
2016 

INSTITUTO SUPERIOR DAS CIÊNCIAS, DO TRABALHO E DA EMPRESA 

DEPARTAMENTO DE FINANÇAS 

 

 
 

UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE MATEMÁTICA 

 

 

 

Option Pricing under jump-diffusion models 

 

Ricardo Filipe Machado Venâncio 
!
 
 

Mestrado em Matemática Financeira   
  

Dissertação orientada por: 
João Pedro Vidal Nunes 

!



Acknowledgments

This thesis is the final result after enrolling in the Master of Mathematics applied

to Finance. It lead me to achieve great knowledge about Finance, particularly on how

to approach the question of computing a fair value for financial contracts.

In first place, I thank to all the students and professors I had contact with in

FCT-UNL, where I got my bachelor’s degree in Mathematics. Long were the hours I

spent in teachers’ o�ces clarifying my doubts which were promptly and enthusiastically

answered. Their patience and dedication on my and my colleagues formation was crucial

to become the person I am today.

In second place, I thank my supervisor, João Nunes, who patiently taught me the

main topics related to the Pricing theory and who helped me with many questions I

had, without any hesitation. He gave me important tools so that I could design the

work I am presenting here and without which I could not develop this dissertation.

I also appreciate the help of all the people who I worked with in BNP Paribas, who

encouraged me during my learning process while I was working as an intern. They pro-

posed me challenges and posed questions who helped me to better understand how Fi-

nancial markets work and contributed to my professional and personal growth. Thanks

to this working experience, I was able to establish a link between what is developed in

theory and relate it to the practice.

Finally, I thank my family for all the support, specially in the moments I was absent

living and working abroad.

I hope the work I developed is useful for who studies matters related to Option

Pricing and the reader find it interesting to explore.



Resumo

Nesta tese, apresentam-se métodos para resolver numericamente equações diferen-

ciais por forma a obter preços de contractos financeiros. Em particular, dá-se ênfase a

opções vanilla de estilo europeu e americano cujo activo subjacente segue um modelo

de difusão com saltos. Quanto à distribuição destes útltimos, destacam-se o modelo de

Merton, que considera que eles têm uma distribuição Normal, e o de Kou, onde é assum-

ida uma dupla distribuição exponencial. Este tipo de modelos representa uma extensão

dos clássicos modelos de difusão, como o famoso modelo de Black-Scholes-Merton, e

tem como objectivo superar algumas das falhas inerentes a este último, tal como cau-

das muito curtas e picos baixos da distribuição do logaritmo dos retornos do activo, que

não reflectem, em geral, o sentimento dos investores nos mercados financeiros, aliando,

ao mesmo tempo, a simplicidade e eficiência dos modelos de difusão.

Para alcançar o nosso objectivo, estabelece-se inicialmente qual é a equação que de-

screve a dinâmica do valor dos preços das opções referidas em relação a vários parâmet-

ros, tal como o valor do preço do activo subjacente e o tempo até à maturidade. Em

seguida, constróem-se partições para a resolução numérica do problema, através da dis-

cretização da função que descreve o preço do contracto financeiro por diferenças finitas.

Esta abordagem é útil visto que permite obter preços de contractos cujo "payo�" não é

tão simples quanto o de opções vanilla e para os quais não existem fórmulas fechadas

ou semi-fechadas para o seu valor em cada momento do tempo até à sua maturidade.

No final, expõem-se os resultados encontrados para diferentes resoluções das par-

tições, comparados com referências da literatura, e apresentam-se algumas conclusões.



Abstract

In this dissertation, methods to solve numerically partial di�erential equations in

order to obtain prices for contingent claims are presented. In particular, we highlight

European and American style vanilla options, whose underlying asset follows a jump-

di�usion model. For the distribution of the jumps, the Merton and Kou models are

studied. The former considers these have a Normal distribution, whereas the latter

assumes a double-exponential. These type of models represent an extension of the

classic di�usion models, such as the famous Black-Scholes-Merton, and has the goal of

overcoming its flaws, such as thin tails and low peaks in the distribution of the logarithm

of the asset returns, that do not reflect the general investors sentiment in the financial

markets, while maintaining the simplicity and tractability inherent to di�usion models.

To accomplish our goal, an equation describing the relation of the value of the

referred options on several parameters, such as the time-to-maturity and the spot value

of the underlying asset is suggested. We then build partitions in order to numerically

solve our problem using finite di�erences, discretizing the function which provides the

price of our contingent claim. This approach is useful, since it allows to obtain prices of

contracts whose payo� is not as simple as the vanilla options’ and for which it does not

exist closed or semi-closed formulae for its value at each point in time until maturity.

Finally, we expose results found for each one of partitions considered, comparing

them with values in the literature, and some conclusions are presented.
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1

Introduction

Although options were created a long time ago, it was only on the 26th April 1973

that the Chicago Board Options Exchange (CBOE) traded the first listed option. Since

then, interest in options has excessively grown from only 911 contracts on 16 underlying

stocks to millions of contracts with total notional value of several trillion dollars in

CBOE and in other stock exchanges around the world.

An option, as the name itself indicates, gives to its holder the right to buy or sell an

asset, but not the obligation to do so, unlike other contracts such as futures or forwards.

To compensate for this benefit, the holder of the option must pay an up-front fee, called

the "premium". The most basic existing options are vanilla calls and puts. Call options

give the entity that hold them the right to buy a determined amount of an asset at or

until a specified time in the future, defined as the "expiration date" or "maturity date",

for a pre-specified price, which we name as the "strike price". Puts, on the other hand,

permit the entity to sell the asset. The asset in question, in this instance, can be a

simple stock, index, bond or a basket composed of several securities.

Based on the time at which options can be exercised, they can be divided into two

categories: European or American options. The former gives the right to its owner to

exercise the option at the maturity date T , whereas the latter can be exercised at any

time until T .

Let us assume the underlying asset is a stock with price S, using S
t

as notation for

its value at time t, prior to T . In the case of a call option, at maturity, it will only

be exercised if S
T

> K, with K being the strike price, whereas otherwise it will expire
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valuing zero. In the case of a put option, the logic is similar, but this contract will only

have non-null value if S
T

< K.

Like any other contingent claim, options are attractive, because they are highly

useful in hedging and for speculation. Hedging refers to the act of using financial

instruments to cover the position a market agent has in its portfolio in order to avoid

big losses, in other words, reducing risk. As a simple example, a put option may be

a good instrument to acquire if one is afraid that the price of a certain stock will fall.

This way, a minimum selling price is guaranteed (the strike) and the risk of a loss is

minimized.

These kinds of financial products obviously require a price to be quoted in the

market. And since nobody has a crystal ball, that reveals what happens to an asset’s

future price, mathematical models are needed to compute their fair-value. To this end,

the work carried out by Robert Merton, Fisher Black and Myron Scholes is of greater

importance. They developed a set of formulae based on the Brownian motion which

allow us to price many financial derivatives such as calls, puts and barrier options [10].

The Black-Scholes-Merton (BSM) model tries to replicate the dynamics of a financial

asset through a geometric Brownian motion, i.e., for a given moment in time t, the

expression that gives an asset’s price is S
t

= S
0

eµt+‡W

t and the continuous compounded

return, ln(S
t

/S
0

), has a normal distribution. Here, {W
t

, t Ø 0} is a Brownian motion,

which has a normal distribution with mean 0 and variance t, µ is called the drift, which

measures the annualized average return, ‡ is called the volatility, which corresponds to

the annualized standard deviation of the underlying asset price return, S
0

is the initial

stock price and "ln" represents the Neperian logarithm.

However, take a look at Figure A.1, in the Appendix. In this figure, you can

visualize Standard & Poor’s 500 (S&P500 for short) prices through the year of 2015.

This is a very liquid American stock market index based on the market capitalization

of 500 large companies that have their common stock listed on the NYSE (New York

Stock Exchange) or NASDAQ (National Association of Securities Dealer Automated

Quotation system). As you can see by the first chart, there seems to be a large fall in the
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S&P index price towards the end of August 2015. This is highlighted by the computation

of log returns (defined as the continuously compounded returns) and represented in

Figure A.2. A.2 also reveals a peak at the end of August. This was due to a fall in

China’s stock market, which at that time a�ected the U.S.’ markets. On the other

hand, Figure A.5, which represents a histogram of the log returns of the S&P, reveals

some interesting characteristics: an asymmetric feature, a higher peak and two heavier

tails than those of the normal distribution. To illustrate this idea, in this same figure,

a normal distribution with the same mean and standard deviation as the price series is

plotted in red to compare.

As another example, in January 2015, the Swiss National Bank (SNB) discontinued

the minimum EUR/CHF exchange rate, which was fixed with a floor of 1.20 since

2011. This measure taken by the SNB, provoked a huge fluctuation of this rate which

is illustrated by Figures A.3 and A.4. These charts, such as in the previous example,

stand respectively for the values of the EUR/CHF in 2015 and the corresponding log

returns. Looking into the histogram A.6, it is also evident that the log-returns of the

underlying are not normally distributed. To sustain this idea, we first present two

definitions:

Definition 1.1. Given a random variable X, the kurtosis and skewness of X are re-

spectively defined as E[(X≠µ

‡

)3] and E[(X≠µ

‡

)4], where E(·) is the expected value of the

random variable X.

The price series corresponding to the S&P500 presents a skewness equal to -1.2752

and kurtosis equal to 4.1427. The EUR/CHF log returns have these values respectively

equal to 1.8168 and 8.5888. Comparing to the normal distribution, which has a skewness

of zero and kurtosis equal to 3, we see that for both series, the values are far from normal.

Moreover, we see that these series are "leptokurtic", meaning their kurtosis is above 3.

A Jarque-Bera (see [7] for more details) test was performed to evaluate the normality

of the presented series. This test has as null hypothesis that the sample data of a random

variable comes from a normal distribution. The alternative hypothesis is that it does

not. With a confidence level of 95%, the null hypothesis was rejected, which means the
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assumption of a normal distribution for the log-returns of these assets is not plausible.

This is even more evident if we look into the histogram of S&P500 because it displays a

high peak and asymmetric heavy tails. These characteristics are not exclusive for this

index and are also present for almost all financial asset prices like individual stocks,

foreign exchange rates and interest rates.

Therefore, as you can observe, the normal distribution does not fit very well with

empirical data, since the empirical distribution of asset returns exhibits fat tails and

skewness, a behaviour that deviates from normality and is inconsistent with the BSM

model. Besides, as also evident in the images referred before, asset price processes

have jumps or spikes and must be taken into account when pricing financial contingent

claims. This is crucial for the estimation of current market values of portfolios held

by companies that deal on a daily basis with products that depend on financial assets,

such as banks and hedge funds. More importantly, it is essential to provide prices of

contingent claims to clients who take into account these events.

It is then evident that under the geometric Brownian motion variations of great

amplitude are not likely to happen as it assumes the log-returns have a normal distri-

bution. This is documented with empirical evidence in [30]. Besides, Brownian motion

is almost surely continuous by definition, a feature that is inconsistent with the exis-

tence of referred variations, which are commonly called "jumps" in literature. One way

to try to get around the problem is to consider Lévy processes in which non-marginal

variations are more likely to happen as a consequence of fat-tailed distributions based

processes. Lévy based models are therefore much more realistic.

On the other hand an essential requirement for using a pricing model, independently

of the considered distribution for the asset returns, is that it should ensure that the

prices of actively traded instruments such as Europeans options coincide as much as

possible with their market price. However, despite its excellent analytical tractability,

this condition is not fulfilled in the case of the BSM model. The BSM model does

not track the market’s implied volatility well enough. In fact, by inverting the BSM

formula with respect to the volatility for a series of options with di�erent strikes and
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with the same maturity, one should obtain approximately the same (constant) implied

volatility. However, it is an empirical fact that the graph of the implied volatility is

not a horizontal line as a function of strike or as a function of time to maturity, but

resembles a "smile" instead, as reported by Hull [29]. Thus, using a single value for the

volatility in order to price options with di�erent strikes and maturities leads us to get

prices that are not in accordance with the ones displayed in the financial markets.

It then makes sense to consider an alternative for the BSM model. Jump-di�usion

models and Lévy based models, proposed in the late 1980s and early 1990s, are attrac-

tive because they explain the jump patterns exhibited by some stocks. Studies reveal

that Lévy models are realistic when pricing options close to maturity [14]. However,

they are more di�cult to handle numerically. And in contrast to the basic BSM model,

Lévy models do not immediately make obvious which hedging strategy leads to an

instantaneous risk-free portfolio.

The aim of this thesis is then to introduce the Lévy processes and models based

on these in order to incorporate the features discussed above and try to overcome

some of the flaws in the BSM model. It is important to come up with a pricing

model that traders and other market agents can utilize that captures the behavior

of implied volatility smiles more accurately and considers the occurrence of jumps in

order to handle the risks of trading. Lévy processes provide us with appropriate tools

to adequately and consistently describe all these observations, both in the ‘real’ and in

the ‘risk-neutral’ world as we shall see through the rest of this thesis.

The main idea is to replace the Normal distribution of the increments by a more

general distribution that is able to better reflect the stylized facts such as the skewness

and excess kurtosis present in the financial markets. Examples of distributions that

attempt to achieve this are the Variance Gamma [40], the Normal Inverse Gaussian [4],

the CGMY [11] and the Hyperbolic Model [18]. These admit the possible existence of

an infinite number of jumps in any interval and so are called "infinite activity models".

Here, the price behavior on small time intervals is modeled by jumps and the Brownian

motion is no longer needed. We will, however, deal only with jump di�usions. For a
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more interested reader in infinite activity models, we suggest the consultation of [14],

[42] or [44]. Pure jump models with finite activity are also possible but, according to

[14], they do not lead to a realistic description of price dynamics.

In defiance of the analytical tractability o�ered by the Lévy processes, the con-

straints of independence and stationarity of their increments bring some drawbacks.

Mandelbrot and Hudson [30] advocate Lévy processes lead to rigid scaling properties

for marginal distributions of returns which are not observed in empirical time series.

On the other hand, in spite of being able to calibrate the implied volatility patterns for

a single maturity under the risk neutral measure, they fail to reproduce correct option

prices over a range of di�erent maturities. Both issues are owed to the fact that expo-

nential Lévy models do not allow for time inhomogeneity. It has been observed that

the estimated volatilities change stochastically over time and are clustered as reported

in [14] or [30].

Local volatility models were proposed as an alternative. For example, Cox [16] intro-

duced the Constant Elasticity Variance (CEV) model which attempted to introduce the

leverage e�ect. It tries to incorporate the fact that in equity markets volatility increases

when prices decrease due to investors fear sentiment. The opposite e�ect occurs in com-

modity markets. Heston [28] considered a di�usion-based stochastic volatility model

in which the price and volatility are correlated and the latter follows a squared-root

process.

A jump-di�usion stochastic volatility model was proposed by Bates in [5], which

deals with this problem by adding proportional log-normal jumps to the Heston stochas-

tic volatility model.

Despite the flaws inherent in Lévy processes, they are very useful for pricing purposes

and provide an analytical tractability that more sophisticated models do not. In this

thesis we start by presenting some theory on the important concepts related to Lévy

processes in Chapter 2 and then introduce two models in Chapter 3, one which dates

back to Merton [41] and considers that the logarithm of the asset price returns follows a

di�usion with jumps that have a normal distribution and a more recent one, developed
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by Kou [33] where it is assumed that jump sizes have a double exponential distribution.

Presented these two jump-di�usion models, we explain, in Chapter 4, the rationale

behind the fact that assuming assets are driven by Lévy processes leads to the existence

of markets which are not complete. We establish the existence of a partial integro-

di�erential equation (PIDE) using a risk-free measure in Chapter 5, that describes

the dynamics of the price of a European put option under the jump-di�usion model.

Chapter 6, provides a localization error estimate using the asymptotic behavior of the

European put option and Chapter 7 explains how to construct the implicit method by

using three time levels.

One can apply several numerical tools to calculate option prices such as Monte Carlo

simulation and finite-di�erence methods or use numerical integration techniques when

the closed-form solution of the characteristic function of the log returns is known.

Monte Carlo simulation in its most basic form is probably the simplest numerical

method one can implement (see [26] for more details). As long as American features are

not required and great accuracy is not necessary, Monte Carlo is a very good method

for pricing options. However, these methods may take considerable time to simulate.

The purpose of this dissertation is to develop a finite di�erence method which avoids

iteration at each time step and has a second-order convergence rate to solve the PIDE

under the jump-di�usion model. Almendral and Oosterlee [1] suggested finite di�erence

and element methods with the second-order backward di�erentiation formula (BDF2) in

the time variable for pricing European options under the jump-di�usion model. These

implicit methods with the BDF2 use iterative techniques to solve linear systems in-

volving dense matrices and implement the FFT for the integral term to reduce the

computational complexity. The numerical method in [15] uses two time levels but only

has a first-order convergence rate without iteration at each time step. Another numer-

ical method in [22] also uses two time levels according to the Crank-Nicolson scheme

and has the second-order convergence rate. However, it must carry out iterations at

each time step. For this reason, it is necessary to use three time levels. We particularly

focus on the construction of linear systems whose coe�cient matrices are not dense but
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tridiagonal matrices instead. So the implicit method can be solved easily by using LU

decomposition.

Regarding American-style options, d’Halluin-Forsyth-Labahn [23] and d’Halluin-

Forsyth-Vetzal [22] proposed an implicit method of the Crank–Nicolson type combined

with a penalty method for pricing American options under the Merton model. In [23] the

authors showed that the fixed point iteration at each time step converges to the solution

of a linear system of discrete penalized equations. In the case of American options

under the Kou model, Toivanen [51] developed numerical methods coupled with two

alternative ways to solve the LCPs. One is the operator splitting method introduced by

Ikonen and Toivanen [31], and the other is the penalty method proposed by d’Halluin,

Forsyth, and Labahn [23]. These numerical methods use iterative techniques to solve

linear systems involving dense coe�cient matrices.

We provide results in Chapter 8 that show our method is stable and consistent with

respect to the discrete l2-norm in the sense of the Von Neumann analysis and prove it

has second-order convergence rate.

Chapter 9, presents the numerical results we obtain for vanilla European options for

the implicit method with three time levels under the Merton and Kou models. Chapters

10, 11 and 12 represent an extension of the European options to options with American-

style features where theory related to this kind of contracts is described as along with

the results for the numerical tests performed.

Finally, we draw some conclusion in Chapter 14.
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2

Lévy processes

Before defining a Lévy process, a few concepts are introduced which are useful to

comprehend what follows next. For a better understanding or a more detailed study,

the reading of [32] or [39] is suggested.

Definition 2.1. A stochastic process is a mathematical model for the occurrence, at

each moment after an initial time, of a random phenomenon. The randomness is

captured by the introduction of a measurable space called the sample space, on which

probability measures can be placed. From now on, we define � as the probability space,

the set which contains all the possible events. Thus, a stochastic process is a collec-

tion of random variables (X
t

)
tœR+

on (�, F), which take values in a second measurable

space (�Õ, F Õ), called the state space. F and F Õ represent sigma-algebras and in this

framework, the state space will be the d-dimensional Euclidean space equipped with the

sigma-field of the Borel sets. The index t œ [0, +Œ) of the random variables X is

interpreted as the time.

Definition 2.2. A filtration in a measurable space (�, F) is a family of sub-‡-algebras

of F , (F
t

)
tœI

, with I being a set of indexes, such that if 0 Æ s Æ sÕ then F
s

µ F
s

Õ.

The ‡-algebra F
t

represents the information we have at time t. When, for each

t Ø 0, the random variable X
t

is F
t

-measurable, we say that the process (X
t

)
tœR+

0

is

adapted to (F
t

)
tœI

.

Within all the results that will be presented from now on, the following hypotheses

shall be implicitly assumed:
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• It is possible for short-sales to take place, i.e., we can sell an asset which we do

not possess;

• The asset’s quantities we are trading may not be integer values, they may be any

real number;

• The price for selling a security is the same as the price for buying the same

security;

• There are no transacting costs;

• The market is completely liquid, meaning that it is always possible to buy or sell

any asset we want.

These hypothesis are not precisely verified in real life, but they allow for a conve-

nient simplification of our models. Moreover, we shall also suppose that no arbitrage

opportunities exist. This will be important for pricing derivative products using a "risk-

neutral measure". In a nutshell, an arbitrage opportunity is a way to obtain profits,

without an initial investment and without any risk. In general, when those appear in

the market, they quickly vanish, returning the assets’ prices to their "equilibrium value"

and that is why they are assumed to be nonexistent.

Definition 2.3. Suppose (�, F ,P) is a probability space, where � is the set containing

all the possible events, F a ‡ ≠ algebra and P a probability measure, often mentioned

as the "physical measure" in the literature.

A one-dimensional stochastic process {L
t

}
tØ0

on a probability space (�, F ,P) is a

Lévy process if (see [43]):

(1) L
0

= 0 almost surely (a.s.);

(2) It has independent increments, that is, for any 0 Æ s < t < s’< t’ the random

variables L
t

- L
s

and L
t

Õ - L
s

Õ are independent;

(3) It has stationary increments, that is, for any 0 Æ s Æ t Æ Œ the law of L
t

- L
s

only depends on the increments t - s;

13



(4) It is stochastically continuous, that is, lim
tæ0

P(|L
s+t

≠ L
s

| Ø ‘) = 0, ’‘ Ø 0;

(5) The sample paths are right continuous with left limits a.s.

Examples of Lévy processes are the Brownian motion, the Poisson processes and

also its extension to a Compound Poisson Process. These processes are defined and

some of their properties are described in the Appendix.

From the definition, we can deduce that the value of a Lévy process in a certain

point in time does not depend on its past values, i.e., it evolves independently of what

happened before that time instant. Besides, if we look into a specific time interval, that

is, to an increment from one point to another with a determined length, the distribution

of the di�erence between the variable in the last point and the one at the first point

is the same as the distribution of an increment with the same length, but considering

other two moments in time. This may be a flaw when applying to reality, but from an

application point of view, it is a simplification which will make the pricing model we

are introducing in the next chapters much simpler to analyse. To illustrate this idea,

imagine, for instance, that we are modelling the number of cars who cross a certain

bridge in one day. Usually, the number of cars who cross it between 2 and 3 pm is much

less than the number who pass between 8 am and 9 am or between 6 pm and 7 pm,

because the latter usually is the rush hour. Therefore, it might not be suitable that the

distribution in the rush hour is the same as the one between 2 and 3 pm.

2.1 Geometric Lévy processes

Once we define a Lévy process, we can model the asset value by what we call the

geometric Lévy process, S
t

= S
0

eL

t , on the filtered probability space (�, F , F
t

,P),

where F
t

is the filtration generated by the Lévy process {L
t

}
tØ0

. This process somehow

represents an extension to the geometric Brownian motion (GBM). The GBM is the

solution of the stochastic di�erential equation
dS

t

S
t

= µdt + ‡W
t

(2.1)

14



and, as we shall see, the geometric Lévy process (GLP) follows a similar dynamic, but

with an added jump component. Here, µ stands for the mean of the asset’s return and

‡ its annualised volatility.

