problemas na produção a grande escala de H. pluvialis. A 

otimização não tem de ser restrita ao melhoramento das condições de cultivo e aos sistemas de produção. 

O melhoramento do desempenho das estirpes de H. pluvialis também tem sido alvo de estudos recentes. 

Para aumentar o conteúdo de astaxantina acumulado, as células podem ser submetidas a agentes 

mutagénicos químicos, como etil-metano-sulfanato (EMS) ou N-metil-N-nitro-N-nitrosoguanidina 

(NTG), ou agentes físicos, como radiação ultravioleta ou raio-X (Chen et al., 2003; Kamath et al., 2008; 

Tjahjono et al.,1994; Tripathi et al., 2001). Mutações mais direcionadas também foram aplicadas a estas 

microalgas, como modificações genéticas (Forján et al., 2015; Sharon-Gojman et al., 2015).  

O trabalho desenvolvido no âmbito desta tese teve como principal objetivo o melhoramento de estirpes 

de H. pluvialis, pertencentes à coleção de microalgas da empresa A4F, para aumentar o teor intracelular 
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de astaxantina. Para o melhoramento das estirpes foram utilizadas três abordagens: (i) caracterização de 

diferentes estirpes para posterior seleção daquelas que apresentaram desempenho superior; (ii) 

separação física (cell sorting) de subpopulações de células com aumento da produção de astaxantina, 

por citometria de fluxo e (iii) mutagénese aleatória por irradiação com UV-C e seleção de mutantes. 

Neste trabalho foram inicialmente utilizadas sete estirpes de H. pluvialis (HP_01 to HP_07) cultivadas 

numa estratégia experimental em três fases: na primeira fase de crescimento vegetativo ou fase verde, 

as diferentes estirpes foram crescidas em condições ótimas durante 7 dias, avaliando-se e comparando 

as taxas de crescimento e produtividade da biomassa; na segunda fase de indução ou fase vermelha, 

aplicaram-se dois fatores de stress, privação de nutrientes e aumento da intensidade luminosa 

(150 µmol.m-2.s-1), durante 17 dias, analisando-se a produtividade e a acumulação máxima de astaxatina 

nas diferentes estirpes; na terceira fase aplicou-se um stress salino adicional, analisando-se o seu 

impacto na biomassa e no conteúdo máximo de astaxantina das culturas já induzidas. Esta caracterização 

integrativa enfocou um número de propriedades fisiológicas das microalgas, com a intenção de avaliar 

completamente a evolução e heterogeneidade de sua vitalidade e capacidade de acumulação de 

astaxantina. Os parâmetros avaliados foram: contagem de células, peso seco, produtividade e viabilidade 

de biomassa e análise de pigmentos. 

Os resultados obtidos no decurso deste trabalho permitiram caracterizar as diferentes estirpes de H. 

pluvialis e selecionar as que apresentaram as melhores características relativamente à taxa de 

crescimento e produtividade de biomassa na fase de crescimento, e com especial interesse à sua 

produtividade e teor em astaxantina na fase de indução. Das sete, destacaram-se as estirpes HP_02 e 

HP_03, que durante a fase de crescimento apresentaram elevadas taxas de crescimento (0,52 e 0,58 dia-

1, respetivamente) e produtividades similares de biomassa comparativamente às outras estirpes (0,27 e 

0,22 g.L-1.dia-1, respetivamente). HP_02 e HP_03, obtiveram o maior conteúdo de astaxantina 

acumulado (3,8 % e 4,4 % respetivamente), e registaram produtividades de astaxanina elevadas, (2,31 e 

2,58 mg.g-1.dia-1 respetivamente), superiores às outras estirpes estudadas. As duas estirpes foram 

submetidas a cell sorting para enriquecimento de sobre-produtores de astaxantina. Ambas as estirpes 

apresentaram desempenhos semelhantes e não foram consideradas particularmente relevantes 

propriedades específicas das células. A estirpe HP_03 foi ainda sujeita a mutagénese aleatória por 

exposição à radiação UV-C de modo a promover a heterogeneidade na população celular. 

Os pigmentos fotossintéticos presentes nas microalgas são clorofilas e carotenóides, e a sua 

concentração intracelular depende das condições de cultivo. Esta concentração está linearmente 

correlacionada com a fluorescência dos pigmentos, o principal componente da fluorescência endógena 

(autofluorescência) (Hyka et al., 2013). Assim, a intensidade de autofluorescência foi utilizada para a 

identificação e quantificação de pigmentos de microalgas por citometria de fluxo. Esta metodologia 

permitiu ainda detetar alterações no estado fisiológico das células; a morfologia, incluindo tamanho e 

complexidade celular dependem das condições de cultivo e estão correlacionadas com os dois sinais de 

dispersão da luz, medidos por citometria, nomeadamente dispersão direta (FSC) e ortogonal (SSC). 

A acumulação de astaxantina das 7 estirpes, foi monitorizada por citometria de fluxo, no início e ao 

longo da fase de indução, assim como foi seguida a evolução do estado fisiológico das células. É de 

salientar que os resultados da quantificação de astaxantina por citometria de fluxo (valores médios das 

intensidades de fluorescência) foram consistentes com os determinados pelo método de extração de 

pigmentos totais, confirmados pela forte correlação linear encontrada (r = 0,98) entre o conjunto 

completo de valores dos dois parâmetros. Demonstrou-se assim que, a autofluorescência da astaxantina 

é um bom indicador da sua acumulação intracelular, podendo ser monitorizada em tempo real por 

citometria de fluxo. 
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Para concluir a fase de caracterização das estirpes, os resultados obtidos após adição de NaCl (10 g/L) 

mostraram que o aumento do conteúdo de astaxantina não é estatisticamente significativo, à exceção de 

HP_01 que obteve um aumento de 2,5 % para 3,4 % (p < 0,001). A aplicação do stress salino adicional, 

ainda que apenas durante um curto período de tempo, 1 a 2 dias, determinou um aumento do teor de 

astaxantina, começando as culturas a perder biomassa após o terceiro dia, e como tal teve efeitos 

negativos no conteúdo de astaxantina acumulado. A maior produtividade global de astaxantina foi obtida 

pelas estirpes HP_02 e HP_03, atingindo 1,63 e 1,88 mg.g-1.dia-1, respetivamente. Este valor foi baseado 

no tempo essencial para as estirpes alcançarem o valor máximo de astaxantina, incluindo as duas fases 

de cultivo durante 24 dias. 

A partir das culturas selecionadas, HP_02 e HP_03, o isolamento de subpopulações de células de 

interesse, com alta recuperação e alto grau de pureza, não foi alcançado, devido à homogeneidade das 

populações das estirpes analisadas, e devido à impossibilidade técnica do dispositivo de sorting.  

Como terceira abordagem para o melhoramento das estirpes, a HP_03 foi selecionada, realizou-se 

mutagénese aleatória por exposição à radiação ultravioleta (UV-C), criando condições propícias a que 

as células sofressem alterações genéticas de modo a potenciar a produção de astaxantina. O efeito letal 

da exposição à radiação foi estudado analisando a viabilidade celular por citometria de fluxo, usando 

como fluoróforo um oxonol [DiBAC4(3)], que responde ao potencial de membrana. Os resultados 

obtidos permitiram seguir a evolução da viabilidade celular com o aumento do tempo de exposição à 

radiação, observando-se uma despolarização progressiva da membrana, que terminou ao fim de 100 s 

de exposição por uma dissipação generalizada do potencial. No entanto, nos resultados obtidos pela 

análise de citometria de fluxo, não foi notável um aumento da heterogeneidade populacional, mantendo-

se a dificuldade da realização do sorting das células com maior conteúdo de astaxantina. Este ensaio 

preliminar de mutágenese aleatória apresentou resultados promissores, na medida em que um dos 

mutantes isolados, Mut 2, atingiu valores superiores de astaxantina, 4,1 % por peso seco, relativamente 

ao controlo que obteve 3,1 % de astaxantina, para o mesmo período de tempo.  

Uma vez que as estirpes selecionadas apresentaram um desempenho análogo e uma homogeneidade 

populacional, torna-se difícil identificar propriedades celulares ou respostas ao stress que possam ser 

particularmente relevantes para o melhoramento das estirpes com vista a uma maior acumulação de 

astaxantina. Deverão realizar-se novos estudos com recurso a estirpes com maior heterogeneidade, que 

possibilitem o isolamento das células com as propriedades desejadas, e as configurações do citómetro 

de fluxo e do dispositivo de sorting devem ser otimizadas de modo a permitir separação física (cell 

sorting) de subpopulações de células com aumento da produção de astaxantina, com alta recuperação e 

alto grau de pureza. 

 

Palavras-chave: astaxantina; Haematococcus pluvialis; citometria de fluxo, cell sorting; mutagénese 

por UV.  
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1 – INTRODUCTION 

 

1.1. MICROALGAE OVERVIEW 

1.1.1. Microalgae playing an important role  

Microalgae are unicellular, colonial or filamentous, aquatic organisms that convert sunlight, nutrients 

and carbon dioxide into biomass via photosynthesis. Microalgae are one of the most primitive plants, 

consisting of the base of food chain of all aquatic ecosystems and the primary producers on earth. It can 

be grown almost anywhere, fresh water, salt-water and even on sewage and hypersaline waters. Around 

200,000 species of microalgae are estimated to exist, but only a limited number, about 30,000, have 

been studied and analyzed (Mata et al., 2010; Sing and Saxena, 2015). Microalgae consist of a large and 

heterogeneous group of microorganisms, distinguished according the basic cellular structure, life cycle 

and pigment composition. The most important classes or categories of microalgae in terms of their 

abundance are: diatoms (Bacillariophyceae); green (Chlorophyceae); blue-green algae or cyanobacteria 

(Cyanophyceae); golden (Chrysophyceae); and red algae (Rhodophyceae) (Bharathiraja et al., 2015; 

Sing and Saxena, 2015; Vassilev and Vassilev, 2016). 

Microalgae photosynthetic mechanism is similar to that of terrestrial plants, however, it has specific 

advantages over; it presents higher photosynthetic efficiency, since microalgae, during cellular 

metabolism, can convert more solar energy (4 - 7.5 %) than land plants (0.5 %). Moreover, microalgae 

present higher biomass production and faster growth, with growth rates of less than 24h. Microalgae 

also depend upon fewer resources than land plants, do not require fertile land or food crops, and 

processing consumes less energy than the land plants need (Raheem et al., 2015; Sing and Saxena, 

2015). Although, its cultivation is very challenging, once variations in light, temperature, pH, salinity, 

qualitative and quantitative nutrient profiles, dissolved oxygen, among others, will affect the growth and 

the quality of microalgae. These conditions can be modified to accomplish high yields and reduce 

production costs (Tran et al., 2015).   

To benefit the most from microalgae, since its isolation up to its large-scale production, several stages 

have to be studied, and microalgae potential is acquired step by step. The increasing concern for a better 

life quality, by consuming from natural sources and usage of renewable resources, is leading to a high 

investment in microalgae business and an increasing research for its biotechnological applications 

(Bharathiraja et al., 2015; Markou and Nerantzis, 2013; Vassilev and Vassilev, 2016). 

1.1.2. Microalgae products & economic interests  

Microalgae are a potential resource for biotechnological purposes as new sources of biomolecules such 

as pigments, lipids, carbohydrates and proteins. Microalgae in their natural environment, have adapted 

in order to inhabit a wide range of environmental conditions and habitats. Therefore, due to their variety 

of metabolic pathways, these microorganisms can produce an enormous diversity of compounds. 

Microalgae biomass from different strains can be processed and their active form from its compounds, 

such as pigments (e.g. β-carotene), antioxidants (e.g. astaxanthin), proteins (e.g. phycocyanin), and 

polyunsaturated fatty acids (e.g. omega-3, DHA, EPA) can be extracted to commercialize (Borowitzka, 

2013; Demirbas, 2011).  
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Although the current key commercial applications appear to be food additives and fuel, microalgae and 

its compounds have a tremendous range of applications. These may have advantages over synthetic 

products or products obtained from natural sources, but may have a cost disadvantage. These 

characteristics make them promising microorganisms with possible impact, on the chemical, 

pharmaceutical, cosmetic, energetic and on nutritional sectors (Table 1.1). The challenge in the 

application of microalgae for commercial purposes is to focus on these products with large market and 

profit, for which the use of microalgae is a clear competitive advantage (Milledge, 2010). 

Table 1.1 – Examples of microalgae products and applications. (Adapted from Bharathiraja et al., 2015 and Enzing et al., 

2014). 

Species Product Area of application Price (€/Kg) 

Spirulina Phycobiliproteins; γ-linolenic acid Health care; cosmetics 11-35 

Chlorella Protein isolates Aquaculture; health care 36-50 

Dunaliella salina β-carotene Health care; cosmetics 215-2150 

Aphanizomenon flos-aquae Nutritional additive Human nutrition - 

Haematococcus pluvialis Carotene; astaxanthin Health care 501-7150 

Cryptheconidium cohnii Dhydroxy acenote oil Health care; nutrition 43 

Nannochloropsis Eicosapentaenoic acid; Biofuel  Human nutrition; energy - 

Porphyridium Arachidonic acid Human nutrition - 

Cryptocodinium Docosahexaenoic acid Human nutrition - 

 

The first report of human consumption of microalgae was in the 16th century with the harvest of 

Spirulina (Arthrospira) from Lake Texcoco by the Aztec people, and latter of Lake Chad by Kanembu 

population. During the natural Spirulina bloom, the populations collected and dried microalgae for later 

consumption as dried cakes. Nutritional properties of Spirulina showed an exceptionally high protein 

content, of the order of 60–70 % of its dry weight (Abdulqader et al., 2000; Ahsan et al., 2008). 

However, the industrial scale production of microalgae only began in the 1960s, in Japan with Chlorella 

production for human consumption. Chlorella vulgaris presents a total protein content up to 60% dry 

weight. It is considered to have a high protein nutritional quality according to the standard amino acid 

profile for human nutrition proposed by the World Health Organization (WHO) and the Food and 

Agricultural Organization (FAO) (Safi et al., 2014). This was followed in the 1970s by the 

commercialization of Spirulina, which is an excellent source of C-phycocyanin, followed in the 1980s 

by Dunaliella salina, source of β-carotene and later source of glycerol (Ben-Amotz and Avron, 1982; 

Spolaore et al., 2006) and astaxanthin from Haematococcus pluvialis in the 1990s (Lorenz and 

Cysewski, 2000). Thus, microalgae biotechnology industry has been growing and diversifying 

significantly.  

However, the microalgae products currently on the market are still limited. The main limiting factor for 

the development of the markets is the production costs. The actual costs are related to the complexity of 

the cultivation phase and the downstream processes (extraction of the high-value compounds). The 

technical innovation and the market demand will result in further major advances and in an expansion 

of the commercially available products. Besides, efforts in improving the efficiency of systems and 

production operation are in progress to allow the cultivation of a larger diversity of microalgae. 

Nowadays, nutrition education programs could improve the microalgae products consumption. The 

main commercial product appears to be ‘‘health care’’ or “nutrition” that may produce health benefits, 

but may be subject to fashion and the current tendency. Also, to increase the microalgae products should 

be done a revision of the Novel Food Regulation. The complexity of the regulation on novel foods makes 
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it difficult the authorization of microalgae based products on the market (Milledge, 2010; Podola et al., 

2016; Spolaore et al., 2006; Vigani et al., 2015). 

Alternative sources, as chemical synthesis products, are the major competitors of several of the 

microalgae products, especially carotenoids. According to BCC research press release (BCC research), 

the global carotenoids market generated about $1.2 billion in 2010, with the bulk of the carotenoids 

being produced by chemical synthesis (Borowitzka, 2013). In 2018, that value is projected to surpass 

$1.4 billion, increasing at an eight-year Compound Annual Growth Rate (CAGR) of 2.3 %. The global 

market for carotenoids comprise principally ten products: β-carotene, lutein, astaxanthin, capsanthin, 

annatto, canthaxanthin, lycopene, β-apo-8-carotenal, zeaxanthin, and β-apo-8-carotenal-ester (Figure 

1.1).  

The higher quality of microalgae compounds compared to the corresponding synthetic sources, is mainly 

due to their chemical conformation which is much more efficient than the synthetic variants. The 

products of high added value obtained from microalgae are subject to a range of rules and regulations 

affecting the production process. The concerns of production process are incremented when it is 

intended for human or animal nutrition. The alternative sources present a challenge to producers of 

microalgae-derived products, which have either to compete on price, or differentiate themselves from 

the synthetic source in the market place, in order to be able to be sold at a higher price. The 

manufacturing processes required to produce natural carotenoids are sophisticate and suffered a high 

development over the past years. Introduction of new manufacturing technologies is leading to a price 

reduction across most products allowing the preference for natural sources instead of synthetic. From 

this, biotechnology will play an important role in the near future, especially in production systems, as it 

can help to increase the productivity and reduce the production costs of micro-algae products 

(Borowitzka, 2013; Enzing et al., 2014; Guedes et al., 2011). 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Global carotenoids market value by product type. Estimative of evolution of carotenoid market from 2010 to 

2018 ($ millions). Extracted from BCC Research. 

1.2. ASTAXANTHIN PIGMENT 

Nowadays there is an increased interest in biological active compounds derived from natural sources, 

especially the ones that can act on molecular targets, which are involved in some diseases. Astaxanthin 

(3,3’-dihydroxy-β,β’-carotene-4,4’dione) a compound of highly interest, has unique chemical properties 

based on its molecular structure, derived from lycopene. It is a hydrocarbon that contains two terminal 

ring systems joined by a chain of conjugated double bonds or poliene system (Figure 1.2) (Guerin et al., 

2003). Its structure explains its unique chemical features, such as the ability to be esterified, a higher 

anti-oxidant activity and a more polar configuration than other carotenoids. Astaxanthin, a secondary 

carotenoid that results from secondary metabolism, belongs to the family of xanthophyll and it has a 

$ millions 



  1 – INTRODUCTION 

 

 4 

  

stronger antioxidant activity when compared to β-carotene or α-tocopherol. It is proposed to be a super 

vitamin E and it can easily cross blood brain barrier in mammals, having proprieties that are believed to 

have a key role in the medicinal, pharmaceutical and food industries. (Goswami et al., 2010; Miki, 

1991).  

Of several naturally occurring carotenoids, astaxanthin is considered one of the best being able to protect 

cells, lipids and membrane lipoproteins against oxidative damage (Ambati et al., 2014). Numerous 

studies (Ambati et al., 2014; Guerin et al., 2003; Kidd, 2011; Yamashita, 2013; Yuan et al., 2011) have 

shown that astaxanthin has potential health-promoting effects in the prevention and treatment of various 

diseases, such as cancers, chronic inflammatory diseases, metabolic syndrome, diabetes, cardiovascular 

diseases, gastrointestinal diseases, liver diseases, neurodegenerative diseases, eye diseases, skin 

diseases, exercise-induced fatigue, male infertility, and renal failure.  

