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Summary 
 

The importance of radiolabeled amino acids in Positron Emission Tomography (PET) imaging 

of the brain has been demonstrated by several studies. The most well studied amino acid tracer is 11C-

metionine, but because of the short half-life of 11C, 18F-labeled amino acid analogues have been 

developed for tumour imaging. A number of studies have proven the importance of O-(2-18F-

Fluoroethyl)-L-tyrosine (FET) in determining the extent of cerebral gliomas, biopsy guidance, treatment 

planning, and detecting recurrence of brain tumours. It was also demonstrated that dynamic changes of 

FET accumulation in gliomas are variable. High-grade gliomas (HGG) are characterized by an early 

peak, followed by decrease of FET uptake, whereas the uptake in low-grade gliomas (LGG) steadily 

increases. 

Eleven patients (3 female, 8 male, age: 45±15 years) with untreated primary brain tumours and 

histopathologic confirmation were studied. Six patients had HGG, while the remaining 5 were diagnosed 

with LGG. PET acquisition was done with the PET Insert of a hybrid Siemens 3T MR-BrainPET system. 

For tumour volume fitting, a segmentation procedure was applied. After segmentation, the mean time-

activity curve (TAC) of the segmented tumour volumes (STVs) was calculated.  Linear and nonlinear 

regression were used to fit to the TAC of each volume. When performing the fits with the linear model, 

the first 5 minutes of acquisition were discarded. For the nonlinear regression, the fits were applied to 

the mean TAC from 2 to 60 minutes after injection. Parametric images were calculated based on 

nonlinear regression fitting of FET data in each voxel. Three different nonlinear models were tested: an 

exponentially damped linear model, an exponentially damped linear model with an offset, and an 

exponentially damped linear model with square-root time dependence. The considered nonlinear model 

parameters were amplitude, A, and κ. The parametric images of manually selected tridimensional 

volumes containing the tumour were generated. Linear regression based parametric images were also 

computed for comparison, and the assessed parameters were intercept and slope. Whole-head parametric 

images were calculated based on nonlinear regression fitting using the exponentially damped linear 

model with square-root time dependence. 

Nonlinear regression models were more accurate at reproducing FET TAC characteristics. The 

most robust models are the exponentially damped linear models without offset. For mean TAC fitting, 

a model with square-root time dependence reproduced FET activity curves more accurately, with 

coefficient of determination (𝑅2) values between 0.94 and 1.00. The A parameter from the exponentially 

damped linear model with square-root time dependence was the only one significantly different between 

HGG and LGG (p-value= 0.04, α=0.05). When generating parametric images based on voxel-wise fit, 

the nonlinear regression models with 2 parameters performed the best, with 𝑅2 close to 1. Visual 

distinction between tumour grades was possible by comparing the amplitude images with the images of 

the summed activity across time. In the amplitude, LGGs take values similar to the ones of the 

surrounding background, thus disappearing from the image. On the other hand, HGGs amplitude images 

reproduce tumour uptake. Linear regression model fits returned 𝑅2 values that were close to zero in both 

mean TAC fitting, and parametric image calculation. Grade distinction was possible based on the slope 

parameter alone, with LGGs showing higher slope values than the neighbouring tissue, and HGGs 

showing lower slope values than their surroundings. In general, though nonlinear models reproduce FET 

time activity curves more accurately, the distinction between low-grade and high-grade tumours based 

on one parameter only is better achieved by using linear regression model fitting. However, a reliable 

differentiation seems to be possible with joint analysis of A and κ parametric images.  

 

Keywords: PET; FET; modelling; nonlinear; voxel-based. 
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Resumo 
 

A importância do uso de aminoácidos marcados com isótopos radioativos em estudos de 

Tomografia de Emissão de Positrões (PET) tem sido amplamente demonstrada. Dentro deste grupo de 

traçadores, a metionina marcada com 11C tem sido o mais estudado. No entanto, a curta semi-vida do 

radioisótopo 11C tem levado ao desenvolvimento de marcadores análogos. Os marcadores com o 

radioisótopo 18F revelam-se os mais promissores para deteção de tumores no cérebro. Mais 

especificamente, o marcador O-(2-18F-Fluoroetil)-L-tirosina (FET) provou ser de grande importância na 

determinação da dimensão de tumores cerebrais e dos locais onde realizar a biopsia, no planeamento do 

tratamento a aplicar, e na deteção de recorrências. Foi também demonstrado que a forma como o FET é 

metabolizado ao longo do tempo depende do grau do tumor em estudo. Em gliomas de alto grau (HGG), 

a taxa de captação do FET é caracterizada por um pico inicial, seguido de uma diminuição da captação 

de FET, enquanto que em gliomas de baixo-grau (LGG) a taxa de captação do marcador tem um aumento 

contínuo ao longo do tempo. 

O presente estudo contou com 11 pacientes (3 mulheres, 8 homens, idade: 45 ± 15 anos) com 

tumores cerebrais primários não tratados confirmados por histologia. Seis pacientes foram 

diagnosticados com HGG, enquanto os restantes 5 foram diagnosticados com LGG. Os dados de PET 

foram adquiridos com o PET Insert do sistema híbrido Siemens 3T MR-BrainPET. As imagens foram 

segmentadas de forma a extrair apenas o volume correspondente ao tumor. Após a segmentação, 

calculou-se a média das curvas de tempo-atividade (TAC) dos volumes tumorais segmentados (STVs), 

e foram usados métodos de regressão linear e não linear para fazer o ajuste à TAC de cada volume. Para 

calcular os ajustes com o modelo linear, foram descartados os primeiros 5 minutos de aquisição. Os 

ajustes baseados na regressão não-linear foram aplicados à TAC correspondente à média entre os 2 e os 

60 minutos de aquisição após a injeção. As imagens dos parâmetros foram calculadas a partir dos ajustes 

baseados na regressão não linear e aplicados a cada voxel. Foram testados três modelos não lineares 

diferentes: um modelo linear amortecido exponencialmente, um modelo linear amortecido 

exponencialmente e com um offset, e um modelo linear amortecido exponencialmente com o tempo 

dependente da raiz quadrada. Dos ajustes não lineares, foram extraídos dois parâmetros: a amplitude, A, 

e o parâmetro κ. De seguida, geraram-se as imagens dos parâmetros calculados sobre uma área 

tridimensional selecionada manualmente e contendo o tumor. Para tal, além dos três modelos não 

lineares, utilizou-se também o modelo linear, de modo a permitir uma comparação entre os diferentes 

métodos. No caso dos ajustes lineares, os parâmetros extraídos foram a ordenada na origem e o declive. 

Calcularam-se também as imagens dos parâmetros da regressão não linear usando o modelo linear 

amortecido exponencialmente com o tempo dependente da raiz quadrada para a cabeça inteira. 

Os modelos não-lineares foram mais precisos na reprodução das curvas de FET. Os modelos 

mais robustos foram os modelos lineares exponencialmente amortecidos sem offset. Nos ajustes 

aplicados à TAC média dos STVs, o modelo linear amortecido exponencialmente com o tempo 

dependente da raiz quadrada provou ser o que reproduz mais precisamente os dados, com valores de 𝑅2 

entre 0,94 e 1,00. O parâmetro A do modelo linear amortecido exponencialmente com o tempo 

dependente da raiz quadrada foi o único que revelou uma diferença significativa entre HGG e LGG (p-

value= 0.04, α=0.05). Ao gerar imagens paramétricas com base nos ajustes aplicados a cada voxel, os 

modelos de regressão não-linear com 2 parâmetros tiveram o melhor desempenho, com valores de 𝑅2 

perto de 1. Combinando as imagens do parâmetro amplitude e as imagens da atividade total ao longo do 

tempo, foi possível distinguir entre graus tumorais. Os LGGs assumem valores de amplitude próximos 

dos valores do tecido saudável à sua volta, e por isso “desaparecem” da imagem paramétrica da 

amplitude. No caso dos HGGs, a imagem da amplitude reproduz a atividade no tumor. Os ajustes 

realizados com base na regressão linear devolveram valores de 𝑅2 próximos de zero, quer no caso dos 
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STVs, quer no cálculo das imagens paramétricas. A distinção entre HGG e LGG é possível com base 

nas imagens paramétricas do declive, com os LGGs a assumirem valores de declive superiores aos do 

tecido saudável adjacente. Com os HGGs, a situação é a oposta: os valores do declive no tumor são 

inferiores aos do tecido saudável que o rodeia. Em geral, os modelos não lineares reproduzem melhor 

os dados provenientes de FET PET, mas a distinção entre HGG e LGG baseada num parâmetro apenas 

é melhor conseguida através de regressão linear. No entanto, a distinção entre HGG e LGG também é 

possível analisando simultaneamente as imagens dos parâmetros A e κ.  

 

Palavras-chave: PET; FET; modelação; não-linear; voxel-a-voxel.  
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1. Introduction 
 

1.1.  PET tracers in Brain Imaging 
 

The first step in a Positron Emission Tomography (PET) study is the production of the 

radiopharmaceutical. Development of specifically targeted radiopharmaceutical enables us to study the 

biochemistry of the brain due to the very high sensitivity of this imaging method. The ability to study 

biomolecules at a nanomolar to picomolar concentration in vivo allows a systematic study of various 

physiological processes. These advancements in imaging technology have further enhanced our 

capability to study the various processes in small brain regions.  

Metabolic studies using 18F-fluorodeoxyglucose (FDG), various amino acids such as 11C-

methionine (MET) and O-(2-18F-Fluoroethyl)- L-tyrosine (FET), and perfusion studies with 15O-labelled 

molecules have now been carried out for a number of years. Neurochemical processes in the brain are 

the primary targets for many new radiopharmaceuticals. There are numerous neurochemical pathways 

in the brain, and each one comprises a large number of proteins that are involved in health and disease. 

Once the radiopharmaceutical is available, it is introduced into the patient's body, usually by 

injection. The time between the administration of the radiopharmaceutical and the beginning of data 

acquisition depends on the purpose of the imaging study and the nature of the tracer. Data acquisition 

takes place with the patient laying still in a bed. The radioactive isotope with which the 

radiopharmaceutical has been labelled emits gamma rays as a product of radioactive decay. As the 

gamma rays emanate from the patient, they are detected and recorded by imaging hardware. Positional 

and directional information about each gamma ray are measured, and the results are tailed into a 

histogram of discrete position-direction bins. The resulting histogram bins contain measurements of the 

projections. The projection data is then used to estimate the desired tomographic images. The final step 

is image analysis.  

 

1.1.1. FDG  
 

The phosphorylation of glucose, an initial and important step in cellular metabolism, is catalyzed 

by hexokinases (HKs). There are four HKs in mammalian tissue. One of them, the brain HK, is bound 

to mitochondria, enabling coordination between glucose consumption and oxidation. Tumour cells are 

known to be highly glycolitic, because of increased expression of glycolitic enzymes and HK activity. 

The HKs, by converting glucose to glucose-6-phosphate, help to maintain the downhill gradient that 

results in the transport of glucose into cells through the facilitative glucose transporters [1]. 

FDG is actively transported across the blood-brain barrier (BBB) into the cell, where it is 

phosphorylated by the brain HK to FDG-6-phosphate. FDG-6-phosphate cannot be metabolized further 

in the glycolitic pathway and stays in the cells. Tumour cells do not contain a sufficient amount of 

glucose-6-phosphatase to reverse the phosphorylation. The elevated rates of glycolysis and glucose 

transport in many types of tumour cells enhance the uptake of FDG in these cells compared to other 

normal cells [1]. 

Imaging of brain tumours with FDG was the first oncologic application of PET [2]. The 

prognostic value of FDG uptake is well established [3]. However, studies have demonstrated some 

diagnostic limitations of FDG PET [4]. Because of the high rate of physiologic glucose metabolism in 

normal brain tissue, the capacity of detecting tumours with only modest increases in glucose metabolism, 

such as low-grade tumours and in some cases recurrent high-grade tumours, is difficult. FDG uptake in 
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low-grade tumours is usually similar to that in normal white matter, and uptake in high-grade tumours 

is similar to that in normal grey matter, thus decreasing the sensitivity of lesion detection. Furthermore, 

it was demonstrated that FDG uptake in tumours could be increased whereas glucose metabolism could 

not [5]. Also, FDG uptake can vary greatly. High-grade tumours may have uptake that is only similar or 

slightly above that in white matter, especially after treatment [6]. 

Besides tumour imaging, the clinical applications of FDG PET are Alzheimer's disease, 

dementia, epilepsy, brain trauma, Huntington disease, Parkinson's disease, cerebrovascular disorders, 

Schizophrenia, and mood disorders. This tracer is also widely used in oncology, and cardiovascular 

disorders [1]. 

 

1.1.2. FET 
 

Amino acid PET tracers and amino acid analogue PET tracers constitute a class of tumour 

imaging agents. So far, some 20 amino acid transporter systems have been identified [7]. Most of the 

amino acids are taken by tumour cells through an energy-dependent L-type amino acid transporter 

system and a sodium-dependent transporter system A [7]. They are retained in tumour cells due to these 

cells higher metabolic activities, including incorporation into proteins. This makes amino acid PET 

tracers particularly attractive for imaging brain tumours, since the high uptake in tumour tissue and low 

uptake in normal brain tissue leads to higher tumour-to-healthy-tissue contrast. The best studied amino 

acid tracer is 11C-metionine (MET) [8], but because of the short half-life of 11C (20 minutes), 18F-labeled 

amino acid analogues have been developed for tumour imaging. 

FET is a promising tracer for routine clinical practice. An efficient radiosynthesis is available, 

which allows using the tracer in a satellite concept. Like the other non-natural amino acids, FET is not 

incorporated into proteins. It is retained inside the tumour cells because of their high cellular metabolism 

and their high activity of the amino acid transporters. The tracer is metabolic stable in vivo and exhibits 

favourable uptake kinetics for clinical mapping [8]. Figure 1.1 shows the chemical structure of the FET 

tracer. 

 

 
Figure 1.1 - Chemical structure of the FET tracer (adapted from [9]). 

 

In brain tumour imaging, FET PET is very helpful to image the extent of cerebral gliomas, to 

guide biopsy, to detect tumour recurrences and to differentiate recurrences from radionecrosis. This 

metabolic information is useful for therapy planning and adds to the results of morphological imaging 

of CT and MRI. Nevertheless, increased regional uptake of FET in the brain is not absolutely specific 

for glioma tissue, and some exceptions have been reported [10]. FET PET is not able to differentiate the 

grade of malignancy of gliomas when using the standard ratio method [11], which is based on a tumour 

to background ratio in the later uptake phase. However, some studies indicate that differences in uptake 

kinetics are related to tumour grading [12]. This is an important issue since the decision on therapeutic 

intervention is crucial in these patients. Concerning extracranial tumours, FET PET is able to image 

squamous cell carcinomas, but the sensitivity is inferior to that of FDG PET. Even so, it may be a helpful 
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additional tool in selected cases for the differentiation of tumour tissue and inflammatory tissue. Figure 

1.2 shows the differences in delineation of a high-grade glioma using FDG and FET. 

 

 
 

Figure 1.2 - High-grade glioma in the frontal lobe. (A) FDG PET. (B) FET PET. Delineation of the tumour is difficult 

on FDG images, while FET depicts the solid tumour mass and indicates an optimal biopsy site [13]. 

 

1.1.3. Other tracers 
 

Besides FDG and FET, there are a large number of PET tracers available for clinical use. In this 

section, a quick overview of the more often used tracers is given.  

MET has been widely used in detection of brain, head and neck, lung, and breast cancer as well 

as lymphomas. It can cross the BBB, and it is incorporated mainly into proteins, but also into lipids, 

RNA and DNA. MET PET imaging is more sensitive to radiotherapy compared to FDG and is useful 

for monitoring treatment of cancer [14]. 

One of the characteristics of tumour cells is their unchecked proliferation. It is important to 

measure the proliferation rate of cancer lesions to help differentiate benign from malignant tumours and 

to characterize malignant tumours among normal tissues. FDG has been widely used in cancer imaging. 

However, enhanced uptakes of FDG also occur in inflammatory cells and lesions as well as in necrotic 

cells. Thymidine (TdR) and its analogues are standard markers for DNA synthesis, and 11C-thymidine 

has been used in PET to measure tumour growth rate in situ. Because of the short half-life of 11C and 

extensive metabolism of 11C-TdR in the blood, 3'-Deoxy-3'-18F-fluorothymidine (FLT) was developed 

as an alternative. This tracer is an analogue of TdR and it is phosphorilated by an enzyme expressed 

during the DNA synthesis phase of the cell cycle. Most cancer cells have much higher activity of such 

enzyme than normal cells. Thus, the uptake and accumulation of FLT are used as an index of cellular 

proliferation, allowing for evaluation of tumour stage and metastases detection [15]. 