The GBM is a case of a di�usion process, which assumes no jumps take place,

contrasting with jump-di�usion processes.

Definition 2.4. A pure jump process (J
t

)
tØ0

is constant between jumps and is adapted

and right-continuous.

As an example, Figure (A.7) in Appendix illustrates a simulation of a Poisson pro-

cess, which is a particular case of a pure jump process. The expected number of events

per unit time was set to 0.1. The horizontal axis represents time and the vertical the

value of the random variable, denoted by N(t).

When we combine di�usion processes with pure jump ones, we create what is defined

as a jump-di�usion process:

Definition 2.5. A jump-di�usion or jump process is a process of the form

X
t

= X
0

+
⁄

t

0

“
s

dW
s

+
⁄

t

0

◊
s

ds + J
t

:= XC

t

+ J
t

,

where (J
t

)
tØ0

is a pure jump process and XC

t

is the continuous part of X
t

. (“
s

)
sØ0

and

(◊
s

)
sØ0

are adapted processes and (W
s

)
sØ0

is a Brownian motion.

As with most of density distributions, it is often useful to know what is the respec-

tive characteristic function. The next very useful theorem, commonly referred as the

Lévy–Khintchine representation, allows the description of the characteristic function

of the large family of Lévy-process and despite being very technical, its proof can be

found in [49].
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2.2 Lévy–Khintchine representation

Theorem 2.6. Let (L
t

)
tØ0

be a Lévy process. For all z œ R and t Ø 0,

E(eizL

t) = exp
S

Ut

Q

a≠a

2z2 + ibz +
⁄

R

(eizx ≠ 1 ≠ izx11|x|Æ1

)d‹(x)
R

b

T

V , (2.2)

where a is a non-negative real number, b is a real number and ‹ is a measure on R

satisfying ‹{0} = 0 and
⁄

R

min(1, x2) d‹(x) < Œ.

The set of three parameters (a, b, ‹) is commonly known as the generating Lévy

triplet. The first parameter a is called Gaussian variance, since it is associated with the

Brownian part of the Lévy process and the third quantity ‹ is called Lévy measure. If

‹ = 0 then L
t

is a drifted Brownian motion and if a = 0 then L
t

is said to be purely

non-Gaussian.

From the definition of a Lévy process, we know that the sample paths are càdlag

("continue à droite, limité à gauche"), over finite intervals [0, t], t Æ T , i.e., they are

right-continuous and have left limits almost surely. Thus, any path has only a finite

number of jumps with absolute jump size larger than ‘ for any ‘ > 0. As a consequence,

the sum of jumps along [0, t] with absolute jump size bigger than 1 is a finite sum for

each path. Of course instead of the threshold 1, one could use any number ‘ > 0

here. Contrary to the sum of the big jumps, the sum of the small jumps does not

converge in general. There might be too many small jumps to get convergence. This

is the reason why we need the term izx11|x|Æ1

in equation (2.2) in general, so that the

integral converges. However, according to Sato [49], it is necessary a Lévy measure

satisfies
⁄

R

(|x| · 1)‹(dx) < Œ, (this means that the jump part of the Lévy process is of

finite variation), in order for the truncation of small jumps not to be needed in (2.2).

The symbol · stands for the minimum between two quantities (in this case, |x| and

1). Furthermore, if the Lévy density decays fast enough as x æ ±Œ, we can replace

izx11|x|Æ1

by izx. If the process is of finite variation, then we do not need this term at

all.

Generally speaking, a jump Lévy process can display either finite activity or infinite

16



activity. In the former case, the aggregate jump arrival rate is finite, whereas in the

latter case, an infinite number of jumps can occur in any finite time interval. Within

the infinite activity category, the sample path of the jump process can either exhibit

finite variation or infinite variation. In the former case, the aggregate absolute distance

travelled by the process is finite, while in the latter case, the aggregate absolute distance

travelled by the process is infinite over any finite time interval.

‹(dx) is interpreted as the expected number of jumps per unit of time whose size

belongs to the set dx. Therefore, we formally summarize the last paragraphs in the

following two results, found in [49]:

Theorem 2.7. Let L
t

be a Lévy process with triplet (a, b, ‹).

(1) If ‹(R) < Œ, then almost all paths of L
t

have a finite number of jumps on every

compact interval. The Lévy process has finite activity.

(2) If ‹(R) = Œ, then almost all paths of L
t

have an infinite number of jumps on

every compact interval. The Lévy process has infinite activity.

Theorem 2.8. Let L
t

be a Lévy process with triplet (a, b, ‹).

(1) If ‡2 = 0 and
⁄

R

(|x| · 1)‹(dx) < Œ, then almost all paths of L
t

have finite

variation.

(2) If ‡2 ”= 0 or
⁄

R

(|x| · 1)‹(dx) = Œ, then almost all paths of L
t

have infinite

variation.

For the particular case of a compound Poisson process, only a finite number of jumps

in any finite time interval take place, meaning the truncation function in (2.2) can be

omitted when deriving the characteristic function of this process.
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2.3 Drifted Brownian motion with a finite number

of jumps

Consider the following process, corresponding to the drifted Brownian motion with

a finite number of jumps:

L
t

=
A

µ ≠ ‡2

2

B

t + ‡W
t

+
N

tÿ

i=0

Y
i

. (2.3)

Y
i

, i œ {0, . . . , N
t

}, is a sequence of independent, identically distributed random

variables with a common probability density function p; N
t

, t Ø 0, is a Poisson process

with intensity ⁄ and N
t

, Y
i

and W
t

are mutually independent.

Y
i

is a function of the jump absolute size, defined from now on by ÷
t

. Suppose that

in an infinitesimal time frame dt, S
t

jumps to ÷
t

S
t

. The relative jump size is then:

dS
t

= ÷

t

S

t

≠S

t

S

t

= ÷
t

≠ 1. The latter represents the infinitesimal change in S
t

per unit of

time, after a jump occurred.

2.4 The SDE

As found in [9] or [39], in order to guarantee no "free lunch" takes place (remember

that one of our hypothesis is that no arbitrage exists), it is required and su�cient

that there exists an equivalent martingale measure Q. By definition, this means the

following:

• ’A œ F ,Q(A) > 0 ≈∆ P(A) > 0 and

• The discounted process, (S̃
t

)
tœ[0,T ]

= (e≠(r≠q)tS
t

)
tœ[0,T ]

is a martingale in the prob-

ability space (�, F ,Q).

The definition of a martingale can, for instance, be found in [9].

As a consequence of the existence of this measure in our arbitrage-free context, the

value of a contingent claim at time t œ [0, T ] is the discounted value of its expected

value under the risk neutral measure. Given we are assuming our asset follows a GLP
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and that S
t

is F
t

-measurable and non-negative, this is equivalent to:

E(S
T

|F
t

) = S
t

e(r≠q)(T ≠t)

≈∆ E(S
t

eL

T |F
t

) = S
t

e(r≠q)(T ≠t)

≈∆ E(eL

T |F
t

) = e(r≠q)(T ≠t) (2.4)

Now, let us compute the characteristic function of (2.3), implicitly assuming it is con-

ditional to F
t

:

’z œ C, E(eizL

t) =

= E
C

exp
A

iz

A

(µ ≠ ‡2

2 )t + ‡W
t

+
N

tÿ

i=0

Y
i

BB D

= eiz(µ≠ ‡

2

2

)t ◊ E
C

eiz‡W

t ◊ exp
A

iz
N

tÿ

i=0

Y
i

B D

= eiz(µ≠ ‡

2

2

)t ◊ E[eiz‡W

t ] ◊ E
C

exp
A

iz
N

tÿ

i=0

Y
i

B D

Here we used the fact that the compound Poisson process and the Brownian motion are

independent. Since the exponential function is continuous, then the random variables

e iz‡W

t and e
iz

N

tÿ

i=0

Y
i

are independent. Consequently, the expected value of their product

is equal to the product of the respective expected values. Now, recalling that the

Brownian motion follows a normal distribution with mean zero and variance t, E(eiz‡W

t)

can be easily computed:

E(eiz‡W

t) = eiz‡◊0≠t

(z‡)

2

2 = e≠t

(z‡)

2

2

On the other hand, the generating moment function of the compound Poisson pro-

cess X
t

=
N

tÿ

i=0

Y
i

is given by (see Theorem A.5 in the Appendix):

’z œ C,E(eizX

t) = exp
Q

at⁄
⁄

R

(eizx ≠ 1)p(x) dx

R

b , (2.5)

where p represents the probability density function of the random variables Y
i

,

i œ {0, . . . , N
t

}.
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The moment generating function (mgf for short) of our Lévy-process (2.3) can be

finally written as:

’ z œ C,E(eizL

t) = exp
I

t

Q

aiz
1
µ ≠ ‡2

2
2

≠ (z‡)2

2 + ⁄
⁄

R

(eizx ≠ 1)p(x) dx

R

b
J

(2.6)

Under the equivalent martingale measure (EMM from now on) Q, using the fact

that the exponential function is injective and evaluating the mgf at the point z = ≠i

and (2.4) at t = 0, we get:

E(eL

T ) = e(r≠q)T

≈∆ r ≠ q = i

A

µ ≠ ‡2

2

B

◊ (≠i) ≠ ‡2(≠i)2

2 + ⁄
⁄

R

(ex ≠ 1)p(x) dx

≈∆ r ≠ q =
A

µ ≠ ‡2

2

B

+ ‡2

2 + ⁄
⁄

R

(ex ≠ 1)p(x) dx

≈∆ r ≠ q = µ + ⁄’

where ’ is defined by: ’ :=
⁄

R

(ex ≠ 1)p(x) dx.

Summing and subtracting the exponential of iz⁄t
⁄

R

xp(x) dx to the moment gener-

ating function we got, it becomes:

’z œ C,E(eizL

t) = exp
Y
]

[t

Q

aiz
1
µ ≠ ‡2

2
2

≠ (z‡)2

2 + ⁄
⁄

R

(eizx ≠ 1)p(x) dx

R

b

+ iz⁄t
⁄

R

xp(x)dx ≠ iz⁄t
⁄

R

xp(x)dx

Z
^

\. (2.7)

⁄

R

xp(x)dx is the expected value of each of the variables Y
i

, (E(Y ) for short, since

they follow the same distribution), so the last equation is equivalent to:

’z œ C,E(eizL

t) = exp
Y
]

[t

A

iz[r ≠ q ≠ ⁄’ ≠ ‡2

2 + ⁄E(Y )]

≠ ‡2

2 z2 + ⁄
⁄

R

[eizx ≠ 1 ≠ izx]p(x)dx

BZ
^

\ (2.8)
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We can now identify the Lévy triplet of this process as being equal to

(‡, r ≠ q ≠ ⁄’̃ ≠ ‡2

2 , ⁄P )

where ’̃ := ’ ≠ E(Y ) and P (x) = p(x)dx.

In Chapter 3 of [42], the author proves that the exponential of the Lévy process

(2.3) is the solution of the stochastic di�erential equation (SDE):
dS

t

S
t

= (µ ≠ ⁄’̃)dt + ‡W
t

+ (÷
t

≠ 1)dN
t

. (2.9)

Combining a Brownian motion with drift and a compound Poisson process, we

obtain the simplest case of a jump-di�usion — a process which sometimes jumps and

has a continuous but random evolution between the jump times and that is why we are

trying to model our asset dynamics using (2.3). Intuitively speaking, the di�usion part

takes into account the normal fluctuations in the risky asset’s price caused by economic

factors such as changes in capitalization rates or a temporary imbalance between supply

and demand. These are considered not to be very significant, since they only cause

marginal fluctuations in the price. The jump component is added to the di�usion

process to reflect the fact that non-marginal variations happen in discrete points in

time. These appear as a consequence of certain events such as a new product which

is going to be launched and is expected to generate significant profits to the company

or the expectation of a significant change in the political and economic regime like the

Brexit referendum which took place the last 23rd June 2016.

Nonetheless, it is now necessary to choose the density function for the jumps. Two

of the most common jump distributions are the Normal density, which is the one intro-

duced by Merton in [41] and the double-exponential, presented by Kou in [33]. These

are described in the next chapter and we shall then see how we can apply them in

option pricing.
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3

Jump-di�usion models

In this thesis, we confine ourselves to just two models: the Merton’s and the Kou’s

model.

A problem with jump di�usion models is that, in general, they do not yield a closed-

form solution for option prices; instead one has to solve them numerically. This will

be done in the next chapters, where we describe a numerical method in order to price

vanilla options. However, in the specific cases of the Merton’s and Kou’s model, it

is possible to express the solution in terms of an infinite series. This enables us, in

particular, to compare the numerical results to the analytical solution, in order to get

an idea of the error in our method.

3.1 Merton’s model

As the first to explore jump di�usion models, Merton in [41] assumes the Neperian

logarithm of the sequence of jumps Y
i

, i œ {0, . . . , N
t

} in (2.3) follows a normal dis-

tribution with mean µ
J

and variance ‡2

J

, i.e., a distribution with following associated

density function:

p(x) := 1
‡

J

Ô
2fi

exp
C

≠(x ≠ µ
J

)2

2‡2

J

D

, ’x œ R. (3.1)

Figure 3.1 represents an example of a simulation of the Merton’s model for illustra-

tion purposes.
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Figure 3.1: Simulation of a jump-di�usion path of the Merton’s model

In the horizontal axis, we represent the time in years, ranging from 0 (today) and

1. The values in the vertical axis correspond to the log-returns.

Some of the properties of this model are for example studied in [42] and we are

summarizing some of them here.

Let H(S
T

) be the value of a contingent claim at its maturity (H(S
T

) = (S
T

≠ K)+

in the case of a European call and H(S
T

) = (K ≠ S
T

)+ for a European put), H(S
t

) its

intrinsic value at time t œ [0, T ] and

HBS(S
t

, ‡, ·, r ≠ q) := e≠r· EQ[H(S
t

e(r≠q≠ ‡

2

2

)· + ‡WQ
·

)]. (3.2)

The latter corresponds to the pricing formula developed by Black-Scholes-Merton in

[10] for a European-style plain vanilla option, where it is supposed that the underlying

follows a GBM. Here, S
t

, ‡, r and q represent, respectively, the price of the underlying

asset at time t, the di�usion part associated to the Brownian motion in (2.3), the risk-

free rate and the continuous dividend yield inherent to the underlying asset. · := T ≠ t

is the time until the maturity.

Let j stand for the number of jumps occurring during the time-period · , which

follows a Poisson distribution. According to [42], the pricing formula for the Merton

model is:

HM

t

(S
t

) =
ÿ

jØ0

e≠⁄· (⁄·)j

j! HBS(S
j

© S
t

ejµ

J

+

j‡

2

J

2

≠⁄(e

µ

J

+

‡

2

J

2 ≠1)· ,

Û

‡2 + j‡2

J

·
, ·, r ≠ q) (3.3)
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As we can see, it is possible for the jump-di�usion to represent the price of a vanilla

call or a put as a weighted average of the standard Black-Scholes-Merton prices.

Define d
1

and d
2

as:

d
1

= ln(S
t

/K) + (r ≠ q + ‡2/2)(T ≠ t)
‡

Ô
T ≠ t

and

d
2

= d
1

≠ ‡
Ô

T ≠ t.

The prices of a call and put options at time t, under the BSM model, are respectively

equal to:

CallBSM

t

= e≠q(T ≠t)S
t

N (d
1

) ≠ Ke≠r(T ≠t)N (d
2

), (3.4)

PutBSM

t

= Ke≠r(T ≠t)N (≠d
2

) ≠ e≠q(T ≠t)S
t

N (≠d
1

), (3.5)

where N represents the cumulative distribution function of the standard normal law.

Using the equations above, we plot the Figures 3.2 and 3.3 for illustrative purposes.

They represent the price of vanilla options with strike equal to 100, for each spot price,

in a range from 80 to 120.

As we can observe, the value of the options under the Merton’s model in comparison

with the value under the Black-Scholes model is larger as the rate arrival of jumps

increases. It is also possible to show that this also happens when the variance of the

jump distribution increases. This was expected, since more jumps with greater variance

represent more uncertainty in the expected final payo� and lead to more potential

earnings for the option’s owner.
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Figure 3.2: Call option prices with
r = 0.05, ‡ = 0.15, q = 0, µ

J

= ≠0.9, ‡
J

= 0.45, T = 0.25.
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Figure 3.3: Put option prices with
r = 0.05, ‡ = 0.15, q = 0, µ

J

= ≠0.9, ‡
J

= 0.45, T = 0.25.
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3.2 Kou’s model

In [33], Kou suggests a jump-di�usion model based in a simple double exponential

jump-di�usion. This means the jumps Y
i

, i œ {0, . . . , N
t

} in (2.3) follow a distribution

described as follows:

p(x) := p÷
1

e≠÷

1

x11{xØ0} + (1 ≠ p)÷
2

e÷

2

x11{x<0}, ’x œ R, (3.6)

with p, ÷
1

, ÷
2

Ø 0.

For x Ø 0, the expected value of a variable with distribution (3.6) is p ◊ 1

÷

1

and for

x < 0, it is equal to (1 ≠ p) ◊ 1

÷

2

(when the respective denominators are not null). From

this observation, we interpret p as the probability of occurring an upward jump and

(1 ≠ p) the probability of occurring a downward one. Remark that the computation of

the first expected value is only possible if ÷
1

Ø 1, so that its value is finite. In practical

terms, this means that 1

÷

1

< 1, i.e, the average jump size cannot exceed 100%, which is

quite an acceptable hypothesis that we shall take in consideration from now on.

Figure 3.4 represents a simulation of the path of the log returns of an underlying,

following the dynamics described by (2.3), but this time the measure of the jumps is

given by (3.6).
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Figure 3.4: Jump-di�usion path simulation for the Kou model
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3.2.1 Incremental returns

Quoting [33], "the empirical tests performed in Ramezani and Zeng (2002) suggest

that the double exponential jump-di�usion model fits stock data better than the normal

jump-di�usion model, and both of them fit the data better than the classical geometric

Brownian motion model.". This statement corroborates the fact that the Kou model

is suitable for our purpose and one of the reasons it was chosen to price financial

derivatives. To better understand why is this true, let us first compute the incremental

return of an underlying whose price at time t is S
t

. As stated in the previous chapter,

we are assuming S
t

is the exponential of the Lévy process (2.3). Denoting by � an

incremental variation, the incremental return becomes:

�S
t

S
t

= S
t+�t

S
t

≠ 1

=
exp

IA

µ ≠ 1

2

‡2

B

(�t + t) + ‡W
t+�t

+
N

t+�tÿ

i=0

Y
i

J

exp
IA

µ ≠ 1

2

‡2

B

t + ‡W
t

+
N

tÿ

i=0

Y
i

J ≠ 1

= exp
IA

µ ≠ 1
2‡2

B

�t + ‡(W
t+�t

≠ W
t

) +
N

t+�tÿ

i=N

t

+1

Y
i

J

≠ 1.

(3.7)

If �t is su�ciently small (for instance, as when we consider daily observations),

the return can be approximated in distribution, ignoring the terms with orders higher

than �t. Considering the second order approximation in a MacLaurin series of the

exponential function (ex ¥ 1 + x + 1

2

x2), the return of the asset is approximately equal

to:

�S
t

S
t

¥
1
µ ≠ ‡2

2
2
�t + ‡(W

t+�t

≠ W
t

) +
N

t+�tÿ

i=N

t

+1

Y
i

+ 1
2

AË1
µ ≠ ‡2

2
2
�t

È
2

+2
1
µ ≠ ‡2

2
2
�t ◊

Ë
‡(W

t+�t

≠ W
t

) +
N

t+�tÿ

i=N

t
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Y
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È
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Ë
‡(W

t+�t

≠ W
t

) +
N

t+�tÿ

i=N

t

+1

Y
i

È
2

B

(3.8)
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Now, to simplify the last equation, note the following facts:

• The random variable (W
t+�t

≠ W
t

) has expected value equal to 0 and variance

�t. Concerning the compound Poisson process
N

t+�tÿ

i=N

t

+1

Y
i

, its mean is ⁄�tE(Y
i

)

and variance ⁄�tE(Y 2

i

), as proven in Theorem A.11, found in the Appendix;

• The Brownian motion and the Compound Poisson process are assumed to be

independent, so the variance of its sum is equal to sum of the respective variances.

Using the last statements, we can imply the following:

•
Ë
‡(W

t+�t

≠W
t

)+
N

t+�tÿ

i=N

t

Y
i

È
is a random variable with mean ⁄�tE(Y

i

) and variance

⁄�tE(Y 2

i

) + ‡2�t. The multiplication of this variable with 2
1
µ ≠ ‡

2

2

2
�t makes

this term of order (�t) 3

2 ;

• The expected value of the product of ‡(W
t+�t

≠ W
t

) and
N

t+�tÿ

i=N

t

Y
i

is 0 and its

variance is of order (�t)2 (it is equal to ‡2�t ◊ ⁄�tE(Y 2

i

));

•
Ë N

t+�tÿ

i=N

t

Y
i

È
2

has expected value and variance of at least order o((�t)2). The calculus

involved is not so straightforward as the previous ones, but using the independence

of the variables Y
i

, i œ {N
t

+ 1, ..., N
t+�t

}, this fact can be proven.

Gathering all this information together, the increment returns become:

�S
t

S
t

¥ µ�t + ‡
Ô

�tZ +
N

t+�tÿ

i=N

t

+1

Y
i

(3.9)

with Z ≥ N (0, 1).

Appealing to Theorem A.8, found in the Appendix, for ⁄�t small, the probability

the Poisson process N
t

having one jump is approximately ⁄�t, having none is 1 ≠ ⁄�t

and more or equal to two is 0. So, we can approximate the summation in the previous

SDE as:
N

t+�tÿ

i=N

t

+1

Y
i

¥
Y
_]

_[

Y
i

, with probability ⁄�t

0, with probability 1 ≠ ⁄�t
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Incorporating this approximation into (3.9), we can write:
�S

t

S
t

¥ µ�t + ‡
Ô

�tZ + BY, (3.10)

where B is a Bernoulli random variable with P (B = 1) = ⁄�t and P (B = 0) = 1≠⁄�t

and the distribution of Y is given by (3.6).

Notice that without the last part, BY , the last equation corresponds to the GBM,

where the incremental return of the underlying follows a normal distribution.

3.2.2 Incremental returns distribution

We are now computing the density distribution of (3.10). In first place, assume
N

t+�tÿ

i=N

t

+1

Y
i

¥ Y
i

.

The distribution of the sum of two independent variables is equal to the convolution

of the respective density functions (see Theorem A.2) and from that fact, it follows

that for any z œ R, the density function of the sum of normal and double-exponential

random variables present in (3.10) is equal to:
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where �(·) represents the cumulative normal distribution function.