 

Figure 1.2 – Molecular structure of different carotenoids: the three stereoisomers of astaxanthin, β-carotene, lutein, 

zeaxanthin and canthaxanthin. Extracted from Guerin et al., 2003. 

Astaxanthin shares many of the metabolic and physiological functions attributed to carotenoids, since it 

is closely related to other carotenoids, such as β-carotene, zeaxanthin and lutein (Figure 1.2) (Goswami 

et al., 2010; Guerin et al., 2003). There are three stereoisomers for astaxanthin: two enantiomers (3R, 

3’R and 3S, 3’S) and a meso form (3R, 3’S). Of all isomers, the 3S, 3’S is the most abundant in nature 

and different organisms produce astaxanthin in different stereoisomeric ratios. Esterified astaxanthin 

may increase biological activities especially since it can be easily absorbed into the metabolism, when 

compared to its free form. The stereoisomer 3S, 3’S in the esterified form (mono and di-esters) is 

predominantly found in Haematococcus pluvialis, while the 3R, 3’R stereoisomer in the unesterified 

form is found in Phaffia rhodozyma. Synthetic astaxanthin is produced as the unesterified xanthophyll 

and as a 1:2:1 mixture of the three stereoisomers: 3S, 3’S, 3R, 3’S and 3R, 3’R (Ambati et al., 2014; 

Higuera-Ciapara et al., 2006).  

Astaxanthin is found in microalgae, microorganisms and aquatic animals, i.e. many types of seafood, 

including salmon, trout, red sea bream, shrimp and lobster, as well as in birds such as the flamingo and 

the quail. There are diverse natural sources of astaxanthin, such as microalgae Haematococcus pluvialis, 

Chlorococcum, Chlorella zofingiensis, red yeast, Phaffia rhodozyma and bacteria, Paracoccus 

carotinifaciens. Haematococcus pluvialis is considered the richest source of natural astaxanthin (up to 
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6 % dry weight) as well as the best sources of astaxanthin for human consumption (Ambati et al., 2014; 

Lorenz, 1999; Olaizola, 2003; Yuan et al., 2010).  

1.2.1. Biochemistry and biological activity of astaxanthin  

An unavoidable consequence of aerobic metabolism is the production of reactive oxygen (ROS) and 

nitrogen (RNS) species. In microalgae, ROS are always formed by the leakage of electrons onto O2 from 

the electron transport activities of chloroplasts, mitochondria and plasma membranes or as a byproduct 

of various metabolic pathways. All ROS are extremely harmful to organisms at high concentrations and 

its enhanced production during environmental stresses can cause peroxidation of lipids, oxidation of 

proteins, damage of nucleic acids and enzyme inhibition, ultimately leading to cells death (Ambati et 

al., 2014).   

Due to the polyene chain, astaxanthin has an antioxidant activity by quenching single oxygen and 

scavenging radicals to terminate chain reactions. Specific physicochemical interactions of antioxidant 

compounds with membranes are responsible for their antioxidant properties and their biologic benefits, 

such as its transmembrane orientation which facilitates electron shuttling. The transmembraneous 

alignment of polar carotenoids provides exposure of the polar (hydrophilic) ends of the molecule to the 

internal cytoplasm and to the aqueous environment external to the cell (or the mitochondrial matrix and 

the intermembrane space of mitochondria), potentially facilitating electron transfer via the double bonds 

of the carbon scaffold of the compound (Figure 1.3) (Ambati et al., 2014; Kidd, 2011; Pashkow et al., 

2008; Yuan et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2. Natural vs synthetic source of high value molecule: Astaxanthin 

Natural pigments have pharmacological properties and have increased marketability advantages over 

synthetic products. The commercial production of natural carotenoids from microalgae is an eco-

friendlier and safer approach than synthetic manufacturing by chemical processes (Aberoumand, 2011; 

Tuli et al., 2014). Currently, astaxanthin accounted for $226 million in 2010 and will be worth $253 

million in 2018, a CAGR of 1.4 % (BCC Research). However, 95 % of this market consumes synthetic 

Figure 1.3 – Transverse cell membrane orientation of 3S,3S’ astaxanthin. The polar end groups overlap the polar boundary 

zones of the membrane, while the nonpolar middle fits the membrane’s nonpolar interior. The dashed red line speculatively 

indicates the conduction of electrons along the astaxanthin molecule, possibly to vitamin C or other antioxidants located outside 

the membrane. Extracted from Pashkow et al., 2008. 
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astaxanthin. Natural products make the synthetic pigments less desirables, since are derived from 

petrochemical sources raising issues related to food safety, pollution, and sustainability. Therefore, the 

chemical astaxanthin is only allowed to be used in aquaculture, not in human consumption or animal 

feed (Lemoine and Schoefs, 2010; Li et al., 2011; Lorenz and Cysewski, 2000). Due to consumers’ 

ability to differentiate between the benefits of natural pigments and hazardous effects of synthetic 

pigments have been greatly boosted the application of microbial pigments as food additive (Nigan and 

Luke, 2016).  

There are three key areas where further improvements are required for a better implementation of 

microalgae products: (i) minimization of capital and operational costs; (ii) enhancement of cultivation 

efficiency; and (iii) astaxanthin isolation and purification. This will lead algae companies to successful 

commercial implementation.  Since US Food and Drug Administration (FDA) granted "Generally 

Recognized As Safe" status (GRAS) astaxanthin from H. pluvialis, biotechnological innovation and 

continuous research are walking side by side to enhance microalgae production technology and strain 

improvement (e.g. genetic engineering), into a sustainable source of food/feed commodities, with 

enhanced yields of the desired products. (Bhosale, 2004; Pulz and Gross, 2004; Shah et al., 2016; Vigani 

et al., 2015).  

1.3. HAEMATOCOCCUS PLUVIALIS 

Haematococcus pluvialis (hereafter referred to as H. pluvialis) is the microorganism used for the work 

of this thesis. 

1.3.1. Taxonomy, Morphology & Life cycle  

H. pluvialis is a freshwater, unicellular, biflagellate green microalgae. Its scientific classification, 

originally described by Flotow (1844), is presented in Table 1.2 (Algabase). 

Table 1.2 – Taxonomic classification of H. pluvialis Flotow. From Algabase. 

Domain Eukaryota 

Kingdom Plantae 

Subkingdom Viridiplantae 

Phylum Chlorophyta 

Class Chlorophyceae 

Order Chlamydomonadales 

Family Haematococcaceae 

Genus Haematococcus 

Species Haematococcus pluvialis 

 

H. pluvialis is adapted to a diverse range of environmental and climate conditions, being distributed in 

many fresh water habitats worldwide. It is capable of surviving in adverse conditions due to its ability 

to encyst, such as high light intensity, salt concentration, temperature, water availability and other 

adverse conditions (Proctor, 1957). This microalgae is frequently found in temperate regions around the 

world, like Europe, America and Africa (Pringsheim, 1966). However, it had been found to withstand 

adverse conditions revealing its presence at: low temperatures (4 - 10 °C), in Blomstrandhalvøya Island 

(Svalbard) (Klochkova et al., 2013); at high salinities (up to 25 ‰) on coastal rocks on Kost’yan Island, 

White Sea (Chekanov et al., 2014) and at a dried fountain near Rozhen village Blagoevgrad in Bulgaria 

(Gacheva et al., 2015). 
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Several ultrastructural changes occur during H. pluvialis life cycle which may be divided in four stages: 

(i) vegetative cell growth; (ii) encystment (vegetative to immature cyst cells); (iii) maturation (immature 

to mature cyst cells) and (iv) germination (mature cyst to vegetative cells) (Kobayashi et al., 1997a). In 

the life cycle four types of cells are produced (Figure 1.4): macrozooids (large, flagellated); microzooids 

(small, slender and flagellated); palmella forms (non-motile) and aplanospores (large, red hematocysts 

with a resistant cellulose wall). Cellular structure and chemical changes allow H. pluvialis, under 

nutritional and environmental factors, to transform from green flagellated cells into red cell, 

aplonospores, and vice versa (Hagen et al., 2002). 

  

Figure 1.4 – Life cycle of H. pluvialis. a) Adult palmelloid cell; b) Aplanospore; c) cell division, microzoids released; d) 

Young palmelloid cell; e) Adult macrozoid; f) Young macrozoid; g) Palmelloid cell; h) cell division, microzoids and palmella 

cells released (Adapted from Elliot, 1934). 

When a culture is performed with fresh medium, macrozooids (zoospores) predominate in the vegetative 

growth stage. Cells are spherical, ellipsoidal, or pear-shaped with two flagella of equal length emerging 

from anterior end, and a cup-shaped chloroplast with numerous, scattered pyrenoids (Kobayashi et al., 

1997a). Macrozooid cells are between 8 and 20 μm long with a distinct gelatinous extracellular matrix 

with a median tripartite crystalline layer (Figure 1.5A) (Hagen et al., 2002). These cells might divide 

asexually, by mitosis, into 2 to 32 daughter cells (Figure 1.5B) (Wayama et al., 2013). As soon as 

environmental or culture conditions change inducting stress, macrozooids develop into a non-motile 

palmella form by losing their flagella while expanding the cell size. The transformation into palmella 

cells is characterized by the formation of a new two-layered amorphous, primary wall and 

simultaneously, the tripartite crystalline layer decomposition (Figure 1.5A) (Hagen et al., 2002). 

Through the continued environmental or cultural stress (e.g. nutrient starvation) the encystment process 

will continue. H. pluvialis turned into greenish-orange cells (Figure 1.5C), which can be referred as 

intermediate stage cells. In the aplanospore or cyst stage (Figure 1.5D) astaxanthin accumulates and 

cells form cysts. At this stage, further morphogenesis occurs. There is a formation of a voluminous 

multilayered cell wall, which enhances their tolerance against environmental impact (Damiani et al., 

2006; Hagen et al., 2002). Along the transition to aplanospore cells, a large amount of astaxanthin is 

synthesized in lipid vesicles in the cytoplasm, in a way to storage carbon, energy and prevention from 

oxidative stress. The maturation of cysts is accompanied by the degradation of chloroplasts, remaining 

a low percentage that will play a role in the recovery when environmental conditions improve (Collins 

et al., 2011; Li et al., 2008; Triki et al., 1997; Wayama et al., 2013). H. pluvialis has shown sexual and 

asexual reproduction. However, little is known about its sexual life cycle. Triki et al., 1997, had reported 

that gametogenesis is seen when cultures are recovering from an induction period. Gametocyst may 

contain 32 or 64 gametes, designated microzoids, which are equal to asexual reproduction flagellated 

cells, despite their smaller size (10 µm) and rapid swim after release from gametocysts. 
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Figure 1.5 – Light (DIC) and fluorescent microscopy images of H. pluvialis life cycle. A) Green vegetative motile cell, 

macrozooid; B) Cell division and transformation of a motile cell into a palmella cell; C) Intermediate cell, beginning astaxanthin 

accumulation; D) Aplanospore cell, cyst with astaxanthin accumulation. In fluorescent imagens, green color correspond to 

chlorophylls and red color correspond to astaxanthin. 
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1.3.2. Biochemical composition of H. pluvialis 

H. pluvialis composition changes according to the cell stage, vegetative or green and induction or red 

stage. In green stage, protein content is higher than in red stage (Table 1.3) (Kobayashi et al., 1997a; 

Lorenz, 1999); the lipid content is divided in three types, the phospholipids, which are constant in both 

stages, neutral lipids and glycolipids that increase from green stage to red stage, and whose values will 

depend on the stress conditions and the used strain. In red stage, it is known that astaxanthin 

accumulation increases and there is an increase in the triacylglycerol (TAG) contents (Damiani et al., 

2010; Saha et al., 2013; Zhekisheva et al., 2002). When exposed to stress, cells start to produce 

carbohydrates rather than fatty acids, however, with the continuous exposure to stress, carbohydrates 

are converted to fatty acids (Recht et al., 2012). Besides, secondary carotenoids are synthesized after 

exposure to environmental stress, in red stage. Primary carotenoids, such as chlorophyll, are replaced 

by the secondary carotenoid, mainly astaxanthin (Grewe and Griehl, 2008). Degradation of chloroplast 

coincides with the triacylglycerol (TAG) accumulation, while reducing membrane glycerolipids, 

especially those glycolipids making up the photosynthetic complexes and chloroplast membrane matrix 

(Gwak et al., 2014). 

Table 1.3 – Composition of H. pluvialis biomass in green and red cultivation stages. n.d.: no data. Adapted from Shah et 

al., 2016. 

Composition content (% of DW) Green stage Red stage 

Proteins 29-45 17-25 

Lipids (% of total) 20-25 32-37 

Carbohydrates 15-17 36-40 

Carotenoids (% of total) 0.5 2-5 

     β-carotene 16.7 1,0 

     Lutein 56.3 0,5 

     Zeaxanthin 6.3 n.d. 

     Astaxanthin (including esters) n.d. 81.2 

     Canthaxanthin n.d. 5.1 

Chlorophylls 1.5-2 0 

 

1.3.3. Astaxanthin biosynthesis in H. pluvialis 

Under stress, H. pluvialis generate reactive oxygen species (ROS), such as H2O2, single oxygen (1O2), 

superoxide radicals (O2
-), and hydroxide radicals (•OH). As a survival strategy to the unbalanced ROS 

generation, H. pluvialis induce astaxanthin accumulation, preventing damage on cellular components. 

Carotenoids act as accessory light-harvesting pigments, trapping light energy, protecting the 

photosystem from photo-oxidation by quenching ROS (Lemoine and Schoefs, 2010; Kobayashi et al., 

1997b). Steinbrenner and Linden (2003), proven that general carotenoid biosynthesis is subject to 

photosynthetic redox control. The transfer of H. pluvialis cells from low-light conditions to moderate 

light intensity results in the reduction of the components of the photosynthetic electron transport 

including the plastoquinone pool. The plastoquinone pool acts as a redox sensor and its reduction 

subsequently leads to the transcriptional activation of genes involved in astaxanthin biosynthesis. Thus, 

redox regulation of genes involved in the synthesis of carotenoids is a prerequisite for the production of 

astaxanthin under stress conditions such as high light intensity, nutrient deprivation or ROS presence. 

When multiple stresses are applied simultaneously, different stress response mechanisms can be 
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activated, each one contributing to some extent to the overall cell protection and to improve 

carotenogenesis (Lemoine and Schoefs, 2010; Kobayashi et al., 1997b).  

Biosynthesis of astaxanthin is a complex process that is highly up-regulated in conditions of stress and 

which coincides with the TAG accumulation, while reducing membrane glycerolipids, especially those 

glycolipids making up the photosynthetic complexes and chloroplast membrane matrix (Gwak et al., 

2014). The biosynthesis of astaxanthin in H. pluvialis follows the general carotenoid pathway up to β-

carotene formation. Astaxanthin synthesis might follow two main putative pathways (Figure 1.6): (i) the 

first pathway, starts with the β-carotene oxidation and have echinenone, canthaxanthin and adonirubin 

as intermediates; (ii) the second pathway, begin with the hydroxylation of β-carotene and have β-

cryptoxanthin, zeaxanthin and adonixanthin as intermediates. These intermediates reveal the 

involvement of two enzymes β-carotene ketolase (BKT) and β-carotene hydroxylase (CrtR-b) in the 

conversion of β-carotene to astaxanthin. Although the specific steps of astaxanthin biosynthesis are 

carried out in the cytoplasm, the enzymes of the general carotenoid pathway appear to be localized in 

the chloroplast (Han et al., 2013; Lemoine and Schoefs, 2010; Shah et al., 2016; Vidhyavathi et al., 

2008). Reported by Vidhyavathi et al. (2008) and Han et al. (2013), the preferential pathway for 

astaxanthin formation began with the oxidation of β-carotene. Vidhyavathi et al. (2008) demonstrated 

that the reduction in the BKT expression was reflected in the significant reduction of astaxanthin content. 

However, according to Gao et al. (2014) and Lemoine and Schoefs (2010), the two pathways can occur. 

In H. pluvialis most of astaxanthin molecules are accumulate in red stage cells as cytoplasmic lipid 

bodies. The majority of astaxanthin exists as fatty acid esters, usually mono- or diesters of palmitic 

(16:0), oleic (18:1), or linoleic (18:2; 18:3), behaving as stabilizers to maintain a high antioxidant ability. 

The esterification is required for the deposition within the non-polar matrix of lipid droplets (Han et al., 

2013; Lemoine and Schoefs, 2010; Shah et al., 2016; Vidhyavathi et al., 2008).  

 

Figure 1.6 – Pathway of astaxanthin biosynthesis in H. pluvialis. Enzyme abbreviations are as follows: BKT, β-carotene 

ketolase; CrtR-b, β-carotene 3,3′-hydroxylase. Adapted from Lemoine and Schoefs, 2010, Gwak et al., 2014 and Han et al., 

2013. 

1.3.4. H. pluvialis growth and astaxanthin accumulation requirements 

Due to specificity of H. pluvialis strains, optimization of cultivation parameters is necessary to achieve 

high biomass productivity and successful astaxanthin accumulation (Domínguez-Bocanegra et al., 2004; 

Fábregas et al., 2000; Lu et al., 2010; Suyono et al., 2015). Conditions for vegetative growth of the 
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green microalgae H. pluvialis comprise a large number of parameters. The effects of light intensity, 

inoculum concentration, nutrient saturation, carbon dioxide concentrations, strain used, among others, 

must be properly combined to achieve the successful production of microalgae, maintaining the culture 

with high astaxanthin productivity (Aflabo et al., 2007; Domínguez-Bocanegra et al., 2004; Fábregas et 

al., 2001; García-Malea et al., 2006; Sarada et al., 2002a).  

Environmental factors are essential for H. pluvialis growth (green cells), such as: (i) temperature, about 

20 to 28 °C (Wan et al., 2014); (ii) pH, between 7 and 8 (Borowitzka et al., 1991; Sarada et al., 2002b) 

since the intracellular microalgae pH is around 7; (iii) light intensity, ranging from 20 to 177 µmol.m-

2.s-1 under continuous illumination or light–dark cycles (Boussiba, 2000; Domínguez-Bocanegra et al., 

2004) have revealed themselves as crucial for microalgae development. The nutrients are one of the 

main factors that regulate morphological and physiological cellular responses of the microalgae, due to 

the impact on biochemical reactions, being the most important factor for the growth rate, composition, 

and high-value added products biosynthesis. The most important macronutrients for microalgae biomass 

production are carbon, nitrogen, phosphorus and sulfur. 

