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ABSTRACT

M/EEG mechanisms allow determining changes in the brain activity, which is
useful in diagnosing brain disorders such as epilepsy. They consist of measur-
ing the electric potential at the scalp and the magnetic field around the head.
The measurements are related to the underlying brain activity by a linear model
that depends on the lead-field matrix. Localizing the sources, or dipoles, of
M/EEG measurements consists of inverting this linear model. However, the
non-uniqueness of the solution (due to the fundamental law of physics) and
the low number of dipoles make the inverse problem ill-posed. Solving such
problem requires some sort of regularization to reduce the search space. The
literature abounds of methods and techniques to solve this problem, especially
with variational approaches.

This thesis develops Bayesian methods to solve ill-posed inverse problems,
with application to M/EEG. The main idea underlying this work is to constrain
sources to be sparse. This hypothesis is valid in many applications such as cer-
tain types of epilepsy. We develop different hierarchical models to account for
the sparsity of the sources.

Theoretically, enforcing sparsity is equivalent to minimizing a cost function
penalized by an `0 pseudo norm of the solution. However, since the `0 regular-
ization leads to NP-hard problems, the `1 approximation is usually preferred.
Our first contribution consists of combining the two norms in a Bayesian frame-
work, using a Bernoulli-Laplace prior. A Markov chain Monte Carlo (MCMC) al-
gorithm is used to estimate the parameters of the model jointly with the source
location and intensity. Comparing the results, in several scenarios, with those
obtained with sLoreta and the weighted `1 norm regularization shows interest-
ing performance, at the price of a higher computational complexity.

Our Bernoulli-Laplace model solves the source localization problem at one
instant of time. However, it is biophysically well-known that the brain activity
follows spatiotemporal patterns. Exploiting the temporal dimension is there-
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fore interesting to further constrain the problem. Our second contribution
consists of formulating a structured sparsity model to exploit this biophysical
phenomenon. Precisely, a multivariate Bernoulli-Laplacian distribution is pro-
posed as an a priori distribution for the dipole locations. A latent variable is in-
troduced to handle the resulting complex posterior and an original Metropolis-
Hastings sampling algorithm is developed. The results show that the proposed
sampling technique improves significantly the convergence. A comparative
analysis of the results is performed between the proposed model, an `21 mixed
norm regularization and the Multiple Sparse Priors (MSP) algorithm. Various
experiments are conducted with synthetic and real data. Results show that our
model has several advantages including a better recovery of the dipole loca-
tions.

The previous two algorithms consider a fully known lead-field matrix. How-
ever, this is seldom the case in practical applications. Instead, this matrix is
the result of approximation methods that lead to significant uncertainties. Our
third contribution consists of handling the uncertainty of the lead-field ma-
trix. The proposed method consists in expressing this matrix as a function of
the skull conductivity using a polynomial matrix interpolation technique. The
conductivity is considered as the main source of uncertainty of the lead-field
matrix. Our multivariate Bernoulli-Laplacian model is then extended to esti-
mate the skull conductivity jointly with the brain activity. The resulting model
is compared to other methods including the techniques of Vallaghé et al and
Guttierez et al. Our method provides results of better quality without requiring
knowledge of the active dipole positions and is not limited to a single dipole
activation.
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RÉSUMÉ

Les techniques M/EEG permettent de déterminer les changements de l’activité
du cerveau, utiles au diagnostic de pathologies cérébrales, telle que l’épilepsie.
Ces techniques consistent à mesurer les potentiels électriques sur le scalp et le
champ magnétique autour de la tête. Ces mesures sont reliées à l’activité élec-
trique du cerveau par un modèle linéaire dépendant d’une matrice de mélange
liée à un modèle physique.

La localisation des sources, ou dipôles, des mesures M/EEG consiste à in-
verser le modèle physique. Cependant, la non-unicité de la solution (due à la
loi fondamentale de physique) et le faible nombre de dipôles rendent le prob-
lème inverse mal-posé. Sa résolution requiert une forme de régularisation pour
restreindre l’espace de recherche. La littérature compte un nombre important
de travaux traitant de ce problème, notamment avec des approches variation-
nelles.