There has been a multitude of efforts to develop methods and imaging techniques for measuring 

oxygen in tissues. Hypoxia in malignant tumours can affect the outcome of anti-cancer treatments. 

Malignant tumours are relatively resistant to chemotherapy and irradiative therapy because of their lack 

of oxygen, which is a potent radiosensitizer. 18F-Fluoromisonidazole (FMISO) was proposed as a tracer 

for determining tumour hypoxia in vivo. It is used to quantitatively assess tumour hypoxia in lung, brain, 

and head and neck cancer patients, and also in patients with myocardial ischemia. Because of the slow 

reaction mechanisms and the absence of the active transport of the tracer molecules, the identification 

and quantification of hypoxic tumour areas demand long examination protocols [16]. 

Dopamine, a neurotransmitter, plays an important role in the mediation of movement, cognition 

and emotion. It is involved in various neuropsychiatric disorders, such as schizophrenia, autism, 
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attention deficit hyperactivity disorder, and drug abuse. Dopamine is synthetized within nerve cells. L-

thyrosine is converted to dihydroxyphenylalanine (L-DOPA) and then to dopamine in a two-step 

process. The first is a rate limiting step, where L-thyrosine is catalyzed by tyrosine 3-monoxygenase. 

The second step is catalyzed by aromatic L-amino acid decarboxylase. In parts of the nervous system 

that release dopamine as a neurotransmiter, no further metabolism occurs and dopamine is stored in 

vesicles in the presynaptic nerve terminals through the dopamine reuptake transporter [17].  

FDOPA is a radiolabeled analogue of L-DOPA used to evaluate the central dopaminergic 

function of pre-synaptic neurons. FDOPA PET reflects dopamine transport into the neurons, dopamine 

decarboxylation and dopamine storage capacity. FDOPA is a very important tracer for monitoring 

Parkinson's disease progression and neuroprotection therapies. In recent studies, FDOPA has also 

demonstrated its usefulness in imaging brain tumours and neuroendocrine metastatic lesions in bone 

[17]. 

Raclopride is a substituted benzamide with high affinity and selectivity for central D2-dopamine 

receptors. The compound is a potential antipsychotic drug. Raclopride has been labelled with 11C and 

used in human experiments with PET to quantitatively characterize central dopamine D2-dopamine 

receptor binding in the basal ganglia. 11C-Raclopride accumulated markedly in the dopamine rich 

caudate nucleus and putamen, whereas the concentration of radioactivity in any of the extrastriatal 

regions could not be differentiated reliably [18]. 
11C-Flumazenil is a carbon labelled benzodiazepine site antagonist with high affinity for 

GABAA receptors. It has been used widely in PET for the investigation of these receptors. The GABA 

receptors comprise several different pharmacological subtypes depending on the type of subunits 

constituting the receptor complex, and GABA mediates its effects primarily through the GABAA 

receptors. 11C-Flumazenil is used to assess neurologic pathologies associated with the impairment of 

GABA neurotransmission, such as epilepsy [19]. 

 

1.2.  Tracer kinetic modelling 
 

Single PET images supply spatial information, but they also show accumulated information on 

kinetics. With the acquisition of dynamic imaging data and the application of kinetic models, many 

additional quantitative questions can be answered based on the temporal information. However, the main 

reason for kinetic modelling is that it allows true quantitative imaging instead of just accumulated 

information. Also, Standard Uptake Value (SUV) reaction rate constants of the underlying chemical 

processes can be assessed and imaged. There is a range of quantitative PET tracer kinetic modelling 

techniques that return biologically based parameter estimates. These techniques may be broadly divided 

into model-driven methods and data-driven methods. The clear distinction is that the data-driven 

methods require no a priori decision about the most appropriate model structure. On the other hand, for 

the model-driven methods, this information is obtained directly from the kinetic data [20]. 

 

1.2.1. Compartmental modelling 
 

In PET, the images are a composite of various superimposed signals, only one of which is of 

interest. The desired signal may describe, for example, the amount of tracer trapped at the site of 

metabolism or tracer bound to a particular receptor. In order to isolate the desired component of the 

signal, a model relating the dynamics of the tracer and all its possible states to the resultant PET image 

must be used. Each of the states is known as a compartment. For example, in a receptor-imaging study, 

the set of molecules that are bound to the target receptor can constitute one compartment. Each 
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compartment is characterized by the concentration of the tracer inside as a function of time. These 

concentrations are related through sets of ordinary differential equations, which express the balance 

between the mass entering and exiting each compartment. 

Kinetic models for PET typically derive from the one- two-, or three-compartment model in 

which a directly measured concentration of tracer in the blood as a function of time (time-activity curve, 

TAC) serves as the model's input function. The coefficients of the differential equations in the model 

are constants that reflect the kinetic properties of the tracer in the system. By formally comparing the 

output of the model to the experimentally obtained PET data, it is possible to estimate values for these 

kinetic parameters, and thus extract information about binding, delivery, or any hypothesized process 

[20]. 

The concentration of radioactivity in a given tissue region at a particular time post-injection 

primarily depends upon two factors. First, and of most interest, is the local tissue physiology, for 

example, the blood flow or metabolism in that region. Second is the input function, i.e., the time-course 

of tracer radioactivity concentration in the blood or plasma, which defines the availability of the tracer 

to the target-region. A model is a mathematical description of the relationship between tissue 

concentration and these two controlling factors. A full model can predict the TAC concentration in a 

tissue region from knowledge of the local physiological variables and input function. A simple model 

might predict only certain aspects of the tissue concentration curve, such as the initial slope, the area 

under the curve, or the relative activity concentration between the target organ and a reference region.  

Compartmental models use a particular structure to describe the behaviour of the tracer and 

allow for an estimation of either micro or macro system parameters. If the appropriate tracer is selected 

and suitable imaging conditions are used, the activity values measured in a region of interest (ROI) in 

the image should be most heavily influenced by the physiological characteristic of interest: blood flow, 

receptor concentration, etc. A model attempts to accurately describe the relationship between the 

measurements and the parameters of interest. In other words, an appropriate tracer kinetic model can 

account for the biological factors that contribute to the tissue radioactivity signal [21]. 

Once a radioactive tracer has been selected for evaluation, there are a number of steps involved 

in developing a useful model and a model-based method. Figure 1.3 gives an overview of this process. 

A priori information concerning the expected biochemical behaviour of the tracer is used to specify a 

complete model. Initial modelling studies will define an identifiable model, i.e., a model with parameters 

that can be determined from the measurable data. Validation studies are used to refine the model, verify 

its assumptions, and test the accuracy of its estimates. After optimization procedures, error analysis, and 

accounting patient logistical considerations, a model-based method can be developed that is both 

practical and produces reliable, accurate physiological measurements. Well-established compartmental 

models in PET include those used for quantification of blood flow [22], cerebral metabolic rate for 

glucose [23] and for neuroreceptor ligand binding [24]. Parameter estimates are obtained from a priori 

specified compartmental structures using one of a variety of least-squares fitting procedures: linear least 

squares, non-linear least squares [25], generalized linear least squares [26], weighted integration [27] or 

basis function techniques [28]. 

 



 

6 

 

 
 

Figure 1.3 - Steps for developing a model [21]. 

 

1.2.2. Graphical analysis 
 

Simplifications of compartmental modelling have been proposed. These easier methods offer 

some advantages over non-linear model optimization, such as avoiding parameter sensitivity to noise, 

parameter co-variance, local minima in optimization, and dependence on model parameter starting 

conditions [29]. They derive macro system parameters from a less constrained description of the kinetic 

processes. Graphical analysis is applied to compounds that can be modelled as having a compartment 

of irreversible or nearly reversible binding. Irreversible radioligands are the ones which bind 

permanently, while reversible radioligands remain linked together with a receptor for a while, and then 

dissociate.  

The two most used graphical methods are the Patlak Plot [30] and the Logan Plot [31]. The 

Patlak approach is a description of the behaviour of the FDG-model when the free FDG in tissue has 

reached its steady state so that the ratio between radioactivity concentration in tissue and radioactivity 

concentration in arterial blood becomes time independent. It assumes that all the reversible 

compartments must be in equilibrium with the plasma. Under this condition, only tracer accumulation 
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in the irreversible compartments is affecting the apparent distribution volume. When there is no 

irreversible binding in the tissue, the Patlak plot has slope zero. When the tissue presents irreversible 

binding, the Patlak plot becomes linear once equilibrium is achieved, and the slope of the linear phase 

represents the net transfer rate, 𝑘𝑖. This constant represents the amount of accumulated tracer in relation 

to the amount of tracer available in the plasma [32]. 

The Logan plot has been developed for the evaluation of investigations with reversible 

radioligands. Logan et al. [31] showed that there is a time t after which a plot of ∫ 𝑅𝑂𝐼(𝑡′)𝑑𝑡′
𝑡

0
𝑅𝑂𝐼(𝑡)⁄  

versus ∫ 𝐶𝑝
𝑡

0
(𝑡′)𝑑𝑡′ 𝑅𝑂𝐼(𝑡)⁄  (where ROI and 𝐶𝑝 are functions of time describing the variation of tissue 

radioactivity and plasma radioactivity, respectively) is linear with a slope that corresponds to the steady-

state space of the ligand plus the plasma volume, 𝑉𝑝.  This graphical method provides the ratio 𝐵𝑚𝑎𝑥 𝐾𝑑⁄  

(where 𝐵𝑚𝑎𝑥 represents ligand binding sites and 𝐾𝑑 the equilibrium dissociation constant of the ligand-

binding site) from the slope comparison with in vitro measures of the same parameter, as well as volume 

distribution. It also provides an easy, rapid method for comparison of the reproducibility of repeated 

measures in a single subject, for longitudinal or drug intervention protocols, or for comparing 

experimental results between subjects. Figure 1.4 shows the input for this method, and its resulting 

output. 

 

 
 

Figure 1.4 - Logan plot. The input is shown on the left, and the output is shown on the right (adapted from [33]). 

 

In this case, a graphical approach can be used to estimate the flux constant describing movement 

from the blood into the trapped compartment, as previously described for kinetic analysis. These 

techniques represent a reformulation of the 2-compartment model offering a simple linear regression 

method to derive metabolic flux of the tracer using a blood clearance curve and a tissue TAC [29].  

However, these types of methods require the determination of when the plot becomes linear. 

Also, a primary assumption for graphical analysis is that loss of tracer does not occur from the retained 

compartment. When loss occurs, the plot deviates from linearity making selection of the linear 

components difficult.  Graphical analysis methods may also be biased by statistical noise, and they fail 

to return any information about the underlying compartmental structure. One important limitation is 

that, in order to acquire the values for 𝐶𝑝, these methods require blood sampling. Ideally, blood sampling 

should be done from arteries, which is potentially dangerous for the patient and requires skilled 

professionals. At the beginning, blood samples with temporal intervals of around 5 to 15 seconds are 

acquired. Activity measurements are performed in all blood samples, and often in the plasma alone. This 

means the plasma has to be separated from blood metabolites. This accounts for a very sophisticated 

method, not suited for clinical routine.  
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1.2.3. Other modelling approaches 
 

Besides graphical analysis, other compartmental modelling alternatives have been developed. 

Spectral analysis, for example, is a type of data-driven approach that characterizes the system impulse 

response function (IRF) as a positive sum of exponentials and uses nonnegative least squares to fit a set 

of these basis functions to the data. The macro system parameters of interest are calculated as functions 

of the IRF. Spectral analysis also returns information on the number of tissue compartments evident in 

the data [20].  

Another approach is the application of residue analysis to imaging studies. PET tracers are 

assumed to behave in a linear, time-invariant fashion at the local tissue level, and can be described by 

an impulse response function. Kinetic analysis of compartmental models rely on this impulse response 

assumption. Nonparametric evaluation of the residue function has found use in fields outside of PET 

[34]. Residue analysis allows for rapid quadratic-programming based methods for computation and 

more accurate representation of data [35].  

Lastly, reference tissue compartmental models have been developed. Instead of plasma 

samplings, these models use the TAC of a reference region with non-existent or very low specific uptake. 

Reference tissue models are used to estimate binding potential from reversible ligand-receptor PET 

studies. Their main advantage is that since blood sampling and plasma metabolite analysis are not 

needed, errors caused by uncertainties in the measured plasma metabolite fractions are avoided [36]. 

 

1.3.  Parametric Imaging in PET 
 

Parametric imaging consists of estimating model parameters on a voxel-by-voxel level basis to 

generate images or maps of parameters. This means that instead of just displaying tracer uptake, 

physiological or even chemical parameters, like binding potential and rate constants, can be estimated 

and imaged. Parametric imaging reveals the heterogeneity of tumours down to the image sampling 

distance and avoids the inherent bias of defining tissue ROIs from summed or anatomic images.  

Once a tracer has been evaluated, data acquired, and the appropriate model and parameters 

defined, the next step is to perform parameter estimation. In dynamic PET studies, the changing activity 

of the injected radiotracer is conventionally measured through multiple consecutive time frames. The 

image of the radioactivity distribution in each frame is reconstructed independently and the whole set 

of frames is then used to estimate the distribution of the physiologic parameter of interest by the 

application of an appropriate model to the TAC either of selected ROIs or of each image element. If this 

is performed using the TAC of each voxel, parametric images can be obtained. This two-step indirect 

method for obtaining the kinetic parameters of the model is illustrated in Figure 1.5A. From a statistical 

point of view, the weighted nonlinear least squares method is very straight-forward to use, and very 

broadly applied. The process is nonlinear because the kinetic model equations are generally nonlinear 

with respect to at least one parameter. For PET, the data in each time frame are independent. For Fourier-

based algorithms, the weighted least-squares approach is very successful when the tracer kinetics are 

accurately described by a 1-tissue compartment model [37]. 

A variety of procedures have been developed to allow the mapping of kinetic parameters on a 

voxel-level basis. The computational simplicity of the graphical techniques explained above makes them 

particularly suited to a voxel-based approach. 

Nonetheless, there are a number of potential problems that arise in voxel-by-voxel parameter 

estimation. The high statistical noise of single-voxel data can lead to bias in the parameter estimates 

from the nonlinear models, particularly when the final parameter of interest is a ratio of kinetic values. 

Also, since the statistical quality of the data is a function of the actual parameter values, apparent image 
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artefacts can appear in certain regions of the brain, even those with less biological interest, such as white 

matter, due to poorer estimation characteristics [37]. As models become more complex, computation 

speed is also an issue. 

 

 
 

Figure 1.5 - Schematic representation of the methods used for parametric estimation (adapted from [38]). 

 

More common and simpler approaches involve graphical and integration methods. These 

techniques are usually derived from integration of the model differential equations to produce equations 

that are linear in the parameters. Some of these approaches achieve a level of model independence by 

fitting only a portion of the measured data to an equation with less parameters. This requires the 

definition of the critical starting time period for fitting, which is tracer, subject and sometimes region-

dependent. However, it is important to recognize that, for some of these approaches, the estimation 

process is nonlinear because measured data appear both as dependent and independent variables. 

Alternatives to this approach are depicted in Figure 1.5. For example, temporal basis functions 

can be used to accommodate temporal information in the reconstruction step (Figure 1.5B). The TAC is 

represented as a sum of temporal functions (B-splines or other sophisticated functions). These methods 

estimate the weight of each temporal basis component for every voxel and produce activity maps with 

higher spatial resolution for comparable variance. The kinetic parameters are then estimated from the 

dynamic images [38]. 

Direct parametric reconstruction approaches (Figure 1.5C) estimate the kinetic parameters from 

the emission data. Conceptually, the process is similar to fitting measured data to a model, which is 

parameterized using kinetic parameters for each voxel or region. The model consists of two components: 

a kinetic model, which translates the time-varying radioactivity for each voxel or region, and a model 

for the measurement by the scanner. The fit is determined by minimizing an appropriate objective 

function related to the discrepancy between the measured data and the output of the model. 

Lastly, projection based methods (Figure 1.5D) where the kinetic modelling step is applied 

directly to the projection data prior to reconstruction can also be used. 
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1.4. Brain tumour types and grades  
 

Brain tumours are a heterogeneous group of diseases, each with its own biology, prognosis, and 

treatment. The most common tumour types are metastatic tumours and malignant gliomas. Any tumour 

that arises from the glial, or supportive tissue, of the brain is called glioma. According to the 

classification of the World Health Organization (WHO), gliomas are of 3 main types: astrocytomas, 

oligodendrogliomas, and mixed oligoastrocytomas. These tumours are typically heterogeneous in that 

different levels of malignant degeneration can occur in different regions within the same tumour. 

Histological grading is a means of predicting the biological behaviour of a tumour. In the clinical setting, 

tumour grade is a key factor influencing the choice of therapies, particularly determining the use of 

adjuvant radiation and specific chemotherapy protocols. The WHO classification of tumours of the 

nervous system includes a grading scheme that is a malignancy scale, ranging across a wide variety of 

neoplasms [39]. 