These parameters are also adequate for induction stage when conjugated with stress factors (e.g. nutrient 

starvation and salinity) (Figure 1.7). Carotenogenesis may be fostered by low light intensities, 100 - 150 

µmol.m-2.s-1 (Zhang et al., 2014), or by higher intensities that accelerate astaxanthin biosynthesis. An 

excess of light radiation (> 400 μmol.m–2.s–1) can be dangerous for microalgae viability due to ROS 

causing photoinhibition. However, the irradiation may become more efficient when conjugated with 

other stress factor, e.g. nutrient starvation, salt stress (Aflabo et al., 2007), addition of ethanol (Wen et 

al., 2015), hormones (Lu et al., 2010), fulvic acid (Zhao et al., 2015), nuclear radiation (Cheng et al., 

2016) and many others factors that can be add to induce carotenogenesis in H. pluvialis (Forján et al., 

2014; Sarada et al., 2002a; Su et al., 2014; Zhang et al., 2014). 

In H. pluvialis, saline stress has been studied suggesting that it can replace light stress to induce 

carotenoid production; however, in several cases the microalgae growth decreased as NaCl 

concentration increased (Figure 1.7) (Benavente-Valdés et al., 2016). The effect of saline stress is 

largely studied by different autores (Aflabo et al., 2007; Boussiba and Vonshak, 1991; Borowitzka et 

al., 1991), although the optimal NaCl concentration to induce astaxanthin accumulation varies. 

However, is known that high NaCl concentration causes an increase in carotenoid content per cell (Tam 

el al., 2012). In conclusion, H. pluvialis can respond to various stress conditions in different ways. 

Whereas high light intensity leads to a transient response and to moderate accumulation of astaxanthin, 

the combination of various stress conditions such as high light intensity and salt stress is obligatory for 

encystment and the strong up-regulation of carotenoid genes (Steinbrenner and Linden, 2001).  
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Figure 1.7 – Schematic diagram showing impact of environmental and nutrient factors on lipid and carotenoid 

production. Extracted from Minhas et al., 2016. 

1.3.5. Large scale production of H. pluvialis  

H. pluvialis is capable of growing in photoautotrophic (Aflalo et al., 2007), heterotrophic (Zhang et al., 

2016), or mixotrophic growth (Kobayashi et al., 1992) conditions, indoors, in open raceway ponds or 

closed photobioreactors, in batch, in fed batch, or in continuous modes (Figure 1.8). As the optimal 

culture conditions for the production of biomass and accumulation of astaxanthin are not the same, two 

different strategies can be adopted in the production of H. pluvialis. One stage cultivation (Der Rio et 

al., 2007) that consists in continuous cultivation of H. pluvialis under moderate nitrogen limitation and 

specific average irradiance, resulting in simultaneous cell growth and astaxanthin accumulation; two-

step cultivation (Fábregas et al., 2001) where the first stage aims to promote green vegetative growth 

under favorable culture conditions and in a second stage the cultures are submitted to stress factors in 

order to stimulate the transition to the aplanospore stage and the accumulation of astaxanthin. Nowadays, 

H. pluvialis is produced in two-stages, the most recent advances in cultivation for astaxanthin production 

include a two-stage mixotrophic culture system (Park et al., 2014) and attached cultivation system using 

the immobilized biofilm (Zang et al., 2014). Furthermore, each stage can be optimized for biomass 

growth and astaxanthin accumulation by adjusting independently the respective ratio of effective 

irradiance to cell density (Aflalo et al., 2007). 

Li et al. (2011) estimated the production cost of astaxanthin, by his conceptually designed facility, to be 

$718/kg astaxanthin or about $18/kg biomass with 2.5 % astaxanthin. However, the cost is lower than 

the current industrial operations and is even lower than that of synthetic astaxanthin. The cost might 

even be able to be further reduced with the advances of technologies and optimization of processes. 

(Goswami et al., 2010; Lemoine and Schoefs, 2010; Li et al., 2011; Shah et al., 2016).  
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Technological advances are rapidly occurring in the microalgae-related industries. Top five leader 

commercial companies of H. pluvialis are: Cyanotech Corporation, USA; Mera Pharmaceutigals Inc., 

USA; Stazen Inc., USA; Valensa International, USA; Algatechnologies Ltd., Israel (Shah et al., 2016).  

 

1.3.6. Challenges for the improvement of H. pluvialis 

There are many challenges and problems in the development of large-scale production of H. pluvialis. 

As an example, a challenging task with H. pluvialis is its outdoor cultivation which involves curtailment 

of contamination (mainly by fungi Paraphysoderma sedebokerense (Strittmatter et al., 2015)) and 

control of environmental conditions such as light and temperature. Since it grows at neutral pH, 

contamination by bacteria, fungi and protozoa, is the main problem.  

However, improvement of astaxanthin production yield must not be confined to optimization of culture 

conditions and systems of production. Mutagenesis and selection of mutants can be used as an approach 

to increase strain performance. Mutants can be obtained by physical mutagens such as ultraviolet 

radiation (UV) or X-rays and chemical mutagens such as ethyl methanesulphonate (EMS) or N-methyl-

N-nitro-N-nitrosoguanidine (NTG) for enhancing the production of astaxanthin (Chen et al., 2003; 

Kamath et al., 2008; Tjahjono et al.,1994; Tripathi et al., 2001). UV induced random mutagenesis has 

the advantage of not being classified as a genetically modified method. However, genetic engineering 

of microalgae has been applied for more competitive pigment production (Forján et al., 2015; Sharon-

Gojman et al., 2015).  

Despite those innovative techniques, another approach for strain improvement, is based on the 

overproducers isolation by performing cell sorting coupled with flow cytometry (Doan and Obbard, 

2012; Terashima et al., 2015). This methodology allows a characterization at unicellular level by 

evaluation near real-time of the physiological and metabolic states of cells, and is useful for the 

evaluation, control and optimization of bioprocesses. Flow cytometry associated with a cell sorting 

device, had shown significant potential in isolation of microalgae (Pereira et al., 2011; Hyka et al., 

2013).  Cell sorting had been applied to improve microalgae strains for lipid increase or for acquisition 

of axenic cultures (Cabanelas et al., 2015; Sensen et al., 1993; Terashima et al., 2015; Wahby et al., 

2014; Xie et al., 2014). Although the flow cytometer is an expensive equipment, this technique presents 

many advantages, such as rapid, accurate, precise and real time acquisition of data, allowing cell 

enumeration, viability and fluorescence measurements.

Figure 1.8 – Two examples of cultivation systems used at industrial scale. Culture ponds (500 000 liters) at Cyanotech 

Corporation (HI, USA) (left image); H. pluvialis production in photobioreator at A4F (right image). 
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2 – OBJECTIVES  

 

As already explained, among the important microalgae, H. pluvialis is the richest source of natural 

astaxanthin, which has important applications in the nutraceuticals, cosmetics, food and aquaculture 

industries. There are many challenges and problems for the development of large-scale production of 

biomass and astaxanthin from H. pluvialis. 

The work performed for this thesis had as the main objective to improve H. pluvialis cultures to produce 

astaxanthin. For this purpose, seven H. pluvialis strains were screened and a characterization of 

microalgae was conducted throughout the cultivation process. This integrative characterization focused 

on the evaluation of: (i) the growth rate and biomass productivity during the green vegetative stage 

growth; (ii) astaxanthin accumulation throughout the induction stage under stress conditions (nutrient 

starvation and high light intensity) and under additional salinity stress. The parameters intended to be 

analyzed were: cell counting, dry weight and pigment analysis. The goal of the screening was to select 

strains with improved features or astaxanthin overproducers. 

The fluorescence being derived from chlorophyll (autofluorescence) is a unique biomarker for 

photosynthetic organisms and enables setting a flow cytometric trigger for the separation of microalgae 

from other particles and microorganisms. To complement the screening, was also monitored by flow 

cytometry, the evolution of cytological and physiological properties (cell size, cell complexity and 

fluorescence) being derived from pigments (autofluorescence) of the H. pluvialis strains, at the 

beginning of the cultures, when each strain was separately inoculated into the growth media, and along 

the induction stage. 

After the selection of strains with improved features, two other strategies were used for improvement of 

astaxanthin production capacity: UV induced random mutagenesis and separation of cells that differ in 

astaxanthin content, by flow cytometry equipped with a sorting device.



  3 – MATERIALS & METHODS 

 

  

 15 

 

3 – MATERIALS & METHODS 

 

3.1. MICROORGANISM 

For this thesis, seven strains of H. pluvialis from A4F – Algafuel, S.A. culture collection were analyzed. 

The code names for the strains used are HP_01 to HP_07. 

3.2. CULTIVATION CONDITIONS 

H. pluvialis cultivation for astaxanthin production was performed using a 3-steps strategy. Each strain 

was prepared in duplicate and two independent repetitions were carried out, using for each one, different 

initial inoculum. The assays comprised three stages, started with a green vegetative growth stage, 

followed by an astaxanthin accumulation induction stage and ended with a stage of an additional salinity 

stress, whose aim was to promote further the astaxanthin accumulation. For production of H. pluvialis, 

some optimizations were adopted in order to grow them in the best conditions (Table 3.1).  

In Table 3.1 are shown the cultivation conditions, during each stage. Bubble columns (700 mL) were 

used to grow all strains under the same conditions. The green vegetative growth stage lasted seven days, 

at about 90 µmol.m-2.s-1 of light intensity, and complete growth media was provided with all nutrients 

required. In the first stage of the assay, cultures were in optimal conditions for growth, sampling and 

cell counts were performed daily, while the determination of the dry weight and pigment analyses were 

carried out only at the beginning and end of this stage. 

Induction stage lasted 17 days at 150 µmol.m-2.s-1 of light intensity, and no nutrients were supplied. The 

stresses applied were light intensity, which was controlled by the distance from the bubble columns to 

the cool white fluorescent lamps, and nutrient starvation. At this stage, samples were collected three 

times a week. Analytical methods, such as cell counting, flow cytometry, dry weight and pigment 

analyses, were realized whenever the sample collection was performed. At the end of induction stage, 

flow cytometry and cell sorting was applied to the strains of H. pluvialis that were selected by previous 

screening for having improved features.  

In the additional stress, last stage, the culture salinity was adjusted to 10 g.L-1 of NaCl. Once again, 

sample collection was performed three times a week and the same analytical methods were carried out. 
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Table 3.1 – Cultivation conditions for the 3 phases of the assay. 

 
Growth Stage Induction Stage 

Induction stage plus 

salinity 

System Bubble column Bubble column Bubble column 

Volume 700 mL 700 mL 700 mL 

Initial concentration  0.2 g.L-1 0.6 g.L-1 - 

Light intensity ≈90 µmol.m-2.s-1 ≈150 µmolm-2.s-1 ≈150 µmol.m-2.s-1 

Temperature/ 

Pressure 

25 ± 1 ºC/  

environmental 

25 ± 1 ºC/  

environmental 

25 ± 1 ºC/  

environmental 

Photoperiod 24 h light 24 h light 24 h light 

Carbon source Air + 0.5 % CO2 Air + 0.5 % CO2 Air + 0.5 % CO2 

Salinity 0 g.L-1 0 g.L-1 10 g.L-1 

Growth medium autoclaved tap water autoclaved tap water autoclaved tap water + 

NaCl 

Nutrient medium Nutrient medium developed 

in A4F* 

No nutrient addition No nutrient addition 

Sample collection Daily (at 9 a.m.) 3x week (at 9 a.m.) 3x week (at 9 a.m.) 

Duration 7 Days 17 Days 6 Days 

*Based on the experience, A4F has developed a nutritive media for laboratory cultivation of several microalgae strains. This 

nutritive media is composed by the macro-nutrients – nitrogen, phosphorous and iron; micro-nutrients – e.g. magnesium, zinc, 

etc., and is supplemented with vitamins and further sterilized (Fábregas et al., 2000).  

3.3. ANALYTICAL METHODS 

3.3.1. Microscopy observation 

The cells were observed using a BX53 microscope (Olympus, Tokyo, Japan) whenever the sample 

collection was realized. This is a quick method that allows monitoring the evolution of the cultures, 

though the physiological cell state analysis, cell division, and the detection of contaminations, clumps 

and debris.  

To follow the life cycle of H. pluvialis, the Microscope Leica DM5500B was used. The filters used to 

observe the samples are present in Table 3.2. 

Table 3.2 – Emission and excitation of the filter, respectively. BP – band pass; HP – high quality. 

 

 

 

3.3.2. Cell Counting 

The microalgae growth was determined by cell counting (Microscope Olympus BX53) with a 0.1 mm3 

Neubauer chamber (Marienfeld – Laboratory Glassware) and each sample was counted in triplicate. 

3.3.3. Cell Counting & viability analysis 

Muse® cell analyzer (Merck-Millipore, USA) is an equipment that enables precise and accurate counts 

and viability measurements at a single cell level in real time. For cell counting, 500 µL sample was read 

 Emission Excitation 

Astaxanthin Detection BP 610/75 HQ 545/12 

Chlorophyll Detection BP 700/38 BP 630/30 
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in triplicate. Using a multiparametric detection of individual cell via microcapillary flow technology, 

the system enables highly sensitive and rapid detection of cellular samples using minimal cell numbers. 

The flow cell of the instrument is engineered for the acquisition of cells from 2-60 µm in diameter and 

to accurately detect the fluorescence emitted by cells when excited by a green laser (532 nm).  

Muse® uses fluorescent reagents and detection to measure three parameters, cell size (forward scatter) 

and 2 colors (detected in the red and/or yellow channels). Propidium iodide (PI) (AGROS organics) is 

a fluorescent dye, which gets inside the cells that have cell membrane compromised, staining the 

nonviable cells, binding to nucleic acid inside it. When the cultures are submitted to a stress, cells can 

be disrupted, losing the ability to function normally.  Because of this different behavior of the damage 

cells, was used PI at a final concentration of 10 % (v/v) to quantify the nonviable cells. The assay utilizes 

a proprietary mix of one DNA intercalating fluorescent dyes and chlorophyll fluorescence. This 

combination allows for the discrimination of nucleated cells from those without a nucleus or debris, and 

live cells from dead or dying resulting in both accurate cell concentration and viability results. 

3.3.4. Dry weight (DW) 

For this method, the moisture analyzer (MS 70 – AND) was used to heat the sample at 180ºC with 

halogen lamp and measure the DW in g/L. The samples of the cultures were filtered, using 1.2 µm 

diameter pore (Microfibre Filter Paper), in pre-weighed filters and then dried in the moisture analyzer. 

The DW is calculated using the following equation 3.1, where mI and mF correspond to initial mass, 

before filtration, and final mass after filtration (g), respectively and Vol to volume (L). 

𝐷𝑊 (𝑔. 𝐿−1) =
𝑚𝐹 − 𝑚𝐼

𝑉𝑜𝑙
 

 

3.3.5. Pigments analysis   

Chlorophylls and carotenoids contents were determined by total wavelength spectrophotometric scan 

(Genesys 10S UV-Vis (± 0.005 AU) – Thermo Scientific, US) of the pigment solution obtained from 

biomass samples by extraction with bead beating and acetone. Each sample was read in duplicate in 

quartz cuvettes, with 1 cm of path, against an acetone blank. 

A mathematical algorithm to determine and quantify the pigments, based on Beer-Lambert law was 

developed, by A4F, as a fast and inexpensive way of predicting chlorophylls and carotenoids 

concentration from microalgae cultures. The Beer-Lambert law is used to convert every absorption value 

in the spectrum into a concentration of pure pigment (Equation 3.2). 

A(λ)=c_1 ε_1 (λ)+c_2 ε_2 (λ)+⋯+c_n ε_n (λ) 

 

The mathematical algorithm was applied to the full spectra obtained and the concentration of pigments 

determined (Costa et al., 2008). As background information, it is necessary to know the pigments present 

in the extract under analysis, or at least the more relevant ones, that are going to set the main tendencies 

of the spectrum. It is also necessary to have the UV/vis spectrum of each pure pigment extract and the 

molar absorbance as well, in order to combine all the spectra in one to reach. The results can be expressed 

in mg.g-1 DW or in mg.L-1. 

Equation 3.1 – Determination of dry weight. 

Equation 3.2 – Beer-Lambert law. 
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3.3.6. Cultures growth  

The specific growth rate, µ (day-1) (Equation 3.3), was based on cell counting (section 3.3.2.). Biomass 

productivity (g.L-1.day-1) were determined using Equation 3.4, based on DW (section 3.3.4) and 

astaxanthin productivity (mg.g DW.day-1 or mg.L-1.day-1) were determined using Equation 3.5, based 

on pigment analysis (section 3.3.5). 

µ (𝑑𝑎𝑦−1) =
𝐿𝑛(𝐶2) − 𝐿𝑛(𝐶1)

𝑡2 − 𝑡1

 

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑔. 𝐿−1. 𝑑𝑎𝑦−1) =
𝐷𝑊2 − 𝐷𝑊1

𝑡2 − 𝑡1

 

 

𝐴𝑠𝑡𝑎𝑥𝑎𝑛𝑡ℎ𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑚𝑔. 𝑔 𝐷𝑊. 𝑑𝑎𝑦−1 𝑜𝑟 𝑚𝑔. 𝐿−1. 𝑑𝑎𝑦−1) =
𝐴𝐶2 − 𝐴𝐶1

𝑡2 − 𝑡1

 

 

Where C1 and C2 correspond to initial and final cell concentration (cells.mL-1), respectively, t1 and t2 

correspond to initial and final culture time points (days) per identified growth period, respectively. DW1 

and DW2 correspond to initial and final dry weight (g.L-1.day-1). AC1 and AC2 correspond to the initial 

and final astaxanthin content (mg.g-1 DW or in mg.L-1). 

3.3.7. Nitrate determination 

First, the culture samples were pelleting by centrifugation at 3500 rpm for 10 min in centrifuge Hermle 

Z 400 K. The supernatant obtained was diluted using distilled water and HCl (1 M) was added at a final 

concentration of 3 % (v/v) to prevent interferences from other absorbing compounds (such as hydroxide 

or carbonate anions). Each sample was read in duplicate in quartz cuvettes, with 1 cm of path, against 

distilled water.  