On the other hand, µ�t+‡
Ô

�tZ, with Z ≥ N (0, 1), has distribution N (µ�t, ‡2�t),

so, its density function is given by:
1

‡
Ô

�t
„

1x ≠ µ�t

‡
Ô

�t

2
, ’x œ R,

where „(y) := e

≠ 1

2

y

2

Ô
2fi

, ’y œ R is the standard normal density function.

Thus, for the case
N

t+�tÿ

i=N

t

+1

Y
i

¥ 0,

the density of (3.10) corresponds to 1

‡

Ô
�t

„(x≠µ�t

‡

Ô
�t

).

Summarizing the previous results, the density function of the approximation for the

returns as described in (3.10), denominated by g, can now be written as:

g(x) = 1 ≠ ⁄�t

‡
Ô

�t
„

1x ≠ µ�t
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.

Looking at (3.10) and using expected value’s linearity, we can a�rm that the mean

of the a random variable with distribution g is µ�t + ⁄

A
p

÷

1

≠ (1≠p)

÷

2

B

�t, since the mean

of the normal distribution in (3.10) is µ�t and the one of the product of the Binomial

random variable and the variable Y is ⁄�t◊
A

p

÷

1

≠ (1≠p)

÷

2

B

. The variance is the sum of the
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variance of the normal distribution, corresponding to ‡2�t, and the one of BY , because

they are independent. Assuming also that the outcome of the Bernoulli’s variable is in

nothing correlated to the outcome of Y, the variance of BY is then:

V ar(BY ) = E[(BY )2] ≠ E2[BY ]

= E[B2]E[Y 2] ≠ E2[B]E2[Y ]

= E[B2](V ar[Y ] + E2[Y ]) + (V ar[B] ≠ E[B2])E2[Y ]

= E[B2]V ar[Y ] + V ar[B]E2[Y ]

= E[B]V ar[Y ] + V ar[B]E2[Y ]

= ⁄�t

I

p(1 ≠ p)
A

1
÷

1

+ 1
÷

2

B
2

+
A

p

÷2

1

+ (1 ≠ p)
÷2

2

BJ

+ �t(1 ≠ �t)
A

p

÷
1

≠ (1 ≠ p)
÷

2

B
2

.

Therefore, the variance of the density function g is given by:

‡2�t + ⁄�t

I

p(1 ≠ p)
A

1
÷

1

+ 1
÷

2

B
2

+
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p

÷2

1

+ (1 ≠ p)
÷2

2

BJ

+ �t(1 ≠ �t)
A

p

÷
1

≠ (1 ≠ p)
÷

2

B
2

.

3.2.3 Empirical evidence

Figure 3.5 is a plot of the density function g, along with the one corresponding to

the normal distribution, both with the same mean and variance.

Figures 3.6, 3.7 and 3.8 represent "zoom-in" plots of the graph of g, respectively

evidencing the contrast between the peaks, left and right side tails of the normal law

and g. As we can observe, the double-exponential distribution has an asymmetric lep-

tokurtic feature for the asset returns as well as fatter tails than the normal distribution

with the same mean and variance. The parameters used were the same as in [33].

Kou’s model fits a commonly observed behaviour in the markets: an overreaction

and under-reaction to various good or bad news. More precisely, in the absence of

outside news, the asset price simply follows a GBM. Good or bad news arrive according

to a Poisson process, and the asset price changes in response, depending on the jump

size distribution. Because the double exponential distribution has both a high peak
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Figure 3.5: Plot of the density function g and the normal distribution.
The parameters used were:

µ = 0.15, ‡ = 0.20, ⁄ = 10, ÷
1

= 50, ÷
2

= 25, p = 0.3.
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Figure 3.6: Peak

and heavy tails, it can be used to model both the overreaction (attributed to the heavy

tails) and under-reaction (attributed to the high peak) to outside news. Therefore, the
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Figure 3.7: Left side tail
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Figure 3.8: Right side tail

double exponential jump-di�usion model can be interpreted as an attempt to build a

simple model, within the traditional random walk and e�cient market framework to

incorporate investors’ sentiment. Besides, it also allows for a simple pricing of more

complicated and exotic options like path-dependent options as Kou states in [33]. This

simplicity makes this model quite popular in the literature, representing an improve-

ment in comparison to the BSM model, while it maintains its analytical tractability.
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3.2.4 Option pricing

In order to obtain prices for vanilla options and other financial securities, [33] uses

semi-closed formulas which are also used in [42]. However, we are presenting a di�erent

approach, based on the framework of Bakshi, Madan, Green and Heston. On page 218

of [3], these authors suggest pricing European vanilla options based on the characteristic

function of the random process we consider. This way, the reader has an alternative

way for obtaining vanilla option prices which only requires the numerical valuation of

integrals. For the Kou’s model case, using (2.2), we can compute the characteristic

function of a Lévy process L
t

, denoted by „
L

t

, with a double exponential jump size

distribution (3.6) in the following way (for more details, see [44]):

„
L

t

(u) := E[eiuL

t ] = e
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Ë
iuµ≠ ‡

2

u

2

2

+iu⁄

1
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≠iu
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2

+iu
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, (3.11)

where µ =
1
r ≠ q ≠ ‡

2

2

2
.

Using equation (3.11), we can get the characteristic function of the random variable

ln(S
t

) which we denote by „
ln(S

t

)

.

The prices of European-style options are then computed as:

CallEur

t

= S
t

e≠q(T ≠t)�
1

≠ Ke≠r(T ≠t)�
2

, (3.12)

PutEur

t

= Ke≠r(T ≠t)(1 ≠ �
2

) ≠ S
t

e≠q(T ≠t)(1 ≠ �
1

), (3.13)

where

�
1

= 1
2 + 1

fi

+Œ⁄

0
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1e≠iuln(K)„

ln(S

T

)

(u ≠ i)
iu„

ln(S
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)

(≠i)
2
du, (3.14)

�
2

= 1
2 + 1

fi

+Œ⁄

0

Re
1e≠iuln(K)„

ln(S

T

)

(u)
iu

2
du. (3.15)

The integrals above can be calculated using, for example, a Gauss-Legendre quadra-

ture, as done in [21].

The same way we did for Merton, we plot the price of vanilla options, for each spot

price, in a range from 80 to 120, with strike equal to 100, using the formulas above (see

Figures 3.9 and 3.10 below). The same conclusions are reached as for Merton’s model:
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an increase on the jump intensity leads to an option price increase and for any case, an

option price under Kou’s model is more expensive than one priced with BSM model.
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Figure 3.9: Call option prices with
r = 0.05, ‡ = 0.15, T = 0.25, K = 100,

q = 0, ⁄ = 0.10, ÷
1

= 3.0465, ÷
2

= 3.0775, p = 0.3445.
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Figure 3.10: Put option prices with
r = 0.05, ‡ = 0.15, T = 0.25, K = 100,

q = 0, ⁄ = 0.10, ÷
1

= 3.0465, ÷
2

= 3.0775, p = 0.3445.
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4

Incomplete markets

As mentioned in Chapter 2, the assumption that the trading of assets takes place

without arbitrage opportunities leads to the existence of a martingale measure Q and

the discounted process, (S̃
t

)
tØ0

, is a martingale in the probability space (�, F ,Q).

Now, a fundamental question naturally arises: is this measure unique? The answer

is: No. In the Lévy models context, there might be several measures that turn the

discounted process (S̃
t

)
tØ0

a martingale. As a consequence of the Second Fundamental

Theorem of Asset Pricing, the market is not complete. This means that it is not possible

to construct a self-financing trading portfolio that eliminates the risk of an existing

position. In other words, if we acquire a certain financial product, such as a vanilla

option, it will not be possible to trade other assets at inception of its acquisition, in

such a way we guarantee a perfect hedging. For a better understading of these concepts,

we suggest the reading of [9].

We are now giving some insight on why are markets incomplete when assets are

driven by Lévy processes, based on [45]. The goal is not at all to present an exhausting

prove of this claim, but to provide some results which give an idea of its veracity.

Accomplished this goal, we then suggest a measure from among the infinite number of

possible choices.
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4.1 The Lévy measure

A convenient tool for analyzing the jumps of a Lévy process is the random measure

of jumps of the process. Consider a set A œ B(R \ {0}), where B(R \ {0}) is the Borel

‡-algebra on R \ {0}, such that 0 /œ Ā. Letting 0 Æ t Æ T , the random measure of the

jumps of the process L is defined by:

’Ê œ �, µL(Ê; t, A) := #{0 Æ s Æ t : �L
s

(Ê) œ A} =
ÿ

sÆt

11
A

(�L
s

(Ê)). (4.1)

Hence, the measure µL(Ê; t, A) counts the jumps of the process L of size A up to

time t. It is possible to prove that µL is a Poisson random measure and that its intensity,

defined by

‹(A) = E[µL(1, A)] = E[
ÿ

sÆ1

(�L
s

(Ê))] (4.2)

is a ‡-finite measure on R \ {0}, In (4.2), the first argument Ê was suppressed for

simplification purposes.

µL(1, A) measures the number of jumps of size A until t = 1. Thus, the indicator

function in (4.1) equals 1, when the jump is of size A and 0 otherwise. This is how we

obtain the last equality in (4.2).

4.2 Incompleteness evidence

Let Q be a probability measure on F , equivalent to P. Its Radon-Nikodym deriva-

tive dQ
dP is a non-negative integrable random variable, so, using tower’s law, it is not

di�cult to see that the process Z
t

= EP
Ë

dQ
dP |F

t

È
, ’ 0 Æ t Æ T , is a martingale under the

probability P and its expected value under this measure equals 1.

To formalize the result in last paragraph, we present the following theorem, found

in [45].

Theorem 4.1. Given two equivalent measures P and Q, there exists a unique, positive,

P-martingale Z = (Z
t

)
0ÆtÆT

such that Z
t

= EP
Ë

dQ
dP |F

t

È
, ’ 0 Æ t Æ T . Z is called the

density process of Q with respect to P.
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Let L = (L
t

)
0ÆtÆT

be a Lévy process with triplet (a, b, ‹) under P, with finite first

moment. Then, L has the canonical decomposition:

L
t

= bt +
Ô

aW
t

+
⁄

t

0

⁄

R
x(µL ≠ ‹L)(ds, dx).

As referred in [47], in the last stochastic integral of the previous expression, ‹L

represents the compensator of the Poisson random measure µL and it is a product

measure of the Lévy with the Lebesgue measures, letting us therefore write ‹L(ds, dx)

as ‹L(dx)ds.

This author also proves that if P ≥ Q with density process Z, there exists a deter-

ministic process — and a measurable non-negative deterministic process Y , satisfying
⁄

t

0

⁄

R
|x(Y (s, x) ≠ 1)|‹(dx)ds < Œ

and
⁄

t

0

(a—2

s

)ds < Œ,

Q-a.s. for 0 Æ t Æ T .

Under the new measure, W̃
t

= W
t

≠
⁄

t

0

(
Ô

a—
s

)ds is a Brownian motion, ‹̃L(ds, dx) =

Y (s, x)‹L(ds, dx) is the Q-compensator of µL and L has the following canonical decom-

position under Q:

L
t

= b̃t +
Ô

aW̃
t

+
⁄

t

0

⁄

R
x(µL ≠ ‹L)(ds, dx),

where b̃t = bt +
⁄

t

0

a—
s

ds +
⁄

t

0

⁄

R
x(Y (s, x) ≠ 1)‹L(ds, dx).

For what we purposed to show, we can suppose, without loss of generality, that —

and Y previously mentioned are deterministic and independent of time. Then, in this

case:

b̃ = b + a— +
⁄

R
x(Y ≠ 1)‹L(dx).

Under the risk neutral measure Q, the asset price has mean rate of return µ = r ≠ q

and the discounted process (S̃
t

)
0ÆtÆT

is a martingale under Q. Therefore, according to
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[47], the drift term b̃ takes the form

b̃ = r ≠ q ≠ ã

2 ≠
⁄

R
(ex ≠ 1 ≠ x)‹̃L(dx). (4.3)

Using this equation, we can now show why it is not possible to establish the existence

of a unique martingale measure. Assume that the price process of a financial asset

is modeled as an exponential Lévy process under both the real and the risk-neutral

measure. Suppose that these measures, denoted P and Q, are equivalent and consider

the triplets of the Lévy processes under P and Q respectively are (a, b, ‹) and (ã, b̃, ‹̃).

Now, as seen earlier, these triplets are related via ã = a, ‹̃ = Y ‹ and

b̃ = b + a— +
⁄

R
x(Y ≠ 1)‹L(dx), (4.4)

where (—, Y ) is the tuple of functions related to the density process. On the other hand,

equating (4.3) and (4.4) and using ã = a, ‹̃L = Y ‹, we have that

0 = b + a— +
⁄

R
x(Y ≠ 1)‹L(dx) ≠ r + q + ã

2 +
⁄

R
(ex ≠ 1 ≠ x)‹̃(dx)

≈∆ 0 = b ≠ r + q + a
1
— + 1

2
2

+
⁄

R

1
(ex ≠ 1)Y ≠ x

2
‹L(dx). (4.5)

Therefore, we have one equation, but two unknown parameters, — and Y , stemming

from the change of measure. Every solution tuple (—, Y ) of equation (4.5) corresponds

to a di�erent equivalent martingale measure, which explains why the market is not

complete.

Now, we are left to choose a martingale measure in order to proceed with pricing.

4.3 The Esscher transform

One of the most referred measures in the literature, as for instance in [25], is the

called Esscher transform. Gerber and Shiu in [25] were the first to show that it can

be used in option pricing and provide an interpretation of this approach in terms of

maximal expected utility.

Definition 4.2. The Esscher transform is any change of P to a locally equivalent
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measure Q with a density process Z
t

= dQ
dP

---
F

t

of the form

Z
t

= e◊L

t

mgf(◊)t

,

where ◊ œ R, and mgf(◊) denotes the moment generating function of L
1

.

In stock price modeling, the Esscher transform is an useful tool for finding an equiv-

alent probability measure under which discounted stock prices are martingales. Accord-

ing to [47], it is necessary and su�cient for its existence that the following condition is

verified, for at least one value ◊:

mgf(◊) = mgf(◊ + 1). (4.6)

If this equation has a solution, we guarantee that Q defines an EMM and L
t

becomes

a Lévy process under Q. This is indeed the fact in particular for the Merton and Kou’s

models, because the logarithm of the moment generating function, ln[mgf(u)], is strictly

convex for a non-degenerate distribution, as proved in the next theorem.

Theorem 4.3. Let µ be a non-degenerate probability measure on (R, B(R)) which pos-

sesses a moment generating function. Then, the logarithm of this moment generating

function possesses a strictly positive second derivative on the interior of its range of

existence. In particular, it is strictly convex on its range of existence.

Proof. Consider an arbitrary value u from the interior of the range of existence of the

moment generating function. The second derivative of the logarithm of the moment

generating function, taken at u is:

d2

du2

1
ln(mgf (u))

2
= mgf”(u)mgf(u) ≠ [mgf’(u)]2

mgf(u)2

=
s

x2euxµ(dx)
s

euxµ(dx) ≠
Cs

xeuxµ(dx)
s

euxµ(dx)

D
2

.

The last algebraic expression corresponds to the variance of the non-degenerate

distribution e

uxs
e

ux

µ(dx)

µ(dx), so it is strictly positive.

In order to prove our claim, first remark that since the logarithm function is injective,

finding a solution to equation (4.6) is equivalent to solve the following:

ln(mgf(◊ + 1)) ≠ ln(mgf(◊)) = ln(1)
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Applying the mean value theorem to the left-hand side function in the previous

equation, we know there exists › œ]◊, ◊ + 1[ such that:
d

d◊

1
ln(mgf(◊ + 1)) ≠ ln(mgf(◊))

2
= [ln(mgf)]ÕÕ(›)

We already proved the second derivative of the last term is strictly positive, so

ln(mgf) is then a function with positive first derivative. This in particular means the

left hand side function has an inverse and consequently, (4.6) has a unique solution. ⌅

4.3.1 The relative entropy

The reason for the choice of an Esscher transform is due to the fact that, as shown

in [19], for exponential Lévy models, it corresponds to the minimal entropy martingale

measure, i.e., the equivalent martingale measure which minimizes the relative entropy

and it has also the property of preserving the Lévy structure of the model. For more

clarification on this topic, we suggest the reading of [47] and also of [25]. Borrowing

notation from [24], we define the relative entropy as follows:

Definition 4.4. Let G be a sub-sigma field of F . The relative entropy of Q with respect

to P is:

HG(Q|P) :=

Y
___]

___[

⁄

�

ln
1dQ

dP

-----
G

2
dQ, if Q π P on G

+Œ, if Q ”π P on G

where dQ
dP

---
G

stands for the Radon-Nikodym derivative of Q|G with respect to P|G and

Q π P means Q is absolutely continuous with respect to P.

Intuitively speaking, if one thinks of the measure P as encapsulating some informa-

tion about how the market behaves, then pricing options by Esscher transform amounts

to choosing the equivalent martingale measure which is closest to P in terms of its in-

formation content.

We have now su�cient "ammunition" to build a method for pricing financial deriva-

tives and that is exactly what it will be done in the next Chapter.
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5

The PIDE

In this section, we briefly explain a partial integro-di�erential equation (PIDE)

whose solution will be approximated numerically in the next sections. The PIDE we

are going to introduce captures the dependence between the time and space variables,

having consequently significant importance for our purposes.

Let {w(t, S
t

)}
tØ0

be the value of a European contingent claim on the asset S and

H(S
T

) := w(T, S
T

) its value at the maturity.

Considering that we are working in a "free-arbitrage scenario", the discounted value

process {e≠rtw(t, S
t

)}
tØ0

is a martingale under the risk-neutral measure Q and thus,

’ t Ø 0,

e≠rtw(t, S
t

) = EQ[e≠rT w(T, S
T

)|F
t

] ≈∆ er(T ≠t)w(t, S
t

) = EQ[H(S
T

)|F
t

]. (5.1)

Since S
T

= S
0

eL

T and S
t

= S
0

eL

t , dividing S
T

by the latter and then using the

process’ stationarity, we have:
S

T

S
t

= S
0

eL

T

S
0

eL

t

≈∆ S
T

= S
t

eL

T ≠t .

Therefore, equation (5.1) becomes equivalent to:

er(T ≠t)w(t, S
t

) = EQ[H(S
t

eL

T ≠t)|F
t

].

Generalizing, we finally get:

w(t, s) = e≠r(T ≠t)EQ[H(seL

T ≠t)|F
t

].

Let us apply the change of variables x=ln(s) and write v(t, x) := w(t, ex). Since
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s = ex, this modification leads to the equality

v(t, x) = e≠r(T ≠t)EQ[H(ex+L

T ≠t)|F
t

]

Theorem 5.1. Suppose that the function v(t, x) that has just been defined belongs to

the set C1,2([0, T [◊R) fl C0([0, T [◊R) and assume
⁄

R

|x|d‹(x) < Œ.

Then, v(t,x) satisfies the following PIDE:

v
t

+ a

2v
xx

+ bv
x

≠ rv +
⁄

R

(v(t, x + y) ≠ v(t, x) ≠ v
x

(t, x)y)d‹(y) = 0, (5.2)

’ (t, x) œ [0, T [ ◊R, with final condition v(T, x) = H(ex), ’x œ R.

v
x

and v
xx

respectively denote the first and second order derivatives of v in respect

to x and v
t

the first derivative of v in respect to t.

Proof. See Proposition 1.12 of [47]. ⌅

In the equation above and from now on, every time we write v, we mean v(t, x).

Recalling that for the process (2.3), we have

a = ‡2, b =
1
r ≠ q ≠ ⁄Â’ ≠ ‡2

2
2
, ‹ = ⁄P (y),

the PIDE (5.2) corresponds to:

v
t

+ 1
2‡2v

xx

+
1
r ≠ q ≠ ⁄Â’ ≠ ‡2

2
2
v

x

≠ rv +
⁄

R

[v(t, x + y) ≠ v(t, x) ≠ v
x

(t, x)y]⁄dP (y) = 0,

with terminal condition v(T, x) = H(ex), ’x œ R.

Using the definition of Â’, noticing that v(t, x) and v
x

(t, x) do not depend on y and

applying the integral’s linearity, the last equation becomes equal to:

v
t

+ 1
2‡2v

xx

+
1
r ≠ q ≠ ⁄(’ ≠ E[Y ]) ≠ ‡2

2
2
v

x

≠ rv

+ ⁄

C ⁄

R

v(t, x + y) dP (y) ≠ v(t, x)
⁄

R

dP (y) ≠ v
x

(t, x)
⁄

R

y dP (y)
D

= 0.

⁄

R

dP (y) = 1, because it is the integral over R of a probability’s density function

and
⁄

R

y dP (y) = E[Y ]. Thus, we get:

v
t

+ 1
2‡2v

xx

+
1
r ≠ q ≠ ⁄’ + ⁄E[Y ] ≠ ‡2

2
2
v

x

≠ rv
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+ ⁄
⁄

R

v(t, x + y) dP (y) ≠ ⁄v ≠ ⁄v
x

◊ E[Y ] = 0

≈∆ v
t

+ 1
2‡2v

xx

+
1
r ≠ q ≠ ⁄’ ≠ ‡2

2
2
v

x

≠ (r + ⁄)v + ⁄
⁄

R

v(t, x + y) dP (y) = 0 (5.3)

Therefore, we conclude that v is the solution of the PIDE with constant coe�cients

(5.3) and terminal condition v(T, x) = H(ex), ’x œ R, and dP (y) = p(y)dy.

Finally, the time variable is transformed to obtain a forward problem in time. If we

set u(·, ·) := v(T ≠ ·, ·) and thereafter multiply both sides of equation (5.3) by (≠1),

it becomes:

u
·

= 1
2‡2u

xx

+
1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
u

x

≠ (r + ⁄)u + ⁄
⁄

R

u(·, x + y) dP (y),

i.e.,

u
·

= 1
2‡2u

xx

+
1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
u

x

≠ (r + ⁄)u + ⁄
⁄

R

u(·, z)p(z ≠ x) dz, (5.4)

’ (·, z) œ [0, T [ ◊R+, with initial condition u(0, x) = H(ex), ’x œ R.

This is true, because ˆv

ˆt

= ˆu

ˆ·

ˆ·

ˆt

= ≠ˆu

ˆ·

; ˆv

ˆx

= ˆu

ˆx

and ˆ

2

v

ˆx

2

= ˆ

2

u

ˆx

2

.