Analysis of the most malignant region of the tumours establishes grading, which is based on the 

degree of nuclear atypia, mitosis, microvascular proliferation and necrosis (Figure 1.6). Grade I applies 

to lesions with low proliferative potential and the possibility of cure following surgical resection alone. 

Neoplasms designated grade II are generally infiltrative in nature, and despite low-level proliferative 

activity, often recur. Some type II tumours tend to progress to higher grades of malignancy. The 

designation WHO grade III is generally reserved for lesions with histological evidence malignancy, 

including nuclear atypia and brisk mitotic activity. Lastly, the designation WHO grade IV is assigned to 

cytologically malignant, mitotically active, necrosis-prone neoplasms typically associated with rapid 

pre-postoperative disease evolution and a fatal outcome [39]. 

 

 
 

Figure 1.6 - Histologic criteria of the WHO for the classification of gliomas. (A) Fibrillary astrocytoma is 

characterized by increased cellularity. (B) Anaplastic astrocytoma is characterized by nuclear atypia and mitoses. (C) 

Glioblastoma multiform is characterized by necrosis with cells arranged around the edge of the necrotic tissue (adapted from 

[40]). 

1.4.1. Low-grade Gliomas 
 

Low-grade gliomas correspond to WHO grades I and II. There are 3 subtypes of low-grade 

gliomas: pilocytic astrocytoma, astrocytoma and oligodendroglioma [10]. 

Astrocytomas are tumours found in young adulthood, with a peak incidence in the third or fourth 

decade of life. They arise from astrocytes, star-shaped glial cells in the brain and spinal cord that, among 

other functions, provide biochemical support of the endothelial cells that form the BBB. Typically, the 

first clinical manifestation is a seizure, which may be accompanied or followed by other neurological 

symptoms or signs. The diagnosis is usually established when neuroimaging is performed to evaluate 

the seizure. In patients presumed to have low-grade gliomas, MRI is supplemented by PET, since these 

tumours are characterized by glucose hypometabolism. PET images showing diffuse hypometabolism 

may support a decision to defer surgery or radiation therapy. If hypermetabolic areas are present, 
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indicating the presence of a high-grade tumour, biopsy or resection should target those areas in an effort 

to include the most malignant tissue in the tumour volume [39, 40]. 

Because most patients with astrocytoma are young and neurologically normal, treatment is 

particularly challenging. When the lesion is amenable to complete surgical excision, resection is 

performed. However, the majority of the low-grade tumours are not amenable to resection because they 

involve too large an area of the brain, or are too close to critical structures. 

Most astrocytomas progress to high-grade malignant gliomas, which are often marked by 

hypermetabolic areas on PET scans. The median survival of patients with low-grade astrocytomas is 5 

years, and most patients die from progression of their disease to a high-grade malignant glioma [40]. 

Oligodendrogliomas and oligoastrocytomas are tumours of oligodendrocytes or their precursors. 

Oligodendrocytes are a type of neuroglia which function is to provide support and insulation to axons 

in the central nervous system. The majority of oligodendrogliomas are low-grade and radiographically 

indistinguishable from astrocytomas, although oligodendrogliomas are more likely to be calcified. These 

oligodendroglial tumours are prone to spontaneous haemorrhage, as a result of their delicate vasculature. 

Most patients present a seizure, or progressive hemiparesis, or cognitive impairment.  

The issues concerning diagnosis and treatment are identical to those for low-grade astrocytomas. 

Treatment is deferred until there is clinical or radiologic evidence of progression, unless patients have 

disabling symptoms or signs at presentation. However, once the decision to initiate treatment is made, 

the therapy differs from that for astrocytomas. 

Eventually, most oligodendrogliomas, like astrocytomas, progress by becoming malignant. 

Patients with worsening clinical symptoms and the appearance of hypermetabolism on PET scans 

warrant re-evaluation. 

 

1.4.2. High-grade Gliomas 
 

High-grade gliomas are classified as malignant astrocytomas, anaplastic astrocytoma, and 

glioblastoma multiforme. These are also the most common glial tumours. Gliomas can occur anywhere 

in the brain, but usually affect the cerebral hemispheres. The male to female ratio among affected 

patients is about 3:2. The peak age at onset for anaplastic astrocytomas is in the fourth or fifth decade, 

whereas glioblastomas usually present in the sixth or seventh decade [40]. 

The glioblastoma multiform is the most malignant and most common glioma. There are two 

types of glioblastomas, and they arise through different molecular pathways. Primary glioblastomas 

arise alone and are associated with a high rate of overexpression or mutation of the epidermal growth 

factor receptor, p16 deletions, and mutations in the gene for phosphotase and tensin homologues. 

Secondary glioblastomas arise from a pre-existing low-grade tumours. In a secondary glioblastoma, a 

low-grade tumour may be immediately adjacent to a highly malignant disease. Error can occur when a 

small sample is taken for biopsy and the examined tissue does not reflect the biology of the entire 

tumour, particularly if features indicative of malignancy are missed. All gliomas, particularly the 

astrocytic neoplasms, are histologically, genetically, and thus therapeutically heterogeneous [40].  

Primary glioblastomas tend to occur in older patients (mean age, 55 years), whereas secondary 

glioblastomas occur in younger adults (45 years old or less). The histologic features of the tumour and 

the age and performance status of the patient are major prognostic factors on outcome [10,40].  

Malignant gliomas are surrounded by edema, and the mass effect can be severe enough to cause 

herniation. The tumour typically involves white matter and can spread across the corpus callosum and 

involve both hemispheres. These tumours are widely infiltrative. Tumour cells typically extend 

microscopically several centimeters away from the obvious area of disease and, in some cases, can 

extend throughout large portions of the brain. This condition is known as gliomatosis [10,40]. 
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The treatments for anaplastic astrocytoma and glioblastoma multiform are identical. Resection 

is the initial intervention. Gross total excision is associated with longer survival, and improved 

neurologic function; therefore, every effort should be made to remove as much tumour as possible. 

Radiotherapy and additional chemotherapy are also prescribed. However, despite aggressive treatment, 

most patients die of the disease, with median survival of about 3 years for anaplastic astrocytoma, and 

one year for glioblastoma.  

Oligodendrogliomas can also be classified as high-grade. These anaplastic oligodendrogliomas, 

like malignant astrocytic tumours, require immediate treatment after diagnosis. Extensive resection 

should be performed if feasible. 

 

1.5.  Imaging of Brain Tumours 
 

As previously stated, the degree of malignancy plays a crucial role in assessing the prognosis of 

glioma patients and in planning appropriate individual management. Therefore, tissue diagnosis (biopsy) 

is the current diagnostic gold standard for determining tumour grade, which in turn forms the basis for 

subsequent treatment decisions. Generally a biopsy procedure is safe, but complications, such as 

bleeding or infection, may occur. In some cases, the amount of tissue obtained from a needle biopsy 

may not be sufficient or the procedure is unable to detect some lesions. The biopsy may then have to be 

repeated or surgical biopsy will be necessary. Hence, non-invasive alternatives for tumour diagnosis are 

sought after. The value of PET using radiolabeled amino acids or analogues for non-invasive tumour 

grading remains controversial [41]. The following section provides an overview of the studies performed 

to determine the diagnostic value of FET in brain tumours, including comparisons with other widely 

used tracers and imaging techniques. 

 

1.5.1. Comparison between FET PET and FDG PET  
 

The diagnostic value of PET using FDG and FET in patients with brain lesions suspicious of 

cerebral gliomas was studied [43]. Within a 2-year period, a group of 59 adult patients admitted with 

suspicion of a cerebral glioma or a recurrence of a previously operated glioma was studied with FET 

and FDG PET. The patients were examined on the same day prior to a neuronavigated biopsy or open 

surgery. Preoperative MRI, FET and FDG PET scans were co-registered and evaluated by ROIs using 

dedicated software. From the initial 59 patients, 52 were analysed. 43 patients had diffuse gliomas, of 

whom 33 had primary tumours and 10 recurrences. The extent of the tumour could be clearly delineated 

in each patient. In 33 of 43 patients a local maximum could be identified on FET scans for biopsy 

guidance. On the other hand, only 15 of the 43 patients had elevated FDG uptake. The definition of 

tumour extent remained impossible in every case due to high FDG uptake in the grey matter. Thus, FET 

proved to be clearly superior to FDG PET for biopsy guidance and treatment planning of cerebral 

gliomas, since FET identified a metabolic hot spot in the tumour area in 76% of the patients (33 out of 

43), while FDG showed focally increased uptake in 28 gliomas only (out of 43). 

Another study in patients with suspected or known brain tumours was performed by Lau et al. 

[44]. The aim of the study was also to establish the diagnostic value of FET PET when compared with 

FDG PET. Twenty-five FET PET and FDG PET scans were performed on 21 patients within 24 months. 

Final malignant pathology included 11 gliomas, 8 of which were low-grade, and three high-grade. FET 

PET was 100% accurate in the assessment of low-grade gliomas, while FDG PET has a sensitivity of 

only 13%. Also, FET PET had a 67% sensitivity for high-grade glioma against 33% sensitivity of FGD 

PET. The evaluated group of patients also comprised two lymphomas, one olfactory 
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ganglioneuroblastoma, and one anaplastic meningioma. FET PET was 100% accurate in the lymphoma 

group. Benign pathology included two encephalitis and one cortical dysplasia. Definitive pathology was 

not available for 3 patients. The accuracy of PET was determined by subsequent surgical histopathology 

in 12 patients and clinical/imaging course in nine patients. Median follow-up period was 20 months. 

The predominant clinical indication for initial PET in this study was suspected recurrent tumour 

following previous treatment, representing a subgroup of 14 out of 21 patients. Of these, 7 patients had 

a history of glioma, 5 had cerebral lymphoma. In this category, FET PET had a sensitivity of 89%, 

specificity of 100% and accuracy of 93%. On the other hand, FDG PET had a sensitivity of 33%, 

specificity of 80% and accuracy of 50%. No lesion was correctly classified by FDG PET that had not 

also been correctly diagnosed by FET PET. These results show that FET is superior to FDG as a PET 

tracer in the assessment of suspicious brain lesions, especially in low-grade glioma. 

In the light of studies regarding the diagnostic potential of FET in gliomas, Pauleit et al. [45] 

investigated the usage of FET PET in patients with squamous cell carcinoma (SCC) of the head and 

neck region by comparing that tracer with FDG PET and CT. Twenty-one patients with suspected head 

and neck tumours underwent FET PET, FDG PET and CT within one week before operation. After co-

registration, the images were evaluated by 3 independent observers and a Receiver Operating 

Characteristic (ROC) analysis was performed, with the histopathological result used as a reference. The 

maximum SUVs were also determined. In 18 of 21 patients, histological examination revealed SCC, 

and in 2 of these patients, a second SCC tumour was found at a different anatomic site. In 3 of 21 

patients, inflammatory tissue and no tumour were identified by histology. Eighteen of 20 SCC tumours 

were positive for FDG and FET uptake. One 3.0 cm tumour was detected neither with FDG PET nor 

with FET PET. In a different patient, histological examination showed a 0.7 cm tumour in a 4.3 cm 

inflammatory ulcer. The FDG PET scan overestimated the carcinoma as a 4 cm lesion with increased 

FDG uptake, while the scan obtained with FET missed this small carcinoma. All carcinomas with 

increased FET uptake exhibited concordant FDG accumulation, and no additional lesion could be 

identified with FET PET. Furthermore, the SUVs for SCC were higher in all cases with FDG than with 

FET. Overall, the sensitivity of FDG PET was 93%, specificity was 79% and accuracy was 83%. FET 

PET yielded a lower sensitivity of 75%, but a higher specificity (95%), and an accuracy of 90%. 

According to these results, because uptake and sensitivity are lower for FET than for FDG, FET 

does not represent an ideal tracer for the evaluation of primary SCC of the head and neck region. 

However, the higher specificity makes FET PET an interesting additional tool in the follow-up of 

patients with SCC. Thus, FET may not replace FDG in the PET diagnostic of head and neck cancer, but 

may be a helpful additional tool in selected patients by allowing better differentiation of tumour tissue 

from inflammatory tissue [45]. 

 

1.5.2. Comparison between FET PET and MRI 
 

In another study, the diagnostic accuracy of FET PET and MRI was compared in 45 patients, 

36 of which with gliomas and neurological diagnosis of tumour recurrence, while the remaining 9 had 

undergone radioimmunotherapy [46]. FET PET and MRI studies were performed in all patients. Tumour 

recurrence was documented in 31 of 45 patients. FET PET and MRI revealed a correct diagnosis in 44 

and 36 patients respectively, and the difference was statistically relevant (P<0.01). Specificity and 

sensitivity of FET PET were 92.9% and 100% respectively, against 50% and 93.5% of MRI. The results 

confirmed FET PET as a powerful tool to distinguish between benign side effects of therapy and tumour 

recurrence in patients with gliomas. 

Prognostic factors in adult patients with untreated, nonenhancing, supratentorial low-grade 

glioma were studied by Floeth et al. [47], with special regard to FET PET and MRI. FET PET and MRI 
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analysis were performed on 33 patients with histologically confirmed low-grade glioma. None of the 

patients had radiation or chemotherapy. Clinical, histological, therapeutical, FET uptake and MRI 

morphologic parameters were analysed for their prognostic significance.  Baseline FET uptake and a 

diffuse versus circumscribed tumour pattern on MRI were highly significant predictors of prognosis 

(P<0.01). By the combination of these prognostically significant variables, 3 major prognostic 

subgroups of low-grade glioma patients could be identified, and the statistical analysis proved that they 

had significant survival differences. The first of these subgroups was composed of patients with 

circumscribed low-grade glioma on MRI without FET uptake. Progression occurred in 18% of the cases, 

and there were no signs of malignant transformation and no death. The second subgroup was patients 

with circumscribed low-grade glioma with FET uptake. For this subgroup, progression occurred in 46% 

of the cases, malignant transformation to a high-grade glioma occurred in 15% of the cases, and death 

rate was of 8%. The last subgroup was patients with diffuse low-grade glioma with FET uptake. 

Progression occurred in all cases, malignant transformation in 78%, and death in 56%. Given these 

results, the authors concluded that baseline amino acid uptake on FET PET and a diffuse versus 

circumscribed tumour pattern on MRI are strong predictors for the outcome of patients with low-grade 

glioma. 

As mentioned in previous sections, brain tumours are histologically heterogeneous. MRI-guided 

stereostatic biopsy does not always yield a valid diagnosis or tumour grading, because some regions of 

the nonenhancing tumours may be high-grade. Accurate grading and diagnosis are especially important 

for directing the therapeutic approach and providing the prognosis in patients with nonresectable 

tumours. The added value of FET in diagnostic accuracy of MRI for location and extent of cerebral 

gliomas was investigated in [48]. PET with FET and MRI were performed on 31 patients with suspected 

cerebral gliomas. PET and MRIs were co-registered and 52 neuronavigated tissue biopsies were taken 

from lesions with both abnormal MRI signal and increased FET uptake, as well as from areas with 

abnormal MR signal but normal FET uptake or vice versa. The diagnostic performance for the 

identification of cellular tumour tissue was analysed for either MRI alone or MRI combined with FET 

PET using alternative free response receiver operating characteristics curves (ROCs). FET findings were 

negative in 3 patients with an ischemic infarct and demyelating disease, and these 3 patients were 

excluded from the study. Tumour was diagnosed in 23 out of the 28 remaining patients, and reactive 

changes were found in the other 5. The diagnostic performance of MRI alone was compared with that 

of MRI combined with FET. MRI yielded a sensitivity of 96% for the detection of tumour tissue but a 

specificity of only 53%; FET PET alone yielded a sensitivity of 93% and a specificity of 81%. Finally, 

combined use of MRI and FET PET yielded a sensitivity of 93% and a specificity of 94%. Given these 

results, the authors of the study concluded that combined use of MRI and FET PET significantly 

improves the accuracy of the distinction of cellular glioma tissue from peritumoural brain tissue. 

Combined MRI ad FET diagnostics seems to be especially useful in brain lesions without BBB 

disruption. 