Cette thèse développe des méthodes Bayésiennes pour résoudre des prob-
lèmes inverses, avec application au traitement des signaux M/EEG. L’idée prin-
cipale sous-jacente à ce travail est de contraindre les sources à être parcimonieuses.
Cette hypothèse est valide dans plusieurs applications, en particulier pour cer-
taines formes d’épilepsie. Nous développons différents modèles Bayésiens hiérar-
chiques pour considérer la parcimonie des sources.

En théorie, contraindre la parcimonie des sources équivaut à minimiser
une fonction de coût pénalisée par la norme `0 de leurs positions. Cependant,
la régularisation `0 générant des problèmes NP-complets, l’approximation de
cette pseudo-norme par la norme `1 est souvent adoptée. Notre première con-
tribution consiste à combiner les deux normes dans un cadre Bayésien, à l’aide
d’une loi a priori Bernoulli-Laplace. Un algorithme Monte Carlo par chaîne
de Markov est utilisé pour estimer conjointement les paramètres du modèle
et les positions et intensités des sources. La comparaison des résultats, selon
plusieurs scénarii, avec ceux obtenus par sLoreta et la régularisation par la
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norme `1 montre des performances intéressantes, mais au détriment d’un coût
de calcul relativement élevé.

Notre modèle Bernoulli-Laplace résout le problème de localisation des sources
pour un instant donné. Cependant, il est admis que l’activité cérébrale a une
certaine structure spatio-temporelle. L’exploitation de la dimension temporelle
est par conséquent intéressante pour contraindre d’avantage le problème. Notre
seconde contribution consiste à formuler un modèle de parcimonie structurée
pour exploiter ce phénomène biophysique. Précisément, une distribution Bernoulli-
Laplacienne multivariée est proposée comme loi a priori pour les dipôles. Une
variable latente est introduite pour traiter la loi a posteriori complexe résul-
tante et un algorithme d’échantillonnage original de type Metropolis-Hastings
est développé. Les résultats montrent que la technique d’échantillonnage pro-
posée améliore significativement la convergence de la méthode MCMC. Une
analyse comparative des résultats a été réalisée entre la méthode proposée,
une régularisation par la norme mixte `21, et l’algorithme MSP (Multiple Sparse
Priors). De nombreuses expérimentations ont été faites avec des données syn-
thétiques et des données réelles. Les résultats montrent que notre méthode a
plusieurs avantages, notamment une meilleure localisation des dipôles.

Nos deux précédents algorithmes considèrent que le modèle physique est
entièrement connu. Cependant, cela est rarement le cas dans les applications
pratiques. Au contraire, la matrice du modèle physique est le résultat de méth-
odes d’approximation qui conduisent à des incertitudes significatives. Notre
troisième contribution consiste à considérer l’incertitude du modèle physique
dans le problème de localisation de sources. La méthode proposée consiste à
exprimer la matrice de mélange du modèle comme une fonction de la conduc-
tivité du crâne, en utilisant une technique d’interpolation polynomiale. La con-
ductivité est considérée comme la source principale de l’incertitude du modèle
physique et elle est estimée à partir des données. La distribution Bernoulli-
Laplacienne multivariée est étendue pour estimer la conductivité conjointe-
ment avec l’activité cérébrale. Le modèle résultant est comparé à d’autres méth-
odes en particulier les techniques de Vallaghé et al. et Guttierez et al. Notre
méthode fournit des résultats de meilleure qualité sans connaissance préalable
de la position des dipôles actifs, et n’est pas limitée à un dipôle unique.
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CHAPTER 1

INTRODUCTION

Contents
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1.1 MOTIVATION

Recent World Health Organization data suggest that neurological disorders, in-
cluding epilepsy, are one of the most important contributors to the global bur-
den of human suffering [1]. M/EEG measurement is one of the main tools used
by specialists to examine epilepsy patients. Other uses of M/EEG include eval-
uation of encephalopaties and focal brain lesions [1].

M/EEG is a powerful non-invasive technique that measures the electric po-
tentials at the scalp and the magnetic fields around the head. These measure-
ments depend upon 1) the underlying brain activity and 2) the geometric com-
position of the head. The recovery of the brain activity from the measurements
is an ill-posed inverse problem. Thus, a regularization is needed to have a nar-
row the search space. This regularization should typically be chosen to con-
strain the solution to have some realistic properties.