The concentration of nitrate in the cultures medium was determined by ultraviolet spectrophotometry, 

measuring the sample absorbance at 220 and 275 nm (Genesys 10S UV-Vis (± 0,005 AU) – Thermo 

Scientific, US), and applying the Equation 3.6, where Abs NO3- correspond to total absorbance of 

nitrates; Abs (220 nm), absorbance of nitrates at λ=220 nm and Abs (275 nm), absorbance of nitrates at 

λ=275 nm. Measurement of the UV absorption at 220 nm allows a rapid determination of nitrate, 

however, dissolved organic matter can also absorb at this wavelength. Therefore, using a second 

absorption value at 275 nm, a correction was made; at this wavelength, nitrates do not absorb, but the 

dissolved organics compounds absorb. The calibration of nitrates concentration was previous realized 

using standard solutions. 

𝐴𝑏𝑠 𝑁𝑂3
−(𝑚𝑀) = 𝐴𝑏𝑠 (220 𝑛𝑚) − 2 𝑥 𝐴𝑏𝑠 (275 𝑛𝑚) 

 

3.3.8. Statistical analysis 

Statistical analysis of some data was analyzed with IBM® SPSS® Statistics version 23 by performing 

one-way analysis of variance (ANOVA) and, when differences observed were significant, the means 

were compared by multiple-range Bonferroni test. P-values equal or inferior to 0.05 were considered 

statistically significant. 

Equation 3.6 – Correction of determination of nitrate ion concentration. 

Equation 3.3 – Determination of growth rate. 

Equation 3.4 – Determination of volumetric biomass productivity. 

Equation 3.5 – Determination of astaxanthin productivity. 
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3.4. FLOW CYTOMETRY AND CELL SORTING 

 

3.4.1. Basic Principles of Flow Cytometry 

Flow cytometry (FC) is a powerful technique for multiparametric analysis of physiological state of 

individual cells, already well established in environmental studies of microalgae. Improvements and 

technical advances in recent years, made this technology be recognized as a first choice in analysis in 

biotechnology (Hyka et al., 2012). FC enables single cells with different features to be counted, analyzed 

and sorted on the basis of scattered and fluorescent light signals. A special characteristic of microalgae 

is the presence of photosynthetic pigments that exhibit strong autofluorescence. A flow cytometer is 

composed by three main systems properly integrated, fluidics, optics and electronics (Table 3.3). 

Table 3.3 – Basic components of Flow Cytometry. 

Component Function 

Fluidics system 
Responsible for the hydrodynamic focusing brings the 

particles of interest to the interrogation point. 

Optics systems 

Composed of light sources, lenses, optical filters and 

light detectors that all together make possible the 

detection of signals. 

Electronics systems 

Responsible for the transformation of the information 

detected by light detectors into an electric signal and 

later into a digital format. 

 

Cells are conducted within a hydrodynamically focused fluid stream, passing through an excitation 

source (usually a laser beam) and the information/data of each single cell light scattering and/or 

fluorescence emission (the latter typically when fluorescent dyes are applied) is captured and recorded. 

This data is then converted into a digital format that ultimately is correlated to structural and/or 

functional cell parameters. 

3.4.2. The Instrument 

Flow cytometry analysis was performed using a CyFlow Space – Partec flow cytometer equipped with 

two excitation lasers, one of 488 nm (blue laser) and the other of 635 nm (red laser); light scattering 

occurs when a particle or a cell deflects incident laser light. The extent to which this occurs depends on 

the physical properties of a cell, namely its size and internal complexity. Factors that affect light 

scattering are the cell membrane, the nucleus and any granular material inside the cell. Cell shape and 

surface topography also contribute to the total light scatter. The forward scatter light (FSC - light scatter 

at low angles) provides information on cell size, although there is no direct correlation between size and 

FSC. Light scattered in an orthogonal direction can also be collected by a different detector (a side 

scatter or SSC detector), which provides information about granularity and cell morphology. 

The flow cytometer is still equipped with four optical filters and detectors: 536/40 nm (FL1 green 

fluorescence), 575 nm (FL2 orange fluorescence), 610/30 nm (FL3 red fluorescence) and 675 nm (FL4 

far red fluorescence) (Figure 3.1). Acquired data by FC is usually represented into monoparametric 

histograms (frequency distributions), biparametric histograms and dot plots. While one parameter 

histograms represent the number of cells or particles (y-axis) versus the scattering or fluorescence 
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intensity (x-axis), biparametric histograms are suitable to establish correlations between two parameters 

(Díaz et al., 2010). 

 

 

For analysis of H. pluvialis subpopulations, chlorophyll rich and astaxanthin rich cells, flow cytometry 

signals gathered in FL4 and FL2 detectors correspond to red fluorescence emitted by chlorophylls and 

yellow fluorescence emitted by astaxanthin, respectively, after being excited at 488 nm. Also, to analize 

the viability of H. pluvialis, was applied the slow-response potential-sensitive probe [DiBAC4(3)], with 

an incubation at room temperature in darkness for 30 min before submitted to FC. DiBAC4(3) can enter 

depolarized cells where it binds to intracellular proteins or membrane and exhibits enhanced 

fluorescence and a red spectral shift. Increased depolarization results in additional influx of the anionic 

dye and an increase in fluorescence. Conversely, hyperpolarization is indicated by a decrease in 

fluorescence. This bis-oxonal has an excitation maxima of 490 nm, emission maxima of 516 nm and 

detectable with FC as green fluorescence (536/40 nm). 

At acquirements, gains were set to a specific and adequate value kept for all analysis. Logarithmic 

amplification was chosen and, as microalgae possess fluorescing endogenous pigments (chlorophylls 

and carotenoids), which are detectable with FC as red and orange autofluorescence, the trigger was set 

on red fluorescence (FL4) to exclude any cell debris or bacteria. The flow rate was kept at lowest setting 

(between 1000 and 2000 events per second), to ensure accuracy and precision. A fixed number of events 

(25 000) was set for each analysis so samples could be compared.  

CyFlow Space – Partec cytometer allows the concentrations determination of any cell subpopulation of 

interest using True Volumetric Absolute Counting (TVAC). This method is based on the analysis of a 

fixed volume as defined by the distance between two platinum electrodes reaching into the sample tube 

with a given diameter.  

Data was explored and analyzed by Operating Software FloMax® (version 2.7). The histograms and 

pseudocolor plots were extracted from FlowJo Software (version 10.0.7). 

3.4.3. Cell Sorting 

Partec CyFlow Space is able to physically separate (sort) cell subsets based on their optical 

characteristics, permitting further studies to be conducted. The sorting flow cell is a closed sorting 

system which has a y-shaped capillary channel, divided into the waste and sort channels. The operation 

of this device is based on a piezo crystal, located in the waste channel, which generates high speed 

pressure waves while cells are detected in the software sort regions. This pressure wave deflects those 

cells out of the laminar sample flow into the sort channel outlet. Sample collected enters the sorted 

Figure 3.1 – Flow cytometry CyFlow Space – Partec. 
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cuvette in a laminar stream, incorporated in the sheath. The piezo action does not disturb the laminar 

flow, due to the settings well establish before, so the pressure wave only will act on the pretended cells. 

3.4.4. Defined settings to perform cell sorting 

For performing cell sorting, three parameters had to be defined, trigger delay, pulse width and voltage. 

After different optimization experiments, the most appropriate parameters were defined (Table 3.4). 

Table 3.4 – Defined parameters to perform cell sorting. 

Trigger Delay Pulse Width Volts 

0 10 0.65 

 

3.5. MUTAGENESIS BY ULTRAVIOLET LIGHT  

After the characterization of the seven strains, random mutagenesis using UV-C (254 nm) has been 

applied to improve H. pluvialis strains for astaxanthin accumulation (Tripathi et al., 2001; Vigeolas et 

al., 2012). Mutants were produced by exposing the vegetative green cells, in logarithmic phase (growth 

conditions described in Table 3.1), to UV radiation at different time intervals.  

3.5.1. Dose-response curve determination 

Culture from H. pluvialis was collected into a 50 mL quartz flask. The quartz flask was placed on top 

of the transilluminator UV light (254 nm, Transilluminator Benchtop 3UVTM) during periods of 5 s, 

from 30 s until complete the 110 s of exposure (Figure 3.10), and agitating several times manually the 

samples. Between the expositions period, samples (2 mL) were taken into a sterile 24 well plate. This 

procedure was repeated three times. After complete the exposures the 24 well plates were kept at dark 

conditions overnight at 4ºC, to prevent photo reactivation. To determinate the dose-response curves, 

after overnight incubation, the samples collected were submitted to Muse® cell analyzer, using PI to 

stain the nonviable cells. The method is already described above (section 3.3.3.). For comparison and 

for each strain, samples of an unmutated cell culture were taken from a flask culture under logarithmic 

growth. 

3.5.2. Mutants generation  

H. pluvialis culture, previously collected to a 100 mL quartz flask, was exposure to 70 s of UV-C, 254 

nm, on top of Transilluminator Benchtop 3UVTM. The culture after exposure was transferred to a sterile 

100 mL flask. This procedure was repeated three times. After complete the exposure the three flasks 

were kept overnight in the dark at 4ºC. After this period, was performed a cell counting on Muse® for 

assessing cell viability, using PI staining and it began then on scale-up regimen. 
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4 – RESULTS & DISCUSSION 

 

4.1. THREE-STAGE CULTURES FOR ASTAXANTHIN PRODUCTION  

The seven A4F H. pluvialis strains were cultured twice, and their characterization was carried out in 

order to select the best strains for astaxanthin production. Results presented here are from one assay 

since the same trend was observed in both assays. 

The first cultivation step (green vegetative growth) started with all strains with an identical inoculum 

biomass of 0.2 g.L-1 (Figure 4.1A), although differences have been observed in the initial cell density 

(Figure 4.2 (green background)). As it was expected, the growth of microalgae cultures was 

characterized by three distinct phases: (i) the first day after inoculation, the strains were in the latent 

phase with a continuous low growth rate, which correspond to a period of cells adaptation to the new 

operating conditions; (ii) during the 2nd to 4th days they were in the logarithmic phase with high cell 

activity; (iii) since the 4th day after inoculation the strains reached the stationary phase where cell density 

remained constant (Figure 4.2 (green background)). The highest value of cell density (1.79x106 cell.mL-

1) was obtained for HP_03 strain, reached in the last day of exponential growth phase, and similar cell 

density was observed in HP_05 (1.73.x106 cell.mL-1), followed by HP_07 (1.67x106 cell.mL-1), HP_02 

(1.57x106 cell.mL-1) and HP_04 (1.09x106 cell.mL-1). HP_01 and HP_06 showed the lowest values, 

reaching only 2.67x105 and 2.36x105 cell.mL-1, respectively. 

Overall, all strains had quite comparable growth behaviors. However, several factors may contribute to 

the observed differences in maximum cell density achieved in the stationary phase; some of these 

differences may be due to the natural physiological variability of the strains, namely the requirement of 

specific nutrients and cell size. Cultures were maintained during seven days in a batch regime, 

supplemented with A4F nutrient medium. The medium used in this work is similar to optimal 

Haematococcus media (OHM) (Fábregas et al., 2000). However, Fábregas et al. (2000) obtained a 

maximum cell density of 5.72×105 cell.mL-1 in a semi-continuous regime with a daily renewal of 10 % 

of the volume of the culture, during eight days. Despite differences observed between strains, A4F 

medium have proven to be a promising alternative of OHM, since in a shorter period (seven days), cell 

density exceeded the described value in the literature, 1.79x106 cell.mL-1 in HP_03. Fábregas et al., 

1998, obtained 6.25x105 cell.mL-1 in a batch culture after fourteen days, with a previous optimized 

OHM. In other reports, different values, such as 1x106 cell.mL−1 (Tocquin et al., 2011), 1.33x105 

cell.mL-1 and 1.08x105 cells.mL-1 (Sipaúba-Tavares et al., 2013) and 8.00×105 cell.mL-1 (Kaewpintong 

et al., 2007) were obtained in different nutrient media and cultivation conditions. The light intensity and 

its regime, the culture medium, cultivation systems and volumes of the cultures, influence the maximum 

of cell density. During batch cultivations under constant light intensity, the cells may undergo photo-

inhibition at early growth stage and light limitation at higher cell concentration leading to a linear growth 

phase. Thus, it is important to maintain the light conditions within an appropriate range during the entire 

cultivation period (Choi et al., 2003).   

The induction stage for astaxanthin accumulation was initiated with a dilution of cultures to adjust the 

biomass concentration of the different strains to 0.6 g.L-1. On the first day of induction, the nitrate 

concentration measured was 0 mM for all strains considered. However, as shown in Figure 4.1B, some 

cultures were reacting to the lack of nutrients before the induction and it was verified that they were 

already at this stage, due to the reduced quantity of nutrients provided in the last two days of growth 
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stage. Once again, differences in the initial cell density were observed (Figure 4.2 (red background)) due 

to their natural physiological variability. During exposure of the strains to the stress conditions, it was 

observed a general response pattern, manifested by the maintenance of cell density up to day 21 of the 

assay, followed by a decrease in the number of the cells in the last 3 days of the induction phase. It 

should be noteworthy, that the HP_07 seems to be the more resistant strain to stresses, as this strain was 

the only one to show an increase in cell concentration during the induction phase of astaxanthin 

accumulation (Figure 4.2 (red background)). 

Figure 4.1 – Macroscopic evolution of the cultures during the assay. A) cultures after inoculation (to 0.2 g.L-1), day 0 of 

vegetative stage and B) cultures after renewal (to 0.6 g.L-1), day 0 of induction stage;  

In the last additional stress phase, after further dilution and increased salinity of cultures, cell density 

remained stable in all cultures studied (Figure 4.2 (orange background)). 

 

 

4.1.1. Characterization of Vegetative Growth Stage 

The first stage, green vegetative growth phase, was performed to obtain a large quantity of green 

vegetative cells under the favorable culture conditions. The results are presented in the Figure 4.2 (green 

background). The analysis of results allows to highlight the different kinetics of HP_01 and HP_06 

strains: although the initial inoculum was identical to that of most strains, HP_01 reached the lower cell 

density (2.67x105 cell.mL-1) and showed the lowest growth rate (0.12 day-1).  

Figure 4.2 – Cultures evolution during the assay. Evolution of cellular concentration throughout the 30 days of assay; culture 

conditions corresponding to the three stages: green background indicates the vegetative stage and optimal conditions; red 

background indicates the induction stage, with nutrient starvation and high light intensity; orange background indicates the 

additional salinity stress. Error bars show the based on standard deviation among technical triplicates on Neubauer Chamber 

counting. 

 

 

 

 

 

 

 

HP01   HP02   HP03   HP04   HP05   HP06   HP07    HP01   HP02   HP03   HP04   HP05   HP06   HP07 

B) A) 

 

 

1x106 

1x107 

 

 1x105 

1x104 



  4 – RESULTS & DISCUSSION 

 

 24 

  

The results acquired showed that, in terms of growth rate, strain HP_03 (0.58 ± 0.00 day-1), obtained the 

greater value, followed by HP_04 (0.55 ± 0.03 day-1) and HP_02 (0.52 ± 0.01 day-1). HP_01 (0.12 ± 

0.01 day-1) presented the lower growth rate (Figure 4.3). A constant growth rate can be maintained 

yielding high biomass productivity if previous parameters are kept at an optimum level, preventing 

carotenogenesis induction (Aflabo et al., 2007, Park et al., 2014). In the literature, different values of 

growth rates have been reported, possibly due to the heterogeneity of the cultivation conditions. Growth 

rates under autotrophic conditions range from 0.19 to 0.96 day-1 (Aflabo et al., 2007; García-Malea et 

al., 2006; Kaewpintong et al., 2007; Kobayashi et al., 1992); under heterotrophic and mixotrophic 

conditions growth rates of 0.22 day-1 and about 0.58 day-1 were respectively reported (Kobayashi et al., 

1992). Taking in account the conditions set in the assays, the results obtained, presented in Figure 4.3, 

are consistent with the values reported in literature, except for HP_01 that presented the lowest result 

(0.12 ± 0.01 day-1). This strain, in Figure 4.2 green background, did not present an increase in cell 

number, verified for as the rest of the strains tested. 

Overall, the strains had quite comparable biomass productivity (g DW.L-1.day-1) during the seven days 

of the growth vegetative stage (Figure 4.3), except for HP_06 and HP_07 strains, which had the lowest 

productivity (0.15 ± 0.02 and 0.16 ± 0.02 g DW.L-1.day-1 respectively). The highest value, 0.27 ± 0.02 

g DW.L-1.day-1, reached by HP_01 and HP_02 strains was lower than the values obtained by Aflabo et 

al. (2007) and Garcia-Malea et al. (2006) (up to 0.5 g DW.L-1.day-1). However, it is noted that the results 

were consistent with what has been observed by other authors under autotrophic conditions, 0.07 g 

DW.L-1.day-1 (Fabregas et al., 2001), heterotrophic conditions 0.17 g DW.L-1.day-1 (Hata et al., 2001) 

and mixotrophic conditions, 0.20 g DW.L-1.day-1 (Del Campo et al., 2004).  

 
Figure 4.3 – Growth rate and biomass productivity in the vegetative stage. Errors bars were based on standard deviation 

from the technical triplicates on Neubauer chamber and from uncertainty of DW. 

At the end of the vegetative growth phase, higher biomass productivity was expected, since growth rate 

was higher than the one reported in the literature. Different culture conditions (light intensity and 

nutrients availability), experimental designs and strains utilized are likely to explain the differences 

observed in the literature survey. However, productivity of vegetative cells of H. pluvialis are regulated 

by the average of irradiance, nutrients content of the medium, and to its sensitivity to changes on culture 

conditions (García-Malea et al., 2005). The effect of light intensity is dependent on the nutritional state 

of the culture, vegetative growth may be maintained at high light intensity if nutrients are available, 

avoiding carotenogenesis induction (Fábregas et al., 2000). The later the stationary phase was reached, 

the higher the biomass yield was at the end of cultivation. Also, differences between growth rate and 

biomass productivity were reflected in cell weight (Table 4.1).  

When a culture has a greater proportion of palmelloid cells than flagellated cells, is indicative of adverse 

environmental conditions for rapid growth (González et al., 2009). Comparing HP_01, HP_02 and 
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HP_03 strains, it appears that, although HP_01 strain has shown a much lower growth rate in terms of 

cell number (approximately five times smaller), however, the biomass productivity was similar in the 

three strains. In the case of HP01 strain, the energy from substrate utilization seems to have been used 

to meet the maintenance requirements, reflected in an increase of biomass (Table 4.1). 