The follow-up of glioblastoma patients after radiochemotherapy with conventional MRI can be 

difficult since reactive alterations to the BBB with contrast enhancement may mimic tumour 

progression. This phenomenon has been termed pseudo progression (PsP), and is a consequence of 

subacute treatment-related local tissue reaction, which comprises inflammation, edema, and increased 

permeability of the BBB [49]. PsP occurs with or without clinical deterioration, though interestingly it 

seems to be associated with a better outcome, and it is more common between patients that are more 

responsive to temozolomide treatment [50]. The reliable differentiation of early tumour progression (EP) 

from PsP is crucial since PsP spontaneously resolves without changing the standard treatment and a 

correct diagnosis may prevent unnecessary and potentially harmful change in treatment. On the other 

hand, the reliable detection of tumour progression at an early stage is essential for optimizing the 

treatment strategy in the individual patient. 
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The clinical value of FET PET in the differentiation of PsP and early tumour progression (EP) 

after radiochemotherapy was assessed [51]. A group of 22 glioblastoma patients with new contrast-

enhancing lesions or lesions showing increased enhancement (>25%) on standard MRI within the first 

12 weeks after completion of radiochemotherapy with concomitant temozolamide were additionally 

examined with FET PET. Maximum and mean tumour-to-brain ratios (TBRmax and TBRmean) were 

determined, as well as FET uptake kinetics parameters, namely TACs patterns. Classification as PsP or 

EP was based on the clinical course. PsP was confirmed in 11 out of the 22 patients. In patients with 

PsP, FET uptake was significantly lower (TBRmax=1.9 and TBRmean=1.8, P<0.001) than in patients with 

EP (TBRmax=2.8 and TBRmean=2.3, P<0.001). ROC analysis showed that the optimal FET TBRmax cut-

off value for identifying PsP was 2.3 (sensitivity 100%, specificity 91% and accuracy 96%). Thus it is 

demonstrated that FET uptake TBRs and also tracer kinetics provide valuable clinical information for 

the differentiation of PsP from EP in glioblastoma patients, making FET PET a promising method for 

overcoming the limitations of conventional MRI. 

 

1.5.3. FET PET in brain imaging  
 

As mentioned in previous sections, FET PET has not been shown useful in differentiating low 

from high grade tumours if a single time point scan is performed. However, the kinetic profile in FET 

in low-grade and high-grade tumours was reported as a useful feature for distinguishing the two types 

of tumours. The purpose of the preliminary study by Weckesser et al. [52] was to evaluate the differential 

uptake of FET in suspected primary brain tumours. A FET PET study was performed in 44 patients 

referred for the evaluation of a suspected brain tumour. FET uptake above the cortical level was 

observed in 35 out of the 44 lesions. All histologically confirmed gliomas and many other lesions 

showed FET uptake to a variable extent. An analysis of uptake dynamics was done in the patients with 

increased FET uptake, comprising a group of 22 gliomas, three lymphomas, three non-neoplastic 

lesions, three lesions with unknown histology and four other primary tumours. Upon classification of 

tumours into low- and high-grade, a significant difference in maximum FET uptake between the two 

categories was observed only with the first image frame, with FETmax=2.0 in low-grade, and 3.2 in high-

grade tumours. Similar results were obtained when the analysis was applied to astrocytic tumours. These 

preliminary findings were supported by other studies that confirmed difference in uptake kinetics of 

brain tumours according to tumour grading.  

Figure 1.7 is taken from the work by Pöpperl et al. [53]. It shows two representative examples 

of a low-grade and a high-grade tumour, and their kinetics. As shown in the plots, the low-grade glioma 

TAC is constantly increasing over acquisition time, while the high-grade TAC shows an early peak, 

followed by a decrease in uptake. Thus, dynamic FET PET can be considered as a useful tool for 

identifying malignant brain lesions, since it appears that high and low-grade brain tumours exhibit 

different uptake kinetics of FET. 

In a following study by the same authors, the diagnostic value of FET in recurrent gliomas was 

evaluated [11]. 53 patients with glioma and clinically suspected recurrence underwent FET PET scans 

4 to 180 months after different treatment modalities. 43 of those patients initially had high-grade 

gliomas, while the remaining 10 had low-grade gliomas. For semiquantitative evaluation, maximum 

SUV and mean SUV within 80% and 70% isocontour thresholds were evaluated and the respective ratios 

to the background were calculated. PET results were correlated with MRI/CT, clinical follow-up or 

biopsy findings. The results showed that all 42 patients with confirmed recurrent tumours had focally 

increased FET uptake, whereas only low, homogeneous FET uptake was seen at the margins of the 

resection cavity in the 11 patients with no signs of clinical recurrence, thus demonstrating that FET PET 

reliably distinguishes between post-therapeutic benign lesions and tumour recurrence. 
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Figure 1.7 - Examples of a) low-grade tumour and b) high-grade tumour. Both studies show circumscribed 

hypertense lesions in T2-weighted MRI with pathologic contrast enhancement. In the low-grade tumour, some of the regions 

show contrast enhancement in T1-weighted MRI. MR diagnosis was pseudotumoral multiple sclerosis plaque in b), due to the 

irradiation of the corpus callosum, shown in the inset sagittal view. Dynamic evaluation shows increasing SUV90 values until 

the end of acquisition. On the other hand, for the high-grade tumour, dynamic evaluation shows an early peak with decreasing 

SUV90 values until the end of acquisition (adapted from [53]). 

 

Another study by Pöpperl et al. [54] evaluated the potential of dynamic FET PET for non-

invasive tumour grading in untreated patients. Dynamic FET PET studies were performed in 54 patients 

who, based on MRI, were estimated to have low-grade, intermediate or high-grade tumours. For standard 

evaluation, tumour maximum standardized uptake values (SUV) and the ratio to the background were 

calculated. For dynamic evaluation, mean SUV values within a 90% isocontour ROI and the ratio to the 

background were determined for each time frame. Results were correlated with histopathological 

findings. Histology revealed gliomas in all patients. The results showed a statistically significant 

difference in FET uptake in low- and high-grade gliomas. High interindividual variability in FET uptake, 

however, made it impossible to reliably predict tumour grading on an individual level. In contrast, due 

to their different FET kinetic uptake behaviours, low- and high-grade gliomas could be distinguished 

with high diagnostic power: analysis of dynamic data showed a sensitivity of 94% and a specificity of 

100%. Thus, for non-invasive tumour grading of primary gliomas the standard method should be 

supplemented by the dynamic approach. 

Several quantitative measures of dynamic FET PET imaging of patients with resected 

glioblastoma were evaluated [55]. Additionally, the prognostic value of these measures was assessed 

for a small patient population. Dynamic FET PET data of nine patients with histologically confirmed 

glioblastoma were acquired. The authors also computed maximum and average SUV on the tumour 

ROI, and the ratios of these SUVs to the background in order to quantify FET uptake and kinetics. 

Distribution volume ratio (DVR), weighted frame differences and compartment model parameters were 

used as well. For graphical analysis, Logan plots were chosen. It was found that several measures 

allowed robust quantification. SUV and distribution volume ratio did not correlate with clinical 
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outcome, while measures that are based on a background region highly correlated with disease-free 

survival, but not overall survival. Some advanced measures also showed a prognostic value but no 

improvement over the simpler methods. The authors concluded that FET PET probably has a prognostic 

value in patients with resected glioblastoma, but recognise the need of confirming such findings in a 

larger patient group.  

Another study by Galldiks et al. [56] aimed to investigate the potential of dynamic FET PET 

for differentiating local recurrent brain metastasis from radiation necrosis after radiation therapy. The 

improvement in the treatment of solid tumours has led to an increasing number of patients who 

experience brain metastasis during the course of the disease. Stereotactic radiosurgery (SRC) and whole-

brain radiation therapy (WBRT) are commonly used to treat brain metastases, and a growing percentage 

of patients live long enough to experience a local relapse of these metastases. Contrast-enhanced MRI 

is the method of choice for the evaluation of metastatic brain tumours. However, in many patients the 

differentiation of local recurrent brain metastasis from radiation necrosis after radiotherapy using 

contrast-enhanced MRI is difficult [57]. PET using FDG has been considered for the evaluation of these 

tumours, but the high physiologic glucose uptake of metastatic brain lesions limits its use. 

In the referred study, 31 patients with single or multiple contrast-enhancing brain lesions on 

MRI after radiation therapy of brain metastases were investigated with dynamic FET PET. Maximum 

and mean tumour-to-brain ratios (TBRmax and TBRmean) of FET uptake were determined. TACs were 

generated and time to peak (TTP) was calculated. In addition, TACs of each lesion were assigned to one 

of the following curve patterns: I) constantly increased FET uptake, II) FET uptake peaking early 

(TTP≤20 min) followed by a plateau, and III) F-FET uptake peaking early, followed by a constant 

descent. Figure 1.8 depicts the difference between these patterns by showing TACs of three different 

patients. Both TBRmax and TBRmean were significantly higher in patients with recurring metastasis than 

in patients with radiation necrosis. The diagnostic accuracy of FET PET for the correct identification of 

recurrent brain metastasis reached 78% using TBRmax, and 92% for curve patterns II and III versus curve 

pattern I. The highest accuracy (93%) to diagnose local recurrent metastasis was obtained when both a 

TBRmean greater than 1.9 and curve pattern II or III were present. These finding suggest that the TBRmean 

and results of kinetic studies in FET PET can differentiate local recurrent brain metastasis from radiation 

necrosis with a high sensitivity and specificity, thus contributing significantly to the management of 

patients with brain metastases. Moreover, when the data acquired was compared with the results using 
11C-methionine PET the difference between cut-off values can not only be related to methodological 

differences, but also exist due to the differences in the metabolic properties of the two amino acids. 

Thus, FET compared with 11C-methionine shows both considerable logistic advantages but also 

improved accuracy in differentiating local recurrent brain metastasis from radionecrosis. 

 

 

1.6. Motivation 
 

According to the WHO, the worldwide incidence rate of all malignant and non-malignant brain 

and other CNS tumours in 2012 was 3.4 cases per 100,000 for a total count of 256,213 incident tumours 

[58]. MRI is the current gold standard for patients with neurological symptoms providing excellent 

anatomic detail. However, due to the typical heterogeneity of brain tumours, MRI-guided stereostatic 

biopsy is sometimes unable to evaluate tumour grading [48]. As mentioned in previous sections, accurate 

grading is important for directing the therapeutic approach and accessing the prognosis of glioma 

patients. In the past years, FET PET has become an important tool in brain tumour detection and 

diagnosis. Since the differences in uptake kinetics between low-grade and high-grade tumours seem to 
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be specific for FET [59], FET curve fitting could offer a possibility of developing non-invasive 

diagnostic alternatives. Hence, the aim of this work was to develop simple method to generate 

parametric images of FET reflecting tumor grade. Preliminary work on modeling FET curves was 

already performed [60], and in previous studies parametric images were generated using linear 

regression methods. Here we aimed for a more accurate curve fitting, so a nonlinear regression method 

was used to generate the parametric images.  

 

  

Figure 1.8 - Examples of kinetics of radiation necrosis (pattern I) and recurrent brain metastasis (patterns II and III). 

Dynamic evaluation of patient 24 shows constantly increasing FET uptake until the end of acquisition. Dynamic evaluation of 

patient 12 shows early peak of FET uptake, followed by stable uptake until end of acquisition. Dynamic evaluation of patient 

9 shows early peak of FET uptake followed by constant decline of uptake until end of acquisition. (adapted from [56]). 
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2. Methods 

2.1. Patients 
 

Eleven patients (3 female, 8 male, age: 45±15 years) with untreated primary brain tumours and 

histopathologic confirmation were included in the study. Six patients had high-grade gliomas, while the 

remaining 5 were diagnosed with low-grade gliomas. The selection of patients in this study was based 

on the challenge to improve diagnostic information about cerebral lesions in which classification based 

on kinetic profile was unclear. More detailed information on the patients is given on Erro! A origem 

da referência não foi encontrada.. 

 

Table 2.1 - Individual patient data including age, gender, weight, height, injected activity, and diagnosis after stereotactic 

byopsy. 

Patient Age (years) Gender Weight (kg) Height (cm) 
Injected Activity 

(MBq) 
Diagnosis 

HG020 50 M 90 185 264 High-grade 

HG021 57 M 83 183 228 High-grade 

HG417 63 F 69 165 251 High-grade 

HG469 56 M 76 172 233 High-grade 

HG512 30 M 110 170 267 High-grade 

HG552 67 F 60 160 198 High-grade 

LG090 36 M 75 172 278 Low-grade 

LG131 30 M 105 180 293 Low-grade 

LG247 26 M 78 180 238 Low-grade 

LG465 25 F 53 160 182 Low-grade 

LG598 57 M 83 174 198 Low-grade 

 

2.2. Data acquisition, reconstruction, and motion correction 
 

PET acquisition was done with the PET Insert of a hybrid Siemens 3T MR-BrainPET system. 

The human brain PET insert consists of 32 detector cassettes based on 10-µm copper shielded boards 

arranged in a ring geometry. Each detector cassette houses six PET block detectors aligned in the axial 

direction of the device with a gap of 2.25 mm between the block, yielding a 32 cm transaxial and 19.1 

cm axial field of view (FOV). A block detector consists of 144 LSO crystals with an individual crystal 

size of 2.5×2.5×20 mm3. The stacked 12×12 crystal block is read by a 3×3 array of single avalanche 

photodiodes (APDs) with an active surface of 5×5 mm2. The average energy resolution of the PET 

detectors is 17.1±0.7% (full width half maximum, FWHM) [61]. The radiochemical yield of the tracer 

was about 60-65% at a radiochemical purity>98%. The tracer was administered as isotonic neutral 

solution. 

An additional MR measurement was performed before standard PET protocol. FET was 

intravenously injected and a list mode acquisition over 60 minutes was performed. List mode data was 

stored into 16 time frames with 5 × 1 min, 5 × 3 min and 6 × 5 min. After Fourier rebinning, template 

based MR based Attenuation Correction (MRAC) [62] was performed, followed by random and 

scattered coincidences and decay correction. The resulting 153 image planes of 256×256 voxels were 

iteratively reconstructed (OSEM, 2 subsets, 32 iterations) using the ECAT 7.2 software. Later, a 3D-

Gaussian filter with FWHM=2.5 was applied. Motion correction of the dynamic frames was performed 
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with the Fusion tool of the software package PMOD. These data processing steps are schematized in 

Figure 2.1. 

 

 
 

Figure 2.1 - FET PET Workflow. 

 

2.3. Tumour segmentation 
 

The dynamic PET images used in this work were imported to Wolfram Mathematica [64] (see 

Appendix I), which was the software used to perform the fitting and to generate the parametric images. 

In order to fit just the tumour volume, excluding as many voxels containing healthy tissue as possible, 

a segmentation procedure had to be applied (see Appendix II).  After being imported, each image was 

multiplied by a binary mask. The masks were produced by setting all voxel SUVs below a previously 

calculated threshold to zero and all values above or equal to this threshold to 1. For each dynamic image, 

a different threshold was estimated according to Equation 2.1.  

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1.6 ×
1

𝑛𝑣𝑜𝑥𝑒𝑙𝑠
∑ 𝑆𝑈𝑉𝑖

𝑛𝑣𝑜𝑥𝑒𝑙𝑠

𝑖=1

                                           (𝟐. 𝟏) 

                                         

Equation 2.1 was applied to the sum images. Based on a previous biopsy-controlled study [48], 

tumour borders were defined by a lesion-to-brain ratio greater than the threshold of 1.6, as defined by 

Equation 2.1. The ratio was then multiplied by the mean SUVs of a manually selected healthy brain 

region. For all cases, this healthy region was located in the brain hemisphere opposite to the one 

containing the tumour volume, and included similar ratios of gray matter and white matter, but no 

cerebrospinal fluid (CSF). It was not required that selected control region was exactly symmetrical to 

the tumour. Also, because the size of the control region over which the threshold was computed has no 

impact on the estimated threshold, some control regions were larger than others. Table 2.2 resumes the 

estimated thresholds for each image. 
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Table 2.2 - Estimated segmentation thresholds. 

Patient 
Estimated 

Threshold 

HG020 3.69 

HG021 3.12 

HG417 4.03 

HG469 4.96 

HG512 2.67 

HG552 7.21 

LG090 4.68 

LG131 4.81 

LG247 3.65 

LG465 2.68 

LG598 2.48 

 

After segmenting the tumour, all tumour voxels were masked. The fitting procedures described 

in Section 2.6 were applied to the masked data. From now on, this data will be referred to as Segmented 

Tumour Volume (STV). 

 

2.4.  Linear model 
 

Linear regression is an approach for modelling the relationship between a scalar dependent 

variable, and one or more explanatory variables. A simple regression equation has on the right hand side 

an intercept and an explanatory variable with a slope coefficient. Because of its simplicity and 

robustness, linear regression is used extensively in practical applications. Models which depend linearly 

on their unknown parameters are easier to fit than models which are non-linearly related to their 

parameters. Linear regression models are often fitted using the least squares approach [65]. There is an 

explicit solution to the least square fit approach, which makes it possible to compute a formula for the 

intercept and the slope independent of the data. As a result, no iterative procedure is required, unlike 

gradient ascend methods, where projections may fall very far from the real solution. 