In this thesis we propose new Bayesian approaches to solve the M/EEG
source localization problem. Our work is specifically focused on cases where
the brain activity is spatially concentrated, such as in certain forms of epilepsy.
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The main idea underlying the thesis is to develop Baysian sparse models for the
sources. More precisely, three contributions are presented:

(i) Developing a hierarchical Bayesian model that solves the source localiza-
tion problem for one instant of time by promoting sparsity using Bernoulli-
Laplacian priors [2].

(ii) Investigating a Bayesian structured sparsity model to exploit the tempo-
ral dimension of the M/EEG measurements [3, 4].

(iii) Developing Metropolis-Hasting sampling scheme that improves signifi-
cantly the speed of the convergence of our MCMC algorithm [5].

(iv) Expanding the model to estimate the skull conductivity jointly with the
brain activity [6].

1.2 ORGANIZATION OF THE MANUSCRIPT

Chapter 2: Medical Context
This chapter provides an introduction to M/EEG, the link between elec-
tric brain activity and the M/EEG measurements and the preprocessing
techniques that are typically used to clean the signal. We then focus on
how these measurements are used in solving the source localization prob-
lem and describe state-of-the-art algorithms that have been developed in
the literature with their advantages and disadvantages.

Chapter 3: Bayesian Sparse M/EEG Source Localization
In this chapter, we present a hierarchical Bayesian model aimed to solv-
ing the source localization problem by promoting sparsity. Ideally the `0

pseudo norm regularization should be used to regularize this problem.
However, due to its intractability, the `0 pseudo norm is usually replaced
by the `1 norm. Our model proposes to combine both of them, result-
ing in `0 and `1 regularizations in a Bayesian framework to pursue sparse
solutions.

Chapter 4: Structured Sparsity Bayesian M/EEG Source Localization
In this chapter, we improve the model of Chapter 3 to take advantage
of the temporal structure of the M/EEG measurements. This is done by
changing the prior associated with the brain activity and computing a
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Bayesian approximation of the M/EEG source localization problem us-
ing an `20 pseudo mixed norm regularization. This type of norm pro-
motes sparsity among different dipoles (via the `0 portion of the norm)
and groups all the time samples of the same dipole together, forcing them
all to be either jointly active or inactive (with the `2 norm portion).

Chapter 5: Myopic Skull Conductivity Estimation
When working with real data, certain parameters needed to calculate the
leadfield matrix are not always known. Out of these, the skull conductiv-
ity stands out since it varies significantly among subjects and can affect
the results of the brain activity reconstruction significantly. In this chap-
ter we generalize the model to estimate the skull conductivity jointly with
the brain activity. This is done by approximating the dependency of the
operator with respect to the skull conductivity with a polynomial matrix.

Chapter 6: Conclusion and Future Work
This chapter presents some conclusions based on our work and some
ideas that should be pursued in the near future related to it.

Appendix A: Conditional probability distributions derivations
This appendix shows the algebraic derivations of the conditional prob-
ability distributions associated with the Bayesian models introduced in
Chapters 4 and 5.
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vol. 144, pp. 142–152, jan. 2017.

(iii) F. Costa, H. Batatia, T. Oberlin, and J.-Y. Tourneret, “Skull Conductivity
Estimation for EEG Reconstruction,” IEEE Signal Process. Lett., to be pub-
lished.
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CHAPTER 2

MEDICAL CONTEXT

Contents
2.1 M/EEG measurements . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Leadfield matrix . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Methods with known leadfield matrix . . . . . . . . . . . 23

2.3.3 Methods with unknown leadfield matrix . . . . . . . . . 25

2.3.4 M/EEG Source Localization . . . . . . . . . . . . . . . . . 26

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 M/EEG MEASUREMENTS

In the past decades, several non-invasive techniques for measuring brain ac-
tivity have been developed. Among them, M/EEG has the noticeable advan-
tage of being able to track brain activity with a temporal resolution in the order
of the milliseconds. This makes it an invaluable tool in a variety of medical
applications including the diagnosis of epilepsy, sleeping disorders, coma, en-
cephalopathies, and brain death [7, 8].

M/EEG is a combination between EEG and MEG. EEG consists in record-
ing the electrical voltage, typically in the order of µV, measured by electrodes
placed over the scalp (shown in Fig. 2.1a). On the other side, MEG consists
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(a) EEG electrodes. (b) MEG magnetometers.