For the Merton model,

’ =
⁄

R

(ex ≠ 1)dF
Merton

(x)

= 1
Ò

2fi‡2

J

⁄

R

e
x≠ (x≠µ

J

)

2

2‡

2

J dx ≠ 1

= 1
Ò

2fi‡2

J

⁄

R

e
2x‡

2

J

≠x

2

+2xµ

J

≠µ

2

J

2‡

2

J dx ≠ 1

= 1
Ò

2fi‡2

J

⁄

R

e
≠

x

2≠2x(µ

J

+‡

2

J

)+µ

2

J

2‡

2

J dx ≠ 1

= 1
Ò

2fi‡2

J

⁄

R

e
≠

(x≠(µ

J

+‡

2

J

))

2≠(µ

J

+‡

2

J

)

2

+µ

2

J

2‡

2

J dx ≠ 1

= 1
Ò

2fi‡2

J

⁄

R

e
≠

(x≠(µ

J

+‡

2

J

))

2≠2µ

J

‡

2

J

≠(‡

2

J

)

2

2‡

2

J dx ≠ 1
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= e
≠

≠2µ

J

‡

2

J

≠(‡

2

J

)

2

2‡

2

J

1
Ò

2fi‡2

J

⁄

R

e
≠

(x≠(µ

J

+‡

2

J

))

2

2‡

2

J dx ≠ 1

= eµ

J

+

‡

2

J

2 ≠ 1.

In Kou’s model case:

’ =
⁄

R

(ex ≠ 1)dF
Kou

(x)

= (1 ≠ p)÷
2

0⁄

≠Œ

ex(1+÷

2

)dx + p÷
1

+Œ⁄

0

ex(1≠÷

1

)dx ≠ 1

= (1 ≠ p)÷
2

1 + ÷
2

+ p÷
1

÷
1

≠ 1 ≠ 1.
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6

Localization error estimates

In order to numerically solve the PIDE (5.4), we first localize the variables and

the integral term to bounded domains, i.e., we have to restrict the domain R of the

spatial variable to a bounded interval. In what follows, we will mainly focus on pricing a

European-style put, thus particularizing the results for this type of option. Nevertheless,

using the put-call parity, it is possible to obtain the price of a European-style call option

and most of the results below can be extended to more complex payo�s, with the right

adjustments. Most of the results presented from now on are based in the articles of

Kwon and Lee [37] and Almendral and Osterlee [1].

It is well-known that the asymptotic behavior of the price of a European put option

is described by

lim
xæ≠Œ

Ë
u(·, x) ≠ (Ke≠r· ≠ ex)

È
= 0, and (6.1)

lim
xæ+Œ

[u(·, x)] = 0. (6.2)

Let us consider ū(·, x) as the solution of the following localized problem with the

asymptotic behavior given by the previous equations:

ū
·

(·, x) = Lū(·, x), (·, x) œ ]0, T ] ◊ ] ≠ X, X[ (6.3)

ū(·, x) = g(·, x), x œ R \ ] ≠ X, X[ (6.4)

ū(0, x) = h(x), x œ ] ≠ X, X[ (6.5)

where X > 0, g(·, x) := (Ke≠r· ≠ ex)+, h := H(ex) and L is the integro-di�erential

linear operator:
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Lū(·, x) := 1
2‡2ū

xx

+ (r ≠ q ≠ 1
2‡2 ≠ ⁄’)ū

x

≠ (r + ⁄)ū + ⁄
⁄

R

ū(·, x)p(z ≠ x) dz. (6.6)

We describe the relationship between the solution u of (5.4) and the solution ū(·, x)

in the following theorem, as proved in [15].

Theorem 6.1. Suppose that h is bounded (ÎhÎŒ < Œ) and there exists – > 0 such

that
⁄

ÎxÎ>1

e–ÎxÎd‹(x) < Œ.

Then

|u(·, x) ≠ ū(·, x)| Æ CÎhÎŒe≠–(X≠|x|), ’x œ ] ≠ X, X[, (6.7)

where C is a constant not depending on x.

In the case of a put option, ÎhÎŒ < Œ, because, ÎhÎŒ is at most equal to K and

the second hypothesis is also verified due to the martingale property (see [15] for more

details on this). Thus, the last theorem applies to the case of a put option. From (6.7),

we can also see that the localization error is more pronounced near the boundary.
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7

Numerical implementation for

European options

In this chapter, we concentrate on a straightforward numerical scheme for solving

the initial valued PIDE:

u
·

(·, x) = Lu(·, x), (·, x) œ ]0, T ] ◊ ] ≠ X, X[ (7.1)

u(·, x) = g(·, x), x œ R \ ] ≠ X, X[ (7.2)

u(0, x) = h(x), x œ ] ≠ X, X[ (7.3)

where X > 0, L is the integro-di�erential linear operator defined in equation (6.6),

h(x) := H(ex) and g(·, x) := (Ke≠r· ≠ ex).

Let us split the operator L into three parts as follows:

Lu(·, x) = Du(·, x) + Iu(·, x) ≠ (r + ⁄)u(·, x),

where D is the di�erential operator of L and I is its integral operator such that:

Du(·, x) := ‡2

2 u
xx

(·, x) + (r ≠ q ≠ 1
2‡2 ≠ ⁄’)u

x

(·, x), and (7.4)

Iu(·, x) := ⁄
⁄

R

u(·, z)p(z ≠ x) dz. (7.5)

In order to numerically approximate the integral term Iu in (7.5), we split it into

two regions: � := [≠X, X] and R\�. On the complement of the computational domain,

we use the boundary conditions

u(·, x) ¥ Ke≠r· ≠ ex on ] ≠ Œ, ≠X[, and

u(·, x) ¥ 0 on ]X, +Œ[.

Over R \ �, (7.5) is then given by:
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‘(·, x, X) =
≠X⁄

≠Œ

(Ke≠r· ≠ ez)p(z ≠ x) dz (7.6)

In the case of the Merton model, the jump density function p is defined in (3.1) and

thus:

‘(·, x, X) =
≠X⁄

≠Œ

(Ke≠r· ≠ ez) 1
Ò

2fi‡2

J

e
≠ (z≠x≠µ

J

)

2

2‡

2

J dz

=
≠X⁄

≠Œ

Ke≠r·

1
Ò

2fi‡2

J

e
≠ (z≠x≠µ

J

)

2

2‡

2

J dz

¸ ˚˙ ˝
:=A

≠
≠X⁄

≠Œ

1
Ò

2fi‡2

J

e
≠

≠2z‡

2

J

+(z≠x≠µ

J

)

2

2‡

2

J dz

¸ ˚˙ ˝
:=B

,

where

• A = Ke≠r· �
C

≠ X + x + µ
J

‡
J

D

and

• B =
≠X⁄

≠Œ

1
Ò

2fi‡2

J

e
≠

z

2≠2z(‡

2

J

+x+µ

J

)+(x+µ

J

)

2

2‡

2

J dz

=
≠X⁄

≠Œ

1
Ò

2fi‡2

J

e
≠

[z≠(‡

2

J

+x+µ

J

)]

2≠(‡

2

J

)

2≠2‡

2

J

(x+µ

J

)

2‡

2

J dz

= e
‡

2

J

2

+µ

J

+x

≠X⁄

≠Œ

1
Ò

2fi‡2

J

e
≠

[z≠(‡

2

J

+x+µ

J

)]

2

2‡

2

J dz

= e
‡

2

J

2

+µ

J

+x�
C

≠ X + ‡2

J

+ µ
J

+ x

‡
J

D

.

Subtracting B to A:

‘(·, x, X) = Ke≠r· �
C

≠ X + x + µ
J

‡
J

D

≠ e
‡

2

J

2

+µ

J

+x�
C

≠ X + ‡2

J

+ µ
J

+ x

‡
J

D

. (7.7)

For the Kou model, its density p is defined in (3.6) and consequently:

‘(·, x, X) =
≠X⁄

≠Œ

(Ke≠r· ≠ ez)[p÷
1

e≠÷

1

(z≠x)11{(z≠x)Ø0} + (1 ≠ p)÷
2

e÷

2

(z≠x)11{(z≠x)<0}] dz
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=
≠X⁄

≠Œ

Ke≠r· (1 ≠ p)÷
2

e÷

2

(z≠x) ≠
≠X⁄

≠Œ

(1 ≠ p)÷
2

ez(÷

2

+1)≠÷

2

x dz

= K(1 ≠ p)e≠r·≠÷

2

(X+x) ≠ (1 ≠ p) ÷
2

÷
2

+ 1e≠÷

2

x≠X(1+÷

2

). (7.8)

We remark that the first indicator function is equal to zero, since z lies in ]≠Œ, ≠X[

and x œ] ≠ X, X[. This means that (z ≠ x) is always non-positive.

7.1 Time and Space grid

In this section, we present a uniform grid of the time and space domains with the

goal of then applying a finite di�erences discretization to the approximated solution of

our problem (7.1)-(7.3).

Consider a uniform mesh in space and another in time, i.e., let us take uniform mesh

points on the truncated domain [0, T ] ◊ [≠X, X]. Choosing positive integers N and M ,

larger than 1, we define by k the ratio T

M≠1

and by h the quotient 2X

N≠1

, creating the

points x
i

= ≠X + (i ≠ 1)h , ’i œ {1, ..., N} and ·
m

= (m ≠ 1)k, ’m œ {1, ..., M}. After

considering these partitions, we define an approximation of the value of u in the point

·
m

and x
i

as um

i

, that is, um

i

¥ u(·
m

, x
i

) and p
ij

:= p(x
j

≠ x
i

).

For the integral approximation of (7.5), we use the composite trapezoidal rule on

[≠X, X], which leads to:
⁄

R

u(·
m

, z)p(z ≠ x
i

) dz ¥ h

2 [um

1

p
i,1

+ um

N

p
i,N

+ 2
N≠1ÿ

j=2

um

j

p
i,j

] + ‘(·
m

, x
i

, X), (7.9)

where i œ {2, ..., N ≠ 1}.

7.2 Approximation by finite di�erences

For the time and space variables, we approximate them by the following finite dif-

ferences:

u
·

(·
m

, x
i

) ¥ um+1

i

≠ um≠1

i

2k
, (7.10)
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u
xx

(·
m

, x
i

) ¥ 1
2

A
um+1

i+1

≠ 2um+1

i

+ um+1

i≠1

h2

+ um≠1

i+1

≠ 2um≠1

i

+ um≠1

i≠1

h2

B

, (7.11)

and u
x

(·
m

, x
i

) ¥ 1
2

A
um+1

i+1

≠ um+1

i≠1

2h
+ um≠1

i+1

≠ um≠1

i≠1

2h

B

, (7.12)

’i œ {2, ..., N ≠ 1}, m œ {2, ..., M ≠ 1}.

As mentioned in [37], at a mesh point (·
m

, x
i

) we approximate the first-order time

derivative by the central di�erence with the second-order accuracy and the second-order

spatial derivative by the average of the second-order central di�erences on the (m≠1)th

and the (m+1)th time levels. We also approximate the first-order spatial derivative by

the average of the central di�erences (m ≠ 1)th and the (m + 1)th time levels. Three

time levels are involved in this approximation scheme, which is very similar to the

Crank–Nicholson scheme. For an insight on how to get the mentioned approximations,

the reading of section A.3 in Appendix is advised.

7.3 Numerical scheme

The operators D, I, and L at each mesh point (·
m

, x
i

) can be approximated by

discrete operators D
�

, I
�

and L
�

:

Dum

i

¥ D
�

A
um+1

i

+ um≠1

i

2

B

, Ium

i

¥ I
�

um

i

, Lum

i

¥ L
�

um

i

,

where the finite di�erence operator D
�

and the discrete integral operator I
�

are defined

by:

D
�

um

i

:= ‡2

2
um

i+1

≠ 2um

i

+ um

i≠1

h2

+
1
r ≠ q ≠ ⁄’ ≠ ‡2

2
2um

i+1

≠ um

i≠1

2h
, (7.13)

I
�

um

i

:= ⁄h

2

C

um

1

p
i,1

+ um

N

p
i,N

+ 2
N≠1ÿ

j=2

um

j

p
i,j

D

+ ⁄‘(·
m

, x
i

, X). (7.14)

The discrete operator L
�

is defined as:

L
�

um

i

:=

Y
___]

___[

D
�

um

i

+ I
�

um

i

≠ (r + ⁄)um

i

, if m = 2

D
�

3
u

m+1

i

+u

m≠1

i

2

4
+ I

�

um

i

≠ (r + ⁄)um

i

, if m Ø 3

As the reader might have noticed, the above discretization method of the integro-
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di�erential operator Lu involves three time levels. This is why the numerical method

we are introducing is called as the "implicit method with three time levels". Besides,

we need two initial values on the first and second time levels in order to obtain the

solution in the following ones. The value u1 on the first time level is provided by the

payo� function, and the value u2 on the second time level can be obtained by applying

the explicit method to the integro-di�erential operator Lu.

Summarizing, as an approximate value of the solution um

i

, we seek ũm

i

which is the

solution of the following time-stepping problem:

Initial condition:

ũ1

i

= h(x
i

), for 1 Æ i Æ N.

Boundary condition:

ũm

i

= g(·
m

, x
i

), for 2 Æ m Æ M and i œ {1, N}.

For m = 2:
ũm

i

≠ ũm≠1

i

k
= D

�

ũm≠1

i

+ I
�

ũm≠1

i

≠ (r + ⁄)ũm≠1

i

, for 2 Æ i Æ N ≠ 1. (7.15)

For 2 < m Æ M :
ũm

i

≠ ũm≠2

i

2k
= D

�

1 ũm

i

+ ũm≠2

i

2
2

+ I
�

ũm≠1

i

≠ (r + ⁄)ũm≠1

i

, for 2 Æ i Æ N ≠ 1. (7.16)
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8

Consistency, stability and

convergence

We now proceed with the analysis of consistency, stability, and convergence of the

implicit method presented in the end of the last section.

8.1 Consistency

In simple words, we analyse the local (truncation) error of the described numerical

method, defined as the error committed by one step of the method. That is, it is the

di�erence between the result given by the method, assuming that no error was made

in earlier steps, and the exact solution. The discretization of a PIDE should become

exact as the mesh size tends to zero when considering a consistent numerical scheme,

i.e., the truncation error should vanish.

Theorem 8.1. Let v œ CŒ(]0, T ] ◊ [≠X, X]) satisfy the initial and boundary conditions

(7.2) and (7.3). For any (·
m

, x
i

) œ ]0, T ] ◊ ] ≠ X, X[, the following result is valid when

considering su�ciently small h and k:

For m = 1 :

v
·

(·
m

, x
i

) ≠ Lv(·
m

, x
i

) ≠
A

v(·
m+1

, x
i

) ≠ v(·
m

, x
i

)
k

≠ L
�

v(·
m

, x
i

)
B

= O(k + h2). (8.1)

For m Ø 2 :

v
·

(·
m

, x
i

) ≠ Lv(·
m

, x
i

) ≠
A

v(·
m+1

, x
i

) ≠ v(·
m≠1

, x
i

)
2k

≠ L
�

v(·
m

, x
i

)
B

= O(k2 + h2).

(8.2)
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Proof. See [37]. ⌅

8.2 Stability

In this section, we shall investigate the stability of the implicit method we have

been considering by using the Von Neumann analysis (see [50] for more details). In a

nutshell, the term stability designates that any numerical errors, introduced at some

stage of the calculations, are propagated in a mild fashion – i.e. do not blow up in the

subsequent steps of the method.

Define

–
1

= ‡2

h2

≠ 1
h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
,

–
2

= 2‡2

h2

,

–
3

= ‡2

h2

+ 1
h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
.

The operator D
�

can then be rewritten as:

D
�

um

i

= um

i≠1

C
‡2

2h2

≠
1
r ≠ q ≠ ⁄’ ≠ ‡

2

2

2

2h

D

≠ 1
2um

i

12‡2

h2

2
+ um

i+1

C
‡2

2h2

+

1
r ≠ q ≠ ⁄’ ≠ ‡

2

2

2

2h

D

= –
1

2 um

i≠1

≠ –
2

2 um

i

+ –
3

2 um

i+1

.

Let us focus our attention to (7.16), that is, consider i œ {2, ..., N ≠ 1} and m > 2.

We have:
ũm

i

≠ ũm≠2

i

2k
= 1

2
–

1

ũm

i≠1

≠ –
2

ũm

i

+ –
3

ũm

i+1

+ –
1

ũm≠2

i≠1

≠ –
2

ũm≠2

i

+ –
3

ũm≠2

i+1

2 ≠ (r + ⁄)ũm≠1

i

+ ⁄h

2

C

ũm≠1

1

p
i,1

+ 2
N≠1ÿ

j=2

ũm≠1

j

p
i,j

+ um≠1

N

p
i,N

D

+ ⁄‘(·
m≠1

, x
i

, X)

≈∆

≠ –
1

k

2 ũm

i≠1

+
1
1 + –

2

k

2
2
ũm

i

≠ –
3

k

2 ũm

i+1

= –
1

k

2 ũm≠2

i≠1

+
1
1 ≠ –

2

k

2
2
ũm≠2

i

+ –
3

k

2 ũm≠2

i+1

≠ 2k(r + ⁄)ũm≠1

i

+ ⁄hk

C

ũm≠1

1

p
i,1

+ 2
N≠1ÿ

j=2

ũm≠1

j

p
i,j

+ um≠1

N

p
i,N

D

+ 2k⁄‘(·
m≠1

, x
i

, X) (8.3)
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For stability analysis purposes, we neglect the last term in the right-hand side of

the previous equation, because it does not depend on ũ. Replacing um

i

by gmei(i◊) and

subsequently dividing the equation by gm≠2ei(i◊), we obtain:

≠ –
1

k

2g2e≠i◊ +
A

1 + –
2

k

2

B

g2 ≠ –
3

k

2g2ei◊

= –
1

k

2e≠i◊ +
A

1 ≠ –
2

k

2

B

+ –
3

k

2ei◊

+ ⁄kh
Ë
gei(3≠m)◊p

i,1

+ gei(N≠(m≠2))◊p
i,N

+ 2
N≠1ÿ

j=2

gei(j≠(m≠2))◊p
i,j

È
≠ 2k(r + ⁄)g

≈∆

g2

Ë
≠ –

1

k

2(cos(◊) ≠ isin(◊)) +
A

1 + –
2

k

2

B

≠ –
3

k

2(cos(◊) + isin(◊))
È

= –
1

k

2(cos(◊) ≠ isin(◊)) +
A

1 ≠ –
2

k

2

B

+ –
3

k

2(cos(◊) + isin(◊))

+ ⁄kh
Ë
gei(3≠m)◊p

i,1

+ gei(N≠(m≠2))◊p
i,N

+ 2
N≠1ÿ

j=2

gei(j≠(m≠2))◊p
i,j

È
≠ 2k(r + ⁄)g

≈∆

g2

Ë
1 + –

2

k

2 ≠ k

2
1
(–

1

+ –
3

)cos(◊) ≠ isin(◊) (–
1

≠ –
3

)
2È

=
1
1 ≠ –

2

k

2
2

+ k

2
1
(–

1

+ –
3

)cos(◊) ≠ isin(◊) (–
1

≠ –
3

)
2

+ ⁄kh
Ë
gei(3≠m)◊p

i,1

+ gei(N≠(m≠2))◊p
i,N

+ 2
N≠1ÿ

j=2

gei(j≠(m≠2))◊p
i,j

È
≠ 2k(r + ⁄)g

≈∆

g2

Ë
1 + k‡2

h2

≠ k‡2

h2

cos(◊) ≠ isin(◊)k

h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2È

= ⁄kh
Ë
gei(3≠m)◊p

i,1

+ gei(N≠(m≠2))◊p
i,N

+ 2
N≠1ÿ

j=2

gei(j≠(m≠2))◊p
i,j

È
≠ 2k(r + ⁄)g

+
1
1 ≠ k‡2

h2

2
+ k‡2

h2

cos(◊) + isin(◊)k

h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2

≈∆

g2

Ë
1 + k‡2

h2

(1 ≠ cos(◊)) ≠ i
k

h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
sin(◊)

È
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= 1 ≠ k‡2

h2

(1 ≠ cos(◊)) + i
k

h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
sin(◊)

+ 2⁄k
h

2g
Ë
ei(3≠m)◊p

i,1

+ ei(N≠(m≠2))◊p
i,N

+ 2
N≠1ÿ

j=2

ei(j≠(m≠2))◊p
i,j

È
≠ 2k(r + ⁄)g

≈∆
—

2

g2 ≠ 2—
1

g ≠ —
0

= 0,

with

—
2

:= 1 + k‡2

h2

(1 ≠ cos(◊)) ≠ i
k

h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
sin(◊),

—
1

:= ≠k(r + ⁄) + ⁄k(F
R

+ iF
I

),

—
0

:= 1 ≠ k‡2

h2

(1 ≠ cos(◊)) + i
k

h

1
r ≠ q ≠ 1

2‡2 ≠ ⁄’
2
sin(◊),

and where F
R

and F
I

are real numbers such that

F
R

+ iF
I

= h

2
Ë
ei(3≠m)◊p

i,1

+ ei(N≠(m≠2))◊p
i,N

+ 2
N≠1ÿ

j=2

ei(j≠(m≠2))◊p
i,j

È
.

To prove the stability, we borrow the following lemma from [50]:

Lemma 8.2. A finite di�erence scheme for a scalar equation is stable if and only if all

the roots, g
r

(◊), of the amplification polynomial P (◊, k, h) := —
2

g2 ≠ 2—
1

g ≠ —
0

satisfy

the following conditions:

(i) There is a constant C such that |g
r

| Æ 1 + Ck;

(ii) There are positive constants c
0

and c
1

such that if c
0

Æ |g
r

| Æ 1 + Ck, then |g
r

| is

a simple root and for any other root |g
s

| the relation

|g
r

≠ g
s

| Ø c
1

holds for k and h su�ciently small.

Using this lemma, we prove that our implicit method is stable.

Theorem 8.3. The finite di�erence method (7.15)–(7.16) is stable in the sense of the

Von Neumann analysis if k is smaller than 1/(2r + 4⁄).
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Proof. Let us consider the di�erence method (7.15)–(7.16). We prove its stability by

using Lemma 8.2. Assume g is a root of the amplification polynomial P (◊, k, h).

|g| =
-----
2—

1

±
Ò

4—2

1

≠ 4—
2

—
0

2—
2

----- =
-----
—

1

±
Ò

—2

1

≠ —
2

—
0

—
2

----- =
-----
—

1

—
2

±
ı̂ıÙ—2

1

≠ —
2

—
0

—2

2

-----

Æ 2
-----
—

1

—
2

----- +
-----
—

0

—
2

-----

1

2

Æ 1 + 2(r + 2⁄)k,

because |—
2

| > 1, |—
1

| < (r + 2⁄)k and
---—

2

—

0

--- =
--- —

2

2≠—

2

--- Æ |—
2

|
2+|—

2

| < 1.

We have just proven (i) in Lemma 8.2.

Now, let g
r

and g
s

be two roots of P (◊, k, h). Assume g
r

is a root which has modulus

larger than 1 (the case where c
0

= 1). Then:

|2g
r

≠ (g
r

+ g
s

)| Ø 2|g
r

| ≠ |g
r

+ g
s

|
|g

r

≠ g
s

| Ø 2|g
r

| ≠ |g
r

+ g
s

|
|g

r

≠ g
s

| Ø 2|g
r

| ≠ (|g
s

| ≠ |g
r

|)
|g

r

≠ g
s

| Ø 2 ≠ 1 ≠ 2(r + 2⁄)k + 1

|g
r

≠ g
s

| Ø 2 ≠ 2(r + 2⁄)k

So, taking k su�ciently small, we can for instance guarantee 2(r + 2⁄)k is smaller

than one. Therefore, defining c
1

:= 1, we can establish the inequality: |g
r

≠ g
s

| Ø c
1

and thus fulfill the condition (ii) of Lemma 8.2.