During growth, there is normally an increase in cell mass, which is reflected in an increase in the number 

of cells. However, a direct general relationship between cell number and dry weight measurements 

cannot be established, due to the great variation of cell weight between different cell types, which can 

vary from 500 pg.cell-1 weight for flagellated cells, to 1000 pg.cell-1 for palmelloid cells and even 3000 

pg.cell-1 for cysts (López et al., 2006). According to the results, HP_07 was the strain that showed the 

lowest dry weight (Table 4.1), a growth rate relatively high and low biomass productivity; however, it 

should be emphasized that this was the only strain retained flagellated cells throughout the vegetative 

growth phase. The HP_01 and HP_06 strains showed the highest increase in dry weight throughout the 

assay, having been detected a predominance of palmelloid cells in the cultures. In the remaining strains, 

the flagellated cells predominated in cultures and palmelloids cells were observed only at the end of the 

exponential phase. 

Table 4.1 – Average of weight per cell. Measured at the beginning and at the end of the vegetative growth stage. 

 HP_01 HP_02 HP_03 HP_04 HP_05 HP_06 HP_07 

Initial pg.cell-1 1066.48 960.72 837.28 961.33 949.94 4680.60 399.59 

Final pg.cell-1 5287.50 1336.16 984.20 1607.34 1096.81 5383.07 845.57 

 

During the life cycle of the algae, green vegetative cells contain high levels of chlorophyll and protein. 

Predictably, under favorable conditions, H. pluvialis strains, presented a high content of chlorophylls 

(>25 mg.g-1 DW) and low content of carotenoids (<9 mg.g-1 DW). The maximum chlorophyll content 

was hit by HP_07 (34.90 ± 2.62 mg.g-1 DW), which also had the highest content of total carotenoids 

(8.44 ± 0.97 mg.g-1 DW) (Table 4.2). Overall, all strains showed an average chlorophyll content of 2.55 

% (w/w) DW and an average carotenoids content of 0.84 % (w/w) DW. This values were in agreement 

with previously reported assays where green cells showed an average chlorophyll content of 2.4 ± 0.11 

% (w/w) DW and an average primary carotenoid content of 0.48 ± 0.03 % (w/w) DW (Grewe and Grield, 

2008). 

Table 4.2 – Total of chlorophylls and carotenoids in the vegetative stage in the first day of growth stage. Total 

chlorophylls comprise chlorophyll a and b; Total carotenoids comprise astaxanthin, cantaxanthin, neoxanthin, violaxanthin, 

lutein, zeaxanthin and β-carotene.  Error was based on standard deviation of technical triplicates from pigment analysis. 

 

 

 

 

 

 

 

 

 

 

 

Vegetative stage 
Total Chlorophylls 

(mg.g-1 DW) 

Total Carotenoids 

(mg.g-1 DW) 

HP_01 30.79 ± 4.24 6.22 ± 0.99 

HP_02 31.15 ± 0.60 7.06 ± 0.13 

HP_03 28.81 ± 0.84 6.48 ± 0.24 

HP_04 25.51 ± 0.01 5.79 ± 0.04 

HP_05 28.55 ± 0.46 6.75 ± 0.20 

HP_06 30.29 ± 1.79 7.47 ± 0.16 

HP_07 34.90 ± 2.62 8.44 ± 0.97 
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To summarize, the characterization of the all strains in terms of growth rate and biomass productivity 

allowed selecting, during the growth vegetative stage, HP_02, HP_03, HP_04 and HP_05 as the most 

promising strains. These results should be further supplemented with data obtained in the other stages 

of the assay. 

4.1.2. Characterization of Induction Stage 

It is reported in many studies that the accumulation of astaxanthin in H. pluvialis is triggered when the 

cells are exposed to stress conditions such as nutrient starvation, high light intensity, high temperature 

and salt stress (Aflabo et al., 2007; Choi et al., 2011; Fábregas et al., 1998; Park et al., 2014). 

Astaxanthin accumulation has been induced in H. pluvialis during the transformation of the macrozooid 

cells into non-motile palmella and further into aplanospore (cyst stage), as a response to different stress 

inducing conditions such as increasing the average cell exposure to light by diluting the culture, 

increasing the incident light intensity and reducing the light path to the culture, and by nutrient starvation 

(Figure 4.4). 

 

 
Figure 4.4 – Astaxanthin and chlorophyll contents evolution. Evolution of astaxanthin content (A) and chlorophyll content 

(B) throughout 24 days of assay. Green background indicates the vegetative stage and optimum conditions; red background 

indicates the induction stage, with nutrient starvations and high light intensity. Error bars show the based on standard deviation 

among technical triplicates on pigment analysis. 

Figure 4.4A depicts the evolution of astaxanthin content throughout the induction stage for all strains. 

It can be seen that, between days 9 and 24, a generalized continuous increase of astaxanthin content was 

observed. It can also be noticed that this global tendency was accompanied by a degradation of 

A) 

B) 
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chlorophyll (Figure 4.4B). It is noteworthy that HP_02 and HP_03 strains highlighted by the higher 

increase in astaxanthin. 

Under stress conditions, the highest value of astaxanthin accumulation, 4.4 % (w/w) DW, was reached 

by the HP_03 strain (Figure 4.5). The strain HP_02 comes next with 3.8 % of astaxanthin, (w/w) DW. 

The lowest values were observed for strains HP_05 (2.2 % (w/w) DW) and HP_07 (2.6 % (w/w) DW). 

Astaxanthin content in HP_03 and HP_02 strains presented no statistically significant differences, 

however, HP_03 was different from the other strains in the study. 

 

Figure 4.5 – Maximum astaxanthin accumulation. Astaxanthin content achieved after 17 days under stressful condition. 

Same letters indicate no statistically significant differences and different letters indicate statistically significant differences for 

P<0.05. Error bars show the based on standard deviation among technical triplicate on pigment analyze. 

Concerning the astaxanthin productivity after 17 days under stress conditions, HP_03 and HP_02 strains 

showed the higher astaxanthin productivity, based on the DW, 2.87 ± 0.10 and 2.66 ± 0.31 mg.g-1 

DW.day-1, corresponding to 4.80 ± 0.23 and 4.93 ± 0.19 mg.L-1.day-1, respectively (Table 4.3). 

The astaxanthin productivity results for all seven strains were lower than those reported in the literature; 

Zhang et al. (2016) obtained a yield of 10.5 mg astaxanthin.L-1.day-1, Aflabo et al. (2007) reached 11.5 

mg.L-1.day-1 and the maximum attained in the work of this thesis was 4.93 mg.L-1.day-1, for HP_03 strain. 

However, similar astaxanthin productivities were obtained in a one-step culture process, 3.3 and 5.6 

mg.L-1.day-1 (Choi et al., 2011; Del Río et al., 2005). These differences may be the reflex of the light 

intensity applied during the induction stage, which was much lower than light intensity applied in the 

other studies, 350 and 500 µmol.m-2.s-1 (Aflabo et al., 2007 and Choi et al., 2011), which would surely 

improve the pigment accumulation and shorten the induction period (García-Malea et al., 2005). 

Gathering the results obtained: HP_03 and HP_02 were de strains that showed a better performance; 

and HP_06 and HP_01 were the less productive strains (Table 4.3). Despite this, another way of 

analyzing the astaxanthin productivity is by comparing the astaxanthin weight per cell. As an interesting 

fact, HP_06 strain presented the higher cell weight (14438.71 pg.cell-1) (Table 4.4), accumulating 389.85 

pg.cell-1 of astaxanthin, corresponding to 2.7 % of its DW. HP_01 strain was the second strain with 

higher cell weight, accumulating 301.18 pg.cell-1, corresponding to 2.9 % of its DW. HP_06 strain had 

accumulated more 11 % of astaxanthin per cell than the one described in literature (350 pg.cell-1 of 

astaxanthin) (Zhekisheva et al., 2002). According to the literature, aplanospores can reach 3000 pg.cell-

1 of cell weight, and all strains in this study presented themselves to be heavier that the reported, with 

the exception of HP_07 (López et al., 2006). Comparing the two heaviest strains with the ones with 

higher astaxanthin productivity, HP_03 strain, had a higher astaxanthin content, 181.37 pg.cell-1 of 

astaxanthin, corresponding to 4.4 % of its DW, and HP_02 strain had accumulated 185.19 pg.cell-1 of 
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astaxanthin, corresponding to 3.8 % of his DW. To sum up, HP_01 and HP_06 might be interesting 

strains if appropriated conditions are used to enhance their characteristics, in order to benefit from their 

sizes to improve astaxanthin accumulation and therefore astaxanthin productivity (Fábregas et al., 1998) 

Table 4.3 – Astaxanthin productivity in mg.g-1 DW.day-1 and pg.cell-1.day-1 after 17 days under stress conditions. Data 

collected from one assay, representative of the replicates performed. Error based on duplicates of pigments analyzes. 

 

 

 

 

 

 

Table 4.4 – Average of weight per cell. In the beginning and the end of the induction stage. 

 HP_01 HP_02 HP_03 HP_04 HP_05 HP_06 HP_07 

Initial pg.cell-1 5287.50 1336.16 984.20 1607.34 1096.81 5383.07 845.57 

Final pg.cell-1 10385.68 4873.50 4121.99 6411.61 4509.54 14438.71 1285.23 

 

To conclude, despite the higher cell weight obtained for HP_01 and HP_06 strains, the HP_02 and 

HP_03 strains proved to be the more efficient and profitable to cultivate under the conditions of the two 

phases tested in order to produce astaxanthin, vegetative growth and induction stages. These two strains 

were selected and submitted to improvement to achieve the goal of this work. 

4.1.3. Additional stress phase  

To further enhance the accumulation of astaxanthin, was held a new dilution of the cultures, which were 

simultaneously subjected to an additional saltine stress (10 ‰ NaCl). The results obtained, after stressing 

the cells, showed the same behavior as observed before, cessation of growth (Figure 4.2, orange 

background) and a small increase of astaxanthin accumulation in the majority of the strains after one 

day in salt medium, with the exception of HP_04 which presented a negative reaction, decreasing their 

astaxanthin content (Figure 4.6). The enhancement of astaxanthin content occurred in the first day, after 

cultures have been submitted to a high dilution and salt stress keeping stable for a very short period, of 

two to three days. Then biomass started to decrease, leading on one hand to a fall in astaxanthin 

concentration per DW, and on the other, to an increase in pg of astaxanthin per cell. This result can be 

explained by the amount of energy consumed by the cells, during osmoregulation (Alvensleben et al., 

2016; Gao et al., 2015; Minhas et al., 2016; Orosa et al., 2001; Sarada et al., 2002). Also, possibly to 

be in the second period of astaxanthin accumulation, the first period corresponds to a rapid astaxanthin 

accumulation, mainly in free and monoester form; the second period, is characterized by a slower 

astaxanthin accumulation, mainly in a diester form, corresponding to the larger cell size and higher 

astaxanthin content per cell (Imamoglu et al., 2009; Orosa et al., 2001).   

 
Astaxanthin Productivity 

mg.g-1 DW.day-1 mg DW.L-1.day-1 

HP_01 1.35 ± 0.01 2.16 ± 0.01 

HP_02 2.31 ± 0.08 4.80 ± 0.23 

HP_03 2.58 ± 0.10 4.93 ± 0.19 

HP_04 2.00 ± 0.04 2.15 ± 0.10 

HP_05 1.16 ± 0.00 1.93 ± 0.04 

HP_06 1.52 ± 0.03 3.15 ± 0.02 

HP_07 1.26 ± 0.03 1.15 ± 0.02 
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Since additional stress phase did not increase significantly the astaxanthin concentration and led to 

biomass loss, this additional phase was excluded from the following assays. 

4.1.4. Global astaxanthin productivity  

Overall astaxanthin productivity was calculated based on the total time required for the astaxanthin 

accumulation, from the start of the growth phase to the end of the induction stage. It is an important 

parameter since it gives the real productivity and time for astaxanthin production from H. pluvialis, 

especially in this case where, at the end of growth stage, some cultures have brownish color (Figure 

4.1B) due to nutrients depletion. The best results were obtained for HP_03 and HP_02, with 1.88 ± 0.12 

mg.g-1 DW.day-1 and 1.63 ± 0.29 mg.g-1 DW.day-1, respectively (Table 4.5). Once again, these two 

strains were the most promising to use in a production regime, due to the fact that, in 24 days of two-

stage production (first 7 days for cell growth and 17 days for astaxanthin production and accumulation), 

they had reach the maximum astaxanthin content. This period of time did not include the astaxanthin 

accumulation from the salinity stress assay, since it did not present relevant results.  

Table 4.5 –Astaxanthin global productivity in mg.g-1 DW.day-1, presented during 24 days. Data collected from one assay, 

representative of the replicates performed. Error based on technical duplicates of pigments analyzes. 

 

 

 

 

 

 

The characterization was completed and HP_02 and HP_03 strains were the ones that showed superior 

performance in terms of all the analyzed parameters (growth rate, astaxanthin accumulation and 

productivity). These were the strains selected for cell sorting and UV mutagenesis. 

 

 Astaxanthin Global Productivity 

mg.g-1 DW.day-1 

HP_01 1.06 ± 0.20 

HP_02 1.63 ± 0.29 

HP_03 1.88 ± 0.12 

HP_04 1.47 ± 0.03 

HP_05 0.91 ± 0.08 

HP_06 1.01 ± 0.16 

HP_07 1,08 ± 0.05 

Figure 4.6 – Astaxanthin content through the salinity assay. Dark grey bars present day 0, represents the last value before 

salt addition. Light grey bars present day 1, represent the first day in the presence of NaCl stress, also represents the day of 

maximum astaxanthin accumulation. *** indicate statistically significant differences for P<0.001. Error bars show the based 

on standard deviation among technical triplicates of pigment analyzes.  
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4.2. MONITORING INDUCTION STAGE THROUGH FLOW CYTOMETRY 

Flow cytometry analysis is a method that enables relative changes in cell physiological state of 

microalgae to be detected during a cultivation process. Morphology, including cell size and granularity 

is influenced by cultivation conditions and correlate with two scattering signals measured by flow 

cytometry, namely forward scatter (FSC) and side scatter (SSC) signals. 

Throughout the induction phase, all the cultures were monitored by flow cytometry. Data first 

acquisition was made with Flow Max software in a FSC vs SSC dot-plot, in which the population was 

properly identified and gated in order to eliminate artifacts or false events. The Figure 4.7A presents an 

example of a population gating in a dot-plot graphic using Flow Max prior to further analysis. From this 

gated population two graphics were obtained: FSC vs cell count histogram (Figure 4.7B) and SSC vs 

cell count histogram (Figure 4.7C).  

Photosynthetic pigments present in microalgae are chlorophylls and carotenoids, which content depends 

on cultivation conditions. Pigment fluorescence, the major component of endogenous fluorescence 

(autofluorescence), has been proven to be linearly related to cellular pigment content (Hyka et al., 2013). 

Therefore, autofluorescence intensity was used for the identification and quantification of microalgae 

pigments.  

For the analysis of pigments autofluorescence, flow cytometric signals were gathered in FL4 and FL2 

detectors (FL4 and FL2 vs cell count histograms) corresponding to the red fluorescence emitted by 

chlorophylls and the yellow fluorescence emitted by astaxanthin, respectively, after being excited at 488 

nm (Figure 4.7D and E). The histograms show the frequency distributions of fluorescence intensities; 

where higher fluorescence intensities stand for higher intracellular pigment content. Average values of 

fluorescence intensities were used for comparison with chemical pigment analysis. 

Trigger is a parameter chosen by the user based on a discrimination value (threshold), often FSC, below 

which events are not considered by the electronic system. The selection of the chlorophyll 

autofluorescence as a trigger, instead of FSC, allowed excluding cell debris and possible bacterial 

contaminants, and properly to define the population of interest and set the gates for fluorescence 

parameters. This trigger does not exclude cells with low chlorophyll content, because these cells always 

maintain a basal level, detectable by cytometry.  
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Figure 4.7 – Example of flow cytometric acquisition of HP_03 strain data, on day 0 of induction stage. A) and B) 

Pseudocolor dot-plot FSC (a.u.) vs SSC (a.u.), before and after selecting the population of interest, respectively; C) and D) 

Scattered signal histograms FSC (a.u.) and SSC (a.u.) vs cell count, respectively; E) Astaxanthin autofluorescence (FL2 detector 

– 575 nm) histogram; E) Chlorophyll autofluorescence (FL4 detector – 675 nm) histogram. a.u.: arbitrary units. 

Figure 4.8 presents a multiparametric analysis comparing the results obtained in the characterization of 

the 7 strains of microalgae at the beginning (day 0) of the induction phase. The results have revealed the 

existence of two sub-populations in the culture of HP_06 strain, characterized by different dimensions 

(FSC), complexities (SSC), chlorophyll (FL4) contents and astaxanthin (FL2) presence. The 

subpopulation of smaller, less complex and with less chlorophyll content may correspond to injured 

cells and cells lacking part of its contents. 

 

Interestingly, it was found that in general, with the exception of the afore mentioned HP_06 strain, at 

the beginning of the induction stage, the strains showed little variability in terms of sizes, complexities, 

astaxanthin content and chlorophyll presence (Figure 4.8). It should also be noted that, with the 

exception of HP_01 strain, which was presented as a single population with a high chlorophyll content, 

in all other strains were identified two subpopulations of cells with different levels of chlorophyll (Figure 

4.8D); for HP_02, HP_04 and HP_07 strains, the two subpopulations were equivalent (about 50 %), 

whereas for the other strains was observed a predominant subpopulation with lower chlorophyll content.   

A) B) C) 

D) E) F) 
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Figure 4.8 – Flow cytometry comparison of the seven strains on day 0 of induction stage. A) and B) scattered signals FSC 

(a.u.) and SSC (a.u.) vs cell count histogram; C) and D) autofluorescence of astaxanthin (FL2 (a.u.)) and chlorophyll (FL4 

(a.u.)) vs cell count histogram. a.u.: arbitrary units. 

Microalgae cultures of the 7 strains were monitored by flow cytometry throughout the induction phase, 

to follow the evolution of the physiological state of the cells and monitoring the accumulation of 

astaxanthin (Figures 4.9 to 4.12). 

Figure 4.9 depicts the evolution of HP_01 culture over the induction stage. As can be seen, in this culture 

was not detected any change in the complexity or granularity of the cells (Figure 4.9B), and it was 

observed a temporary increase in cell size by the 4th day of induction (Figure 4.9A) and at the end of the 

stage. Regarding the pigments content, it was visible a uniform increase of astaxanthin from the 2nd day 

and a decrease in chlorophyll content from the 7th day of induction (Figure 4.9C and D respectively). 

HP_02 and HP_04 strains presented identical behavior (data not shown).  