In this work, linear regression with straight line equation model (Equation 2.2) was used for 

fitting: 

 

𝐶𝐹𝐸𝑇(𝑡) = 𝑚𝑡 + 𝑦                                                                  (𝟐. 𝟐) 

 

𝐶𝐹𝐸𝑇(𝑡) denotes the concentration of the tracer in the tissue at a given time after injection, 𝑡. 

The two parameters assessed by this model are the slope, 𝑚, and the intercept, 𝑦. 

 

2.5.  Empirical nonlinear models 
 

The basic idea of nonlinear regression is the same as that of linear regression. Nonlinear 

regression is characterized by the fact that the prediction equation depends nonlinearly on one or more 

unknown parameters [66]. While linear regression is often used for building a purely empirical model, 

nonlinear regression usually arises when there are physical reasons for believing that the relationship 
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between the response and the predictors follows a particular functional form. As mentioned in previous 

sections, in the case of FET PET TAC, the response is clearly not linear. Nonlinear regression models 

are expected to be better suited for data fitting when linear dependence is not expected.  

In this work, three exponentially damped linear models were selected for analysis. The first 

model is described by Equation 2.3. It consists of a simple 2-parameter linear model multiplied by an 

exponential factor: 

 

𝐶𝐹𝐸𝑇(𝑡) = 𝐴𝑡 𝑒−𝜅𝑡                                                              (𝟐. 𝟑) 

 

where 𝐶𝐹𝐸𝑇(𝑡) denotes the concentration of the tracer in the tissue at a given time after injection, 𝑡; 𝐴 

expresses the amplitude of the uptake in the region or voxel where the fit is being applied, and 𝜅 

describes the shape of the curve. The linear part of the model, 𝑡, assures that the model starts at 0 for 

𝑡 = 0, as it is expected for the tracer. At time 0, no tracer can be trapped inside the cells. The exponential 

part limits the linear rise of 𝑡 for small 𝜅 (for 𝜅 = 0 we would have just a linear model), or converts into 

falling TAC after some time (for large 𝜅). The latter effect always happens, except for 𝜅 = 0. In case of 

very small 𝜅, the curve eventually falls after some time. In Figure 2.2, the model was plotted with the 

same 𝐴 value (𝐴 = 16), but different 𝜅 values. When the model is plotted with a low 𝜅 value, the 

resulting curve resembles the TAC from a high-grade glioma, whereas a higher 𝜅 seems to reproduce a 

curve shape similar to the TAC of a low-grade glioma.   

 

 

 
 

Figure 2.2 - Exponentially damped linear model with low κ value (blue line) and high κ value (orange line).  

 

A second model, derived from the first one, was also studied. This new model adds a third 

parameter to the previous one. This new parameter is meant to describe an offset seen in the measured 

TACs. It was introduced as an approach to use all data frames, instead of dropping the first 2. The 3-

parameter model is described by Equation 2.4, 

 

𝐶𝐹𝐸𝑇(𝑡) =  𝐴𝑡𝑒−𝜅𝑡 + 𝑐                                                           (𝟐. 𝟒) 

 

Like in the previous model, here 𝐶𝐹𝐸𝑇(𝑡) denotes the concentration of the tracer in the tissue at 

a given time 𝑡 after injection, 𝑡 = 0. Parameter 𝐴 expresses the amplitude of the uptake in the region or 

voxel where the fit is being applied, and 𝜅 describes the shape of the curve. The extra parameter 𝑐 

determines the offset of the curve. Figure 2.3 shows the 3-parameter model plotted with the same 

conditions as in Figure 2.2, but with the added 𝑐 parameter set to 500. 
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Figure 2.3 - Exponentially damped linear model with an offset plotted with and low κ value (blue line), and high κ 
value (orange line), for an offset c=500. 

 

A third model was included in the nonlinear regression model fits. As the previous ones, this 

new model is an exponential damped linear model, but with a square-root time dependence, as described 

by Equation 2.5. 

 

𝐶𝐹𝐸𝑇(𝑡) = 𝐴 √𝑡 𝑒−𝜅√𝑡                                                            (𝟐. 𝟓) 

 

As before, 𝐶𝐹𝐸𝑇(𝑡) denotes the concentration of the tracer in the tissue at a given time 𝑡 after 

injection, 𝑡 = 0, 𝐴 expresses the amplitude of the uptake in the region or voxel where the fit is being 

applied, and 𝜅 describes the shape of the curve. The difference here is in the added time dependence. 

Figure 2.4 shows how this model behaves when different parameters are used. 

 

 

 
 

Figure 2.4 - Exponentially damped model with square-root time dependence: model behaviour with low κ value 

(blue line), and high κ value (orange line). 

 

From the 3 nonlinear regression models, only the exponentially damped model with square-root 

time dependence is presented for the STV fits.  The remaining two models were also tested, but the third 

model yielded the best results in all 11 cases. The linear regression model was also fitted to all STVs for 

comparison (see Appendix II).  

 

2.6.  Fitting of Tumour TAC 
 

After segmentation, the mean TAC of the STVs was calculated. Linear and nonlinear regression 

were used to fit the TAC of each volume. In both cases, the first minutes of acquisition were left out of 

the analysis. When performing the fitting with the linear model, the first 5 minutes of acquisition were 
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discarded, i.e., the linear regression was fitted to the time-activity data from 5 to 60 minutes after 

injection of FET. For the nonlinear regression, the fitting was applied to the time-activity data from 2 to 

60 minutes after injection. The reason behind it is that in the minutes immediately after injection, the 

tracer is still being transported to the brain. Figure 2.5 shows the first five frames of one of the dynamic 

PET scans used in this work. In the first frame, the tumour is almost not visible. Instead, the tracer seems 

to be concentrated in a small area in the posterior part of the brain. That signal is coming from the blood 

vessels, where the tracer is still highly concentrated, and being carried to the brain. As time goes by, and 

the tracer leaves the blood stream, the signal from the artery and veins becomes weaker, whereas the 

tumour uptake starts to increase. Here, the fit models that were looked for were designed to model the 

uptake in the tissue, but not the decrease of concentration in blood. The latter is not possible with only 

few parameters. Obviously, the tumour is vascularized, and therefore also shows activity contained in 

the blood pool, which is very elevated at the start of the measurement, but cannot be modelled with 

simple models. 

 

 
Figure 2.5 - First 5 frames of a dynamic FET PET scan (one minute each). 

 

The difference between the data that is dropped when performing linear regression versus the 

data that is left out the nonlinear regression fit arises from the typical shape of the TACs, and how well 

the models are expected to reproduce its behaviour. Typically, tumour TACs are not linear. As explained 

in previous sections, in the case of the high-grade glioma, FET uptake is expected to decrease after an 

early peak. A linear model would fail to reproduce such a curve, with the fit becoming less accurate as 

more data before peak is included. The option of leaving out the first five minutes of acquisition comes 

from previous works on FET kinetics analysis using linear regression [60]. As the nonlinear regression 

was expected to better reproduce the TAC shape, including the data before peak, only the first 2 minutes 

of acquisition were discarded, where it was supposed that most of the tracer is still dissolved in the 

blood. 

After fitting the STV, the mean values of the parameters for the low-grade glioma and high-

grade glioma groups were calculated. To better evaluate the differences between the two groups, a 2-

sided Mann-Whitney U test was performed (𝛼 = 0.05). 

 

2.7. Parametric images 
 

Parametric images of 𝐴 and 𝜅 were calculated based on nonlinear regression fitting of FET data 

in each voxel. First, only the parametric images of a manually selected tridimensional area containing 

the tumour were generated. The three nonlinear models described in the previous section were tested. 

For the exponentially damped linear model with offset, parametric images of the offset parameter 𝑐 were 

not produced. For comparison, parametric images of slope and intercept parameters from the linear 

regression model were also calculated. However, because of the long computation times (about 3 to 4 
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hours per image volume), only whole-head parametric images based on the exponentially damped linear 

model with square-root time dependence were generated. The fitting was performed on a multicore 

machine, using 10 cores in parallel. This model was selected after analysing the first set of parametric 

images, where it proved to be the most capable of reproducing FET kinetics. Images of the coefficient 

of determination (𝑅2) were generated for all cases in order to assess the quality of fit. The source code 

used for these calculations is presented in Appendix III. 
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3. Results  

3.1. Fits applied to segmented tumour volume 
 

The results from tumour segmentation and from the fits applied to the STV are shown here. 

Figure 3.1 shows the mask for high-grade glioma HG020 created to select the tumour region where 

uptake was averaged over time, and fitting with linear regression and nonlinear regression models was 

applied. 

 
Figure 3.1 - 3D mask used for HG020 segmentation. 

 

The results of the fitting procedure are shown below, in Figure 3.2. The blue dots correspond to 

the averaged SUVs of the voxels within the segmented tumour volume, and the red line is the fitted 

model. The fitting with linear regression model returned a slope of 𝑚 = 0.0007 ± 0.0001, and an 

intercept value of 𝑦 = 5.0 ± 0.2. On the other hand, parameters extracted from the nonlinear regression 

model fit were 𝐴 = 0.359 ± 0.006, and 𝜅 = 0.0202 ± 0.0004. The values of 𝑅2 were calculated to 

assess quality of fit. The linear model fit yielded an 𝑅2  value of 0.78, while for the nonlinear model, 

𝑅2 = 0.99. 

 
Figure 3.2 - Fits applied to mean TAC of STV for HG020. A) Linear model; B) Exponentially damped linear model 

with square root time dependence. 
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In Figure 3.3, the mask used for the segmentation of tumour HG021 is depicted. Figure 3.4 

presents the results of the linear and nonlinear model fits. The intercept value returned from the linear 

fit was 𝑦 = 5.22 ± 0.08, with a slope of 𝑚 = −0.00034 ± 0.00005. With the nonlinear regression 

model fit, the returned parameters were 𝐴 = 0.52 ± 0.02, and 𝜅 = 0.037 ± 0.001. 𝑅2 value for the 

linear fit was of 0.86, and for the nonlinear fit 𝑅2 = 0.99. 

 

 

 
 

Figure 3.3 - 3D mask used for HG021 segmentation. 

 

 
Figure 3.4 - Fits applied to mean TAC of STV for HG021. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 

 

Figure 3.5 shows the mask used for the segmentation of tumour LG090. The linear regression 

model fit returned intercept and slope values of 𝑦 = 6.05832 ± 0.00009, and 𝑚 = 0.2157 ± 0.0001, 

while with the nonlinear regression model fit, the estimated parameters were 𝐴 = 0.46 ± 0.02 and 𝜅 =

0.026 ± 0.001. The 𝑅2 values associated with the fits were 𝑅2 = 0.05 and 𝑅2 = 0.99, respectively. 

The fits, as well as the TAC are shown in Figure 3.6. The fluctuation seen in the TAC is due to the low 

count of tumour voxels. 
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Figure 3.5 - 3D mask used for LG090 segmentation. 

 
Figure 3.6 - Fits applied to mean TAC of STV for LG090. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 

 

Figure 3.7 shows the mask obtained for image LG131 segmentation. Unlike the previous masks, 

this one does not present a single, unified tumour mass. On the contrary, judging by the appearance of 

this mask, the tumour seems to be scattered, and mixed with healthy tissue. 

 

 
Figure 3.7 - 3D mask used for LG131 segmentation. 
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The results of the fits performed on the segmented tumour from LG131 are shown in Figure 3.8. 

Intercept and slope values obtained from the linear regression model fit were 𝑦 = 5.2 ± 0.3, and 𝑚 =

0.0012 ± 0.0002, with 𝑅2 = 0.88. The amplitude and curve shape parameters returned from the 

nonlinear regression model fit were 𝐴 = 0.340 ± 0.005, and 𝜅 = 0.0150 ± 0.0004, with 𝑅2 = 0.99. 

 

 

 
Figure 3.8 - Fits applied to mean TAC of STV for LG131. A) Linear model; B) Exponentially damped linear model 

with square root time dependence. 

 

The mask estimated for image LG247 is presented in Figure 3.9. This mask is smaller than the 

others, which resulted in a noisy average TAC, as seen in Figure 3.10. The linear regression model fit  

was applied to the tumour, returning the intercept and slope parameters of 𝑦 = 2.6 ± 0.3 and 𝑚 =

0.0012 ± 0.0002, with a calculated 𝑅2 of 0.82. The parameter values determined for the nonlinear 

regression model fit were 𝐴 = 0.21 ± 0.03, and 𝜅 = 0.014 ± 0.004. Estimated 𝑅2 value was 0.98. 

Both fits are presented in Figure 3.10 (red line). Like in the case of LG090, the low count of tumour 

voxels caused TAC fluctuations. 

 

 

 
 

Figure 3.9 - 3D mask used for LG247 segmentation. 
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Figure 3.10 - Fits applied to mean TAC of STV for LG247. A) Linear model; B) Exponentially damped linear model 

with square root time dependence. 

 

Figure 3.11 shows the mask for high-grade glioma HG417 created to select the tumour region. 

The fitting with linear regression model returned an intercept value of 𝑦 = 5.5 ± 0.2, and a slope of 

𝑚 = 0.0005 ± 0.0001. On the other hand, with the nonlinear regression model fit, the retrieved values 

for amplitude and curve shape were 𝐴 = 0.405 ± 0.006, and  𝜅 = 0.0226 ± 0.0004. The linear model 

fit yielded an 𝑅2  value of 0.57, while for the nonlinear model, 𝑅2 = 0.99. These results are depicted in 

Figure 3.12. 

 
Figure 3.11 - 3D mask used for HG417 segmentation. 

 

 
Figure 3.12 - Fits applied to mean TAC of STV for HG417. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 
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The mask used for tumour segmentation in image LG465 is shown below, in Figure 3.13. 

 

 
Figure 3.13 - 3D mask used for LG465 segmentation. 

 

The fits applied to the averaged SUVs of the tumour volume are depicted in Figure 3.14. The 

linear regression model fit was performed with an estimated 𝑅2 value of 0.92. The intercept and slope 

parameters were 𝑦 = 3.7 ± 0.1, and 𝑚 = 0.00076 ± 0.00007. For the nonlinear regression model fit, 

the calculated parameters were 𝐴 = 0.27 ± 0.01, and 𝜅 = 0.018 ± 0.001. The 𝑅2 value of the fit was 

0.99. 

 

 
 

Figure 3.14 - Fits applied to mean TAC of STV for LG465. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 

Figure 3.15 and Figure 3.16 show the results of the segmentation procedure applied to HG469, 

and the fits performed in the segmented tumour volume. An intercept value of 𝑦 = 6.3 ± 0.2, and a 

slope of 𝑚 = 0.0007 ± 0.0001 were calculated for the fitting using the linear regression model. The 

nonlinear regression model fit returned the parameter values of 𝐴 = 0.47 ± 0.01, and 𝜅 = 0.0219 ±

0.0006. The estimated 𝑅2 values were  𝑅2 = 0.77 for the first fit, and 𝑅2 = 0.99 for the second. 

Figure 3.17 shows the mask generated for image HG512. Because the tumour volume is so close 

to the bone, and the segmentation procedure was based on a simple selection of voxel values based on 

a threshold, the resulting mask ended up containing not only the tumour region, but also bone. For that 

reason, a small area within the tumour was manually selected. The same fitting procedures were applied 

to this smaller area. 
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Figure 3.15 - 3D mask used for HG469 segmentation. 

 

 
 

Figure 3.16 - Fits applied to mean TAC of STV for HG469. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 

 

 
 

Figure 3.17 - 3D mask used for HG512 segmentation. 
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The results of the fits are presented in Figure 3.18. The intercept value returned by the linear 

regression model fit was  𝑦 = 2.4 ± 0.1, and the slope value was 𝑚 = 0.00068 ± 0.00006. For the 

nonlinear regression method, the calculated parameters were 𝐴 = 0.168 ± 0.006, and 𝜅 = 0.0149 ±

0.0009.  The 𝑅2 values of the fits were 𝑅2 = 0.94,  and 𝑅2 = 0.99, respectively. 

 

 
Figure 3.18 - Fits applied to mean TAC of STV for HG512. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 

 

The mask generated for HG552 tumour segmentation is shown in Figure 3.19. The results of the 

fits performed on the segmented tumour from LG131 are shown in Figure 3.20. Intercept and slope 

values obtained from the linear regression model fit were 𝑦 = 11.3 ± 0.3, and 𝑚 = −0.0006 ± 0.0002, 

with 𝑅2 = 0.53. The amplitude and curve shape parameters returned from the nonlinear regression 

model fit were 𝐴 = 0.976 ± 0.009, and 𝜅 = 0.0325 ± 0.0003, with 𝑅2 = 0.99. 