In conclusion, we proved the scheme is stable. ⌅

8.3 Convergence

We are now showing that our numerical scheme is convergent. Generally speaking,

convergence is verified when the numerical solution of a problem approaches its exact

solution, by converging to it as the mesh size tends to zero. Mathematically, this means

the norm of the error we commit tends to zero, when the mesh size does too.

Before formalizing the proof of the convergence property, we introduce a few useful

concepts, which are examined in more detail in [34].
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8.3.1 Preliminary definitions and results

Let RN be the space of column vectors of dimension N with real entries. For a

given column vector x := (x
1

, x
2

, . . . , x
N

)T œ RN , using the usual notation h := 2X

N≠1

,

we define the l2 and lŒ norms of the vector x as:

ÎxÎ
l

2 :=
A

h
Nÿ

j=1

|x
j

|2
B 1

2

and ÎxÎ
l

Œ := max
1ÆjÆN

|x
j

|. (8.4)

If A is a matrix with N rows, we define the matrix norms as:

ÎAÎ
2

:= max
x ”=0

ÎAxÎ
l

2

ÎxÎ
l

2

and ÎAÎŒ := max
x ”=0

ÎAxÎ
l

Œ

ÎxÎ
l

Œ
. (8.5)

Let AT be the transpose of a matrix A. If A is a square matrix with real entries,

then

ÎAÎ
2

=
Ò

⁄
max

(AT A), (8.6)

where ⁄
max

(AT A) is the greatest eigenvalue of AT A and

ÎAÎŒ = max
j

A
Nÿ

k=1

|a
jk

|
B

, (8.7)

where a
jk

is the jth row and kth column element of matrix A.

For the respective proofs, we refer the Theorems A.4 and A.5, found in the Appendix.

From the last equality, it is easy to conclude that if A is a square Toeplitz matrix

whose diagonals are constant, then

ÎAÎŒ = ÎAT ÎŒ. (8.8)

To prove the convergence in the discrete l2-norm, we need the following lemma.

Lemma 8.4. Let {a
n

}
nØ0

be a non-negative sequence such that, for n Ø 2,

a
n

Æ a
n≠2

+ Cka
n≠1

+ D,

where C and D are positive constants. If a
0

= 0, then, for n Ø 2,

a
n

Æ (1 + Ck)n≠1a
1

+ D
n≠2ÿ

j=0

(1 + Ck)j, (8.9)

where k is a positive constant.
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Proof. Assume a
0

= 0. Let n = 2.

a
2

Æ a
0

+ Cka
1

+ D

Æ a
1

+ Cka
1

+ D

= (1 + Ck)a
1

+ D

If n = 3:

a
3

Æ a
1

+ Cka
2

+ D

Æ a
1

+ Ck((1 + Ck)a
1

+ D) + D

= (1 + Ck + (Ck)2)a
1

+ D + DCk

Æ (1 + 2Ck + (Ck)2)a
1

+ D + D(1 + Ck)

= (1 + Ck)2a
1

+ D
1ÿ

j=0

(1 + Ck)j

We are now using mathematical induction to prove our claim. Take m Ø 4 and

suppose the inequality (8.9) is valid for any n Æ m. For n = m + 1, we have:

a
m+1

Æ a
m≠1

+ Cka
m

+ D

Æ (1 + Ck)m≠2a
1

+ D
m≠3ÿ

j=0

(1 + Ck)j + Ck
Ë
(1 + Ck)m≠1a

1

+ D
m≠2ÿ

j=0

(1 + Ck)j] + D

Æ [(1 + Ck)m≠2 + Ck(1 + Ck)m≠1a
1

+ D

C
m≠3ÿ

j=0

(1 + Ck)j + Ck
m≠2ÿ

j=0

(1 + Ck)j + 1
D

= (1 + Ck)m≠2[1 + Ck + Ck2)]a
1

+ D

C
m≠3ÿ

j=0

(1 + Ck)j + Ck(1 + Ck)m≠2 + Ck
m≠3ÿ

j=0

(1 + Ck)j + 1
D

Æ (1 + Ck)m≠2[1 + 2Ck + Ck2)]a
1

+ D

C

(1 + Ck)
m≠3ÿ

j=0

(1 + Ck)j + Ck(1 + Ck)m≠2 + 1
D

= (1 + Ck)ma
1

+ D

C
m≠3ÿ

j=0

(1 + Ck)j+1 + Ck(1 + Ck)m≠2 + 1
D

Æ (1 + Ck)ma
1

+ D

C
m≠2ÿ

j=1

(1 + Ck)j + (1 + Ck)(1 + Ck)m≠2 + (1 + Ck)0

D
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Æ (1 + Ck)ma
1

+ D
m≠1ÿ

j=0

(1 + Ck)j.

We proved the inequality (8.9) holds for n = m + 1, given that it is verified for

n Æ m, so, we are able to conclude it is valid for any n Ø 2. ⌅

8.3.2 Convergence proof

Let us define the error vector ›m := (›m

2

, ›m

3

, . . . , ›m

N≠1

)T on time level m by

›m

i

= um

i

≠ ũm

i

, for 2 Æ i Æ N ≠ 1,

and the boundary errors by

›m

1

= um

1

≠ ũm

1

and ›m

N

= um

N

≠ ũm

N

.

With the definition above, we are going to prove second-order convergence in the

discrete l2-norm, as done in the following theorem.

Theorem 8.5. Let u(·, x) be the solution of the initial-valued PIDE in (7.1)-(7.3) and

let ūm

i

be the solution of the finite di�erence approximation in (7.15)–(7.16). If k and

h are su�ciently small, then there exists a positive constant C Õ, independent of h and

k, such that for 2 Æ m Æ M

Î›mÎ
l

2 Æ C Õ(k2 + h2). (8.10)

Proof. In (8.2), we can replace v with the classical solution u. Using (8.2) and (8.3),

we obtain the error equation for 3 Æ m Æ M and 2 Æ i Æ N ≠ 1:

≠ –
1

k

2›m

i≠1

+
A

1 + –
2

k

2

B

›m

i

≠ –
3

k

2 ›m

i+1

= –
1

k

2›m≠2

i≠1

+
A

1 ≠ –
2

k

2

B

›m≠2

i

+ –
3

k

2 ›m≠2

i+1

+ ⁄hk

C

›m≠1

1

p
i,1

+ 2
N≠1ÿ

j=2

›m≠1

j

p
i,j

+ ›m≠1

N

p
i,N

D

≠ 2k(r + ⁄)›m≠1

i

+ k O(k2 + h2).

The last equation can be rewritten in matrix form as follows:
1
I + k

2B
2
›m =

1
I ≠ k

2B
2
›m≠2 + C›m≠1 + d, (8.11)
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where I is the identity matrix of size N ≠2, C = (c
ij

) and B = (b
ij

) are square matrices

of order N ≠ 2 with entries

b
i,j

=

Y
___________]

___________[

≠‡

2

h

2

+ 1

h

(r ≠ q ≠ ⁄’ ≠ ‡

2

2

), if i = j ≠ 1 and 2 Æ i Æ N ≠ 2

2‡

2

h

2

, if i = j and 1 Æ i Æ N ≠ 2

≠‡

2

h

2

≠ 1

h

(r ≠ q ≠ ⁄’ ≠ ‡

2

2

), if i = j + 1 and 1 Æ i Æ N ≠ 3

0, otherwise

c
i,j

=

Y
__]

__[

2kh⁄p
i,j

≠ 2k(r + ⁄), if i = j and 1 Æ i Æ N ≠ 2

2kh⁄p
i,j

, if i ”= j and 1 Æ i Æ N ≠ 2

and d = (d
j

) is the column vector of size N ≠ 2 with entries

d
j

= kO(h2 + k2), for j = 1 Æ j Æ N ≠ 2.

Now, attempt to the following inequalities:
-----1 + k‡2

h2

----- >
k

2

----- ≠ ‡2

h2

+ 1
h

(r ≠ q ≠ ⁄’ ≠ ‡2

2 )
----- + k

2

----- ≠ ‡2

h2

≠ 1
h

(r ≠ q ≠ ⁄’ ≠ ‡2

2 )
-----

≈∆ 2h2 + 2k‡2 > k

-----‡
2 ≠ h(r ≠ q ≠ ⁄’ ≠ ‡2

2 )
----- + k

-----‡
2 + h(r ≠ q ≠ ⁄’ ≠ ‡2

2 )
-----

The inequation above is the necessary and su�cient requirement in order for the matrix
1
I + k

2

B
2

to be strictly diagonally dominated. Letting h being su�ciently small, the

algebraic expressions inside the absolute values become non-negative, since ‡2 is non-

negative. Thus:

2h2 + 2k‡2 > k

A

‡2 ≠ h(r ≠ q ≠ ⁄’ ≠ ‡2

2 )
B

+ k

A

‡2 + h(r ≠ q ≠ ⁄’ ≠ ‡2

2 )
B

≈∆
2h2 + 2k‡2 ≠ k‡2 ≠ k‡2 > 0

≈∆
2h2 > 0.
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Since the last inequality holds true for any value of h, we can conclude there ex-

ists a su�ciently small h such that the matrix referred before is a strictly diagonally

dominated matrix. As proven in Theorem A.3, this implies it is invertible and thus
1
I + k

2

B
2≠1

exists. Multiplying both sides of (8.11) by
1
I + k

2

B
2≠1

and taking the

l2-norm gives:

Î›mÎ
l

2

=
.....

1
I + k

2B
2≠1

1
I ≠ k

2B
2
›m≠2 +

1
I + k

2B
2≠1

C›m≠1 +
1
I + k

2B
2≠1

d

.....
l

2

Æ
.....

1
I + k

2B
2≠1

1
I ≠ k

2B
2
›m≠2

.....
l

2

+
.....

1
I + k

2B
2≠1

C›m≠1

.....
l

2

+
.....

1
I + k

2B
2≠1

d

.....
l

2

Æ
.....

1
I + k

2B
2≠1

1
I ≠ k

2B
2.....

2

Î›m≠2Î
l

2

+
.....

1
I + k

2B
2≠1

C

.....
2

Î›m≠1Î
l

2

+
.....

1
I + k

2B
2≠1

.....
2

ÎdÎ
l

2

. (8.12)

We shall estimate the three matrix norms in the last inequality.
1
I + k

2

B
2

is a

tridiagonal Toeplitz matrix, with constant values along all its diagonals. Thus, and as

proved in [35], each of its eigenvalues, ⁄
h

, is given by:

⁄
h

= a + 2
Ô

bc cos
1 hfi

N ≠ 2
2
, h œ {1, . . . , N ≠ 3}, (8.13)

where a, b and c are respectively the diagonal, lower and upper diagonal constants. The

quotient hfi

N≠2

is a value between zero and fi (exclusive) and therefore, the cosine function

in (8.13) always assumes di�erent values (it is injective in ]0, fi[). The constants a, b

and c are never equal to zero, so we can state that the matrix
1
I + k

2

B
2

has N ≠ 2

non-zero di�erent eigenvalues and consequently, it is diagonizable.

By definition, there is an invertible matrix Q such that Q≠1�
W

Q =
1
I + k

2

B
2
,

where �
W

is a diagonal matrix, whose elements correspond to the eigenvalues of the

right-hand side matrix, which we now denote by W . The columns of Q are eigenvectors

associated to the referred eigenvalues and they constitute a basis of the RN≠2 space.

We can analogously prove that
1
I ≠ k

2

B
2

is diagonizable (and logically,
1
I ≠ k

2

B
2≠1

too).
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Let us take a basis of eigenvectors of W that is also a basis of eigenvectors for

Z :=
1
I ≠ k

2

B
2≠1

. Denote the corresponding eigenvalues of W by ⁄
1

, ..., ⁄
N≠2

and those

of Z by µ
1

, ..., µ
N≠2

. Representing by �
Z

the diagonal matrix which is similar to Z and

whose diagonal components are its eigenvalues, we prove WZ commute:

WZ = Q�
W

Q≠1Q�
Z

Q≠1 = Q�
W

�
Z

Q≠1 = Q�
Z

Q≠1Q�
W

Q≠1 = ZW.

We remark we used the fact that diagonal matrices trivially commute in multiplication.

Let z œ RN≠2 be an arbitrary column-vector chosen. Using the fact that the matrices

above commute, we have:

.....

1
I + k

2B
2≠1

1
I ≠ k

2B
2
z

.....

2

l

2

=
.....

1
I ≠ k

2B
21

I + k

2B
2≠1

z

.....

2

l

2

= h

A1
I + k

2B
2≠1

z

B
T 1

I ≠ k

2B
2

T

1
I ≠ k

2B
21

I + k

2B
2≠1

z

= h

A1
I + k

2B
2≠1

z

B
T

C1
I + k

2B
2

T

1
I + k

2B
2

≠ k(BT + B)
D1

I + k

2B
2≠1

z

= hzT

A1
I + k

2B
2

T

B≠11
I + k

2B
2

T

1
I + k

2B
21

I + k

2B
2≠1

z

≠ khzT

A1
I + k

2B
2

T

B≠1

(BT + B)
1
I + k

2B
2≠1

z

= hzT z ≠ khzT

A1
I + k

2B
2≠1

B
T

(B + BT )
1
I + k

2B
2≠1

z

= ÎzÎ2

l

2

≠ hk

A1
I + k

2B
2≠1

z

B
T

(B + BT )
1
I + k

2B
2≠1

z. (8.14)

B + BT has the form:

B + BT = 2‡2

k2

S

WWWWWWWWWWWWU

2 ≠1 0 · · · 0

≠1 2 ≠1 . . . ...

0 ≠1 2 . . . 0
... . . . . . . . . . ≠1

0 · · · 0 ≠1 2

T

XXXXXXXXXXXXV

.

Using (8.13), it is clear B+BT is positive definite, because it is a tridiadiagonal Toeplitz
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matrix with constant values along all its diagonals.

Consequently from the definition, for any vector x œ RN≠2, xT (B + BT )x > 0 and

thus, the equality from equation (8.14) is majored by ÎzÎ2

l

2

. Having the definition of

l2-norm in mind, we can then conclude that
.....

1
I + k

2B
2≠1

1
I ≠ k

2B
2.....

2

Æ 1. (8.15)

Now, we prove that
.....

1
I + k

2B
2≠1

.....
2

Æ 1. (8.16)

To accomplish this goal, we are claiming the following inequality is true for any z œ
RN≠2:

ÎzÎ
l

2

Æ
.....

1
I + k

2B
2
z

.....
l

2

. (8.17)

The latter inequality allows us to conclude our claim, because in the case of the l2-norm,

it holds that ÎA≠1Î
2

= 1

ÎAÎ
2

. This is easy to see, using equation (8.6).

The matrix B with real entries can be split into two parts such that

B = 1
2(B + BT ) + 1

2(B ≠ BT ).

B + BT is a symmetric matrix and B ≠ BT is a skew-symmetric. This directly

implies that the quadratic form of the latter is zero. In fact, taking z œ RN≠2,

zT (B ≠ BT )z = (zT (B ≠ BT )z)T

zT (B ≠ BT )z = (zT (BT ≠ B)z)T

zT (B ≠ BT )z = ≠(zT (B ≠ BT )z)T

2zT (B ≠ BT )z = 0

zT (B ≠ BT )z = 0.

Using the last result and applying the Cauchy–Schwarz inequality gives:
.....

1
I + k

2B
2
z

.....
l

2

ÎzÎ
l

2 Ø hzT

1
I + k

2B
2
z

= hzT z + h
k

2zT

A
1
2(B + BT ) + 1

2(B ≠ BT )
B

z
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= ÎzÎ2

l

2

+ h
k

4zT (B + BT )z

Ø ÎzÎ2

l

2

+ k

4⁄
min

(B + BT )ÎzÎ2

l

2

Ø ÎzÎ2

l

2

,

where ⁄
min

(B + BT ) > 0 is the smallest eigenvalue of (B + BT ). Hence, we prove our

claim.

To understand how did we get the penultimate inequality as above, we use the

following Theorem and the fact that B + BT is a positive definite matrix.

Theorem 8.6. Let A be a symmetric positive definite matrix. The following inequality

holds for any x œ R \ {0}:

⁄
min

ÎxÎ2

l

2

Æ xT Ax Æ ⁄
max

ÎxÎ2

l

2

,

where ⁄
min

and ⁄
max

are, respectively, the minimum and the maximum eigenvalues of

A.

Proof. By the spectral Theorem, A is similar to a diagonal matrix. Then, consider A

can be decomposed as A = QT �Q, where � is a diagonal matrix with entries ⁄
1

, . . . , ⁄
N

,

corresponding to the positive eigenvalues of A, and Q is an orthogonal matrix.

Define y := xÔ
x

T

x

and z := Qy. Let x œ R \ {0}.

xT Ax

ÎxÎ2

l

2

= xT Ax

xT x
= yT Ay = yT QT �Qy = zT �z =

Nÿ

i=1

⁄
i

|z
i

|2,

where z
i

, i œ {1, . . . , N} are the entries of the vector z. Now, notice that for a fixed z,

the expression above is minimal for ⁄
i

= ⁄
min

and maximal if ⁄
i

= ⁄
max

. Consequently:

⁄
min

Nÿ

i=1

|z
i

|2 Æ xT Ax

ÎxÎ2

l

2

Æ ⁄
max

Nÿ

i=1

|z
i

|2.

But q
N

i=1

|z
i

|2 is equal to the square of the norm of z which is equal to 1:

ÎzÎ2

l

2

= zT z = ÎQyÎ2

l

2

= (Qy)T Qy = yT QT Qy = yT y = x

T

x

x

T

x

= 1.

Therefore, we conclude that

⁄
min

ÎxÎ2

l

2

Æ xT Ax Æ ⁄
max

ÎxÎ2

l

2

.
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⌅

We are now estimating the norm
.....

1
I + k

2

B
2≠1

C

.....
2

, using the fact that C is a Toeplitz

matrix, as long as the grid we choose is uniform. But first, we estimate a lower bound

for the infinity norm.

Let A be a matrix whose maximum eigenvalue is denoted by ⁄A

max

and v œ RN≠2\{0}
an eigenvector associated to this eigenvalue. By definition:

Av = ⁄A

max

v.

This implies:

ÎAvÎ
l

Œ = Î⁄A

max

vÎ
l

Œ

≈∆
ÎAvÎ

l

Œ = |⁄A

max

|ÎvÎ
l

Œ

≈∆
ÎAvÎ

l

Œ

ÎvÎ
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Œ
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∆
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v ”=0

ÎAvÎ
l

Œ

ÎvÎ
l

Œ
Ø |⁄A
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|

≈∆
ÎAÎŒ Ø |⁄A

max

|.

Applying this result in the following inequalities, we get:

.....
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2

Æ
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1
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2≠1
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2

ÎCÎ
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ÆÎCÎ
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=
Ò

⁄
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Æ
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ÎCT CÎŒ Æ
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ÎCT ÎŒÎCÎŒ

=
Ò
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|c
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|
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Æ2k(r + ⁄) + 2k⁄ h
N≠2ÿ

k=1

p
j

k

¸ ˚˙ ˝
Æ1

Æ2k(r + 2⁄).

Hence, through (8.12) we have:

Î›mÎ
l

2

Æ Î›m≠2Î
l

2

+ 2k(r + 2⁄)Î›m≠1Î
l

2

+ ÎdÎ
l

2

, (8.18)

and we are ready to use Lemma 8.4. With the initial condition Î›1Î
l

2

= 0 and using

the formula for the sum of the first m ≠ 1 elements of a geometric progression, we get:

Î›mÎ
l

2

Æ (1 + 2(r + 2⁄)k)m≠1Î›2Î
l

2

+ ÎdÎ
l

2

m≠2ÿ

j=0

(1 + 2k(r + 2⁄))j

Æ e2(r+2⁄)T Î›2Î
l

2

+ e2(r+2⁄)T ≠ 1
2k(r + 2⁄) ÎdÎ

l

2

. (8.19)

Now, let us estimate the two discrete vector norms Î›2Î
l

2

and ÎdÎ
l

2

. On time level

2, we can obtain the local truncation error vector Î›2Î
l

2

in the form

›2

i

= kO(h2 + k), for 1 Æ i Æ N ≠ 2.

Hence, we have the estimate

Î›2Î
l

2

= kO(k + h2). (8.20)

For the column vector d, we have the estimate

ÎdÎ
l

2

= kO(k2 + h2). (8.21)

Therefore, combining (8.19), (8.20) and (8.21), we have (8.10) as desired.

⌅

67



9

Numerical results for European

options

In this section, we implement numerical simulations to price European put options

under the Merton and Kou models. We use the implicit method described in Chapter 7

so that it leads to tridiagonal linear systems. Each tridiagonal linear system can be

solved by using a LU decomposition with O(N) operations, where N is the number of

spatial steps. We apply the FFT algorithm to compute the product of a dense Toeplitz

matrix and a column vector in the discrete integral operator in (7.14). The FFT

algorithm allows us to reduce the number of multiplications from O(N2) to O(N log
2

N),

provided that N is typically a power of 2. Thus, the implicit method with three time

levels requires totally O(MN log
2

N) operations, where N is the number of spatial steps

and M the number of steps in time. For more details on how to apply a FFT to the

matrix multiplication of a Toeplitz matrix and a vector, we refer to Appendix.

All the simulations presented here were computed in MATLAB using a Macbook

Pro with processor 2,3 GHz Intel Core i5.

9.1 Results for the Merton model

We start with the Merton model, which has the density function of jump sizes given

by (3.1). Parameters used in the simulation are the following:

‡ = 0.15, r = 0.05, ‡
J

= 0.45, µ
J

= ≠0.90,

d = 0, ⁄ = 0.10, T = 0.25, K = 100.
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These values are also used by [22] to compute prices of European-style calls and in

our experiments, we calculated the fair price of put vanilla options for three di�erent

initial values and a unique strike (K = 100). In order to keep the accuracy of our

method larger than second-order, we build a cubic spline to evaluate the prices of the

option at non-mesh points of stock prices. To test our method, we compare the results

obtained with reference values, which are calculated using the numerical series (3.3).

We could similarly apply the put-call parity to the values presented in [22] to obtain

prices for European-style puts. The referred results can be found in Table 1 and as the

reader might notice, the pointwise errors are decreasing with the increase of the number

of steps.