Figure 2.1: Typical sensors setups for EEG and MEG measurements.

in recording the magnetic fields using very sensitive magnetometers placed
around the head (shown in Fig. 2.1b). Both the electrical voltage measured
by EEG and the magnetic fields measured by MEG are generated by the brain
activity of the subject that can be modeled by currents [9].

2.2 PREPROCESSING

The measured M/EEG signal is typically highpass filtered at approximately 0.5
Hz to remove very low frequency interference (such as breathing). A lowpass
filter is also applied to eliminate measurement noise higher than 50 – 70 Hz
approximately. Unfortunately, the measured M/EEG signal can also be con-
taminated by artifacts that are not related with the brain activity of interest and
cannot be filtered out as easily [10]. The most important artifact source is the
power-line interference at 50 Hz (or 60 Hz). The easiest way to deal with this in-
terference is to just discard measurements in which the artifact noise is higher
than a certain threshold. There are also other techniques to deal with power-
line noise such as physical solutions [10, 11] and adaptive noise cancelling tech-
niques [12, 13].

In addition to power-line noise, M/EEG measurements can also be con-
taminated by other signals that originate from the patient but are not related
to brain activity, such as eye movement, muscle noise and heart signal. To
compensate for eye movement artifacts an additional EEG electrode is typi-
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cally placed in the nose in order to obtain measurements that are used to iden-
tify eye movement artifacts [14]. ECG artifacts are produced by electrical heart
activity. Due to its high amplitude, this activity can be measured by placing
electrodes in any non-cephalic part of the body. Cardiac artifacts can be sup-
pressed by recording an ECG of the heart activity. In addition to algorithms
aimed to reduce measurement artifacts, other techniques can also be applied
in the pre-processing stage to improve the source localization such as tensor-
based preprocessing [15–17].

Once the M/EEG measurements have been preprocessed, they can be used
to solve the source localization problem.

2.3 SOURCE LOCALIZATION

The source localization problem consists in using the cleaned M/EEG measure-
ments to determine the electrical activity of the subject’s brain. The relation-
ship between electric brain activity and M/EEG measurements is represented
by the leadfield matrix (also called head operator). The leadfield matrix de-
pends on the shape and composition of the subject’s head and will be explained
in what follows.

2.3.1 LEADFIELD MATRIX

Several head models with varying precision and complexity have been used
throughout the years, being mainly divided in two categories (1) the shell head
models and (2) the realistic head models [18] that are displayed in Fig. 2.2. The
former model represents the human head using a fixed number of concentric
spheres (typically 3 or 4). Each sphere corresponds to the interface between
two different tissues of the human head considered to be uniform with con-
stant conductivities [19]. In the three-shell head model, the skull, cerebrospinal
fluid and brain tissues are considered whereas the four-shell model adds an ad-
ditional outer-most sphere to model the head tissue. In order to calculate the
head operator with the shell models it is necessary to set different parameters:
(1) the radius of the spheres, (2) the conductivity of each tissue, (3) the amount
and locations of the dipoles inside the brain and (4) the amount and locations
of the electrodes in the scalp. On the other hand, the realistic head models are
typically computed from the MRI of the patient in order to better represent the
distribution of the different tissues inside the human head. To perform this
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Figure 2.2: Shell and realistic brain model representations.

calculation it is possible to use several methods [18] including the boundary el-
ement method (BEM) [20], the finite element method (FEM) [21] and the finite
difference method (FDM) [22]. However, in order to be able to compute a head
model operator from the MRI it is still necessary to set several parameters in-
cluding (1) the conductivity of each tissue, (2) the amount and locations of the
dipoles inside the brain and (3) the amount and locations of the electrodes in
the scalp.

To ensure the quality of the activity estimation, the electrode positions and
tissue conductivities should be set as close as possible to their real values. Most
of the techniques developed for M/EEG source localization assume that these
parameters are known in advance whereas a few consider that there can also
be uncertainty in some of them. In the following we will first consider the case
that assumes that the operator parameters are perfectly known in advance.