Despite the marked similarity in the evolution of the physiological features of the HP_03 strain (Figure 

4.10), in particular relatively to the granularity of the cells (Figure 4.10B) and astaxanthin content 

(Figure 4.10D), this strain exhibited some differences in the following aspects: the target population 

showed greater heterogeneity regarding the cells size, between day 7 and day 14 of the induction period, 

corresponding to an increase of astaxanthin and a progressive reduction in the chlorophyll content 

(Figure 4.10A, C and D). It is noted that, on the 4th day of this phase, were observed three distinct 

subpopulations of cells with different levels of chlorophyll.  

A) B) C) D) 
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Figure 4.9 – Multiparametric analysis of the evolution of HP_01 cells physiological state, throughout the induction stage. 

The dot line marks the day 0 of induction stage. A) and B) scattered signals FSC (a.u.) and SSC (a.u.) vs cell count histogram, 

respectively; C) and D) autofluorescence of astaxanthin (FL2 (a.u.)) and chlorophyll (FL4 (a.u.)) vs cell count histogram, 
respectively. a.u.: arbitrary units. 

 
Figure 4.10 – Multiparametric analysis of the evolution of HP_03 cells physiological state, throughout the induction 

stage. The dot line marks the day 0 of induction stage. A) and B) scattered signals FSC (a.u.) and SSC (a.u.) vs cell count 

histogram, respectively; C) and D) autofluorescence of astaxanthin (FL2 (a.u.)) and chlorophyll (FL4 (a.u.)) vs cell count 

histogram, respectively. a.u.: arbitrary units. 

A) B) C) D) 

A) B) C) D) 
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The evolution of HP_05 strain culture was characterized by a great uniformity in the size and cell 

complexity (Figure 4.11A and B), in contrast to the marked increase in astaxanthin content observed 

from day 2 of induction, together with the foreseeable decreased content of chlorophyll (Figure 4.11C 

and D). 

HP_07 was the only strain that showed a distinct behavior (Figure 4.12), characterized by a gradual 

decrease in cell size and complexity (Figure 4.12A and B), as well as a sharp decrease in chlorophyll 

content from the 2nd day of induction stage (Figure 4.12D). Interestingly, the observed increase of the 

astaxanthin content was barely noticeable (Figure 4.12C), which is consistent with previous results 

obtained for astaxanthin accumulation rate and for the pigment content quantified by the method of total 

pigments extracted. 

 

Figure 4.11 – Multiparametric analysis of the evolution of HP_05 cells physiological state, throughout the induction 

stage. The dot line marks the day 0 of induction stage. A) and B) scattered signals FSC (a.u.) and SSC (a.u.) vs cell count 

histogram, respectively; C) and D) autofluorescence of astaxanthin (FL2 (a.u.)) and chlorophyll (FL4 (a.u.)) vs cell count 

histogram, respectively. a.u.: arbitrary units. 

A) B) C) D) 
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Figure 4.12 – Multiparametric analysis of the evolution of HP_07 cells physiological state, throughout the induction 

stage. The dot line marks the day 0 of induction stage. A) and B) scattered signals FSC (a.u.) and SSC (a.u.) vs cell count 

histogram, respectively; C) and D) autofluorescence of astaxanthin (FL2 (a.u.)) and chlorophyll (FL4 (a.u.)) vs cell count 

histogram, respectively. a.u.: arbitrary units. 

The results of astaxanthin quantification by flow cytometry (average values of fluorescence intensities) 

were consistent with those determined by total pigments extraction method. A linear correlation was 

found (r = 0.96) between the full set of astaxanthin content values obtained with the two methods (Figure 

4.13). 

The reported results showed that, flow cytometry technique allowed H. pluvialis cultures evolution to 

be monitored during the encystment process, based on morphological and physiological parameters; 

further demonstrated that autofluorescence of astaxanthin is a good indicator of intracellular 

accumulation of this pigment, and therefore can be monitored in real time by flow cytometry. 

 
Figure 4.13 – Correlation between astaxanthin content quantified by total pigments extraction, and autofluorescence 

intensity (arbitrary units) determined by flow cytometry. The relation between the two methods was characterized by a 

linear function (dotted line). 

A) B) C) D) 
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4.3. SELECTION AND SORTING CELLS OF INCREASED ASTAXANTHIN CONTENT 

Monitoring physiological changes of microalgae during cultivation process by flow cytometry allowed 

the determination of optimal conditions to reach the target maximum astaxanthin content. Potentially, 

overproducer subpopulations isolated from a heterogeneous culture can be cultivated again and further 

analyzed. As a major tool for cell sorting, flow cytometry, especially fluorescence-activated cell sorters 

(FACS), has been widely exploited for the physical separation of cells of interest that differ in cell size, 

morphology, or fluorescence (Basu et al., 2010; Pappas and Wang, 2007). 

The screening of the 7 strains of H. pluvialis, carried out by monitoring and characterization of cultures 

throughout vegetative growth and induction stages, allowed selecting HP_02 and HP_03 as the most 

promising strains in terms of performance and increased astaxanthin production. Analyzing the results, 

HP_02 and HP_03, presented the higher values of growth rate, biomass productivity, astaxanthin content 

and productivity, being selected to perform cell sorting for enrichment of overproducer cells.  

The Partec sorter has a flow chamber with a piezo element and an electronic device for piezoelectric 

activation. The diamond piezo deflects the sorted cells into a second branch of the flow cell. In the 

sample flow each cell is analyzed and all the signals reach the computer, where the decision is made 

which cell should be sorted, according to the software gating. Time of acquisition was set to enhance 

the yield and purity of the subpopulation to be collected. The acquisition was executed at less than 300 

events per second, allowing a high precision on selection.  

At the end of the induction stage, when the cells reached the maximum astaxanthin autofluorescence, a 

sample was taken, to be analyzed and sorted. The first step was to identify the parameter settings that 

allowed the best visualization of the interest population and to check the sorting efficiency. A broad 

two-dimensional gating logic has been defined by astaxanthin content (FL2) and size (FSC), in a pseudo-

color dot plot (Figure 4.14). At the end of the sort, a portion of the sorted cells has been re-analyzed to 

assess the purity and recovery of the sort and how efficient the sort was in terms of cell yield. The purity 

of the sort was evaluated by analyzing the cells in the sorted tube and by assessing the percentage of 

cells that fulfill the sort criteria. The sort recovery was defined, as the percentage of events that the sort 

counters had indicated which actually ended up in the sorted tube. 

In Figure 4.14, the gate represents the thresholds used by sorting unit to physically separate the target 

cells. For HP_02 and HP_03 have been selected to collect, only 1.03 % and 1.33 % of the total events 

respectively. It is noteworthy that, cell sorting had limited discrimination power to the cultures submitted 

due to the population homogeneity. The outlier cells with increased astaxanthin contents, corresponding 

to less than 1.5 % of the whole population. The selected events only represented 19 % of the total cells 

sorted (Figure 4.15).  
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When two districted subpopulations are intending to separate, cell sorting is usually performed with 

success (Pereira et al., 2011; Terashima et al., 2015). However, in this work, as it can be seen in 

Figure 4.13, the cells selected by the gate depicted showed high values of astaxanthin autofluorescence, 

possibly because they were also the biggest cells within the population, which can be evidenced by its 

light scattering (FSC values) in comparison with the whole population. In the relatively homogeneous 

populations, much of the variation in the astaxanthin content of individual cells was due to extrinsic 

noise factors such as cell size. Cell sorting is a technique that presents a high output, however, it still 

needs further work when performed in the isolation of cells in monocultures to increase its efficiency 

(Sinigalliano et al., 2009).  

Partec flow cytometer is equipped with two excitation sources, one of 488 nm (blue laser) and the other 

of 635 nm (red laser), which excites chlorophyll fluorescence (far red autofluorescence) in microalgae. 

The two lasers are in a non-co-linearity system (one plan by excitation source), which allows effective 

fluorescence splitting, but create a spatial gap, electronically converted to a temporal gap (time laser 

delay) to synchronize different light signals from one cell. 

As already mentioned, the selection of the chlorophyll autofluorescence as a trigger, instead of FSC, 

allowed excluding cell debris and possible bacterial contaminants, and properly to define the population 

of interest and set the gates for fluorescence parameters. However, this selection, associated to the 

population homogeneities, made it impossible to carry out an efficient sorting due to the non-

synchronization of the chlorophyll autofluorescence signal in the far red detected in FL4. 

 

 

A) B) 

Figure 4.14 – Defined gate to perform cell sorting. FSC (a.u.) against FL2 (a.u.) was used to define the events to be sorted. 

A) sample of HP_02 and B) sample of HP_03. a.u.: arbitrary units. 

 

Figure 4.15 – Sample from HP_03 sorted cells. The same gate Sorted represents the cells of interest (19%). 
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4.4. RE-CULTIVATION THE CULTURES SUBMITTED TO CELL SORT 

The cell sorting was carried out using sterile sheath fluid and sterile vials to collect sorted cells so as to 

allow subsequent culture. After sorting, the isolated cells have been transferred to an appropriate sterile 

medium in order to allow their recovery and then were placed in a scale-up regime to reach the necessary 

volume to begin a new assay. This new assay was done to compare the sorted cells with the original 

population, using the same experimental set-up. 

The collected cells showed no differences when compared to the original population (Table 4.6) and did 

not show improvement in the analyzed parameters (growth rate, biomass productivity, maximum 

astaxanthin content and productivity). However, sorted cells grew as well as control cells, despite the 

mechanical stress of the sorting and the reduced number of cells.  

Table 4.6 – Original culture vs culture from cell sort. Principal parameters analyzed were growth rate (day-1), biomass 

productivity (mg.L-1.day-1), maximum astaxanthin content (% (w/w) DW) obtained during the whole assay and astaxanthin 

productivity (mg.g-1 DW.day-1) along 17 days of induction phase. 

 

4.5. MUTAGENESIS 

Induced cell mutagenesis and mutant selection have been suggested as a method for microalgae strain 

improvement (Chen et al. (2003) and Kamath et al. (2008)). Algal mutants could be obtained by UV 

radiation for enhancing astaxanthin production. UV-C light (254 nm) promotes DNA damage and 

random mutations and has an advantage of not being classified as a genetically modified method. 

4.5.1. Response of H. pluvialis to UV mutagenesis 

A preliminary random mutagenesis assay was performed using HP_03 H. pluvialis strain since it was 

the most promising of the seven strains. 

The lethality effect of UV exposure time was studied by subjecting HP_03 vegetative green cells to UV-

C radiation for different time periods (see section 3.5). Cell viability was evaluated by flow cytometry 

with an oxonol fluorescent stain, which allowed analyzing the effect of the functional integrity of the 

membrane. Bis-(1,3-Dibutylbarbituric Acid) Trimethine Oxonol (DiBAC4(3)) is a slow-response 

potential-sensitive probe that can enter depolarized cells, where it binds to intracellular proteins or 

membrane and exhibits enhanced green fluorescence (FL1). Increased membrane depolarization 

determining an additional entry of the stain with the concomitant increase in fluorescence. Conversely, 

metabolically active viable cells, having a membrane potential (negative inside) exclude the oxonol 

probe, which is indicated by a decrease in fluorescence (Krujatz el al., 2015). 

HP_03 Growth rate (day-1) 
Biomass Productivity 

(g.L-1.day-1) 

Maximum Astaxanthin 

content (% (w/w) DW) 

Astaxanthin 

Productivity (mg.g-1 

DW.day-1) 

Original 

Cultures 
0.58 ± 0.22 0.22 ± 0.02 4.4 ± 0.34 2.87 ± 0.10 

Cultures 

sorted 
0.45 ± 0.17 0.17 ± 0.02 4.4 ± 0.10 2.57 ± 0.07 
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The results obtained from the flow cytometric analysis, summarized in the Figure 4.16, allowed 

following the evolution of cellular viability with the increasing exposure to UV radiation. As it can be 

seen in Figure 4.16A, in the control sample, not subject to UV exposure, most cells of the population of 

interest (≈ 90 %) were metabolically active and energized. However, it was possible to differentiate two 

subpopulations with different vitality: a subpopulation with a higher membrane potential (lower 

fluorescence intensity – 55 %), and a less energized subpopulation (greater fluorescence intensity – 38 

%). 

The exposure to UV radiation determined a progressive depolarization of the membrane, which was 

translated by a shift of the green fluorescence to values of greater intensity, clearly visible in Figure 

4.16B and C. In the 40 s of exposure (Figure 4.16B), it was possible to differenciate two subpopulations, 

one of which, with lower green fluorescente (lower fluorescence intensity detected in FL1) 

corresponding to metabolotically active and energized cells (≈ 60 % of the global population). It should 

be noted that at the end of 100 s of UV exposure, a generalized dissipation of the membrane potential 

was observed. 

Viability was also determined by Muse® cell analyzer, using propidium iodide (PI) as a staining dye 

for dead cells. PI is membrane impermeant and generally excluded from viable cells and binds to nucleic 

acids by intercalating between the bases with little or no sequence specificity; once the dye is bound to 

nucleic acids, its red fluorescence (FL3) is enhanced. 

The results of flow cytometry viability analysis (% of energized membranes) were consistent with those 

obtained by Muse® cell analyzer (% cells with undamaged membranes). A linear correlation was found 

(r = 0.99 between the full set of viability values obtained with the two methods (Figure 4.17), and the 

last one have been selected to perform the dose-response curve of H. pluvialis. 

 
Figure 4.16 – Evaluation of H. pluvialis viability during the exposition to 40 and 100 s of UV radiation. Pseudocolor plots 

of HP_03 DiBAC4(3) stained cells, FSC (a.u.) vs. FL1 (a.u.) and the mono-parametric histograms of green fluorescence: A) 

control; B) 40 and C) 100 s of UV radiation exposure; a.u.: arbitrary units. 

A) B) C) 
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Figure 4.17 – Correlation between the viability determined by Muse® cell analyzer with PI and from Flow Cytometry 

with DiBAC4(3). The relation between the two methods was characterized by a linear function (dotted line, r = 0.99). 

4.5.2. Dose-response curve determination 

As already mentioned above, the lethality effect of UV exposure time was studied by subjecting HP_03 

vegetative green cells to UV-C radiation for different time periods. The survival rate was dependent on 

the UV exposure time, and the prolonged exposure led to lower survival rate (Figure 4.18). It was found 

that 40 s of UV exposure time resulted in approximately 60 % survival rate while 90 % survival rates 

were achieved upon 70 s UV treatment. Exposure time of 70 s was chosen for further UV mutagenesis 

assays. 

 

4.5.3. Two-stage cultures for the production of astaxanthin  

Three cultures of HP_03 strain were submitted to 70 s of UV-C radiation and were immediately kept at 

dark conditions over night to prevent photo reactivation, and then placed in scale-up regime to achieve 

enough volume to transfer to bubble columns. The experimental strategy used was the two-stage 

cultivation, where the third terminal phase of additional saline stress was not performed in this situation. 

In the first phase, during seven days, the cultures presented the same evolution as the control (Figure 

4.19, green background). Maximum cell density obtained was 1.77x106 cell.ml-1 from HP_03, although, 

it started with a higher cellular concentration than the other cultures. Mut 1, Mut 2 and Mut 3, reach the 

maximum cellular densities of 1.29x106, 1.08x106 and 1.57x106 cell.ml-1, respectively.  

Figure 4.18 – Dose-response curve of H. pluvialis to UV light exposure. The black vertical line mark the lethal dose to reach 

10 % of viability. Error bars show the uncertainty based on standard deviation between triplicate counts on cytometry Muse® 

cell analyzer. 
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In the beginning of induction stage, the cultures were diluted to 0.6 g.L-1. The mutant’s evolution was 

similar to the control, under stress the cellular density remained unchanged (Figure 4.19, red 

background). The results obtained, shown that after the UV exposure, cultures were superior to the 

control in all parameters, growth rate, astaxanthin productivity and accumulation, and biomass 

productivity kept the same. Mutants were also monitored, during the induction stage, by flow cytometry, 

however, the differences in the heterogeneity of UV exposure population had not increased.  

   

4.5.3.1. Characterization of Vegetative Growth Stage 

Mut 1 and Mut 3 presented the higher values of growth rate, 0.45 and 0.41 day-1, respectively. In terms 

of biomass productivity, all the cultures obtained the same values (Table 4.7). According to the literature 

and as it was discussed before, the values obtained in this assay were lower in terms of growth rate and 

the identical for the biomass productivity (Aflabo et al., 2007; Garcia-Malea et al., 2006; Kaewpintong 

et al., 2007; Kobayashi et al., 1992). 

Table 4.7 – Growth rate and biomass productivity in the vegetative growth stage. Based on one tests to each sample 

submitted to the same cultivation conditions. 

 

 

 

 

At the beginning of the assay, the total chlorophyll, content was greater than 52 mg.g-1 DW and 

carotenoids were less than 15 mg.g-1 DW. The maximum chlorophyll content was observed in Mut 1, 

61.24 ± 1.40 mg.g-1 (6.1 % (w/w) DW), which also showed the maximum total carotenoid content, 

14.64 ± 0.28 mg.g-1 (1.5 % (w/w) DW) (Table 4.8). These values were higher than the previously 

reported by other authors, who reported for green cells an average chlorophyll content of 2.4 ± 0.11 % 

(w/w) DW and an average primary carotenoid content of 0.48 ± 0.03 % (w/w) DW (Grewe and Grield, 

2008). 

 

 HP_03 Mut 1 Mut 2 Mut 3 

Growth rate (day-1) 0.34 ± 0.02 0.45 ± 0.03 0.39 ± 0.02 0.41 ± 0.02 

Biomass productivity  

(g.L-1.day-1) 
0.19 ± 0.03 0.21 ± 0.03 0.17 ± 0.03 0.22 ± 0.03 

Figure 4.19 – Cultures evolution during the assay. Evolution of cellular concentration throughout the 30 days of assay; 

culture conditions corresponding to the three stages: green background indicates the vegetative stage and optimal conditions; 

red background indicates the induction stage, with nutrient starvation and high light intensity. Error bars show the uncertainty 

based on standard deviation among triplicates on Neubauer Chamber counting. 
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Table 4.8 – Total of chlorophylls and carotenoids in the vegetative growth stage in the first day. Total chlorophylls 

comprise chlorophyll a and b; Total carotenoids comprise astaxanthin, cantaxanthin, neoxanthin, violaxanthin, lutein, 

zeaxanthin and β-carotene.  Errors were based on standard deviation of triplicates from pigment analysis. 