 

 

 
 

Figure 3.19 - 3D mask used for HG552 segmentation. 
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Figure 3.20 - Fits applied to mean TAC of STV for HG552. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 

 

Lastly, Figure 3.21 shows the mask applied to the image HG598. The fits to the STV are 

presented in Figure 3.22. The intercept and slope parameters determined for the linear regression model 

fit were 𝑦 = 2.76 ± 0.07, and 𝑚 = 0.00024 ± 0.00004, respectively. For the nonlinear fit, the 

calculated parameters were 𝐴 = 0.23 ± 0.01, and 𝜅 = 0.025 ± 0.001. The estimated 𝑅2 values were 

𝑅2 = 0.77, and 𝑅2 = 0.99 for the linear and nonlinear regression fits, respectively. 

 

 

 
 

Figure 3.21 - 3D mask used for HG598 segmentation. 
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Figure 3.22 - Fits applied to mean TAC of STV for HG598. A) Linear model; B) Exponentially damped linear model with 

square root time dependence. 

 

 

Table 3.1 presents a summary of the parameters calculated from the STVs fittings, as well as 

the dimensions of the masks used for tumour segmentation, i.e., the dimensions of the volumes where 

voxel SUVs were averaged. 

 

 

 

 

 

Table 3.1 - Summary of the estimated parameters from linear and nonlinear regression model fit to the STVs. 

Patient 

Mask 

dimension 

(voxels) 

LINEAR REGRESSION MODEL NONLINEAR REGRESSION MODEL 

Intercept Slope 
    

HG020 112,608 5.0±0.2 0.0007±0.0001 0.78 0.359±0.006 0.0202±0.0004 1 

HG021 251,988 5.22±0.08 -0.00034±0.00005 0.86 0.52±0.02 0.037±0.001 1 

HG417 105,616 5.5±0.2 0.0005±0.0001 0.57 0.405±0.006 0.0226±0.0004 1 

HG469 57,288 6.3±0.2 0.0007±0.0001 0.77 0.47±0.01 0.0219±0.0006 1 

HG512 21,006 2.4±0.1 0.00068±0.00006 0.94 0.168±0.006 0.0149±0.0009 0.94 

HG552 48,312 11.3±0.3 -0.0006±0.0002 0.53 0.976±0.009 0.0325±0.0003 1 

LG090 6,930 6.05832±0.00009 0.2157±0.0001 0.05 0.46±0.02 0.0260±0.001 1 

LG131 57,684 5.2±0.3 0.0012±0.0002 0.88 0.340±0.005 0.0150±0.0004 1 

LG247 1,408 2.6±0.3 0.0012±0.0002 0.82 0.21±0.03 0.0140±0.004 0.98 

LG465 120,658 3.7±0.1 0.00076±0.00007 0.92 0.27±0.01 0.0180±0.001 1 

LG598 101,614 2.76±0.07 0.00024±0.00004 0.77 0.23±0.01 0.0250±0.001 0.99 

 

 

 

A Comparison between the nonlinear models used to calculate the parametric images of HG021 

and LG131 when applied to the mean SUVs of the respective STVs across time is presented on Figure 

3.23. 
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Figure 3.23 - Comparison between the nonlinear models used to calculate the parametric images of HG021 and 

LG131 when applied to the mean SUVs of the respective STVs across time. The first row shows the results from the nonlinear 

regression fit with the simple exponentially damped linear model (A and B). The second row shows the results obtained with 

the exponentially damped model with an offset (C and D), and the last row shows the results from the exponentially damped 

linear model with square-root time dependence fit (E and F).  

 

Table 3.2, Table 3.3, Table 3.4, and Table 3.5 show the mean values of the estimated parameters 

from linear and nonlinear regression model fit to the STVs. The nonlinear parameters considered in 

Tables 3.4 and 3.5 are from fits performed with the exponentially damped linear model with square-root 

time dependence. 

 

Table 3.2 - Mean values of the intercept parameter from linear regression model fit to the STVs. 

Intercept 

All HGG Except HG512 All LGG 

Tumor Control Tumor Control Tumor Control 

5.95±2.93 2.54±1.02 6.66±2.64 2.75±0.98 4.06±1.52 2.3±0.52 
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Table 3.3 - Mean values of the slope parameter from linear regression model fit to the STVs. 

Slope 

All HGG Except HG512 All LGG 

Tumor Control Tumor Control Tumor Control 

0.0201±0.0006 0.0002±0.0001 0.0002±0.0006 0.0002±0.0001 0.04±0.09 0.0002±0.0003 

 

 

Table 3.4 - Mean values of the amplitude (A) parameter from nonlinear regression model fit to the STVs with the 

exponentially damped linear model with square-root time dependence. 

A 

All HGG Except HG512 All LGG 

Tumor Control Tumor Control Tumor Control 

0.40±0.27 0.21±0.08 0.55±0.25 0.23±0.08 0.3±0.1 0.2±0.05 

 

 

Table 3.5 - Mean values of the κ parameter from nonlinear regression model fit to the STVs with the exponentially damped 

linear model with square-root time dependence. 

κ 

All HGG Except HG512 All LGG 

Tumor Control Tumor Control Tumor Control 

0.023±0.008 0.024±0.003 0.027±0.007 0.025±0.003 0.020±0.006 0.026±0.105 

 

After performing a 2-sided Mann-Whitney U test to the data on Table 3.1, at a level of 

significance 𝛼 = 0.05, only the A parameter was shown to be significantly different between high-grade 

and low-grade (p-value= 0.04). 

 

3.2. Tumour region parametric images 
 

Parametric images based on linear and nonlinear regression fitting of FET data in each voxel 

were generated for the eleven patients. Here, only two cases are presented for simplicity: one from a 

low-grade glioma (LG131), and another from an high-grade glioma (HG021). The results are presented 

in the following sections. 

 

3.2.1. Linear model 
 

Parametric images of intercept 𝑦, and slope 𝑚 were calculated based on linear regression fitting 

of data in each voxel. Figure 3.24 shows the parametric images of a slice of a manually selected 

tridimensional area containing the tumour. On the left column, images of the summed SUV values along 

time are shown. On the very right, images of distribution of 𝑅2 are shown. Blank areas in the middle of 

the parametric images indicate that the values were out of the plot range. This can either mean that the 

values are very large, or that the fit failed to converge. 
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3.2.2. Nonlinear models 
 

Parametric images of parameters 𝐴 and 𝜅 were calculated based on nonlinear regression fitting 

of data in each voxel. Figure 3.25, Figure 3.26, and Figure 3.27 show the parametric images of a slice 

from a manually selected tri-dimensional area containing the tumour. On the left column, images of the 

summed SUV values along time are shown. On the very right, images of the distribution of 𝑅2 are 

shown. Blank areas in the middle of the parametric images indicate that the values were out of the plot 

range. This can either mean that the values are very large, or that the fit failed to converge. In Figure 

3.25, the results from the exponentially damped linear model are depicted. Figure 3.26 presents the 

parametric images generated with the exponentially damped linear model with an offset, and Figure 3.27 

shows the images obtained from nonlinear regression fit with the exponentially damped linear model 

with square-root time dependence.  

 

 
 

Figure 3.24 - Parametric images of slope and intercept from linear regression fitting of data in each voxel. 

 

 
 

Figure 3.25 - Parametric images of A and κ obtained from nonlinear regression fitting of data in each voxel 

(exponentially damped linear model). 
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Figure 3.26 - Parametric images of A and κ obtained from nonlinear regression fitting of data in each voxel 

(exponentially damped linear model with offset). 

 

 

 

 

 
 

 

Figure 3.27 - Parametric images of A and κ obtained from nonlinear regression fitting of data in each voxel 

(exponentially damped model with square-root time dependence). 

 

 

In order to better illustrate the different model behaviours on STV fitting and on voxel-wise 

fitting, Figure 3.28 shows the results from the fits with the nonlinear models, and respective parametric 

images, on patient LG131. 
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Figure 3.28 - Fit results of the three 

nonlinear models on a single voxel inside 

the tumour region (top plot, on the left) and 

on the STV (bottom plot, on the left) of 

patient LG131, and respective parametric 

images (on the right). (A) shows the results 

from the nonlinear regression fit with the 

simple exponentially damped linear model. 

(B) shows the results obtained with the 

exponentially damped model with an offset, 

and (C) shows the results from the 

exponentially damped linear model with 

square-root time dependence fit. 
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Figure 3.29 - Parameter distribution obtained from fitting of LG131 tumour and control data in each voxel: a) 

exponentially damped linear model; b) exponentially damped linear model with square-root time dependence; c) linear model.  

 

 

Voxel-wise fit was also performed in control regions. The histograms on Figure 3.29 show the 

distribution of the different parameters in both tumour and control area of LG131. The histograms are 

from two of the nonlinear regression based fits, and for the linear regression based fit. The histograms 

on the first row (Figure 3.29a) correspond to the results from the exponentially damped linear model; 

the second row (Figure 3.29b) depicts the results from the square-root time dependence model, and the 

last row (Figure 3.29c) shows parameter distribution for the linear regression voxel-wise fit. Histograms 

for relative error distribution were also calculated, and are shown in Figure 3.30. 
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Figure 3.30 - Parameter error histograms obtained from fitting of LG131 data in each voxel: a) exponentially damped 

linear model; b) exponentially damped linear model with time dependence; c) linear model. 

 

 

The histograms on Figure 3.31 show the distribution of the different parameters in both tumour 

and control area of HG021. The histograms are from two of the nonlinear regression based fits, and for 

the linear regression based fit. The histograms on the first row (Figure 3.31a) correspond to the results 

from the exponentially damped linear model; the second row (Figure 3.31b) depicts the results from the 

square-root time dependence model, and the last row (Figure 3.31c) shows parameter distribution for 

the linear regression voxel-wise fit. Histograms for error distribution were also calculated, and are shown 

in Figure 3.32. For comparision with the other nonlinear models, Figure 3.33 presents the histograms 

for error distribution with the exponentially damped linear model with an offset for LG131. 

Identical analysis was performed for the remaining image volumes, but due to the similarities 

between the results, only these two cases are presented. 

Mean and standard deviation of the 𝑅2 values obtained from nonlinear and linear regression 

voxel-wise fitting of all data volumes are presented in Table 3.6.  
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Figure 3.31 - Parameter distribution obtained from fitting of HG021 tumour and control data in each voxel: a) 

exponentially damped linear model; b) exponentially damped linear model with time dependence; c) linear model.  
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Figure 3.32 - Parameter error histograms obtained from fitting of HG021 data in each voxel: a) exponentially damped 

linear model; b) exponentially damped linear model with time dependence; c) linear model. 

 

 

 

 
 

Figure 3.33 - Parameter error histograms obtained from fitting of LG131 data in each voxel with the exponentially 

damped linear model with an offset. 
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Table 3.6 - Mean R2 from the voxel-wise fit with the linear and the non-linear models. 

 
Linear model 

Exponentially 

damped linear model 

Square-root time-

dependence model 

HG020 0.26±0.22 0.92±0.05 0.95±0.03 

HG021 0.19±0.20 0.91±0.05 0.94±0.03 

HG417 0.23±0.21 0.92±0.05 0.94±0.03 

HG469 0.18±0.18 0.84±0.10 0.88±0.09 

HG512 0.20±0.19 0.85±0.10 0.89±0.09 

HG552 0.13±0.15 0.81±0.11 0.85±0.09 

LG090 0.17±0.14 0.91±0.04 0.95±0.02 

LG131 0.26±0.23 0.94±0.03 0.96±0.02 

LG247 0.43±0.23 0.91±0.05 0.93±0.03 

LG465 0.33±0.23 0.90±0.06 0.93±0.04 

LG598 0.16±0.17 0.82±0.09 0.86±0.07 

 

 

 

 

 

 

3.3. Whole-head parametric images 
 

Whole-head parametric images of amplitude, 𝐴, and curve shape, 𝜅 were calculated based voxel-

wise fitting of a exponentially damped linear model with square-root time dependence. The results for 

two patients (LG131 and HG021) are presented in Figure 3.34. Only one representative slice (z axis) of 

the fitted head volume is shown. The top row corresponds to the graphic representation of the summed 

uptake values in the head region over time. The bottom row shows the distribution of the 𝑅2 values. 
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Figure 3.34 - Whole-head parametric images of A and κ obtained from nonlinear regression with exponentially damped 

linear model with square-root time dependence fitting of data in each voxel. 
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4. Discussion 
 

The goal of this project was to develop a robust method to generate parametric images of FET 

reflecting tumour grade. Preliminary work on modelling FET curves was already performed, and in 

previous studies parametric images were generated using linear regression methods [61]. Even though 

linear regression methods are simple and robust, they present some relevant limitations. They either are 

applied after uptake peak, excluding the data prior to that time point, or are too simplistic, being unable 

to model nonlinear dependencies on individual parameters. Here, a more accurate curve fitting was 

looked for. Using nonlinear regression methods to fit FET data curves allowed for discarding less data, 

since only the first two minutes of acquisition were rejected. The amount of unused data in this case was 

considerably less than in traditional linear regression model fit scenarios, which would include 

discarding the data prior to peak, or after it. It was observed that the TTP for FET in brain tumours 

depends upon their property of being high-grade or low-grade. Thus, TTP method is already suboptimal, 

because the decision of discarding the data is prior to knowing the type of tumour being studied. In a 

study by Herzog et al. [60], in which this work was based on, only the first five minutes of acquisition 

remained unused. Taking advantage from the fact that a nonlinear model would, by definition, better fit 

to the typical shape of PET TACs, we tried to incorporate even more data into the analysis. The 

importance of using more of the initial data is well illustrated by case LG090. As seen in Figure 3.6, the 

shape of the TAC changes as more or less of the initial data is excluded from the fitting. Because the 

first 5 frames are discarded when applying the linear fitting, the resulting TAC shows no characteristic 

tumour uptake shape. On the other hand, when only 2 frames are excluded, the initial uptake rise can be 

seen in the averaged TAC. The inclusion of more data is also beneficial because when looking into the 

SUVs of the STV averaged over time, the curve is less noisy, allowing for a better fit. The same applies 

to the calculation of the parametric images. 

 

4.1. Fits applied to segmented tumour volume 
 

When fits were applied to a single TAC, obtained by building the mean over all voxels TACs 

inside the segmented tumour volume, 3-dimensional masks were created to select the tumour data. A 

threshold method was used. Because of its simplicity, it is possible that the calculated masks either 

included healthy tissue, or excluded some tumour regions. The dimension of the masks could also have 

played a role on the performance of the fit, since smaller regions lead to noisier TACs. In the previous 

section, Table 3.1 shows the summary of the parameters calculated from the STVs fittings, as well as 

the dimensions of the volumes where voxel SUVs were averaged. The STVs of LG247 and LG090 were 

the smallest, and the TACs of these two cases were the noisiest. In the case of LG090, the linear 

regression fit returned an extremely low 𝑅2  value (𝑅2 =0.05), while the corresponding nonlinear fit 

returned a 𝑅2 value of 0.99. Even though a 𝑅2 close to zero is associated with horizontal curves, the 

model performed poorly when fitting the data in this case because the TAC was too noisy, and noise 

increases uncertainty in parameters. Table 3.1 also shows that 𝑅2 values for the linear fit are in general 

much worse than for nonlinear regression (𝑅2 values closer to 1 indicate that the fit works better). 

An example of failed segmentation is patient HG512. As presented in the previous section, the 

generated mask contained both tumour and bone. As a result, the fit was applied only to the data from a 

small area inside the segmented volume. A look at Figure 3.18 shows that the nonlinear model was able 

to reproduce the data. However, the retrieved parameters were lower than the ones from the other high-

grade gliomas, both for linear and nonlinear fit. This difference may come from the faulty segmentation.  
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To solve this problem, a more complex segmentation procedure would have to be developed. There are 

tools that allow for a more precise segmentation, but their use would have increased the complexity of 

the workflow. Since the segmentation implemented with Mathematica was working well for the other 

image volumes and robust segmentation was not within the scope of this work, no other solution was 

sought after. 

The selection of patients in this study was based on the challenge to improve diagnostic 

information about cerebral lesions in which classification based on kinetic profile was unclear. That 

means that the cohort was chosen to have a large variety of curves/cases and especially unclear cases 

were chosen in order to be sure that the model works also for these cases. As so, despite the potential 

lack of accuracy of the segmentation procedure, in some cases the TACs do not look as expected for 

clear differentiation between low-grade and high-grade. However, after fitting the data curves, some 

tendencies in the estimated parameters showed clues regarding tumour grading. Table 4.2 presents the 

mean values for the estimated fit parameters. Visual inspection of these values, together with Table 4.1, 

reveals that the intercept, slope, A, and κ parameters for the high-grade gliomas were in general higher 

than the one for the low-grade gliomas. If HG512 is left out of the calculations, then the difference is 

even bigger.  