2.3.2 METHODS WITH KNOWN LEADFIELD MATRIX

The methods that have been developed to solve the M/EEG source localization
problem can be classified in two groups: (i) the dipole-fitting models that rep-
resent the brain activity as a small number of dipoles with unknown positions;
and (ii) the distributed-source models that represent it as a large number of
dipoles at fixed positions.
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The dipole-fitting models [23, 24] assume that the brain activity is concen-
trated in a small-number of point-like sources and estimate the location, am-
plitude and orientation of a few dipoles to explain the measured data. A par-
ticularity of these models is that they lead to solutions that can vary extremely
with the initial guess about the number of dipoles, their locations and their ori-
entations because of the existence of many local minima in the optimized cost
function [25]. To solve this problem, the MUSIC algorithm [26] and its vari-
ants R-MUSIC [27], RAP-MUSIC [28] and FINES [29] were developed. Another
recent dipole-fitting model whose parameters are estimated using sequential
Monte Carlo [30] formulates the M/EEG source localization as a semi-linear
problem due to the measurements having a linear dependency with respect to
the dipole amplitudes and a non-linear one with respect to the positions. If few
and clustered sources are present in the underlying brain activity, the dipole-
fitting algorithms generally yield good results [31, 32]. However, the perfor-
mance of these algorithms can be altered in the case of multiple spatially ex-
tended sources [25]. An alternative use of dipole-fitting models is as a way to
find an initial iteration point for distributed-source methods [33].

On the other hand, the distributed-source methods model the brain activity
as the result of a large number of discrete dipoles with fixed positions and try
to estimate their amplitudes and orientations [25]. Since the amount of dipoles
used in the brain model is typically much larger than the amount of measure-
ments, the inverse problem is ill-posed in the sense that there is an infinite
amount of brain activities that can justify the measurements [25]. A regular-
ization is thus needed in order to incorporate additional information to solve
this inverse problem. The kind of regularization to use should be chosen to
promote realistic properties of the solution. For instance, one of the most sim-
ple regularizations consists of penalizing the `2 norm of the solution using the
minimum norm estimation algorithm [34] or its variants based on the weighted
minimum norm: Loreta [35] and sLoreta [36]. However, these methods have
been shown to overestimate the size of the active area if the brain activity is
focused [25], which is believed to be the case in a number of medical applica-
tions. A better way to estimate focal brain activity is to promote sparsity, by
applying an `0 pseudo norm regularization [37]. Unfortunately, this procedure
is known to be intractable in an optimization framework. As a consequence,
the `0 pseudo norm is usually approximated by the `1 norm via convex relax-
ation [38], in spite of the fact that these two approaches do not always provide
the same solution [37].

All the distributed-source methods presented so far consider each time in-
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dependently. However, to improve source localization, it is possible to make
use of the temporal structure of the data by promoting structured sparsity, which
is known to yield better results than standard sparsity when applied to strongly
group sparse signals [39]. Structured sparsity has been shown to improve re-
sults in several applications including audio restoration [40], image analysis
[41] and machine learning [42]. One way of applying structured sparsity in
M/EEG source localization is to use mixed-norms regularization such as the
`21 mixed norm [43] (also referred to as group-lasso).

In addition to optimization techniques, several approaches have tried to
model the time evolution of the dipole activity and estimate it using either
Kalman filtering [44, 45] or particle filters [46–48]. Several Bayesian methods
have been used as well, both for dipole-fitting models [49, 50] and distributed
source models [51, 52]. In [51], the multiple sparse priors (MSP) approach
was developed, which parcellates the brain in different pre-defined regions and
promotes all the dipoles in each region to be active or inactive jointly. Doing
this the brain activity is encouraged to extend over an area instead of being fo-
cused in point-like sources. Conversely, we are mainly interested in estimating
point-like focal source activity which has been proved to be relevant in clinical
applications [53]. In order to do this, we will consider each dipole separately
instead of grouping them together. Note that this approach avoids the need of
choosing a criterion for brain parcellization as required in the MSP method.