Table 1: Prices of standard European-style put options under the Merton jump-di�usion model

Steps Spot Value Error CPU (sec)
M = 25 90 9.286528 - 0.012645
N = 128 100 3.147057 - 0.012569

110 1.402729 - 0.012770
M = 50 90 9.289424 0.002896 0.032274
N = 256 100 3.148688 0.001631 0.029000

110 1.401531 0.001198 0.032306
M = 100 90 9.286416 0.003008 0.095487
N = 512 100 3.148942 0.000254 0.092192

110 1.401161 0.000370 0.099015
M = 200 90 9.285666 0.000750 0.257156
N = 1024 100 3.149006 0.000064 0.240354

110 1.401056 0.000105 0.262576
M = 400 90 9.285478 0.000188 0.836382
N = 2048 100 3.149021 0.000015 0.798052

110 1.401193 0.000137 0.815349
M = 800 90 9.285432 0.000046 3.510451
N = 4096 100 3.149025 0.000004 3.495371

110 1.401188 0.000005 3.406741

The reference values are 9.285418 at S = 90, 3.149026 at S = 100 and 1.401186 at S = 110. The

truncated domain is [≠1.5, 1.5], for the variable x = ln(S/S0). M is the number of time steps and N

is the number of spatial steps. The third column represents the computed values for each initial value

and the fourth the di�erence between the value computed for a given spot value and the one calculated

in the previous row. The last column shows how much computation time we needed.
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Figure 9.1: Price of a European put option under the Merton model

For illustration purposes, we plot the price of European put options under the

Merton model in Figure 9.1.

9.2 Results for the Kou model

For the Kou model, whose density function is given by (3.6), the parameters used

are:

‡ = 0.15, r = 0.05, ÷
1

= 3.0465, ÷
2

= 3.0775,

d = 0, ⁄ = 0.10, T = 0.25, K = 100, p = 0.3445.

As done in the Merton model case, we compare our results with the ones presented

in [22], using the put-call parity. We could analogously use (3.12)-(3.15) to obtain the

prices of European-style puts as reported in Table 2.
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Table 2: Prices of standard European-style put options under the Kou jump-di�usion model

Steps Spot Value Error CPU (sec)
M = 25 90 9.432506 - 0.009598
N = 128 100 2.732566 - 0.012768

110 0.557687 - 0.011418
M = 50 90 9.434658 0.002152 0.030867
N = 256 100 2.731925 0.000641 0.024575

110 0.553610 0.004077 0.025017
M = 100 90 9.431838 0.002820 0.061299
N = 512 100 2.731519 0.000406 0.060633

110 0.552541 0.001069 0.064405
M = 200 90 9.430967 0.000871 0.252093
N = 1024 100 2.731372 0.000147 0.213662

110 0.552250 0.000301 0.217982
M = 400 90 9.430666 0.000061 0.688922
N = 2048 100 2.731311 0.000142 0.724175

110 0.552392 0.000137 0.709273
M = 800 90 9.430550 0.000116 3.619007
N = 4096 100 2.731284 0.000027 3.292017

110 0.552372 0.000020 3.369464

The reference values are 9.430457 at S = 90, 2.731259 at S = 100 and 0.552363 at S = 110. The

truncated domain is [≠1.5, 1.5], for the variable x = ln(S/S0). M is the number of time steps and

N is the number of spatial steps. The third column represents the computed values for each initial

value and the fourth the di�erence between the value obtained for a given spot and the one calcu-

lated in the previous row. The last column shows how much time we needed to get the estimated values.

We plotted in Figure 9.2 the values of European-style put options under the Kou

model.
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Figure 9.2: Price of a European put option under the Kou model
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10

American option pricing

An American option only di�ers from a European one, because it can be exercised

at any time until its maturity. Up to now we have assumed that a contract, like an

option, can only be exercised exactly at time T . In real life, a large number of options

can in fact be exercised at any time prior to T . The choice of exercise time is thus left

to the holder of the claim. A contract with this feature is called an American contract.

To put it more formally, let us fix a final exercise date T and a contract function H.

The European version of this contract will, as usual, pay the amount H(S
T

) at time

T to the holder, where H denotes the payo� of the contract. If the contract, on the

other hand, is of the American type, then the holder will obtain the amount H(S
t

) if

he/she chooses to exercise it at time t, prior to T . The situation is complicated further

by the fact that the exercise time t does not have to be chosen a priori (i.e. at t = 0).

It can be selected on the basis of the information generated by the stock price process,

and thus, the holder will in fact choose a random exercise time · . The exercise time

(or rather, exercise strategy) · has to be chosen such that the decision on whether to

exercise the contract at time t or not, depends only upon the information generated by

the price process up to time t.

American contracts are thus more complicated to analyze than their European coun-

terparts, since the holder of the claim has to decide on an optimal exercise strategy.

Problems of this kind are quite hard to solve and analytically they lead to so called

"free boundary value problems", instead of the corresponding parabolic PDEs for the

European counterparts.
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Consider an underlying asset with price S
t

at time t. The dynamics of S
t

are

assumed to be represented by the following SDE:

ˆS
t

ˆt
= (r ≠ q ≠ ⁄’̃)dt + ‡dW

t

+ (÷
t

≠ 1)dN
t

(10.1)

as in (2.9), with µ = r ≠ q.

In the above, r is the risk-free rate, assumed to be constant, µ is the instantaneous

return per time unit, the constant ‡ is the instantaneous volatility per unit time, (W
t

)
tØ0

a standard Wiener process and (N
t

)
tØ0

is a Poisson process whose increments satisfy

the same conditions as in (2.9). We assume that S pays a continuous dividend yield of

rate q.

Consider an American put option with strike K and expiration date T , written on

an underlying asset with price S
t

, t œ [0, T ], assumed to obey the equation (10.1). The

payo� of this option at each point t is simply (K ≠ S
t

)+, which symbolically is written

as max(0, K ≠ S
t

).

10.1 The Linear Complementary Problem

According to great part of the literature which explains and presents a study on

American option pricing theory such as, for example, [14] (Proposition 12.3) and [6],

the value of an American option u satisfies the Linear Complementary Problem (LCP):

Y
_____]

_____[

u
·

(·, x) ≠ Lu(·, x) Ø 0,

u(·, x) Ø h(x),

(u
·

(·, x) ≠ Lu(·, x))(u(·, x)) ≠ h(x)) = 0,

(10.2)

(10.3)

(10.4)

for all (·, x) œ]0, T ]◊] ≠ Œ, Œ[. The payo� function of u is here represented by the

function h. In section 7 of [17], we are introduced with a intuitive explanation on why

an American put option follows the above equations, for the particular case where the

asset follows a GBM.

In a nutshell, the second inequality says the option’s value must be at least worth
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its payo� and is a consequence of the no arbitrage assumption.

The first inequality would be an equality if we were in the European option case.

When it is optimal to hold the option the equality is valid. Otherwise, it is optimal to

exercise the option and the equality in (10.3) is satisfied. In this case, the payo� is the

solution for the LCP and a strict inequality in (10.2) is verified.

The last equation as above translates the idea that either the option’s holder decides

not to exercise it and, in this case, u
·

(·, x) = Lu(·, x), or otherwise it does exercise

and we have u(·, x) = h(x).

Similarly to the European case, regarding the asymptotic behavior of the American

put option, the value of u(·, x) is K ≠ ex when the log price x is a su�ciently small

negative number, and the value u(·, x) tends to zero as the log price x approaches

infinity.

Now that we have our problem set, we are left to construct a pricing model to obtain

American option prices and perform numerical experiments based on finite di�erences

methods as done for European options.
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11

Numerical Implementation for

American options

In this section we formulate a numerical method to solve the LCP (10.2)-(10.4) for

the American put option by using the implicit method discussed in the previous sections

for the European option, combined with the operator splitting method described in [31]

and [51].

As a reference, we suggest the reading of [37] and [38], since our analysis is mostly

based on these two articles.

11.1 Operator splitting method

We start with the operator splitting method to solve the LCP (10.2)-(10.4). The

splitting method is introduced by Ikonen and Toivanen [31] to evaluate the price of the

American put option under the BSM model, and the method is studied by Toivanen

[51] under the Kou model. To simplify our problem, we define the auxiliary variable Ï

as Ï := u
·

≠ Lu, implying that the LCP (10.2)-(10.4) for the American put option can

be reformulated as:

Y
]

[

u
·

≠ Lu = Ï

Ï Ø 0, u Ø h, Ï(u ≠ h) = 0

(11.1)

(11.2)

in the region ]0, T ]◊] ≠ Œ, Œ[ with the initial condition

h(x) = max(0, K ≠ ex).

Let us consider an operator splitting method which splits the equation u
·

≠ Lu = Ï
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on the mth time level into two discrete equations such as:

Ũm

i

≠ Um≠2

i

2k
≠

I

D
�

A
Ũm

i

+ Um≠2

i

2

B

+ I
�

Um≠1

i

≠ (r + ⁄)Um≠1

i

J

= �m≠1

i

, (11.3)

Um

i

≠ Um≠2

i

2k
≠

I

D
�

A
Ũm

i

+ Um≠2

i

2

B

+ I
�

Um≠1

i

≠ (r + ⁄)Um≠1

i

J

= �m

i

. (11.4)

Thus, the discrete problem for (11.1)-(11.2) is to seek a pair (Um

i

, �m

i

) satisfying

the discrete equations in (11.3)-(11.4) and the constraints

�m

i

Ø 0, Um

i

Ø h(x
i

), �m

i

(Um

i

≠ h(x
i

)) = 0, (11.5)

where all values (U j

i

, �j

i

) on the jth time level for 1 Æ j Æ m and m Ø 2 are already

obtained and are reasonably good approximations to (uj

i

, Ïj

i

).

The first step of the operator splitting method is to compute Ũm

i

for i = 2, . . . , N ≠1

by solving the linear system in (11.3). The goal here is to obtain an intermediate ap-

proximation Ũm

i

to um

i

by solving the discrete PIDE on the (m ≠ 1)th time level with

known auxiliary term �m≠1

i

. Remark that three time levels are involved in this compu-

tation, in order to force the coe�cient matrices of the linear systems to be tridiagonal

matrices.

The second step of the operator splitting method is to set up the relationship in

(11.4) between Um

i

and �m

i

. Note that the operator u
·

≠ Lu on the mth time level is

approximated by the modified discrete operator on the (m≠1)th time level. Subtracting

(11.3) to (11.4), we can rewrite the discrete equation in (11.4) with the constraints in

(11.5) as a problem to find a pair (Um

i

, �m

i

) such that
Y
___]

___[

Um

i

≠ Ũm

i

2k
= �m

i

≠ �m≠1

i

�m

i

(Um

i

≠ h(x
i

)) = 0

(11.6)

(11.7)

with the constraints

Um

i

Ø h(x
i

) and �m

i

Ø 0. (11.8)

Now, we can solve the problem (11.6)-(11.8) easily by locating the intersection point of

two lines on the U�-plane, and we have
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(Um

i

, �m

i

) =

Y
___]

___[

1
h(x

i

), �m≠1

i

+ h(x
i

) ≠ Ũm

i

2k

2
, if Ũm

i

≠ 2k�m≠1

i

Æ h(x
i

)

(Ũm

i

≠ 2k�m≠1

i

, 0), otherwise.

(11.9)

(11.10)

In order to understand how to get the previous system, we must consider two sce-

narios: Either we exercise the option, being then its value equal to the payo� function

(the case when Ũm

i

= h(x
i

)) or we do not exercise the option. If the first case is verified,

(11.9) is easily obtained by solving (11.6) in order to �m

i

. If we do not exercise the

option, then from (11.7) and (11.8), �m

i

= 0 and we get (11.10), by solving (11.6) in

order to Um

i

.

Thus, the second step can be done not by solving the discrete equation (11.4), but

by updating the formula in (11.9)-(11.10) with a few counts of operations. Hence, the

computational cost for the American option generally depends on solving the first step

in (11.3) for Ũm

i

.

It is left to see how do we compute the pair (U1

i

, �1

i

) on the first time level. For

m = 1, the value U1 is given by the payo� function and �1 is evaluated in Section 11.3.

Regarding the second time level, the pair (U2

i

, �2

i

) can be obtained through two steps:

the first is to compute an intermediate approximation Ũ1

i

as below:
Ũ2

i

≠ U1

i

k
≠

I

D
�

Ũ2

i

≠ (r + ⁄)Ũ2

i

+ I
�

U1

i

J

= �1

i

. (11.11)

The vector Ũ2 on the second time level is obtained by applying the implicit method to

the di�erential operator and the explicit method to the integral operator. The second

step is to find the pair (U2

i

, �2

i

) such that

(U2

i

, �2

i

) =

Y
___]

___[

1
h(x

i

), �1

i

+ h(x
i

) ≠ Ũ2

i

k

2
, if Ũ2

i

≠ k�1

i

Æ h(x
i

),
1
Ũ2

i

≠ k�1

i

, 0
2
, otherwise.

(11.12)

(11.13)
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11.2 Algorithm to evaluate an American put option

with three time levels

To solve the LCP (10.2)-(10.4) numerically, we propose the implicit method with

three time levels combined with the operator splitting method as follows:

Algorithm for pricing American options
For m = 1
for i = 2, 3, ..., N ≠ 1

˜

U

m

i

≠ ˜

U

m≠1

i

k

= D
�

Ũm

i

≠ (r + ⁄)Ũm

i

+ I
�

Um≠1

i

+ �m≠1

i

end for
Solve the tridiagonal linear system.

for i = 2, 3, ..., N ≠ 1
Um

i

= max
1
Ũm

i

≠ k�m≠1

i

, h(x
i

)
2

�m

i

= �m≠1

i

+ U

m

i

≠ ˜

U

m

i

k

end for
end

For m = 2, 3, ..., M ≠ 1
for i = 2, 3, ..., N ≠ 1

˜

U

m

i

≠U

m≠2

i

2k

= D
�

A
˜

U

m

i

+U

m≠2

i

2

B

+ I
�

Um≠1

i

≠ (r + ⁄)Um≠1

i

+ �m≠1

i

end for
Solve the tridiagonal linear system.

for i = 2, 3, ..., N ≠ 1
Um

i

= max
1
Ũm

i

≠ 2k�m

i

, h(x
i

)
2

�m

i

= �m≠1

i

+ U

m

i

≠ ˜

U

m

i

2k

end for
end

Initial condition:
U1

i

= h(x
i

) for i = 1, . . . , N
Boundary condition:
Um

i

= h(x
i

) for m = 2, 3, . . . , M and i = 1, N
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11.3 The early exercise boundary at the expiration

date

We need to know the value of the auxiliary variable �1 at the expiration date in

order to implement numerical methods for the American option. The early exercise

boundary S
p

(·) for the American put option is given by

S
p

(·) = max{ex > 0 | u(·, x) Æ K ≠ ex, x œ R}.

Let us consider the early exercise boundary under the jump-di�usion model. Assume

hypothetically that the asset price is in the exercise region. By definition, the price of

the American put option is u(·, x) = K ≠ ex. Knowing u obeys to the PIDE (5.4), we

compute u
·

≠ Lu, using the fact that u(·, x) = K ≠ ex is its solution in this case:

u
·

≠ Lu = ˆu

ˆ·
≠ ‡2

2
ˆ2u

ˆ2x
≠ (r ≠ q ≠ ‡2

2 ≠ ⁄’)ˆu

ˆx

+ (r + ⁄)u ≠ ⁄
⁄

R
u(·, x)p(z ≠ x)dz

= 0 + ‡2

2 ex + (r ≠ q ≠ ‡2

2 ≠ ⁄’)ex

+ (r + ⁄)(K ≠ ex) ≠ ⁄
⁄

R
u(·, x)p(z ≠ x)dz

= (r + ⁄)K ≠ (q + ⁄’ + ⁄)ex ≠ ⁄
⁄

R
u(·, x)p(z ≠ x)dz

= rK ≠ qex ≠ ⁄

C ⁄

R
u(·, x)p(z ≠ x)dz ≠ K + ’ex + ex

D

= rK ≠ qex ≠ ⁄

C ⁄

R
u(·, x)p(z ≠ x)dz ≠ (K ≠ ex)

⁄

R
p(z ≠ x)dz

D

= rK ≠ qex ≠ ⁄
⁄

R
{u(·, x) ≠ (K ≠ ex)}p(z ≠ x)dz.

Notice that we use the fact that p is a probability function (its integral over R is 1) and

the definition of ’
1
’ =

⁄

R
ezp(z)dz ≠ 1

2
.

We then got the equation:

u
·

≠ Lu = rK ≠ qex ≠ ⁄
⁄

R
[u(·, z) ≠ (K ≠ ez)]p(z ≠ x)dz. (11.14)

Let us now analyse the integrand of the integral in (11.14). At the expiration date,
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u(·, z) ≠ (K ≠ ez) = 0 for z < ln(K). Thus, the integral term in (11.14) is zero for

z < ln(K) at the expiration date. Otherwise, u(·, z) = 0. As explained in the previous

chapter, (11.1) is equal to zero, when it is not optimal to exercise the option, so, it

makes sense to evaluate for which value does the right-hand side of (11.14) is null.

rK ≠ qex ≠ ⁄
⁄

R
[u(·, z) ≠ (K ≠ ez)]p(z ≠ x)dz = 0

≈∆ rK ≠ qex ≠ ⁄
⁄ Œ

ln(K)

[≠(K ≠ ez)]p(z ≠ x)dz = 0

≈∆ ≠ qex ≠ ⁄
⁄ Œ

ln(K)

ezp(z ≠ x)dz = ≠rK ≠ ⁄
⁄ Œ

ln(K)

Kp(z ≠ x)dz

≈∆ ≠ qex ≠ ⁄
⁄ Œ

ln(

K

e

x

)

ez+xp(z)dz = ≠rK ≠ K⁄
⁄ Œ

ln(

K

e

x

)

p(z)dz

≈∆ ex

1
≠ q ≠ ⁄

⁄ Œ

ln(

K

e

x

)

ezp(z)dz
2

= ≠rK ≠ K⁄
⁄ Œ

ln(

K

e

x

)

p(z)dz

≈∆ ex = K
r + ⁄

⁄ Œ

ln(K/e

x

)

p(z)dz

q + ⁄
⁄ Œ

ln(K/e

x

)

ezp(z)dz
.

The right-hand side in (11.14) is then null when ex is equal to:

ex = K
r + ⁄

⁄ Œ

ln(K/e

x

)

p(z)dz

q + ⁄
⁄ Œ

ln(K/e

x

)

ezp(z)dz
.

As for the case of its European counterpart, American style options should only be

exercised at the expiration date if the payo� is non-zero, i.e., for the case of the put

option this happens when the price of the underlying asset is lower than the strike price

K. Therefore, the early exercise boundary S
p

(0) at the expiration date is the minimum

between the strike and the expression we have just got:

S
p

(0) = min
A

K, K
r + ⁄

⁄ Œ

ln(K/S

p

(0))

p(z)dz

q + ⁄
⁄ Œ

ln(K/S

p

(0))

ezp(z)dz

B

.

In conclusion, the auxiliary variable Ï1 is given by

Ï1

i

=

Y
__]

__[

rK ≠ qex

i + ⁄
⁄

ln(K)

Œ
(K ≠ ez)p(z ≠ x

i

)dz, if ex

i Æ S
p

(0),

0, if ex

i > S
p

(0).

(11.15)

(11.16)
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In the case of the American call option under the jump-di�usion model, the early

exercise boundary at the expiration date can be found in [13]. For our numerical

simulations, we used the formula above for the auxiliary variable Ï1.

82



12

Numerical results for American

options

In this section, we provide numerical results for the American options case, under

the Merton and Kou models. We simulate results, using the implicit method with three

time levels as described in the previous chapters, which leads to linear systems involving

tridiagonal coe�cient matrices, similarly to the European case. As previously done, we

decomposed these matrices recurring to the LU decomposition with O(N) operations

and also applied the FFT to compute the product of a dense matrix and a column

vector in the discrete integral operator. In order to treat the inequality constraints in

the LCP (10.2)-(10.4) for the American option, we combined the implicit method with

the operator splitting method suggested by Ikonen and Toivanen [31].

All the simulations presented here were computed in MATLAB using a Macbook

Pro with processor 2,3 GHz Intel Core i5.

12.1 Results for the Merton model

We start with the Merton model, which has the density function of jump sizes given

by (3.1). Parameters used in the simulation are the following:

‡ = 0.15, r = 0.05, ‡
J

= 0.45, µ
J

= ≠0.90,

d = 0, ⁄ = 0.10, T = 0.25, K = 100.

In [23], the authors develop an iterative method for the solutions of both the fully

implicit and Crank–Nicolson discretizations coupled with the penalty method to solve
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the LCP. The reference values are evaluated with 6 digits after the decimal point by

d’Halluin, Forsyth, and Vetzal [22]. We calculated the fair price of vanilla options

for three di�erent initial values and a unique strike (K = 100). In order to keep the

accuracy of our method larger than second-order, we build a cubic spline to evaluate

the prices of the option at non-mesh points of stock prices. The results can be found

in Table 3 and as the reader might notice, the pointwise errors are decreasing with the

increase of the number of steps.

Table 3: Prices of standard American-style put options under the Merton jump-di�usion model

Steps Spot Value Error CPU (sec)
M = 25 90 9.986550 - 0.009034
N = 128 100 3.213501 - 0.011231

110 1.407122 - 0.010548
M = 50 90 10.001556 0.015006 0.035964
N = 256 100 3.231315 0.017814 0.031529

110 1.418904 0.011782 0.032150
M = 100 90 10.004459 0.002903 0.073928
N = 512 100 3.238459 0.007144 0.073035

110 1.419276 0.000372 0.078562
M = 200 90 10.003350 0.001109 0.254753
N = 1024 100 3.240487 0.002028 0.255402

110 1.419365 0.000089 0.228199
M = 400 90 10.003909 0.000559 0.834073
N = 2048 100 3.241060 0.000573 0.855441

110 1.419783 0.000418 0.765838
M = 800 90 10.003845 0.000064 3.283936
N = 4096 100 3.241206 0.000146 3.236129

110 1.419795 0.000012 3.178400

Values of American put options obtained by the implicit method with three time levels under the

Merton model. The reference values are 10.003822 at S = 90, 3.241251 at S = 100, and 1.419803

at S = 110. The truncated domain is [≠2.5, 2.5], for the variable x =ln(S/S0). M is the number of

time steps and N is the number of spatial steps. The third column represents the computed values

corresponding to each strike and the fourth the di�erence between the values computed and the ones

calculated in the previous rows with less steps. The last column shows how much computation time

we needed.

In Figure 12.1, we plot the prices of an American put option, for di�erent values

of time-to-maturity and spot levels. Figure 12.2 shows the early exercise boundary, for
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each value of time-to-maturity, ranging from 0 to 0.25 years. As one can observe, the

early exercise boundary is continuous and non-increasing. Besides, on the boundary,

the Delta (first derivative of the option price with respect to the price of the underlying

asset) is equal to ≠1, as proven in Theorem A.1. This property is known as the "smooth

pasting" or "tangency" condition.