Regarding the linear regression model fits, the difference in slope values was not as expressive 

as the one reported by Herzog et al. [60]. In that study, linear regression model fits applied to high-grade 

gliomas returned negative slope values, whereas the computed slope parameter values for low-grade 

gliomas were positive. Those results are in line with the typical kinetic profile expected from high-grade 

and low-grade tumours. In the first case, since tracer uptake decreases after an early peak, the linear fit 

is expected to consist of a negative slope curve. The opposite is expected from low-grade glioma fitting, 

because here the uptake increases steadily along time. However, in this work, only two out of the 6 fitted 

high-grade STVs had negative slope values. This result is related to the criteria for patient selection. 

Except for HG021 and HG552, none of the other high-grade tumours had a clear kinetic profile. 

Nonetheless, slope values of the fitted high-grade gliomas were still lower than the ones for low-grade 

gliomas. 

Intercept values were also higher in fitted high-grade gliomas. The fact that high-grade gliomas 

revealed increased uptake goes in line with previous study findings [51, 52]. 

The exponentially damped linear model with square-root time dependence used for the 

nonlinear regression fits also allowed for a distinction between tumour grading. The amplitude 

parameter calculated for the high-grade gliomas was higher than the one returned by fitting the low-

grade gliomas. As so, the nonlinear regression model successfully reflected differences in the uptake of 

between tumour grades.  

The 𝜅 parameter was also higher for high-grade gliomas, thus reflecting differences in curve shape 

between high-grade and low-grade glioma. As discussed in section 2, plotting the nonlinear model used 

for the fits with higher 𝜅 values mimics the expected kinetic profile (i.e., TAC) of FET data on a low-

grade glioma. But in Figure 2.2, Figure 2.3, and Figure 2.4, the models are plotted with a fixed amplitude 

value. Here, however, the amplitude parameter also changes, and it is higher in high-grade gliomas. This 

hints at a dependence between the two parameters. Previous works with linear regression models relied 

on a difference in slope signal to distinguish between tumour grades. We hoped nonlinear based fitting 

would allow for better tumour grading based on only one parameter, namely the κ parameter. To access 

the ability of each parameter to distinguish between high-grade and low-grade, a 2-sided Mann-Whitney 

U test was performed. The goal was to compare the mean values of each parameter, and see in which 

case there was a significant difference between tumour grades. At a level of significance 𝛼 = 0.05 , 

only the A parameter was shown to be significantly different between high-grade and low-grade (p-

value= 0.04). Additionally, by looking to the R2 values disclosed in Table 3.6, it is shown that the 

nonlinear model reproduces the data better.  
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Out of the three studied nonlinear models, only the model with square-root time dependence 

was presented as the nonlinear alternative in the previous STV fitting. Looking to Figure 3.25 for voxel 

wise fits, the performance of the simple exponentially damped linear model seemed to be as good, with 

overall convergence, and high 𝑅2 values. However, it was found that when fitting the average STV 

TACs, the model fails to correctly reproduce the data. Figure 3.23 shows the comparison between the 

nonlinear models used to calculate the parametric images of HG021 and LG131 when applied to the 

mean TACs of the respective STVs across time. It is clear that, even though parametric images looked 

promising, the model does not fit correctly to the data. The offset model also failed to fit the data from 

the STV while giving reasonable fit results for voxel wise fitting, as seen in Figure 3.24, and for that 

reason it was also excluded. In order to better illustrate the difference in quality of fit between the three 

nonlinear models, Figure 3.28 shows the results from the fits with the nonlinear models, and respective 

parametric images, on patient LG131. Looking to the fit applied to a single voxel within the tumour 

region does not allow for distinction between model performance. The data is too noisy for allowing 

precise reproduction of single-voxel data with either of the models. However, the differences can be 

observed once the noise decreases, which is what happens when the mean TAC over the STV area is 

computed. Overall, the model with square-root time dependence performed the best.  

 

4.1. Voxel-wise fit and parametric images 
 

In contrast to previous dynamic evaluations of  FET PET that were based on the interpretation 

of the uptake curve in a predefined region within the tumour volume, parametric images provide the 

option to display variable grades of malignancy within the tumour volume. 

Two out of three tested nonlinear models showed promising results regarding the distinction 

between tumour grades. For the simple exponentially damped linear model, while the amplitude (A 

parameter) images accurately reproduce the sum images, the parametric images of the κ parameter allow 

the distinction between the two tumours. In the image of HG021, a darker central area is surrounded by 

a lighter one. On the other hand, in the case of the LG131, the central area is lighter than the 

surroundings. This means that in the high-grade glioma, 𝜅 parameter has higher values than the 

background/healthy tissue, whereas in the low-grade glioma, the values of the 𝜅 parameter are lower 

than the ones calculated for the surrounding healthy tissue. 

The exponentially damped linear model with square-root time dependence also allowed for 

differentiation between low-grade and high-grade. As with the first model, the 𝜅 parameter images were 

different in both cases with higher-than-background values for the high-grade glioma and lower-than-

background values for the low-grade glioma, but the difference is not as visually evident as in the 

previous case. However, the amplitude images calculated based on the square-root model also allowed 

for tumour grading. While for the high-grade tumour the parametric image of A replicated the sum image 

of the corresponding tumour, for the low-grade glioma the tumour area approaches values very similar 

to surrounding healthy tissue. 

The exponentially damped model with an offset performed the worst out of the tested models. 

The offset parameter was originally added as an attempt two include more information into the fitting, 

and better reproduce the data. However, the extra parameter mostly added instability to the fit, thus 

leading to worst results, especially when calculating the parametric images. Although the 𝑅2 values 

were very close to 1, it is clear that this model fails to reproduce the data. Furthermore, it was impossible 

to generate a parametric image of 𝜅 for the low-grade tumour using this model due to the high number 

of outliers, and the relative errors associated to the computed parameters were higher than for the other 

models, as illustrated by Figure 3.33. 
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The linear model has problems in reproducing the data, as seen in Figure 3.24. The parametric images 

of the slope parameter show extensive white areas corresponding to outliers. The values for the 𝑅2 were 

closer to zero, especially in the areas corresponding to healthy tissue, as shown in Table 3.1. Also, the 

errors associated with the slope parameter calculation were the highest. This performance was expected 

and it was one of the reasons for this work. It was thought that models that were more capable of 

reproducing kinetic data would also allow for better distinction between high-grade and low-grade 

tumours. However, if we try to visually distinguish between high-grade and low-grade based solely on 

one parameter, the linear model performs better.  Regardless of the outliers, tumour grade distinction is 

possible when looking to the parametric images of the slope parameter (Figure 3.24), with low-grade 

gliomas taking higher slope values than the surrounding healthy tissue, and high-grade gliomas taking 

slope values that are lower than the ones calculated for the neighbouring tissue. Tables 3.3 and 3.4 show 

difference between high-grade and low-grade in the parameters resulting from linear regression fit, but 

the differences were not significant (p-valueintercept= 0.09; p-valueslope=0.06).  

This results that, after all, a nonlinear regression approach to FET data fitting does not 

necessarily yield the best results when it comes to tumour grading. The data may be better reproduced 

in cases where the kinetic profile is not clear, but when it comes to tumour grading based on parametric 

imaging, linear regression models perform better based on one parameter only. A visual distinction is 

possible with nonlinear regression based parametric images, but only when comparing the amplitude 

images with the sum images, or when using amplitude and κ parameters together. 

 

 

4.2. Whole-head parametric images 
 

Whole-head parametric images were successfully generated using the exponentially damped 

linear model with square-root time dependence. As with the parametric images confined to the tumour 

region, here the amplitude images also allow for differentiation between low-grade and high-grade. The 

values of the 𝐴 parameter in the low-grade tumour are similar to the ones calculated for the surrounding 

healthy tissue. On the contrary, amplitude values in the high-grade tumour are higher than amplitude 

values of the background. Using both sum images and amplitude parameter images, it is then possible 

to distinguish the tumours according to their grade. This result is also reproduced by the linear 

regression. The difference between the parametric images of 𝜅 for each tumour is not very evident. 

When looking into the small-region parametric images, 𝜅 parameter allows for tumour grading. 

However, that difference does not show as well in the whole-head images. For the low-grade tumour, it 

is possible to see a small brighter area in the right brain hemisphere; for the high-grade tumour, a slightly 

darker area shows in the parametric images. However, these areas are difficult to spot. Comparing the 

sum images with the amplitude and the 𝜅 images allows for an easier, more accurate distinction between 

high-grade and low-grade. The 𝑅2 values estimated for the voxel-wise fit were overall very close to 1 

for both image data. 
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5. Conclusion 
 

Nonlinear regression models are better at reproducing FET TAC characteristics. The more 

robust models are the ones with only 2 parameters. Their simplicity allows for better, more robust fits. 

For mean TAC fitting, a model with square-root time dependence reproduced FET data more accurately 

than a simple exponentially damped linear model. Furthermore, the A parameter extracted from the 

fitting with the square-root time dependence model was the only parameter showing a significant 

difference between high-grade and low-grade tumours.  

When generating parametric images based on voxel-wise fit, the nonlinear regression models 

with 2 parameters performed the best, with less voxel fit values falling out of plot range, and less 

convergence issues. 𝑅2 values for the nonlinear regression model based fits were close to 1 in both mean 

TAC fitting, and parametric image calculation. In the case of the parametric images generated with the 

exponentially damped with square-root time dependence model, visual distinction between tumour 

grade was possible, but not based on one single parameter. Using the parametric images of the amplitude 

parameter, A, in combination with the images of the κ parameter and the images of the summed uptake 

across time, it was found that the low-grade tumours take A values close to the ones from the surrounding 

healthy tissue, thus “disappearing” from the image. On the other hand, the amplitude image of the high-

grade tumours reflect tumour uptake. Visual distinction using the parametric images of κ was possible 

in cases were the kinetic profile was clearer and/or in combination with the A image. 

On the other hand, linear regression model fits returned 𝑅2 values that were close to zero in both 

mean TAC fitting and parametric image calculation. However, when parametric images were calculated, 

it was shown that, although the linear model fails to accurately reproduce FET kinetic data, it allows for 

a better distinction between high-grade and low-grade gliomas based on one parameter only. Even 

though the parametric images show some outliers, for low-grade tumours, the slope images show that 

the tumour region takes higher slope values than the surrounding healthy tissue. The opposite is seen in 

the slope images of high-grade gliomas. 

In general, it is possible to say that, nonlinear models reproduce FET TAC better. Therefore, 

prediction of low-grade or high-grade on STVs is better with nonlinear models. However, the distinction 

between high-grade and low-grade tumours based on one parameter (i.e, based on only slope or κ 

parametric images) is better achieved by using linear regression model fitting. Prediction of high-grade 

or low-grade gliomas on joint inspection of A and κ, or intercept and slope has still to be studied. Future 

work on nonlinear model fitting should focus on better understanding why the square-root time 

dependence allows for such accurate reproduction of FET TAC. The dependence between the A and κ 

parameters and especially a joint interpretation of both parameter images should also be studied for 

differentiation of high-grade and low-grade tumours.  
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Appendix I - Mathematica Package for Reading ECAT7 files 
 

In this appendix, the source code used to write the Mathematica package that allowed for image 

data import is shown. In this work, two Mathematica versions were used: 7 and 10. The present package 

was written with version 7, and it works in newer Mathematica versions. The data used in this work was 

in ECAT7 data format. This format is native to several generations of PET scanners manufactured by 

Siemens. The ECAT7 format can contain PET raw data, dynamic and parametric images, and polar 

maps.  

 
(*::Package::*) 

(*--------------------Mathematica Package for Reading ECAT7 files----------------*) 

(*                               Author: Ines Costa                              *) 

(*                             Last edited: 07-04-2016                           *) 

(*-------------------------------------------------------------------------------*) 

BeginPackage["ReadECAT7`"] 

 

Options[loadImg]={Silent->True}; 

loadMainHeader::usage="loadMainHeader[file,format] reads the main header"; 

loadImg::usage="loadImg[file,opts] prints the main header, directory information, 

subheaders, and loads image data"; 

 

Begin["Private`"] 

(*----------------------------------IMPLEMENTATION-------------------------------*) 

(*-------------------------------------------------------------------------------*) 

(*FORMATS & LABELS*) 

(*-------------------------------------------------------------------------------*) 

(*Main header*) 

mainHeaderFormat={ 

Table["Character8",{14}],(* unsigned char magic_number[14] *) 

Table["Character8",{32}], (* original_file _name[32] *) 

Table["Integer16",{3}], (* sw_version,system_type,file_type*) 

Table["Character8",{10}], (* serial_number[10] *)  

Table["Integer32",{1}], (* scan_start _time *)  

Table["Character8",{8}], (* isotope_name[8] *)  

Table["Real32",{1}],(* isotope_halflife *) 

Table["Character8",{32}], (* radiopharmaceutical[32] *) 

Table["Real32",{4}], (*gantry_tilt,gantry_rotation,bed_elevation,gintrinsic_tilt*) 

Table["Integer16",{2}], (*wobble_speed,transm_source _type*) 

Table["Real32",{2}],(* distance_scanned,transaxial_fov*) 

Table["Integer16",{3}], (*angular_compression,coin_samp _mode,axial_samp _mode*) 

Table["Real32",{1}],(* ecat_calibration _factor *) 

Table["Integer16",{3}], (*calibration_units,calibration_units 

_label,compression_code*) 

Table["Character8",{12}], (* study_type[12] *) 

Table["Character8",{16}], (* patient_id[16] *) 

Table["Character8",{32}], (* patient_name[32] *) 

Table["Character8",{1}], (* patient_sex *) 

Table["Character8",{1}], (* patient_dexterity *) 

Table["Real32",{3}], (*patient_age,patient_height,patient_weight*) 

Table["Integer32",{1}], (* patient_birth _date *) 

Table["Character8",{32}], (* physician_name[32] *) 

Table["Character8",{32}],(* operator_name[32] *) 

Table["Character8",{32}],(* study_description[32] *) 

Table["Integer16",{2}],(*acquisition_type,patient_orientation*) 

Table["Character8",{20}],(* facility_name[20] *) 

Table["Integer16",{4}],(*num.com/_planes,num_frames,num_gates,num_bed _pos*) 

Table["Real32",{1}],(* init_bed _position *) 
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Table["Real32",{15}],(* bed_position[15] *) 

Table["Real32",{1}],(* plane_separation *) 

Table["Integer16",{3}],(* lwr_sctr _thres,lwr_true _thres,upr_true _thres*) 

Table["Character8",{10}],(* user_process _code[10] *) 

Table["Integer16",{1}],(* acquisition_mode *) 

Table["Real32",{2}],(*bin_size,branching_fraction *) 

Table["Integer32",{1}],(* dose_start _time *) 

Table["Real32",{2}],(* dosage,well_counter _corr _factor *) 

Table["Character8",{32}],(* data_units[32] *) 

Table["Integer16",{1}],(* septa_state *) 

Table["Integer16",{6}](* fill_cti[6] *) 

}; 

 

(*Main header labels*) 

mainHeaderLabels={ 

"Magic number:", 

"Original file name:", 

{"Software version, system type, file type:"}, 

"Serial number:", 

"Scan start time:", 

"Isotope name:", 

"Isotope halflife:", 

"Radiopharmaceutical:", 

{"Gantry tilt, gantry rotation, bed elevation, intrinsic tilt:"}, 

{"Wobble speed, transmission source type:"}, 

{"Distance scanned, transaxial FOV:"}, 

{"Angular compression, coincidence sample mode, axial sample mode:"}, 

"Calibration factor:", 

{"Calibration units, calibration units label, compression code:"}, 

"Study type:", 

"Patient ID:", 

"\tName:", 

"\tSex:", 

"\tDexterity:", 

{"\tAge, height, weight:"}, 

"\tBirth date:", 

"Physician name:", 

"Operator name:", 

"Study description:", 

{"Acquisition type, patient orientation:"}, 

"Facility name:", 

{"Number of planes, number of frames, number of gates, number of bed positions:"}, 

"Initial bed position:", 

"Bed offsets:", 

"Plane Separation:", 

{"Lower scatter threshold, lower trues threshold, upper trues threshold:"}, 

"User process code:", 

"Acquisition mode:", 

{"Bin size, branching fraction:"}, 

"Dose start time:", 

{"Dosage, well counter factor:"}, 

"Data units:", 

"Septa state:", 

"Fill cti:" 

}; 

 

(*Sub header*) 

subHeaderFormat={ 

Table["Integer16",{1}],(* data_type*) 
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Table["Integer16",{4}], (*num_dimensions,x_dimension,y_dimension,z_dimensio *) 

Table["Real32",{5}],(* x_offset,y_offset,z_offset,recon_zoom,scale_factor *) 

Table["Integer16",{2}], (* image_min,image_max *) 

Table["Real32",{3}],(* x_pixel _size,y_pixel _size,z_pixel _size *) 