 

 

 

 

 

 

4.5.3.2. Characterization of Induction Stage 

In the last day of induction stage, maximum astaxanthin accumulation observed was 4.1 % (w/w) DW, 

in Mut 2. When comparing results from mutants to the control, the mutants accumulate more 

astaxanthin: Mut 1 (3.7 % (w/w) DW), Mut 2 (4.1 % (w/w) DW), Mut 3 (3.9 % (w/w) DW) and the 

control (3.1 % (w/w) DW). Also, the mutants presented higher astaxanthin productivy: Mut 1 (2.12 ± 

0.09 mg.g-1 DW.day-1), Mut 2 (2.46 ± 0.07 mg.g-1 DW.day-1) and Mut 3 (2.26 ± 0.09 mg.g-1 DW.day-1), 

the control presented a productivity of 1.85 ± 0.09 mg.g-1 DW.day-1 (Table 4.9). Mut 2 presented the 

higher values in the induction phase, its astaxanthin global productivity was 1.71 ± 0.01 mg.g-1 DW.day-

1, during 24 days of H. pluvialis production. However, as discussed in the previous assays, the 

productivities obtained were lower than the ones reported in the literature (Aflabo et al., 2007). 

Table 4.9 – Maximum astaxanthin content, astaxanthin productivity and global productivity. Astaxanthin productivity 

was measured during the 17 days of induction and the astaxanthin global productivity was measured during the 24 days of 

assay. Error based on uncertainty of standard deviation between triplicates on pigments analysis. 

 
 

4.5.3.2.1. Monitoring induction stage through flow cytometry 

The new populations generated presented a similar behavior when compared to the control (Figure 4.20 

and 4.21). This cultures had a decreased in pH (around of 6.15) during a couple of days and the cells 

might have undergone morphological changes presenting differences from the previous assay realized. 

In the present assay, as observed in FSC channel presented an increase of variation and diminution of 

cell size. The complexity of the population remains constant as the previous assay and the FL2 increase 

over the induction stage. FL4 channel did not present variation during the assay (Figure 4.21). 

 

Vegetative stage 
Total Chlorophylls 

(mg/g) 

Total Carotenoids 

(mg/g) 

HP_03 52.79 ± 4.02 13.40 ± 0.84 

Mut 1 61.24 ± 1.40 14.64 ± 0.28 

Mut 2 60.37 ± 9.81 13.69 ± 1.31 

Mut 3 54.48 ± 7.52  13.93 ± 1.25 

Induction 

Stage 

Astaxanthin Content  Astaxanthin Productivity Global Productivity 

mg.g-1 DW % (w/w) DW  mg.g-1 DW .day-1  mg.L-1.day-1 mg.g-1 DW .day-1 

HP_03 30,78 ± 1,12 3.1 1.85 ± 0.09 5.56 ± 0.02 1.28 ± 0.01 

Mut 1 37.22 ± 0.66 3.7 2.12 ± 0.09 3.68 ± 0.03 1.55 ± 0.02 

Mut 2 41.04 ± 1.04 4.1 2.46 ± 0.07 3.06 ± 0.13 1.71 ± 0.01 

Mut 3 38.67 ± 0,72 3.9 2.26 ± 0.09 2.56 ± 0.20 1.61 ± 0.02 
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Figure 4.20 – Multiparametric analysis of the evolution of HP_03 cells physiological state, throughout the induction 

stage. The dot line marks the day 0 of induction stage. A) and B) scattered signals FSC (a.u.) and SSC (a.u.) vs cell count 

histogram, respectively; C) and D) autofluorescence of astaxanthin (FL2 (a.u.)) and chlorophyll (FL4 (a.u.)) vs cell count 
histogram, respectively. a.u.: arbitrary units. 

 
Figure 4.21 – Multiparametric analysis of the evolution of Mut 2 cells physiological state, throughout the induction 

stage. The dot line marks the day 0 of induction stage. A) and B) scattered signals FSC (a.u.) and SSC (a.u.) vs cell count 

histogram, respectively; C) and D) autofluorescence of astaxanthin (FL2 (a.u.)) and chlorophyll (FL4 (a.u.)) vs cell count 

histogram, respectively. a.u.: arbitrary units. 

A) B) C) D) 

A) B) C) D) 
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According to the literature, for a successful mutagenesis strategy there needs to be a combination of an 

efficient method of generating random mutations and an efficient strategy that permits screening of the 

desired phenotypes. For this assay, the cultures were only exposed one time to UV irradiation and thus 

further rounds of mutagenesis may be needed. For screening, as UV exposed cells were grown in bulk 

fastest growers were preferentially selected for. The degree of mutagenesis can be controlled by 

changing the parameters such as UV exposure times or using different lethal dosages (Nakanishi and 

Deuchi, 2013; Kamath et al., 2008; Tripathi et al., 2001). Thus, strain improvement could be achieved 

as a strategy for cost-effective production of astaxanthin.
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5 – CONCLUSION & FUTURE PERSPECTIVES 

 

With the fulfilment of this thesis work, useful information could be provided to the company A4F, which 

will be able to design new plans of study based on the information gathered in the present work.   

The work performed allowed to select, among seven H. pluvialis strains, from the culture collection of 

A4F company, two strains with a superior performance (HP_02 and HP_03), that presented the 

characteristics more profitable to produce at a large scale. Depending on the cultivation conditions, those 

strains had the fastest growth rate of about 0.50 – 0.60 day-1, were able to accumulate astaxanthin 

corresponding to 3.5 % - 4.5 % of their DW and also showed a global astaxanthin productivity (24 day 

in production), of about 1.60 – 1.90 mg.g-1 DW.day-1. These results are consistent with those of most of 

currently known strains. Regarding the saline stress assay, it only had significant results for HP_01 

strain, which had an increase of 36 % in its astaxanthin content.  

A gap remains between the FCM methods established for microalgae and their exploitation for the 

monitoring, development and optimization of biotechnological production processes. The 

multiparametric flow cytometric approach, was useful for the study of H. pluvialis cultures evolution, 

providing physiological information at an individual cell level. The specific advantage of using flow 

cytometry to analyze microalgae is the autofluorescence of naturally occurring intracellular pigments, 

which can be employed to distinguish between microalgae and other microorganisms. The chlorophyll 

autofluorescence was selected as the trigger for data collection, allowing to analyze only the H. pluvialis 

populations and reducing the background present in the samples such as debris and bacteria. Flow 

cytometry measurements revealed to be a methodology that can contribute efficiently to microalgae 

biotechnology development, representing a valuable survey analytical tool for a better exploitation of 

microalgae as feedstock for astaxanthin production. A strong correlation was observed between 

astaxanthin autofluorescence intensity measured by flow cytometry and astaxanthin content determined 

by pigment analysis in spectrophotometer.  

 

Flow cytometry provides information on the intrinsic heterogeneity of a population. The distribution of 

different cell features in the population of a single species is influenced by culture conditions, the phase 

of cell cycle and mutations. The information gained on heterogeneity could therefore be exploited in 

combination with cell sorting to isolate cells overproducing a target compound. In the context of this 

thesis, seven strains were characterized throughout the growth vegetative stage and the induction stage 

at different physiological levels and the populations presented homogeneous, therefore it was not 

possible to make precise cell sorting, due to the inability to track and monitor the selected cells; 

consequently, it was a significant limitation. 

 

In order to obtained heterogeneous strains, a preliminary assay using UV-C radiation exposure was 

performed to promote random mutagenesis. Results showed that biomass productivity at growth 

vegetative stage were similar to the values previous obtained and astaxanthin content increased at the 

end of the induction stage. In HP_03 strain, the only under this treatment, increased 32 % of its 

astaxanthin content, showing the importance that this previous treatment might have in the productivity 

of tested strains. Therefore, this technique could affect positively just a reduce number of cells in the 

population. Taking this into account, the screening of the mutants generated is crucial for the detection 

and selection of the cells that will accomplish astaxanthin overproduction.  
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Considering all the results obtained in this work, the production of astaxanthin is both important and 

challenging in H. pluvialis and so, it is essential that further studies continue to be developed in order to 

shed a new light into this matter. As future perspectives, in order to reduce the costs and maximize the 

high-value product production, strain improvement must be combined with the optimization of 

cultivation systems, making the production of H. pluvialis a process economically competitive with the 

synthetic production. Tests should be performed to elucidate if salinity stress can increase the 

astaxanthin productivity, such as the use of NaCl in the beginning of the induction phase. Also, UV 

mutagenesis presented itself to be an effective mutant agent to improve the strains of H. pluvialis, 

without the MGM legislation obstacle for human consumption. To sum up, new experimental designs 

may be defined to further explore this capacity and improve H. pluvialis strains, applying flow cytometry 

to detected cells of interest and using an advanced cell sorting function for improve astaxanthin 

productivity.  

 

 



  6 – REFERENCES 

 

  

 47 

 

6 – REFERENCES  

Aflalo C, Meshulam Y, Zarka A, Boussiba S. On the 

relative efficiency of two- vs. one-stage production of 

astaxanthin by the green alga Haematococcus pluvialis. 

Biotechnol Bioeng 2007;98:300–5. 

Abdulqader G, Barsanti L, Tredici MR. Harvest of 

Arthrospira platensis from Lake Kossorom (Chad) and its 

household usage among the Kanembu. J Appl Phycol 

2000;12:493-498. 

Aberoumand A. A review article on edible pigments 

properties and sources as natural biocolorants in foodstuff 

and food industry. J of Dairy Food Sci 2011;6(1):71-78. 

Aflalo C, Meshulam Y, Zarka A, Boussiba S. On the 

relative efficiency of two- vs. one-stage production of 

astaxanthin by the green alga Haematococcus pluvialis. 

Biotechnol Bioeng 2007;98:300–5. 

Alvensleben N, Magnusson M, Heimann K. Salinity 

tolerant of four fresh microalgal species and the effects of 

salinity and nutrient limitation on biochemical profiles. J 

Appl Phycol 2016;28:861-887. 

Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. 

Astaxanthin: Sources, Extration, Stability, Biological 

activities and Its Commercial Applications – A Review. 

Mar Drugs 2014;12:128-152. 

Basu S, Campbell HM, Dittel BN, Ray A. Purification of 

Specific Cell Population by Fluorescence Activated Cell 

Sorting (FACS). J Vis Exp 2010;41:e1546. 

Bharathiraja B, Chakravarthy M, Praveen Kumar R, 

Yogendran D, Yavaraj D, Jayamuthunagai J, Praveen 

Kumar R, Palani S. Aquatic biomass (algae) as a future 

feed stock for bio-refineries: A review on cultivation, 

processing and products. Renewable and Sustainable 

Energy Rev 2015;47:634-653. 

BCC Research 

http://www.bccresearch.com/pressroom/fod/global-

carotenoids-market-reach-$1.4-billion-2018; Accessed: 

18-Jul_2016. 

Ben-Amotz A, Avron M. The potential use of Dunaliella 

for the production of glycerol, B-carotene and high-protein 

feed. In: San-Pietro A (ed.), Biosaline research: A look to 

the future. Plenum Pub Corp 1982;207–214. 

Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, 

Méndez-Zavala A, Montañez J. Strategies to enhance the 

production of photosynthetic pigments and lipids in 

chlorophycae species. Biotechnol Rep 2016;10:117-125. 

Bhosale P. Environmental and cultural stimulants in the 

production of carotenoids from microorganisms. Appl 

Microbiol Biotechnol 2004;63:351-361.  

Borowitzka MA. High-value products from microalgae—

Their development and commercialization. J Appl Phycol 

2013;25:743–756. 

Borowitzka MA, Huisman JM, Osborn A. Culture of the 

astaxanthin-producing green alga Haematococcus 

pluvialis. J Appl Phycol 1991;3:295-304. 

Boussiba S. Carotenogenesis in the green alga 

Haematococcus pluvialis: cellular physiology and stress 

response. Physiol. Plantarum 2000;108:111–117. 

Boussiba S, Bing W, Yaun JP, Zarka A, Chen F. Changes 

in pigments profile in the green alga Hameatococcus 

pluvialis exposed to environmental stresses. Biotecchnol 

lett 1999;21:601-604. 

Boussiba S, Vonshak A. Astaxanthin accumulation in the 

green alga Haematococcus pluvialis. Plant Cell Physiol 

1991;32:1077-1082. 

Cabanelas ITD, Zwart M, Kleinegris DMM, Barbosa MJ, 

Wijffels RH. Rapid method to screen and sort lipid 

accumulation microalgae. Bioresour Technol 

2015;184:47-52. 

Cellamare M, Rolland A, Jacquet S. Flow cytometry 

sorting of freshwater phytoplankton. J Appl Phycol 

2010;22:87-100. 

Chekanov K, Lobakova E, Selyakh I, Semenova L, 

Sidorov R, Solovchenko, A. Accumulation of astaxanthin 

by a new Haematococcus pluvialis strain BM1 from the 

White Sea coastal rocks (Russia). Mar Drugs 

2014;12:4504–4520. 

Chen Y, Li D, Lu W, Xing J, Hui B, Han Y. Screening and 

characterization of astaxanthin-hyperproducing mutants of 

Haematococcus pluvialis. Biotechnol Lett 2003;25:527–

529.  

Cheng J, Li K, Yang Z, Zhou J, Cen K. Enhancing the 

growth rate and astaxanthin yield of Haematococcus 

pluvialis by nuclear irradiation and high concentration of 

carbon dioxide stress. Bioresour Technol 2016;204:49-54. 

Choi SL, Suh IS, Lee CG. Lumostatic operation of bubble 

column photobioreactors for Haematococcus pluvialis 

cultures using a specific light uptake rate as a control 

parameter. Enzyme Microbial Technol 2003;33:403-409. 



  6 – REFERENCES 

 

 48 

  

Choi YE, Yun YS, Park JM, Yang JW. Determination of 

the time transferring cells for astaxanthin production 

considering two-stage process of Haematococcus pluvialis 

cultivation. Biosour Technol 2011;102:11249-11253. 

Collins AM, Jones HDT, Han d, Hu Q, Beechem TE, 

Timlin JA. Carotenoid distribution in living cells of 

Haematococcus pluvialis (Chlorophyceae). PLoS ONE 

2011;6(9). 

Costa L, Brissos V, Lemos F, Ribeiro FR, Cabral JMS. 

Following Multi-Component Reactions in Liquid Medium 

Using Spectral Band-Fitting Techniques. Appl 

Spectroscopy 2008;62(8):1-7. 

Crosbie ND, Pockl M, Weisse T. Rapid establishment of 

clonal isolated of freshwater autotrophic picoplankton by 

single-cell and single-colony sorting. J Microbiol Methods 

2003;55:361-370. 

Damiani Mc, Leonardi PL, Pieroni OI, Cáceres EJ. 

Ultrastructure of the cyst wall of Haematococcus pluvialis 

(Chlorophyceae): wall development and behaviour during 

cyst germination. Phycologia 2006;45(6):616-623. 

Del Campo JA, Rodríguez H, Moreno J, Vargas MA, 

Rivas J, Guerrero MG. Accumulation of astaxanthin and 

lutein in Chlorella zofingiensis (Chlorophyta). Appl 

Microbiol Biotechnol 2004;64(6):848–54.  

Del Rio E, Acien FG, Garcia-Malea MC, Rivas J, Del Rio 

E, Acien FG, et al., Efficient one-step production of 

astaxanthin by the microalga Haematococcus pluvialis in 

continuous culture. Biotechnol Bioeng 2005;91:808-815. 

Del Rio E, Acien FG, Garcia-Malea MC, Rivas J, Molina-

Grima E, Guerrero MG. Efficiency assessment of the one-

step production of astaxanthin by the microalga 

Haematococcus pluvialis. Biotechnol Bioeng 

2007;100:397–402. 

Demirbas MF. Biofuels from algae for sustainable 

development. Appl Energy 2011;88:3473-3480.  

Díaz M, Herrero M, García LA, and Quirós C. Application 

of flow cytometry to industrial microbial bioprocesses. 

Biochem Eng J 2010;48(3):385-407. 

Doan TTY, Obbard JP. Enhanced intracellular lipid in 

Nannochlotopsis sp. Via random mutagenesis and flow 

cytometry cell sorting. Alga Res 2012;1:17-21. 

Dominguez-Bocanegra AR, Legarreta IG, Jeronimo FM, 

Campocosio AT. Influence of environmental and 

nutritional factors in the production of astaxanthin from 

Haematococcus pluvialis. Bioresour Technol 2004;92: 

209–214. 

Elliot AM. Morphology and life history of Haematococcus 

pluvialis. Arch Protistenk 1934;82: 250–272. 

Enzing C, Ploeg M, Barbosa M, Sijtsma L. Microalgae-

based products for the food and feed sector: an outlook for 

Europe. JRC Scientific and Policy Reports 2014. 

Fábregas J, Domínguez A, Álvarez DG, Lamela T, Otero 

A. Induction of astaxanthin accumulation by nitrogen and 

magnesium deficiencies in Haematococcus pluvialis. 

Biotechnol Lett 1998;20(6):623-626. 

Fábregas J, Domínguez A, Regueiro M, Maseda A, Otero 

A. Optimization of culture medium for the continuous 

cultivation of the microalga Haematococcus pluvialis. 

Appl Microbiol Biotechnol 2000;53:530–535. 

Fábregas J, Otero A, Maseda A, Domínguez A. Two-stage 

cultures for the production of astaxanthin from 

Haematococcus pluvialis. J Biotechnol 2001;89:65–71. 

Forján E, Navarro F, Cuaresma M, Vaquero I, Ruíz-

Domínguez MC, Gojkovic Z, et al. Microalgae: fast-

growth sustainable green factories. Crit Rev Environ Sci 

Technol 2015;45:1705–1755. 

Gacheva G, Dimitrova P, Pilarski P. New strain 

Haematococcus cf. pluvialis Rozhen-12 - growth, 

biochemical characteristics and future perspectives. 

Genetics and Plant Physiology 2015;5(1):29–38. 

Gao Z, Meng C, Chen YC, Ahmed F, Mangott A, Schenk 

PM. Comparison of astaxanthin accumulation and 

biosynthesis gene expression of three Haematococcus 

pluvialis strains upon salinity stress. J Appl Phycol 

2015;27:1853-1860. 

García-Malea MC, Acién FG, Fernández JM, Cerón Mc, 

Molina E. Continuous production of green cells of 

Haematococcus pluvialis: Modeling of the irradiance 

effect. Enzyme and Microbial Technol 2006;38:981-989. 

García-Malea MC, Brindley C, Del Río E, Acién FG, 

Fernández JM, Molina E. Modelling of growth 

accumulation of carotenoids in Haematococcus pluvialis 

as a function of irradiance and nutrientes supply. Biochem 

Eng J 2005;26:107-114. 

González MA, Cifuentes AS, Gómez PI. Growth and 

totalcarotenoid content in four Chilean strains of 

Haematococcus pluvialis Flotow, under laboratory 

conditions. Gayana Bot 2009;66(1):58-70. 