Figure 12.1: Price of an American put option under the Merton model
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Figure 12.2: Early exercise boundary for the Merton model
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12.2 Results for the Kou model

For the Kou model, whose density function is given by (3.6), the parameters used

are:

‡ = 0.15, r = 0.05, ÷
1

= 3.0465, ÷
2

= 3.0775,

d = 0, ⁄ = 0.10, T = 0.25, K = 100 p = 0.3445.

As done for the Merton model case, we compare our results with the ones presented

in [22]. They are shown in Table 4.

Table 4: Prices of standard American-style put options under the Kou jump-di�usion model

Steps Spot Value Error CPU (sec)
M = 25 90 10.001862 - 0.007468
N = 128 100 2.800028 - 0.006572

110 0.566056 - 0.008916
M = 50 90 10.006155 0.004293 0.017521
N = 256 100 2.805095 0.005067 0.017315

110 0.562595 0.003461 0.016726
M = 100 90 10.004407 0.001748 0.058711
N = 512 100 2.807180 0.002085 0.052383

110 0.562595 0.000735 0.057087
M = 200 90 10.005297 0.000890 0.188461
N = 1024 100 2.807682 0.000502 0.186383

110 0.561688 0.000172 0.189463
M = 400 90 10.005157 0.000140 0.737610
N = 2048 100 2.807810 0.000128 0.670359

110 0.561865 0.000177 0.687775
M = 800 90 10.005096 0.000061 3.487136
N = 4096 100 2.807840 0.000003 3.417621

110 0.561865 0.000000 3.137204

Values of American put options obtained by the implicit method with three time levels under the Kou

model. The reference values are 10.005071 at S = 90, 2.807879 at S = 100. and 0.561876 at S = 110.

The truncated domain is [≠1.5, 1.5], for the variable x = ln(S/S0). M is the number of time steps and

N is the number of spatial steps. The third column represents the computed values corresponding to

each strike and the fourth the di�erence between the values computed and the ones calculated in the

previous rows with less steps. The last column shows how much computation time we needed.
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In Figure 12.3, we plot the prices of an American put option, for di�erent times-

to-maturity and spot values. Figure 12.4 shows the early exercise boundary, for each

value of time-to-maturity, ranging from 0 to 0.25 years.

Figure 12.3: Price of an American put option under the Kou model
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Figure 12.4: Early exercise boundary for the Kou model
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13

Brief discussion on Greeks

Let us quote the following excerpt taken from the 17th Chapter of Hull [29]:

"A financial institution that sells an option to a client in the over-the-counter market

is faced with the problem of managing its risk. If the option happens to be the same as

one that is traded on an exchange, the financial institution can neutralize its exposure

by buying on the exchange the same option as it has sold. But when the option has been

tailored to the needs of a client and does not correspond to the standardized products

traded by exchanges, hedging the exposure is far more di�cult." One tool to manage

risk is using what is called in the financial literature as "Greeks" or "sensitivities".

According to [29], "each Greek letter measures a di�erent dimension to the risk in

an option position and the aim of a trader is to manage the Greeks so that all risks

are acceptable. [...] Most traders use more sophisticated hedging schemes than those

mentioned so far. These involved calculating measures such as delta, gamma and vega.".

In general, it is a trader’s goal to immunize the portfolio value, denoted as �, against

small changes in the underlying asset price S. To achieve this, he must ensure the Delta

equals zero. The Delta of an option is defined as the rate of change of the option price

with respect to the price of the underlying asset. It is the slope of the curve that relates

the portfolio value to the underlying price: ˆ�

ˆS

.

In the case this is not possible, one could obviously sell the entire portfolio and

invest the sum obtained in the bank, but this is neither usually feasible nor preferable.

Another more interesting alternative is to add a derivative to the portfolio. Since the

price of a derivative is by definition correlated with the underlying asset price, we should
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be able to balance the derivative against the portfolio in such a way that the adjusted

portfolio becomes Delta neutral.

On the other hand, in order not to be adjusting the Delta very frequently, it is

desirable to maintain the Gamma of a portfolio the closest to zero as possible. The

Gamma of a portfolio of contracts on an underlying asset is the rate of change of the

portfolio’s Delta with respect to the price of the underlying asset. It is the second

partial derivative of the portfolio with respect to asset price: ˆ

2

�

ˆS

2

.

If Gamma is small, Delta changes slowly and adjustments to keep a portfolio Delta

neutral need to be made only relatively infrequently. However, if the absolute value of

Gamma is large, Delta is highly sensitive to the price of the underlying asset. It is then

quite risky to leave the portfolio highly sensitive to the price of the underlying asset.

For a more profound study on the Greeks and their intricacies, the reading of Hull

[29] or Bjork [9] is suggested. We remark that given the importance of the Greeks in

Risk Management, the numerical methods and models presented so far also allow for

the computation of these, both for the European and American cases. As an example,

we plot in Figures 13.1 and 13.2, respectively, the Delta and the Gamma of a European

put option under the Merton model, while Figures 13.3 and 13.4 show the same Greeks

for the American case, using the following parameters:

‡ = 0.15, r = 0.05, ‡
J

= 0.45, µ
J

= ≠0.90

d = 0, ⁄ = 0.10, T = 0.25, K = 100.

According to [38], option pricing problems frequently have nonsmooth payo� func-

tions, which lead numerical solutions to possibly oscillate on the final time level. In

order to overcome this problem, the solutions on a few initial time levels are estimated

by the explicit-implicit method in the second time level and thereafter the solutions on

the rest of the time levels are obtained by the implicit method with three time levels.

However, with our method we can overcome this flaw, as shown in the Figures pre-

viously referred. There is no evidence of oscillations in the Delta with respect to the

stock price and the Gamma too, except in the point where Delta has an angle point.
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Figure 13.1: Delta of a European put option under the Merton model
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Figure 13.2: Gamma of a European put option under the Merton model
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Figure 13.3: Delta of an American put option under the Merton model
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Figure 13.4: Gamma of an American put option under the Merton model
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14

Conclusions & future Research

In this thesis several models and methods for pricing European and American-

style options were explained. After presenting the basic concepts and results related

to the Option Pricing theory, we introduced two jump-di�usion models, respectively

attributing a normal and a double-exponential distribution to the jump part of equation

(2.3): the Merton and the Kou models. These assume the underlying asset follows a

Lévy process. The latter represents an improvement in relation to the di�usion models.

In order to apply in practice our theoretical results and accomplish our goal of

obtaining prices for certain financial contracts, such as vanilla options, we established

the dependency of an option’s price on time and spot value through a PIDE and used the

latter to build a numerical method involving three time levels. Such numerical method

was first used to solve the PIDE, aiming to get prices of European-style options and,

in our approach, we tried to approximate the di�erential operator by finite di�erences

in such a way that we would obtain a scheme similar to the Crank-Nicolson’s. The

integral operator is approximated using the trapezoidal rule, thus ensuring second-order

accuracy.

With this procedure, we were able to build a system of equations involving tridiag-

onal matrices. This way, we could easily apply LU decomposition which only requires

O(N) operations, where N stands for the number of spatial steps. The FFT is used to

evaluate e�ciently the product of a dense matrix and a column vector. These features

lead our numerical experiments to be computed in just a few seconds.

We showed our method has good numerical properties too. In particular, we proved
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it is consistent, stable and it has second-order convergence rate in the discrete l2-norm.

To test the quality of our method and also the features described in the last para-

graph, we then compared our results with semi-closed pricing formulae available in

the literature. In particular for the Merton’s case, the options’ prices were given by

a weighted average of Black-Scholes prices. In the Kou model, the solution was given

in terms of special mathematical functions, which were evaluated using Gauss quadra-

tures. Moreover, we also confronted our values with similar results published in the

literature, corroborating the fact that our method is well conceived for, at least, the

vanilla options case.

Furthermore, we were able to extend our method to American-style options, propos-

ing a similar method to solve the LCP (10.2)-(10.4). We presented a combination of

the implicit method with three time levels and the operator splitting technique.

We implemented several numerical experiments for American-style put options un-

der the Merton and Kou models. Our results also show that our procedure leads to

options prices which are consistent with the ones found in the literature, where other

methods were applied.

Besides the prices of American-style put options, early exercise boundaries for both

the Merton and Kou models were plotted. This way, the investor has an idea on how

to make his choice, deciding for which values should he exercise the option.

With our procedure, we were also able to compute the Greeks such as the Delta

and the Gamma, both for European and American-style put options, allowing a better

measurement of Risk when trading options.

Despite the accomplishments attained in this thesis and the fact that vanilla op-

tions are very liquid contracts in the financial markets, it would be useful to extend this

framework to more complex payo�s such as Asian and Lookback options and contracts

like Correlation or Variance Swaps. For the latter, it is thoughtful to consider models

that combine both jumps and stochastic volatility. As an example, Bates [5] combines

the Merton jump-di�usion model and the Heston stochastic volatility model, by defin-

ing two stochastic di�erential equations: one for the asset’s price and another for the
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volatility associated with the Brownian motion.

It is also possible to consider the rate of arrival of jumps has its own distribution

as it happens in [20], where its dynamics are defined through its own stochastic dif-

ferential equation. However, since stochastic volatility implies correlation between the

increments of the process, these models lie beyond the scope of Lévy processes.
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A

Appendix

A.1 Graphs

Within this part of the Appendix it is possible to visualize the graphs which were

referred along the thesis.

Figure A.1: S&P500 stock prices Figure A.2: S&P500 log returns

The first picture represents the closing price values of the index S&P500 from the

beginning to the end of 2015. Using this data, the log-returns are computed, by sim-

ply subtracting the logarithm of exponential basis (denoted by "log" from now on) of

the value in one day to the log of the following day. The chart A.2 represents these

calculations.

The same was done for the EUR/CHF. Figure A.3 represents the closing price values

of the EUR/CHF through the year of 2015 and Figure A.6 the log-returns.

Using the log-returns values of these data sets, an histogram of the log-returns for

both asset’s was conceived. They correspond to the Figures A.5 and A.6.

In Figure A.7, we plot a simulation of a Poisson process with rate ⁄ = 0.1. The
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Figure A.3: EUR_CHF values Figure A.4: EUR_CHF log re-
turns

Figure A.5: S&P500 log returns histogram

horizontal axis represents the time and the vertical the value of the random variable.

As one can see, the plot exhibits right-continuity and is constant between jumps.
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Figure A.6: EUR/CHF log returns histogram

Figure A.7: Poisson process
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A.2 Other results

Theorem A.1. An American put with value p must respect the following equality,

known as the "smooth pasting" or "tangency" condition:
ˆp

ˆs
(·, sú(·)) = ≠1, (A.1)

where · œ [0, T ] and sú(·) is the optimal exercise boundary price. For the call option,

the result is similar, with the only di�erence that the delta of the option is 1 instead.

The proof of this theorem is based on [36], but it can also be found in [41].

Proof. Take arbitrarily · œ [0, T ] and define as F (b, s) the solution of (10.2)-(10.4),

in the continuation region {(·, s) œ]0, T ] ◊ R+ | s > b(·)}, where s stands for the

underlying’s price and b for the boundary, which is now assumed to be known.

F (b, s) is a di�erentiable function and F (b, b) = K ≠ b, with K being the strike

price. The total derivative of F with respect to b along the boundary s = b is given by:
dF

db
= ˆF

ˆs

ˆs

ˆb
(b, s)

-----
s=b

+ ˆF

ˆb
(b, s)

-----
s=b

. (A.2)

It is obvious that ˆs

ˆb

(b, s) = 1, since s = b.

The holder of the American put chooses an early exercise policy which maximizes

the value of the put for all possible continuous functions b(·). Therefore, defining by

bú the critical value of b which maximizes F , we have ˆF

ˆb

(bú, s) = 0.

On the other hand, from the exercise payo� function of the American put option,

we have
dF

db

-----
b=b

ú
= d

db
(K ≠ b)

-----
b=b

ú
= ≠1. (A.3)

From the argumentation above, we obtain ˆF

ˆs

(bú, s)
---
s=b

ú
= ≠1. Note that the opti-

mal choice bú(·) is just the optimal exercise price sú(·). The above condition can then

be expressed in an alternative form as ˆp

ˆs

(·, sú(·)) = ≠1. ⌅

Theorem A.2. Given two independent and continuous random variables X and Y

with density functions respectively given by f
X

and f
Y

, the distribution of the their sum
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Z = X + Y is given by the convolution of X and Y .

Proof. Given that the variables X and Y are assumed to be independent, their joint

density is equal to f
X

(x)f
Y

(y).

F
Z

(z) = P{X + Y Æ z}
=

⁄

x+yÆz

f
X

(x)f
Y

(y)dxdy

=
Œ⁄

≠Œ

z≠y⁄

≠Œ

f
X

(x)f
Y

(y)dxdy

=
Œ⁄

≠Œ

F
X

(z ≠ y)f
Y

(y)dy.

Now, applying the Fundamental Theorem of Calculus, one may obtain the density

of Z = X + Y by di�erentiating the respective cumulative density function (CDF):

f
Z

(z) = d

dz
F

Z

(z)

=
Œ⁄

≠Œ

f
X

(z ≠ y)f
Y

(y)dy.

The last expression matches the convolution of the density functions of X and Y :

f
Z

(z) := f
X+Y

(z) = (f
X

ú f
Y

)(z).

Analogously, we can prove that

F
Z

(z) =
Œ⁄

≠Œ

z≠x⁄

≠Œ

f
Y

(y)f
X

(x)dydx

=
Œ⁄

≠Œ

F
Y

(z ≠ x)f
X

(x)dx.

and therefore f
Z

(z) =
Œ⁄

≠Œ

f
Y

(z ≠ x)f
X

(x)dx.

We then conclude our claim. ⌅

Theorem A.3. Let n œ N and A = (a
ij

) œ M
n◊n

, i, j œ {1, ..., n} be a strictly diago-

nally dominated matrix. A is invertible.

Proof. Suppose A = (a
ij

) is a strictly diagonally dominated matrix. Towards a contra-
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diction, assume it is non-singular. Then, 0 is an eigenvalue of A. Let u = (u
j

) œ R\{0}
be an eigenvector associated to the eigenvalue 0. Since u in not the null vector, there

exists u
m

, the greatest value of the set of u components.

Following the definition of an eigenvector and considering any row i:

Au = 0
ÿ

j

a
ij

u
j

= 0

a
mm

u
m

= ≠ ÿ

j ”=i

a
ij

u
j

a
mm

= ≠ ÿ

j ”=i

a
ij

u
j

u
m

The latter implies that

|a
mm

| Æ ÿ

j ”=i

---a
ij

u
j

u
m

---

|a
mm

| Æ ÿ

j ”=i

|a
ij

|.

Given that we reached a contradiction, we conclude A is invertible. ⌅

Theorem A.4. Let n œ N and A = (a
ij

) œ M
n◊n

, i, j œ {1, ..., n} be a regular square

matrix.

ÎAÎ
2

:= max
x ”=0

ÎAxÎ
2

ÎxÎ
2

=
Ò

⁄
max

(AT A), where ⁄
max

(AT A) denotes the greatest eigen-

value of AT A.

Proof. First, we prove the l2-norm does not change its value under orthogonal trans-

formations:

Let x œ Rn.

ÎQxÎ
l

2

=
Ò

(Qx)T (Qx) =
Ò

xT QT Qx =
Ô

xT x = ÎxÎ
l

2

,

since QT Q = I for an orthogonal matrix.

ÎAÎ
2

= max
x ”=0

ÎAxÎ
l

2

ÎxÎ
l

2

= max
x ”=0

(x

T

A

T

Ax)

1

2

ÎxÎ
l

2

.

Since AT A is symmetric, it can be decomposed as AT A = Q�QT , where � is a
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diagonal matrix containing the eigenvalues of AT A, which are all real. Then

ÎAÎ
2

= max
x ”=0

(xT (Q�QT )x) 1

2

ÎxÎ
l

2

= max
x ”=0

((QT x)T �(QT x)) 1

2

ÎQT xÎ
l

2

by orthogonal transformations.

On the other hand, AT A is positive definite. In fact:

xT AAT x = (AT x)T (AT x) > 0, ’x œ R \ {0}.

Thus, all the eigenvalues of AT A are positive.

Define y := QT x.

ÎAÎ
2

= max
y ”=0

(yT �y) 1

2

ÎyÎ
l

2

= max
y ”=0

ı̂ıÙ
q

n

i=1

⁄
i

y2

iq
n

i=1

y2

i

Æ
ı̂ıÙ⁄

max

q
n

i=1

y2

iq
n

i=1

y2

i

=
Ò

⁄
max

.

To see we can indeed attain this value for the 2-norm, pick y as the jth column of

the identity matrix, considering that ⁄
j

is the largest eigenvalue. This leads to:
(y

T

�y)

1

2

ÎyÎ
l

2

=
Ô

⁄

max

1

=
Ô

⁄
max

.

We then proved our claim. ⌅

Theorem A.5. Let A = (a
jk

) be a regular square matrix with p rows and columns.

(a
jk

) denotes the element in the jth row and kth column of A. The following equality

holds true:

ÎAÎŒ := max
x ”=0

ÎAxÎ
l

Œ
ÎxÎ

l

Œ = max
j

q
p

k=1

|a
jk

|.

Proof. Let x be a vector of dimension p such that ÎxÎ
l

Œ = 1. By definition, it is obvious

that |x
k

| Æ 1, ’k œ {1, . . . , p} and |x
i

| = 1 for some i between 1 and p. Then:

ÎAxÎ
l

Œ :=max
j

---
q

p

k=1

a
jk

x
k

--- Æ max
j

q
p

k=1

|a
jk

|.
Hence, in particular, the maximum row sum is always greater than or equal to the

infinity vector norm of A.

Conversely, suppose the maximum row sum is obtained from row j of the matrix A.

Then, choose the vector x defined by

x
k

= 1, if a
jk

Ø 0,

x
k

= ≠1, if a
jk

< 0.
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Then ÎxÎ
l

Œ = 1 and

ÎAÎŒ Ø ÎAxÎ
l

Œ Ø
---

pÿ

k=1

a
jk

x
k

--- =
pÿ

k=1

|a
jk

|.

We can now conclude that ÎAÎŒ = max
j

q
p

k=1

|a
jk

|.
⌅

A.3 Finite di�erences

Here, we present some formulae which are the base for the approximations (7.10),

(7.11) and (7.12).

Assume u(·, x) œ C2([0, T ] ◊ R). According to Taylor’s theorem, given ·
0

œ [0, T ],

a fixed x
0

œ R and �· > 0, we have:

• u(·
0

+ �·, x) ¥ u(·
0

, x) + u
·

(·
0

, x)�· + u

··

(·

0

,x)

2

(�·)2

• u(·
0

≠ �·, x) ¥ u(·
0

, x) ≠ u
·

(·
0

, x)�· + u

··

(·

0

,x)

2

(�·)2

Subtracting:

u(·
0

+ �·, x) ≠ u(·
0

≠ �·
0

, x) ¥ 2u
·

(·
0

, x)�·

≈∆

u
·

(·
0

, x) ¥ u(·
0

+ �·, x) ≠ u(· ≠ �·, x)
2�·

. (A.4)

Analogously, we have for the second variable:

u(·
0

, x
0

+ �x) ≠ u(·
0

, x
0

≠ �x) ¥ 2u
·

(·
0

, x
0

)�x

≈∆

u
·

(·
0

, x
0

) ¥ u(·
0

, x
0

+ �x) ≠ u(·, x
0

≠ �x)
2�x

. (A.5)

Summing up instead of subtracting, we get:

u(·
0

, x
0

+ �x) + u(·
0

, x
0

≠ �x) ¥ 2u(·
0

, x
0

) + u
xx

(·
0

, x
0

)(�·)2

≈∆

u
xx

(·
0

, x
0

) ¥ u(·
0

, x
0

) ≠ 2u(·
0

, x
0

) + u(·
0

, x
0

≠ �x)
(�x)2

. (A.6)
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A.4 Poisson processes

Let (C
n

)
n>0

be a sequence of random positive variables strictly monotonically in-

creasing (0 = C
0

< C
1

< C
2

< · · · ) and let (�, F ,P) be a probability space (�, F and

P respectively represent a sample space, a ‡-algebra and a probability measure). For

each Ê œ �, we define an indicator function as

11{C

n

(Ê)Æt} =

Y
_]

_[

1, if C
n

(Ê) Æ t

0, if C
n

(Ê) > t

The process C = (C
t

)
0ÆtÆŒ defined by:

C
t

=
ÿ

nØ1

11{C

n

Æt}

is called the counting process associated to the sequence (C
n

)
nØ1

. A counting process is

a stochastic process which counts the number of events that have occurred up to time

t. It is non-negative and integer-valued for all t Ø 0. Furthermore, C
t

is non-decreasing

in t and C
t

≠ C
s

equals the number of events in the time interval (s, t], for any s < t.

C
t

could, e.g., denote the number of arrivals of customers at a railway station in (0, t],

or the number of accidents on a particular highway in that time interval or the number

of calls to a telephone call-center during that period.

Many processes in everyday life that ”count” events up to a particular point in time

can be accurately described by the so-called Poisson process, named after the French

scientist Siméon Poisson (1781-1840). A Poisson process is a counting process that has

the desirable additional properties that the number of events in disjoint intervals are

independent (”independent increments”) and that the number of events in any given

interval depends only on the length of that interval, and not on its particular position

in time (”stationary increments”). In the case of the arrivals at the railway station, the

stationary assumption is clearly not fulfilled; there will be many more arrivals between

5 P.M. and 6 P.M. than between, say, 5 A.M. and 6 A.M. Still, one might wish to study

the arrival process at the railway station during the rush hour. Restricting oneself to

103



subsequent working days between 5 P.M. and 6 P.M. does allow one to use the stationary

increments assumption.

From now on, we only consider non-explosive counting processes, that is, if C =

(C
t

)
0ÆtÆŒ is a counting process, it is defined as non-explosive when the event {inf{t :

C
t

= Œ} < Œ} has null probability. In other words, it is explosive if the event

{sup{t : C
t

= Œ} = Œ} has probability one almost surely (a.s.).

Definition A.6. A stochastic process {N
t

, t Ø 0} is considered to possess independent

increments if, for any t
1

, t
2

, t
3

, · · · , t
n

, with 0 < t
1

< t
2

< · · · < t
n

, we have that

N
0

, N
t

1

≠ N
0

, N
t

2

≠ N
t

1

, · · · , N
t

n

≠ N
t

n≠1

are independent random variables. This means that the number of events occurred until

the time t, N
t

, is independent of the number of events that occurred between t and t+s

(that is, N
t+s

≠ N
t

).

Definition A.7. A stochastic process {N
t

, t Ø 0} has stationary increments if for any

s < t , N
t

≠ N
s

is equal in distribution to N
t≠s

. This implies that given k œ R and

s Ø t, P [N
t+s

≠ N
t

= k] = P [N
s

= k], for any t Ø 0, s > 0.