Table["Integer32",{2}], (* frame_duration,frame_start _time *)  

Table["Integer16",{1}], (* filter_code *) 

Table["Real32",{7}],(* x_resolution,y_resolution,z_resolution,num_r 

_elements,num_angles,z_rotation _angle,decay_corr _fctr *) 

Table["Integer16",{4}], (*processing_code,gate_duration,r_wave _offset,num_accepted 

_beats*) 

Table["Real32",{3}], (*filter_cutoff _frequency,filter_resolution,filter_ramp 

_slope*) 

Table["Integer16",{1}],(*filter_order*) 

Table["Real32",{2}], (*filter_scatter _fraction,filter_scatter _slope*) 

Table["Character8",{1}], (*annotation*) 

Table["Real32",{11}],(*mt_ 1_ 1,mt_ 1_ 2,mt_ 1_ 3,mt_ 2_ 1,mt_ 2_ 2,mt_ 2_ 3,mt_ 3_ 

1,mt_ 3_ 2,mt_ 3_ 3,rfilter_cutoff,rfilter_resolution*) 

Table["Integer16",{2}],(*rfilrer_code,rfilter_order*) 

Table["Real32",{3}],(*mt_ 1_ 4,mt_ 2_ 4,mt_ 3_ 4*) 

Table["Integer16",{5}](*scatter_type,recon_type,recon_views,fill_cti,fill_user*) 

}; 

 

(*Sub header labels*) 

subHeaderLabels={ 

"Data type:", 

{"Number of dimensions, x-dimension, y-dimension, z-dimension:"}, 

{"x-offset, y-offset, z-offset, recon_zoom, scale_factor:"}, 

{"image_min, image_max"}, 

{"x_pixel_size, y_pixel_size, z_pixel_size:"}, 

{"frame_duration, frame_start_time:"}, 

"filter_code", 

{"x_resolution, y_resolution, z_resolution, num_r_elements, num_angles, 

z_rotation_angle, decay_corr_fctr:"}, 

{"processing_code, gate_duration, r_wave_offset, num_accepted_beats:"}, 

{"filter_cutoff_frequency, filter_resolution, filter_ramp_slope:"}, 

"filter_order:", 

{"filter_scatter_fraction, filter_scatter_slope:"}, 

"annotation:", 

{"mt_1_1, mt_1_2, mt_1_3, mt_2_1, mt_2_2, mt_2_3, mt_3_1, mt_3_2, mt_3_3, 

rfilter_cutoff, rfilter_resolution"}, 

{"rfilrer_code, rfilter_order"}, 

{"mt_1_4, mt_2_4, mt_3_4"}, 

{"scatter_type, recon_type, recon_views, fill_cti, fill_user"} 

}; 

(*-------------------------------------------------------------------------------*) 

(*FUNCTIONS*) 

(*-------------------------------------------------------------------------------*) 

procHeaderEntry[entry_,format_]:=Block[{res,len=Length@entry}, (*joins the 

information coded as Character*) 

If[len>1, 

If[format[[1]]=="Character8",res=StringJoin@entry,res=entry], 

res=entry]; 

res 

] 

(*-------------------------------------------------------------------------------*) 

(*Function that reads the main header information*) 

loadMainHeader[filename_]:=Block[{header,rawheader=BinaryRead[filename,#, 

ByteOrdering->-$ByteOrdering]&/@mainHeaderFormat}, 

Close[filename];  
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header=MapThread[procHeaderEntry,{rawheader,mainHeaderFormat}]; 

header 

] 

(*-------------------------------------------------------------------------------*) 

(*helper function for subheader reading and image loading*) 

Options[helperfunc]={Silent->True}; 

helperfunc[streampos_,filename_,OptionsPattern[]]:=Block[{rawsubheader,datatype,ida

ta,sdata,pdata,imagedimensions,frametimes,filedescriptor,subheader}, 

filedescriptor=OpenRead[filename,BinaryFormat->True]; 

SetStreamPosition[filedescriptor,streampos]; 

rawsubheader=BinaryRead[filedescriptor,#, ByteOrdering->-

$ByteOrdering]&/@subHeaderFormat; 

subheader=MapThread[procHeaderEntry,{rawsubheader,subHeaderFormat}]; 

frametimes=subheader[[6]]; 

imagedimensions=subheader[[2,2;;4]]; 

If[OptionValue[Silent]!=True, 

Print[Transpose@{subHeaderLabels[[1;;6]],subheader[[1;;6]]}//TableForm]; 

Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

]; 

Which[subheader[[1,1]]==5,datatype="Real32",subheader[[1,1]]==6,datatype="Integer16

"]; 

SetStreamPosition[filedescriptor,streampos+512]; 

idata=BinaryReadList[filedescriptor,datatype,Times@@imagedimensions, ByteOrdering->-

$ByteOrdering]; 

sdata=idata*subheader[[3,5]]; 

pdata=Partition[Partition[sdata,subheader[[2,2]]],subheader[[2,3]]];(*Partitioned 

data*) 

Close[filedescriptor]; 

Return[{frametimes,imagedimensions,pdata}]; 

] 

(*-------------------------------------------------------------------------------*) 

(*Function to read the subheaders and load the data*) 

loadImg[filename_,OptionsPattern[]]:= 

Block[{nFrames,rawdata,records,data,pdata,rawheader,mainheader,times,positions}, 

rawheader=BinaryRead[filename,#, ByteOrdering->-$ByteOrdering]&/@mainHeaderFormat; 

mainheader=MapThread[procHeaderEntry,{rawheader,mainHeaderFormat}]; 

If[OptionValue[Silent]!=True, 

Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

Print["MAIN HEADER"]; 

Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

Print[Transpose@{mainHeaderLabels,mainheader}//TableForm]; 

]; 

(*Directory reading:*) 

nFrames=BinaryRead[filename,{"Integer32","Integer32","Integer32","Integer32"}, 

ByteOrdering->-$ByteOrdering]; 

rawdata=BinaryRead[filename,Table[Table["Integer32",{4}],{31}], ByteOrdering->-

$ByteOrdering]; 

records=rawdata[[1;;nFrames[[4]],{2,3}]]-1; (*selecting the list of first and last 

records*) 

If[OptionValue[Silent]!=True, 

Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

Print["DIRECTORY"]; 

Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

Print["Number of Matrices:",nFrames[[4]]]; 
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Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

Print["First // Last records"]; 

Print[TableForm[records]//OutputForm]; 

Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

Print["SUBHEADERS"]; 

Print["----------------------------------------------------------------------------

-------------------------------------------------------"]; 

]; 

positions=Table[records[[i,1]]*512,{i,nFrames[[4]]}]; 

If[OptionValue[Silent]==True, 

data=helperfunc[#,filename,Silent->True]&/@positions;, 

data=helperfunc[#,filename,Silent->False]&/@positions; 

]; 

If[OptionValue[Silent]!=True, 

Print["Image loaded."]; 

]; 

Close[filename]; 

Return[{data[[All,{1,2}]],data[[All,3]]}]; 

] 

End[] (* End of Private content*) 

EndPackage[] 

 

The image volume is loaded to Mathematica by calling the loadImg function. Selecting True 

as an option in Silent will not print out the header and subheaders information. Both image data and 

time frame information, namely frame duration and frame start time, are loaded altogether. Time data is 

in milliseconds. The following code is an example of how the images are loaded into Mathematica for 

computation: 

 
ecat7LG131=loadImg["filename.v",Silent->True]; 

timeLG131=(ecat7LG131[[1,All,1,2]]+ecat7LG131[[1,All,1,1]]/2)/1000; 

imageLG131=ecat7LG131[[2]];  
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Appendix II - Source code for segmentation and STV fitting 
 

The program used in the tumour segmentation procedure and the functions for STV fitting are 

presented below. To create the mask, the sum of the image along time frames must be calculated. Then, 

to facilitate computation, a cubic image volume containing the tumour is manually selected. The mask 

is extracted from this selected volume. Here, the procedure for one dataset is shown. It is important to 

note that this program was written with Mathematica 10, and some functions that are not available in 

older Mathematica versions were used.  
 

fr=Array[#&,16]; 

 

timageLG131=Total[#,{1}]/Length[#]&@imageLG131; (*sum image*) 

 

maxszone=Max@Flatten@timageLG131[[52;;84,95;;140,123;;160]]; 

mask=Binarize[Image3D[timageLG131[[52;;84,95;;140,123;;160]]],4.8]; 

mcomp=MorphologicalComponents/@mask; 

 

(*temporary mask*) 

tmask=ImageData[Sign/@mcomp]; 

(*final mask*) 

tmask131=ImageData@Image3D[GeodesicOpening[tmask,5]];  

 

(*average uptake in tumour area*) 

meanLG131=Mean[DeleteCases[Flatten[imageLG131[[#,52;;84,95;;140,123;;160]]*tmask131

],N[0]]]&/@fr  

 

The function below performs the nonlinear regression fit using the exponentially damped linear 

model with square-root time dependence. The first 2 minutes of acquisition, which correspond to the 

first 2 time frames, are discarded. The gradient descent optimization algorithm included in Mathematica 

NonlinearModelFit function is used to estimate the parameters. 

 
fitsqdropup[data_,tf_]:= 

   Block[{result,ag=N@Mean@data,fd=Drop[{tf,data}T,2],model}, 

 model=NonlinearModelFit[fd,A Sqrt[𝑡] Exp[-𝜅 Sqrt[t]],{{A,ag},{ 𝜅,0.0006}},t, 
  VarianceEstimatorFunction->Automatic,Method->"Gradient"]; 

 

 result={{A, 𝜅}/.model["BestFitParameters"],model["ParameterErrors"], 
  model["RSquared"]}; 

 

   Print@Show[ListPlot[fd,PlotRange->{{0,3200},{0,12}}, 

 PlotLabel->{{"A"," 𝜅"}/.model["BestFitParameters"]},PlotMarkers->{●}, 
 PlotRange->Automatic,AxesLabel->{"Time (s)","Uptake (kBq/cc)"}, 

 Frame->True,FrameLabel->{"Time (s)","Uptake (kBq/cc)"}, 

 GridLines->Automatic,LabelStyle->Directive[14]], 

 Plot[model["BestFit"],{t,tf[[3]],tf[[-1]]},PlotPoints->500,PlotRange->All, 

 PlotStyle->{Thick,Red},Frame->True,ImageSize->400]]; 

result]  

 

(*comand to perform the fit:*) 

fit131=fitsqdropup[meanLG131,timeLG131]; 

 

The function below performs the linear regression fit. The first 5 minutes of acquisition, which 

correspond to the first 5 time frames, are discarded. 
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fitlineardrop[data_,tf_]:= 

   Block[{result,ag=N@Mean@data,fd=Drop[{tf,data}T],5],model}, 

 model=LinearModelFit[fd,x,x,VarianceEstimatorFunction->Automatic]; 

 

 result={model["BestFitParameters"],model["ParameterErrors"], 

  model["RSquared"]}; 

 

 Print@Show[ListPlot[fd,PlotRange->{{0,3200},{0,12}}, 

    PlotLabel->{model["BestFitParameters"]},PlotMarkers->{●}, 
    PlotRange->Automatic,Frame->True, 

    FrameLabel->{"Time (s)","Uptake (kBq/cc)"},GridLines->Automatic, 

    LabelStyle->Directive[14]], 

    Plot[model["BestFit"],{x,tf[[6]],tf[[-1]]},PlotStyle->{Thick,Red}, 

    ImageSize->800]]; 

result]  

 

fit131lin=fitlineardrop[meanLG131,timeLG131]   
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Appendix III - Source code for calculating parametric images  
 

The functions used to calculate the parametric images are presented below. The first, 

fitdropimg, is used to calculate the parametric images of the small, manually selected volumes 

containing the tumour. The model featured in the function below is the simple exponentially damped 

linear model. The functions that apply the fitting with the other models are identical to this one, with 

just the model expression changing. The same applies to how the function is called, and how it runs over 

all the voxels in the selected volume: the procedure is identical for all de nonlinear regression models, 

and for all the images. The only difference regarding the images is the coordinates of the volume selected 

for fitting. It is important to note that this program was written with Mathematica 7, and some functions 

that are not available in newer Mathematica versions were used.  

 
fitdropimg[data_,tf_]:= 

  Block[{result,ag=N@Mean@data,fd=Drop[{tf,data}T,2],model}, 

   model=NonlinearModelFit[fd,Abs[A] t k Exp[-k t],{{A,ag},{k,0.0006}}, 

    t,VarianceEstimatorFunction->Automatic]; 

   result={{A,k}/.model["BestFitParameters"],model["ParameterErrors"], 

    model["RSquared"]}; 

result] 

 
fitLG131img=Map[fitdropimg[#,timeLG131]&, 

  Transpose[imageLG131[[All,52;;84,95;;140,123;;160]],{4,1,2,3}],{3}]; 

 

The procedure for calculating whole-head parametric images is more complex. First, it requires 

extracting the head from the dynamic PET data. The function below allows for head segmentation, thus 

excluding the background from the analysis. 

 
segmentHead2D[image_,t_: 0.02,c_: 10]:= 

   Block[{ss=Total[image,{1}],dims=Dimensions@image,tss,ms,mask,mc, 

 segmentation,includes,fmc},tss=Total[ss,{1}]; 

    ms=Max@Flatten@tss; 

    mask=Binarize[ImageAdjust@Image[tss/ms],0.02]; 

    mc=MorphologicalComponents[mask,CornerNeighbors->True]; 

    segmentation= 

 Take[Select[Sort[Tally@Flatten@mc,#1[[2]]>#2[[2]]&],#[[1]]!=0&],1][[1,1]]; 

    includes=Position[mc,_?(#==segmentation&)]; 

    fmc=Normal@SparseArray[includes->1,Dimensions@mc,0]; 

    Table[fmc,{dims[[2]]}] 

]; 

 

As performing a nonlinear regression model fit on each voxel of the whole head is a very 

demanding task, an auxiliary function was created to distribute the different image slices between 

Mathematica kernels. The goal of this strategy was to decrease computation times. 
 

splitTask[img_]:=Block[{nslices=Take[Dimensions@img,1][[1]],result}, 

   If[EvenQ@nslices,result=Table[{i,i+1},{i,1,nslices,2}], 

    result=Prepend[Table[{i,i+1},{i,4,nslices,2}],{1,3}]]; 

result]; 

 

The two functions below apply the fit to the head volume: 
 

FETKineticNonlinearSingleFit[tac_,mask_,tf_,df_: 5,m_: "Gradient"]:= 

   Block[{aguess,fitdata,kguess,nlm,result=Table[-1,{5}]}, 
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    If[mask==1,aguess=Mean@Drop[tac,df]; 

 fitdata=Drop[Transpose@{tf,tac},df]; 

 kguess=ProductLog[Mean@Take[tac,-3]/aguess]/tf[[-1]]; 

 kguess=0.0001; 

 nlm=NonlinearModelFit[fitdata,A Sqrt[t] Exp[-k Sqrt[t]],{{A,aguess}, 

  {k,kguess}},t,VarianceEstimatorFunction->Automatic,Method->m]; 

 result= 

  Chop@Flatten@{{A,k}/.nlm["BestFitParameters"],nlm["ParameterErrors"], 

    nlm["AdjustedRSquared"]}; 

]; 

result] 

 

FETKineticNonlinearFit[image_,mask_,tf_,df_: 5,m_: "Gradient"]:= 

   Block[{timage=Transpose[image,{4,1,2,3}]},Print@"computing"; 

    MapThread[FETKineticNonlinearSingleFit[#1,#2,tf,df,m]&,{timage,mask},3]] 

 

To further decrease computation times, only a set of z slices was fitted. This required creating a 

new variable (ex: subimg131) containing just the "slices of interest". As with the previous volume 

selection, the location of these areas changed from image to image according to the location of the 

tumour in the brain. 

 
subimg131=ecat7131[[2,All,Range[52,84,1]]]; 

mask131=segmentHead2D[subimg131,0.02,10]; 

ArrayPlot/@Take[mask131,1]; 

splittasks131=splitTask@mask131; 

 

The voxel-wise fit was distributed between 10 kernels. After the procedure, fitting information 

was saved and exported. 
 

LaunchKernels[10] 

DistributeDefinitions[FETKineticNonlinearSingleFit,FETKineticNonlinearFit, 

 splittasks020,subimg020,mask020,time020] 

AbsoluteTiming[ 

 pimage020= 

   Parallelize@ 

    Table[FETKineticNonlinearFit[ 

 subimg020[[All,splittasks020[[i,1]];;splittasks020[[i,2]]]], 

 mask020[[splittasks020[[i,1]];;splittasks020[[i,2]]]],time020,2,"Gradient"], 

    {i,Length@splittasks020}];] 

CloseKernels[] 

 

fitimage131=Flatten[pimage131,1]; 