Goswami G, Chaudhuri S, Duttan D. The present 

perspective of astaxanthin with reference to biosynthesis 

and pharmacological importance. J Microbiol Biotechnol 

2010;26:1925-1939. 



  6 – REFERENCES 

 

 49 

  

Grewe C, Griehl C. Time- and media-dependent secondary 

carotenoid accumulation in Haematococcus pluvialis. 

Biotechnol J 2008;3:1232-1244. 

Guedes AC, Amaro HM, Malcata FX. Microalgae as 

sources of carotenoids. Mar. Drugs. 2011;9:625–644. 

Guerin M, Huntley ME, Olaizola M. Haematococcus 

astaxanthin: applications for human health and nutrition. 

Trends Biotechnol 2003;21:210–216. 

Gwak Y, Hwang Y, Wang B, Kim M, Jeong J, Lee CG, 

Hu Q, Han D, Jin E. Comparative analyses of lipidomes 

and transcriptomes reveal a concerted action of multiple 

defensive systems against photooxidative stress in 

Haematococcus pluvialis. J Exp Botany 

2014;65(15):4317-4334. 

Habib MAB, Parvin M, Huntington TC, Hasan MR.  A 

review of culture, production and use of Spirulina as food 

for humans and feeds for domestic animals and fish. FAO 

Fisheries and Aquaculture Circular 2008. 

Hagen C, Siegmund S, Braune W. Ultrastructural and 

chemical changes in the cell wall of Haematococcus 

pluvialis (Volvocales, Chlorophyta) during aplanospore 

formation. Eur J Phycol 2002;37:217–226. 

Han D, Li Y, Hu Q. Astaxanthin in microalgae: pathways, 

function and biotechnological implications. Algae 

2013;28(2)131-147. 

Hata N, Ogbonna JC, Hasegawa Y, Taroda H, Tanaka H. 

Production of astaxanthin by Haematococcus pluvilis ina 

sequential heterotrophic-photoautotrophic culture. J Appl 

Phycol 2001;13:395-402. 

Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F. 

Astaxanthin: A Review of its Chemistry and Applications. 

Crit Rev Food Sci Nutr 2006;46:185–196. 

Hyka P, Lickova S, Pribyl P, Melzoch K, Kovar K. Flow 

cytometry for the development of biotecnological 

processes with microalgae. Biotechnol Adv 2013;31:2-16. 

Imamoglu E, Dalay MC, Sukan FV. Influences of different 

stress media and high light intensities on accumulation of 

astaxanthin in the green alga Haematococcus pluvialis. 

New Biotechnol 2009;26:199-204. 

Kaewpintong K, Shotipruk A, Powtongsook, Pavasant P. 

Photoautotrophic high-density cultivation of vegetative 

cells of Haematococcus pluvialis in airlift bioreactor. 

Biosour Technol 2007;98:288-295. 

Kamath BS, Vidhyavathi R, Sarada R, Ravishankar GA. 

Enhancement of carotenoids by mutation and stress 

induced carotenogenic genes in Haematococcus pluvialis. 

Biosour Technol 2008;99:8667-8673. 

Kidd P. Astaxanthin, Cell Membrane Nutrient with 

Diverse Clinical Benefits and Anti-Aging Potential. 

Alternative Medicine Rev 2011;16:355-364. 

Klochkova TA, Kwak MS, Han JW, Motomura T, 

Nagasato C, Kim GH. Cold-tolerant strain of 

Haematococcus pluvialis (Haematococcaceae, 

Chlorophyta) from Blomstrandhalvoya (Svalbard). Algae 

2013;28:185-192. 

Kobayashi M, Kakizono T, Yamaguchi K, Nishio N, 

Nagai S. Growth and astaxanthin formation of 

Haematococcus pluvialis in heterotrophic and mixotrophic 

conditions. J Ferment Bioeng 1992;74:61-63. 

Kobayashi M, Kurimura Y, Tsuji Y. Morphological 

changes in the life cycle of green alga Haematococcus 

pluvialis. J Fermentation and Bioeng 1997a;84(1):94–97. 

Kobayashi M, Kurimura Y, Tsuji Y. Light independent, 

astaxanthin production by the green microalga 

Haematococcus pluvialis under salt stress. Biotechnol 

1997b;19:507–509. 

Krujatz F, Lode A, Bruggemeier S, Schutz K, Framer J, 

Bley T, Gelinsky M, Weber J. Green bioprinting: Viability 

and growth analysis of microalgae immobilized in 3D-

plotted hydrogels versus suspension cultures. Eng Life Sci 

2015;00:1-11. 

Lemoine Y, Schoefs B. Secondary ketocarotenoid 

astaxanthin biosynthesis in algae: a multifunctional 

response to stress. Photosynth Res 2010;106:155-177. 

Li J, Zhu DL, Niu JF, Shen SD, Wang GC. An economic 

assessment of astaxanthin production by large scale 

cultivation of Haematococcus pluvialis. Biotechnol Adv 

2011;29:568–574. 

Li Y, Sommerfeld M, Chen F, Hu Q. Consumption of 

oxygen by astaxanthin biosynthesis: A protective 

mechanism against oxidative stress in Haematococcus 

pluvialis (Chlorophyceae). J Appl Phycol 2008;165:1783–

1797.  

López MCGM, Sánchez EDR, López JLC, Sevilla JMF, 

Rivas J, Guerrero MG, Grima EM. Comparative analysis 

of outdoor culture of Haematococcus pluvialis in tubular 

and bubble column photobioreactors. J of Biotechnol 

2006; 123:329-342. 

Lorenz RT. A Technical Review of Haematococcus 

Algae; NatuRose™ Technical Bulletin #060; Cyanotech 

Corporation 1999;1–12. 



  6 – REFERENCES 

 

 50 

  

Lorenz RT, Cysewski, GR. Commercial potential for 

Haematococcus microalgae as a natural source of 

astaxanthin. Trends Biotechnol 2000;18:160–167. 

Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S. Methly 

jasmonate or gibberellins A3-induced astaxanthin 

accumulation is associated with up-regulation of 

transcription of β-carotene ketolase genes (bkts) in 

microalga Haematococcus pluvialis. Bioresour Technol 

2010;101:6468-6474. 

Markou G, Nerantzis E. Microalgae for high-value 

compounds and biofuels production: A review with focus 

on cultivation under stress conditions. Biotechnol Advan 

2013;31:1532-1542. 

Mata TM, Martins AA, Caetano NS. Microalgae for 

biodiesel production and other applications: A review. 

Renewable and Sustainable Energy Rev 2010;14:217-232. 

Milledge JJ. Commercial application of microalgae other 

than as biofuels: a brief review. Rev Environ Sci 

Biotechnol 2011;10:31-41. 

Miki W. Biological functions and activities of animal 

carotenoids. Pure Appl Chem 1991;63:141–146. 

Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A 

review on the assessment of stress conditions for 

simultaneous production of microalgal lipids and 

carotenoids. Front Microbiol 2016;7:546  

Nakanishi K, Deuchi K. Culture of a high-chlorophyll-

producing and halotolerant Chlorella vulgaris. J Biosci 

Bioeng 2014;117(5):617-619. 

Nigam PS, Luke JS. Food additives: Production of 

microbial pigments and their antioxidant properties. 

Current Opinion in Food Sci 2016;7:93-100. 

Olaizola M. Commercial development of microalgal 

biotechnology: from the test tube to the marketplace. 

Biomol Eng 2003;20:459–466. 

Orosa M, Valero J, Herrero C, Abalde J. Comparison of 

the accumulation of astaxanthin in Haematococcus 

pluvialis and other green microalgae under N-starvation 

and high light conditions. Biotechnol Let 2001;23: 1079-

1085. 

Pappas D, Wang K. Cellular separations: A review of new 

challenges in analytical chemistry. Analytica Chimica 

Acta 2007;601:26-35. 

Park JC, Choi SP, Hong ME, Sim SJ. Enhanced 

astaxanthin production from microalga, Haematococcus 

pluvialis by two-stage perfusion culture with stepwise 

light irradiation. Bioprocess Biosyst Eng 2014;37:2039–

2047. 

Pashkow FJ, Watumull DG, Campbell CL. Astaxanthin: A 

Novel Potential Treatment for Oxidative Stress and 

Inflammation in Cardiovascular Disease. Am J Cardiol 

2008;101:58D-68D. 

Pereira H, Barreira L, Mozes A, Florindo C, Polo C, 

Duarte CV, Custódio L, Varela J. Microplate-based high 

throughput screening procedure forisolation of lipid-rich 

marina microalgae. Biotechnol Biofuels 2011;4:1-12. 

Podola B, Li T, Melkonian M. Porous Substrate 

Biorectors: A Paradigm shift in Microalgal 

Biotechnology?. Trends Biotechnol 2016:in press. 

Pringsheim EG. Nutritional requirements of 

Haematococcus pluvialis and related species. J Phycol 

1966;2:1–7. 

Proctor VW. Some controlling factors in the distribution 

of Haematococcus pluvialis. Ecology 1957;38:457–462. 

Pulz O, Gross W. Valuable products from biotechnology 

of microalgae. Appl Microbiol Biotechnol 2004;65:635-

648. 

Raheem A, Azlina WAKGW, Yap YHT, Danquah MK. 

Thermochemical conversion of microalgal biomass for 

biofuel production. Renewable and Sustainable Energy 

Reviews 2015;49:990-999. 

Recht L, Zarka A, Boussiba S. Patterns of carbohydrate 

and fatty acid changes under nitrogen starvation in the 

microalgae Haematococcus pluvialis and 

Nannochloropsis sp.. Appl Microbiol Biotechnol 

2012;94:1495–1503. 

Rioboo C, Barreiro ÓG, Abalde J, Cid Á. Flow cytometric 

analysis of the encystment process induced by paraquat 

exposure in Haematococcus pluvialis (Chlorophyceae). 

Eur J phycol 2011;46(2):89-97. 

Safi C, Zebib B, Merah O, Pontalier PY, Garcia CV. 

Morphology, composition, production, processing and 

applications of Chlorella vulgaris: A review. Renewable 

and Sustainable Energy Reviews 2014;35:265-278. 

Saha, SK, McHugh E, Hayes J, Moane S, Walsh D, 

Murray P. Effect of various stress regulatory factors on 

biomass and lipid production in microalga Haematococcus 

pluvialis. Bioresour Technol 2013;128:118–124. 

Sarada R, Bhattacharya S, Ravishankar GA. Optimization 

of culture conditions for growth of the green alga 



  6 – REFERENCES 

 

 51 

  

Haematococcus pluvialis. World J Microbiol Biotechnol 

2002a;18:517–521. 

Sarada R, Tripathi U, Ravishankar GA. Influence of stress 

on astaxanthin production in Haematococcus pluvialis 

grown under different culture conditions. Process 

Biochem 2002b;37:623– 627. 

Sensen CW, Heimann K, Melkonian M. The production of 

clonal and axenic cultures of microalgae using 

fluorescence-activated cell sorting. Eur J Phycol 

199;28:93-97. 

Shah MMR, Liang Y, Cheng JJ, Daroch M. Astaxanthin-

Producing green microalga Haematococcus pluvialis: 

from single cell to high value commercial products. Front 

Plant Sci 2016;7:531. 

Sharon-Gojman R, Maimon E, Leu S, Zarka A, Boussiba 

S. Advanced methods for genetic engineering of 

Haematococcus pluvialis (Chlorophyceae, Volvocales). 

Algal Research 2015;10:8-15. 

Singh J, Saxena RC. An Introduction to Microalgae: 

Diversity and Significance. Handbook of Marina 

Microalgae 2015;2:11-24. 

Sinigalliano CD, Winshell J, Guerrero MA, Scorzetti G, 

Fell JW, Eaton RW, Brand L, Rein KS. Viable cell sorting 

of dinoflagellates by multiparametric flow cytometry. 

Phycologia 2009;48(4):249-257. 

Sipaúba-Tavares LH, Millan RN, Berchielli-Morais FA. 

Effects of some parameters in upscale culture of 

Haematococcus pluvialis Flotow. Braz J Biol 

2013;73(3):585-591. 

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 

Commercial Applications of Microalgae. J Biocien and 

Bioeng 2006;101(2):87-96. 

Steinbrenner J, Linden H. Regulation of Two Carotenoid 

Biosynthesis Genes Coding for Phytoene Synthase and 

Carotenoid Hydroxylase during Stress-Induced 

Astaxanthin Formation in the Green Alga Haematococcus 

pluvialis. Plant Physiol 2001;125:810-817. 

Steinbrenner J, Linden H. Light induction of carotenoid 

biosynthesis genes in the green alga Haematococcus 

pluvialis: regulation by photosynthetic redox control. Plant 

Molecular Biology 2003;52:343-356. 

Strittmatter M, Guerra T, Silva J, Gachon CMM. A new 

flagellated dispersion stage in Paraphysoderma 

sedebokerense, a pathogen of Haematococcus pluvialis. J 

Apply Phycol 2016;28:1553-1558. 

Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen 

L, Zhang W. Metabolomic and network analysis of 

astaxanthin-producing Haematococcus pluvialis under 

various stress conditions. Bioresour Technol 

2014;170:522–529. 

Suyono EA, Aminin, Pradani L. Um’avatun U, Habiba 

RN, Ramdaniyah, Rohma EF. Combination of bue, red, 

white, and ultraviolet lights for increasing carotenoids and 

biomass of Microalga Haematococcus pluvialis. Procedia 

Environ Sci 2015;28:399-405. 

Tam LT, Hoang DD, Ngoc Mai DT, Hoai Thu NT, Lan 

Anh HT, Hong DD. Study on the effect of salt 

concentration on growth and astaxanthin accumulation of 

microalgae Haematococcus pluvialis as the initial basis for 

two phase culture of astaxanthin production. Tap Chi Sinh 

Hoc 2012;34:213–223. 

Terashima M, Freeman ES, Jinkerson RE, Jonikas MC. A 

fluorescence-activated cell sorting-based strategy for rapid 

isolation of high-lipid Chlamydomonas mutants. Plant J 

2015;81:147-159. 

Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio 

N, Nagai S. Hyper-accumulation of astaxanthin in a green 

alga Haematococcus pluvialis at elevated temperatures. 

Biotechnol Lett 1994;16(2):133-138. 

Tocquim P, Fratamico A, Franck F. Screening for a low-

cost Haematococcus pluvialis medium reveals an 

unexpected impact of a low N/P ratio on vegetative 

growth. J Appl Phycol 2012;24:365-373. 

Tran HL, Lee KH, Hong CH. Effects of LED irradiation 

on the growth and Astaxanthin Production of 

Haematococcus pluvialis. Biocienc Biotec R Asia 

2015;12(2):1167-1173. 

Triki A, Maillard P, Gudin C. Gametogenesis in 

Haematococcus pluvialis Flotow (Volvocales, 

Chlorophyta). Phycologia 1997;36:190–194. 

Tripathi U, Venkateshwaran G, Sarada R, Ravishankar 

GA. Studies on Haematococcus pluvialis for improved 

production of astaxanthin by mutagenesis. World J 

Microbiol Biotechnol 2001;17:143–148. 

Tuli HS, Chaudhary P, Beniwal V, Sharma AK.  Microbial 

pigments as natural color sources: current trends and future 

perspectives. J Food Sci Technol 2014. 

Vassilev SV, Vassileva CG. Composition, properties and 

challenges of algae biomass for biofuel application: An 

overview. Fuel 2016;181:1-33. 



  6 – REFERENCES 

 

 52 

  

Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar 

GA. Regulation of carotenoid biosynthetic genes 

expression and carotenoid accumulation in the green alga 

Haematococcus pluvialis under nutrient stress conditions. 

J Exp Bot 2008;59(6):1409–1418.  

Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, 

Sijtsma L, Ploeg M, Enzing C. Food and feed products 

from microalgar: Market opportunities and challenges for 

EU. Food Science and Techno 2015;42:81-92. 

Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, 

Franck F, Remacle C. Isolation and partial characterization 

of mutants with elevated lipid content in Chlorella 

sorokiniana and Scenedesmus obliquus. J Biotechnol 

2012;162:3-12. 

Wahby I, Bennis I, Tilsaghani C, Lubián LM. Potential use 

of flow cytometry in microalgae-based biodiesel project 

development. J Innova Apply Studies 2014;5(4):333-343. 

Wan M, Zhang J, Hou D, Fan J, Li Y, Huang J, Wang J. 

The effect of temperature on cell growth and astaxanthin 

accumulation of Haematococcus pluvialis during a light–

dark cyclic cultivation. Bioresour Technol 2014;167:276-

283. 

Wayama M, Ota S, Matsuura H, Nango N, Hirata A., 

Kawano S. Three-dimensional ultrastructural study of oil 

and astaxanthin accumulation during encystment in the 

green alga Haematococcus pluvialis. PLoS ONE 2013;8. 

Wen Z, Liu Z, Hou Y, Liu C, Gao F, Zheng Y, Chen F. 

Ethanol induced astaxanthin accumulation and 

transcriptional expression of carotenogenic genes in 

Haematococcus pluvialis. Enzyme and Microbial Technol 

2015;78:10-17. 

Yamashita E. Astaxanthin as a Medical Food. Functional 

Foods in Health and Disease 2013;3(7):254-258. 

Yuan JP, Peng J, Yin K, Wang JH. Potential health 

promoting effects of astaxanthin: A high-value carotenoid 

mostly from microalgae. Mol Nutr Food Res 

2011;55:150–165. 

Xie B, Stessman D, Hart JH, Dong H, Wang Y, Wright 

DA, Nikolau BJ, Spalding MH, Halverson LJ. High-

throughput fluorescence-activated cell sorting for lipid 

hyperaccumulating Chlamydomonas reinhardtii mutants. 

Plant Biotechnol J 2014;12:872-882. 

Zhang W, Wang J, Wang J, Liu T. Attached cultivation of 

Haematococcus pluvialis for astaxanthin production. 

Bioresour Technol 2014;158:329–335. 

Zhang Z, Wang B, Hu Q, Sommerfeld M, Li Y. A new 

paradigm for producing astaxanthin from unicellular green 

alga Haematococcus pluvialis. Biotechnol Bioeng 

2016;9999:1-12. 

Zhao Y, Shang M, Xu JW, Zhao P, Li T, Yu X. Enhanced 

astaxanthin production from a novel strain of 

Haematococcus pluvialis using fulvic acid. Process 

Biochem 2015;50:2072-2077. 

Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, 

Cohen Z. Accumulation of oleic acid in Haematococcus 

pluvialis (Chlorophyceae) under nitrogen starvation or 

high light is correlated with that of astaxanthin esters. J 

Phycol 2002;38:325– 331. 

 