2.3.3 METHODS WITH UNKNOWN LEADFIELD MATRIX

In a more general case, we can consider that some of the parameters needed to
calculate the operator are not perfectly known. Several authors have analyzed
the influence of having errors in these parameters in the estimation of brain
activity. Minor errors in the electrode positions have been shown not to affect
significantly the results [54] whereas there is a much higher sensibility to varia-
tions in the tissue conductivities, making their values critical [55–58]. The con-
ductivities of the human head tissue, cerebrospinal fluid and brain have well
known values that are accepted in the literature [55]. However, there has been
some controversy regarding the conductivity of the human skull [18]. The ratio
between scalp and skull conductivities was initially reported to be 80 [59] but
since then other authors have published values as low as 15 [60]. The value of
the human skull conductivity is also known to vary significantly across different
subjects [18, 61]. Because of this, it remains of interest to develop methods that
estimate the skull conductivity to improve the quality of the brain activity re-
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construction. This can be done using techniques such as electrical impedance
tomography (EIT) [61], using intracranial electrodes [62] or measuring it di-
rectly during surgery [60]. However it is also possible to estimate it directly from
the M/EEG measurements.

Several methods have been proposed to estimate the conductivity of the
skull and the brain activity jointly, albeit requiring very restrictive conditions
to yield good results. For instance, some methods require having a very good
a-priori knowledge about the active dipole positions [63, 64], others assume
there is only one dipole active [65] and others limit the estimation of the skull
conductivity to a few discrete values [66, 67].

2.3.4 M/EEG SOURCE LOCALIZATION

In the most general case, M/EEG source localization can be formulated as an
inverse problem that consists in estimating the brain activity of a patient from
M/EEG measurements taken from M sensors during T time samples. In a dis-
tributed source model, the brain activity is represented by a finite number of
dipoles located at fixed positions in the brain cortex. The M/EEG measurement
matrix Y ∈RM×T can be written

Y =H(ρ)X +E [2.1]

where X ∈ RN×T contains the dipole amplitudes, H(ρ) ∈ RM×N represents the
head operator (usually called “leadfield matrix”) that depends on the skull con-
ductivity ρ and E is the measurement noise.

If the value of ρ is known in advance then we have the common M/EEG
source localization problem, which consists in estimating the matrix X from
the known operator H(ρ) and the measurements Y . This problem will be con-
sidered in Chapters 3 and 4. If the skull conductivity ρ is not known in advance
then it can be estimated jointly with X , resulting in a myope inverse problem
considered in Chapter 5.

2.4 CONCLUSION

This chapter presented a brief illustration of the M/EEG principles and the dif-
ferent information that can be extracted from M/EEG measurements using sig-
nal processing techniques. Among them, the source localization problem was
analyzed in more detail, summarizing some state-of-the-art algorithms that are
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currently being used to tackle the problem. In Chapter 3 we will introduce a
distributed-source method that combines `0 and `1 regularizations to promote
sparsity. This results in a model that solves the inverse problem considering
each time sample independently. The initial model is later improved in Chap-
ter 4 to promote structured sparsity using an `20 mixed norm regularization in
Chapter 4. This model shows improved results since it takes advantage of the
temporal structure of the M/EEG measurements. Finally, uncertainty in the
leadfield matrix is considered. Precisely, this matrix is expressed as a function
of the skull conductivity ρ, which is the most important source of uncertainty.
The structured sparsity model is extended in Chapter 5 to estimate jointly the
brain activity and the skull conductivity.
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3.1 INTRODUCTION

When using a distributed-source model to solve the M/EEG source localization
problem, it is necessary to apply a regularization in order to have a unique so-
lution. In certain medical conditions, such as certain types of epilepsy or focal
lesions, brain activity is believed to be focalized in a small brain region [8], so
it makes sense to choose a regularization that promotes sparsity. This should
be done by applying an `0 pseudo norm regularization [37]. However, due to its
intractability, it is typically approximated to an `1 norm despite the fact that the
results of both regularizations is not always the same [37]. We propose to com-
bine both `0 and `1 regularizations in a Bayesian framework to pursue sparse
solutions.

3.2 PROPOSED BAYESIAN MODEL

This chapter is devoted to the presentation of a new Bayesian model for M/EEG
source localization. The model is described in Section 3.2. Section 3.3 studies
a hybrid Gibbs sampler that will be used to generate samples asymptotically
distributed according to the posterior of the model introduced in Section 3.2.
Simulation results obtained with synthetic and real M/EEG data are presented
in Section 3.4.