Theorem A.8. Let {N
t

, t Ø 0} be a Poisson’s process. Then

P(N
t

= n) = e≠⁄t(⁄t)n

n! , ’n œ N

for some ⁄ Ø 0. This means N
t

≥ Poisson(⁄t). Besides, (N
t

)
tØ0

is continuous in

probability
A

lim
tæu

N
t

= N
u

, taking the limit in probability, i.e., ’‘ Ø 0, lim
tæu

P(|N
t

≠ N
u

| Ø

‘) = 0
B

and N does not have explosions.

Proof. First we prove 3 preliminary results.

(a) ’ t Ø 0, P(N
t

= 0) = e≠⁄t, for some ⁄ Ø 0.

The number of arrivals in the interval [0, t + s] is zero if and only if there is no

arrival in the interval [0, t] or (t, t + s], i.e. the event {N
t+s

= 0} is equal to the

event {N
t

= 0} fl {N
t+s

≠ N
t

= 0}. By definition, these events are independent and
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consequently,

P[N
s+t

= 0] = P[N
t

= 0, N
t+s

≠ N
t

= 0] = P[N
t

= 0]P[N
t+s

≠ N
t

= 0]

On the other hand, the distribution is stationary, so

P[N
t+s

≠ N
t

= 0] = P[N
s

= 0].

Then,

P[N
s+t

= 0] = P[N
t

= 0]P[N
s

= 0].

Therefore, the function g(t) = P[N
t

= 0], fulfills the condition g(t + s) = g(t)g(s)

and hence g(t) = g(t)2, ’t Ø 0. This way, we may conclude g(t) is either identically

equal to one or to zero.

Assume g(t) is zero for an arbitrary t Ø 0, towards a contradiction. Then, for any

s Ø 0, N
s

d= N
t+s

≠ N
t

Ø 1 P-a.s. Now, consider n œ N such that t
1

< t
2

< t
3

< · · ·
< t

n

= t . We have:

N
t

= N
t

1

+ (N
t

2

≠ N
t

1

) + · · · + (N
t

n

≠ N
t

n≠1

),

and because N
t

i

≠ N
t

i≠1

Ø 1, P ≠ a.s., ’i = 1, · · · , n we get N
t

(Ê) Ø n, ’n œ N, for

almost every Ê œ �. Consequently, N
t

(Ê) = Œ P-a.s., which leads to the conclusion

that (N
t

)
tØ0

is an explosive process, contradicting one of our hypothesis. Then g(t)

cannot be null. Since t was arbitrarily chosen, this means g is not zero in any point of

its domain.

We now show that g is an exponential function, that is, g(t) = e≠–t, for some – Ø 0.

Let t, m œ N. g(2) = g(1)g(1) = g(1)2 and g(m) = [g(1 + 1 + ... + 1)] = g(1)g(m ≠ 1) =

g(1)g(1)g(m ≠ 2) = g(1)m. Since g(1) is non-negative, there exists a — œ R such that

g(1) = e— and thus g(m) = em—, for m œ N.

Now consider n œ N. g(1) = g
1
( 1

n

) + ..., +( 1

n

)
2

= g
1

1

n

2
n

. Therefore, for the same —

as in the last paragraph, we have g( 1

n

) = e
—

n .

Let m, n œ N.g(m

n

) = g(m ◊ 1

n

) = g( 1

n

)g
A

(m ≠ 1) 1

n

B

= g( 1

n

)m = e—

m

n .

Now, we can show that g is an exponential function for any real positive t by taking
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a sequence of rational numbers (t
n

)
nœN decreasing to t. First, notice that since N

t

is

a counting process, it only assumes values in N
0

and therefore g(t) = P[N
t

= 0] =

P[N
t

Æ 0] represents the value, in zero, of a cumulative distribution function, which is

right continuous (as mentioned in [8], for instance). Consequently, g(t) = lim
næŒ

g(t
n

) =

lim
næŒ

e—t

n = e—t. Since a probability is a number smaller or equal than one, — must be

non-positive.

Summarily, we have shown that g(t) = e≠⁄t, for some ⁄ non-negative real.

(b) lim
t¿0

1
t
P(N

t

Ø 2) = 0.

Define f(t) := P[N
t

Ø 2]. N
t

Ø 2 implies N
t+s

Ø 2, for any s > 0, which allows us

to write the relation {N
t

Ø 2} µ {N
t+s

Ø 2}. Since the probability is a monotonically

increasing function, we have P[N
t

Ø 2] Æ P[N
t+s

Ø 2], that is, f(t) Æ f(t + s) (f is a

non-decreasing function).

Let n
t

:= sup{n œ N | n Æ 1

t

}. From the definition of n
t

, t Æ 1
n

t

and 1
t

Æ n
t

+ 1.

Therefore, f(t) Æ f
1

1

n

t

2
and

0 Æ 1
t
f(t) Æ (n

t

+ 1)f
3 1

n
t

4
= n

t

+ 1
n

t

n
t

◊ f
3 1

n
t

4
.

Letting t ¿ 0, we have n
t

ø Œ and (n
t

+ 1)
n

t

æ 1. It is su�cient to prove that

n
t

f
3 1

n
t

4
æ 0 when n

t

æ Œ (or equivalently, t æ 0) in order to demonstrate our

claim.

Consider the interval [0, 1] and a partition of this interval in n sub-intervals of length

1/n
t

. Let S
n

t

(Ê) be the number of sub-intervals for which N
t

(Ê) Ø 2, i.e., the number of

sub-intervals where there were at least two "arrivals". S
n

t

can be viewed as a Binomial

random variable, corresponding to the sum of Bernoulli’s random variables, where the

number of trials is n
t

. In the kth trial, with k = 1, · · · , n
t

, there is "success" if in the kth

sub-interval, there were at least two arrivals and there is not otherwise. Given this, the

probability of success for each trial is given by p = f
1

1

n

t

2
and E[S

n

] = n
t

p = n
t

f
3 1

n
t

4
.

Consider now, for each Ê œ �, the minimal time ”(Ê) > 0 between two "arrivals" (the

time between the occurrence of two events) in the interval [0,1]. For n
t

su�ciently large
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(and equivalently, t su�ciently low), we get 1
n

t

< ”(Ê). Consequently, no sub-interval

will contain two "arrivals" and we conclude that S
n

t

(Ê) = 0, P≠a.s.. So, lim
n

t

æŒ
S

n

t

(Ê) =

0, P ≠ a.s.. Besides, S
n

t

is limited, because it cannot be greater than the number of

arrivals that occur in [0, 1]; this means, S
n

t

is limited by N
1

, whose expected value is

finite: E[S
n

t

] Æ E[N
1

] < Œ. From this we can see that S
n

t

is dominated and applying

now the dominated convergence theorem (see [12]), we get:

lim
n

t

æŒ
n

t

f
3 1

n
t

4
= lim

n

t

æŒ
E[S

n

t

] = E[ lim
n

t

æŒ
S

n

t

] = E[0] = 0.

Finally we conclude lim
t¿0

1
t
P(N

t

Ø 2) = 0.

(c) lim
t¿0

1
t
P(N

t

= 1) = ⁄, where ⁄ is the same constant mentioned in (a).

From probability theory, it is true that P[N
t

= 1] = 1 ≠ P[N
t

= 0] ≠ P[N
t

Ø 2].

From (a) and (b) we have

lim
t¿0

1
t
P(N

t

= 1) = lim
t¿0

1 ≠ e≠⁄t

t
≠ lim

t¿0

1
t
P[N

t

Ø 2] = ⁄.

We are now in conditions to prove the desired result:

P(N
t

= n) = e≠⁄t(⁄t)n

n! , ’n œ N.

Define F (t) = E[–N

t ], with – œ]0, 1[. Since N
t+s

= N
t

+ (N
t+s

≠ N
t

) and N
t+s

≠ N
t

is independent of N
t

, we get

F (t + s) = E[–N

t+s ] = E[–N

t

+(N

t+s

≠N

t

)] = E[–N

t ]E[–N

t+s

≠N

t ] = F (t)F (s).

Therefore, either F (t) = 0, P ≠ a.s. or F (t) = et›, for some real ›. But

F (t) = E[–N

t ] =
Œÿ

n=0

–nP[N
t

= n] Ø P [N
t

= 0] = e≠⁄t, ⁄ Ø 0,

so F (t) cannot be identically null and consequently, F (t) = et›, for some real ›. From

Calculus, we know that lim
tæ0

e›t ≠ 1
›t

= 1. Using the fact that F (0) = 1, we can write:

lim
tæ0

F (t) ≠ F (0)
t

= ›. This proves that › corresponds to the derivative of F at point 0,

by noticing that the left hand side of the last equation is equal to its definition.
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F (t) =
Œÿ

n=0

–nP[N
t

= n], so its derivative is given by

› = lim
tæ0

1
t
(F (t) ≠ 1) = lim

tæ0

1
t

[P(N
t

= 0) ≠ 1] + lim
tæ0

1
t
–P[N

t

= 1] + lim
tæ0

1
t

Œÿ

n=2

–nP[N
t

= n].

From (a), we have:

lim
tæ0

1
t

[P(N
t

= 0) ≠ 1] = lim
tæ0

1
t

Ë
e≠⁄t ≠ 1

È
= ≠⁄

(this limit can be obtained by applying Hôpital’s rule, for instance).

From (c), lim
tæ0

1
t
–P[N

t

= 1] = –⁄. Since – œ]0, 1[, we have

0 Æ lim
tæ0

1
t

Œÿ

n=2

–nP[N
t

= n] Æ lim
tæ0

1
t

Œÿ

n=2

–nP[N
t

Ø 2] =
Œÿ

n=2

–n lim
tæ0

1
t
P[N

t

Ø 2]

Æ
Œÿ

n=0

–n lim
tæ0

1
t
P[N

t

Ø 2] = 1
1 ≠ –

lim
tæ0

1
t
P[N

t

Ø 2] = 0.

From this we get that › = ≠⁄ + ⁄–, ’– œ]0, 1[ and therefore F (t) = e≠⁄t+⁄t–.

Developing e⁄t– in Taylor series around the point 0, we may establish the equality
Œÿ

n=0

–nP[N
t

= n] =
Œÿ

n=0

e≠⁄t(⁄t)n

n! –n,

and, in conclusion, P[N
t

= n] = e≠⁄t(⁄t)n

n! , as we wanted to prove.

It is only left to show that the Poisson’s process is continuous in probability, that

is, lim
tæu

P(|N
t

≠ N
u

| Ø ‘) = 0, ’‘ > 0.

Take an arbitrary ‘ > 0. Since

{Ê œ � : |N
t

(Ê) ≠ N
u

(Ê)| Ø ‘} µ {Ê œ � : |N
t

(Ê) ≠ N
u

(Ê)| > 0},

the inequality

0 Æ P(|N
t

≠ N
u

| Ø ‘) Æ P(|N
t

≠ N
u

| > 0)

is valid. The latter probability is equal to

P(|N
t

≠ N
u

| > 0) = 1 ≠ P(|N
t

≠ N
u

| = 0) = 1 ≠ e≠⁄|t≠u|.

Now, taking the limit, it follows that

0 Æ lim
tæu

P(|N
t

≠ N
u

| Ø ‘) Æ lim
tæu

P(|N
t

≠ N
u

| > 0) = lim
tæu

1 ≠ e≠⁄|u≠t| = 0,
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and we conclude that the Poisson process is continuous in probability. ⌅

A.5 Compound Poisson processes

In a compound Poisson process, each arrival in an ordinary Poisson process comes

with an associated real-valued random variable that represents the value of the arrival

in a certain sense. These variables are independent and identically distributed and also

independent of the underlying Poisson process. Our interest is centered on the sum of

the random variables for all the arrivals up to a fixed time t, which thus is a Poisson-

distributed random sum of random variables. Distributions of this type are said to be

compound Poisson distributions.

Suppose we have a Poisson process with rate ⁄ œ (0, Œ). We will denote the

sequence of inter-arrival times by X = (X
0

, X
1

, X
2

, . . . ), the sequence of arrival times

by T = (T
0

, T
1

, T
2

, . . . ), and the counting process by N := {N
t

| t œ [0, Œ)}. From

the section A.4, recall that X is a sequence of independent random variables, each

having the exponential distribution on [0, Œ) with rate ⁄. The sequence (T
n

)
nØ0

is the

partial sum sequence associated to X, and has stationary independent increments. For

t œ (0, Œ), the number of arrivals N
t

in (0, t] has Poisson distribution with parameter

⁄.

We next present some typical examples of compound Poisson processes:

The arrivals of customers at a store. Each customer spends a random amount of

money. The number of visits to a website. Each visitor spends a random amount of time

at the site. The number of earthquakes at a particular location. Each earthquake has a

random severity, a measure of the energy released. For n œ N, let U
n

denote the value

of the nth arrival. We assume that U = (U
0

, U
1

, U
2

, . . . ) is a sequence of independent,

identically distributed, real-valued random variables, and that U is independent of the

underlying Poisson process. The common distribution may be discrete or continuous,

but in either case, we let p denote the common probability density function.

Definition A.9. The Compound Poisson process associated with a given Poisson pro-
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cess (N
t

)
tØ0

and a sequence (U
n

)
nØ0

is the stochastic process V={V
t

| t œ [0, Œ)} where

V
t

=
N

tÿ

n=1

U
n

.

Thus, V
t

is the total value for all of the arrivals in (0, t]. For the examples above,

V
t

, respectively, is the total income to the store up to time t, the total time spent at

the site by the customers who arrived up to time t, and the total energy released up to

time t on the earthquake.

Theorem A.10. Consider a random variable X, which has a compound Poisson dis-

tribution, i.e., X =
N

tÿ

j=0

Y
j

, where N
t

has Poisson distribution with parameter ⁄, and

(Y
j

)
jœN

0

is an independent sequence of i.i.d. random variables with characteristic func-

tion „. Then �(s) := E[eisX(t)] = e≠⁄t[1≠„(s)].

Proof.

�(s) = E[eisX(t)]

=
Œÿ

j=0

E(eisX(t) | N
t

= j)P (N
t

= j)

=
Œÿ

j=0

E(eis(Y

0

+···+Y

N

t

))|N
t

= j)P (N
t

= j)

=
Œÿ

j=0

E(eis(Y

0

+···+Y

j

))P (N
t

= j)

=
Œÿ

j=0

jŸ

k=0

E(eis(Y

k

))P (N
t

= j)

=
Œÿ

j=0

„(s)j

(⁄t)j

j! ◊ e≠⁄t

= e⁄t[„(s)≠1].

Furthermore, using the moment generating function definition and assuming (Y
j

)
jœN

0

has a common probability distribution p, we get:

�(t) = exp
Q

a⁄t

C ⁄

R

eisxp(x) dx ≠ 1
DR

b

= exp
Q

a⁄t

C ⁄

R

eisxp(x) dx ≠
⁄

R

p(x)dx

DR

b
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= exp
Q

a⁄t

C ⁄

R

(eisx ≠ 1)p(x) dx

DR

b .

⌅

Notice that in this proof we used the fact that (Y
j

)
jœN

0

is a sequence of independent

random variables and that the exponential function is equal to the following power

series: ex =
Œÿ

n=0

xn

n! .

Theorem A.11. Given the random variable X in the exact same conditions as in the

previous theorem, its mean and variance, respectively, are: ⁄E(Y
i

) and ⁄E(Y 2

i

).

Proof. The moment of first order of X can be obtained, by di�erentiating the moment

generating function �(t) once and evaluating it at the point t = 0:

E[X] = (≠i) ◊ (≠1)ˆ„(s)
ˆt

(≠⁄)e≠⁄t[1≠„(s)]

---
s=0

= ⁄t(≠i) ◊ ˆ„(s)
ˆs

---
s=0

e≠⁄t[1≠„(0)]

= ⁄tE(Y
i

)

The moment of second order is obtained following a similar logic, but di�erentiating

twice instead:

E[X2] = (≠i)2 ◊ ˆ„(s)
ˆs

C
ˆ„(s)

ˆs
⁄te≠⁄t[1≠„(s)]

D-----
s=0

= (≠i)2

ˆ2„(s)
ˆs2

⁄te≠⁄t[1≠„(s)]

---
s=0

+ (≠i)2

ˆ„(s)
ˆs

◊ ˆ„(s)
ˆs

(⁄t)2e≠⁄t[1≠„(s)]

---
s=0

= ⁄tE(Y 2

i

) +
C

(≠i)ˆ„(s)
ˆs

---
s=0

D
2

(⁄t)2e≠⁄t[1≠„(s)]

---
s=0

= ⁄tE(Y 2

i

) + (⁄t)2E2(Y
i

)

The variance is then:

V ar(X) = E(X2) ≠ E2(X) = ⁄tE(Y 2

i

) + (⁄t)2E2(Y
i

) ≠ (⁄tE(Y
i

))2 = ⁄tE(Y 2

i

). ⌅
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A.6 Brownian motion

Definition A.12. The stochastic process {W
t

}
tØ0

defined on a probability space (�, F ,P)

is a Wiener process, or a standard Brownian motion if:

(1) W
0

= 0 almost surely;

(2) It has independent increments;

(3) It has stationary increments;

(4) It is stochastically continuous;

(5) The increment W
t+s

≠ W
t

is Normally distributed with mean 0 and variance s > 0,

i.e., W
t+s

≠ W
t

≥ N(0, s).

This is the classical example of a di�usion process and is certainly the most studied

and notorious stochastic model in quantitative finance. It was first documented by

Robert Brown in 1827 (for which it was named after), then in Bachelier [2], it was used

as a model for stock market prices. Five years later, Einstein consider it, as a model

of particles. Only in 1923 the Brownian motion was defined and constructed rigorously

by Robert Wiener, for which the process is also referred. Finally, it was thanks to

Samuelson [48] that the Brownian motion was, definitely, set as the standard modelling

tool in finance.

A.7 Fast Fourrier Transform

In this section, we present a few concepts and results related with the so called

"Fast Fourrier Transform" (FFT). Our goal is not to provide an extensive study, but

to give a brief understading on how useful FFT is to compute the product of a dense

Toeplitz matrix and a column vector (as in (7.14)), because this calculation is the most

time-consuming one. For more details, we suggest the reading of [27].

First, we present a few concepts and then we suggest an algorithm that allows to

significantly reduce the computation time of the product refered in the last paragraph.

Definition A.13. T œ Cn◊n is Toeplitz if T is determined by the 2n ≠ 1 scalars
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t
n≠1

, . . . , t
n≠1

with T
ij

= t
j≠i

, for all i and j.

T =

S

WWWWWWWWWWWWU

t
0

t≠1

· · · t
2≠n

t
1≠n

t
1

t
0

. . . t
2≠n

... . . . . . . . . . ...

t
2≠n

. . . . . . t≠1

t
n≠1

t
n≠2

. . . t
1

t
0

T

XXXXXXXXXXXXV

For a general Toeplitz matrix, it is su�cient only to save the vector [t
n≠1

, t
n≠2

, · · · , t
1≠n

]T œ
C2n≠1 instead of the whole matrix.

A special case of Toeplitz matrices is the so-called circulant matrix:

Definition A.14. C œ Cn◊n is circulant if it is a Toeplitz matrix where each column

is a circular shift of its preceding column. It is of the form:

C =

S

WWWWWWWWWWWWU

c
0

c
n≠1

· · · c
2

c
1

c
1

c
0

. . . c
2

... . . . . . . . . . ...

c
n≠2

. . . . . . c
n≠1

c
n≠1

c
n≠2

. . . c
1

c
0

T

XXXXXXXXXXXXV

Circulant matrices are fully determined by their first row or column and thus we may

introduce the notation C = circ(c
0

, · · · , c
n≠1

). Note that once again only little storage

is needed: saving the first column or row instead of the whole matrix is su�cient.

Definition A.15. The unitary and symmetric matrix F
n

œ Cn◊n is called a Fourrier

matrix if it is of the form:

F
n

= 1Ô
n

S

WWWWWWWWWWWWU

1 1 · · · 1 1

1 Ê Ên≠2 Ên≠1

... ... ... ...

1 Ên≠2 Ê(n≠2)(n≠1)

1 Ên≠1 . . . Ê(n≠2)(n≠1) Ê(n≠1)

2

T

XXXXXXXXXXXXV
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with Ê = e≠ 2fii

n .

Theorem A.16. Let C
n

œ Rn◊n be circulant. Then, it has the decomposition

C
n

= F ú
n

�F
n

, (A.7)

where F ú
n

denotes the conjugate transpose of F
n

and � = diag(⁄
0

, · · · , ⁄
n≠1

), ⁄
j

being

the jth eigenvalue of C
n

, j œ {0, · · · , n ≠ 1}.

To find the eigenvalues of a circulant matrix C
n

, we use the decomposition in equa-

tion (A.7). Letting c denote the first column of C
n

, e
1

:= [1, 0, . . . , 0]T and ≠æe :=

[1, 1, . . . , 1]T , we get:

C
n

= F ú
n

�F
n

≈∆ F
n

C
n

e
1

= �F
n

e
1

≈∆ F
n

c = �≠æe 1Ô
n

≈∆ Ô
nF

n

c = �≠æe (A.8)

Notice we used the fact that F
n

is unitary.

As pointed in the fourth chapter of [27], the matrix-vector product y = C
n

x =

F ú
n

�F
n

x can be computed e�ciently in four steps: we start by applying an FFT to x,

next we compute c̃ := [⁄
0

, . . . , ⁄
n≠1

]T by equation (A.8), multiply elementwise the so

obtained vector c̃ containing the diagonal elements of � with F
n

x, and, finally apply

an inverse FFT. Formally, this looks like:

x̃ = F
n

x

c̃ =
Ô

nF
n

c,

z = c̃. ú x̃,

y = F ú
n

z.

" .* " denotes the elements-wise multiplication.

This way of calculating the product between a circulant matrix c
n

and a column

vector x involves three FFTs and one vector multiplication, being then only necessary
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to perform O(nlogn) operations. Compared with a straightforward computation, which

costs O(n2) operations, this definitely represents a substantial improvement.

Now, in the case we are dealing with a Toeplitz matrix and not a circulant one, it

is still possible to apply an FFT to compute the product of a Toeplitz matrix and a

vector, by "embedding" the former in a circulant matrix, i.e., the possibility to quickly

compute the matrix-vector product can be extended from circulant matrices to general

Toeplitz matrices. For example, one can apply the following method: for an n ◊ n

Toeplitz matrix T
n

, the Toeplitz matrix-vector multiplication T
n

x can be computed

with three FFTs by first embedding T
n

into a 2n ◊ 2n circulant matrix:

S

WU
T

n

B
n

B
n

T
n

T

XV

S

WU
x

0

T

XV =

S

WU
T

n

x

ú

T

XV ,

where

B
n

=

S

WWWWWWWWWWWWU

0 t
n≠1

· · · t
2

t
1

t
1≠n

0 t
n≠1

t
2

... t
1≠n

0 . . . ...

t≠2

. . . . . . t
n≠1

t≠1

t≠2

. . . t
1≠n

0

T

XXXXXXXXXXXXV

.

We can solve the previous system of equations using the FFT’s, since the first matrix

is circulant, and then "extract" the product T
n

x as desired.
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