3.2.1 LIKELIHOOD

It is very classical in M/EEG analysis to consider an additive white Gaussian
noise whose variance will be denoted as σ2

n [25]. When this assumption does
not hold, it is always possible to estimate the noise covariance matrix from the
data and to whiten the data before applying the algorithm [68]. The Gaussian
noise assumption for the noise samples leads to the following probability den-
sity function (pdf)

f (Y |X ,σ2
n) =

T∏
t=1

N
(
yt

∣∣∣Hxt ,σ2
n IM

)
[3.1]

where Y ∈ RM×T contains the M/EEG measurements, X ∈ RN×T the dipole
amplitudes and H ∈ RM×N represents the head operator (usually called “lead-
field matrix”). mt is the t th column of matrix M and IM is the identity matrix
of size M .
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3.2.2 PRIOR DISTRIBUTIONS

The unknown parameter vector associated with the likelihood [3.1] isθ = {X ,σ2
n}.

In order to perform Bayesian inference, we assign priors to these parameters as
follows.

3.2.2.1 PRIOR FOR THE DIPOLE AMPLITUDES

As stated in Section 3.1, we want to build a regularization combining an `0

pseudo norm with an `1 norm of the M/EEG source localization solution. It
can be easily shown that using a Laplace prior is the Bayesian equivalent of an
`1 norm regularization whereas a Bernoulli prior can be associated with the `0

pseudo-norm. As a consequence, we propose to use a Bernoulli-Laplace prior.
The combination of the two norms allows the non zero elements to be localized
(via the Bernoulli part of the prior) and their amplitudes to be estimated (with
the Laplace distribution). Note that the Laplace distribution is able to estimate
both small and high amplitudes due to its large value around zero and its fat
tails. The corresponding prior for the i j th element of X is

f (xi j |ω,λ) = (1−ω)δ(xi j )+ ω

2λ
exp

(
−|xi j |

λ

)
[3.2]

where δ(.) is the Dirac delta function, λ is the parameter of the Laplace distri-
bution, and ω the weight balancing the effects of the Dirac delta function and
the Laplace distribution. Assuming the random variables xi j are a priori inde-
pendent, the prior distribution of X can be written

f (X |ω,λ) =
T∏

j=1

N∏
i=1

f (xi j |ω,λ). [3.3]

3.2.2.2 PRIOR FOR THE NOISE VARIANCE

A non-informative Jeffrey’s prior is assigned to the noise variance

f (σ2
n) ∝ 1

σ2
n

1R+(σ2
n) [3.4]

where 1R+(x) is the indicator function onR+. This prior is a very classical choice
for a non-informative prior (see, e.g., [69] for motivations).
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3.2.3 HYPERPARAMETER PRIORS

The hyperparameter vector associated with the previous priors is Φ= {ω,λ} as
displayed in the direct acyclic graph of Fig. 3.1. We consider a hierarchical
Bayesian model which allows the hyperparameters to be estimated from the
data. This strategy requires to assign priors to the hyperparameters (referred to
as hyperpriors) that are defined in this section.

Y

X σ2
n

λ ω

Figure 3.1: Directed acyclic graph of the hierarchy used for the Bayesian model.

3.2.3.1 HYPERPRIOR FOR ω

An independent uniform distribution on [0,ωmax] is assigned to the weight ω

ω∼U
(
0,ωmax

)
[3.5]

where ωmax ∈ [0,1] is an upper bound on ω that is fixed in order to ensure a
minimum level of sparsity.1

3.2.3.2 HYPERPRIOR FOR λ

Using similar arguments as for the noise varianceσ2
n , a Jeffrey’s prior is assigned

to λ in order to define the following non-informative prior

f (λ) ∝ 1

λ
1R+(λ). [3.6]

1We have observed that setting ωmax < 1 (instead of ωmax = 1) yields faster convergence of
the sampler studied in Section 3.3. ωmax = 0.5 was set by cross-validation.
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3.2.4 POSTERIOR DISTRIBUTION

Taking into account the likelihood and priors introduced above, the joint pos-
terior distribution of the model used for M/EEG source localization can be ex-
pressed using the following hierarchical structure

f (θ,Φ|Y ) ∝ f (Y |θ) f (θ|Φ) f (Φ) [3.7]

where {θ,Φ} is the vector containing the model parameters and hyperparam-
eters. Because of the complexity of this posterior distribution, the Bayesian
estimators of {θ,Φ} cannot be computed with simple closed-form expressions.
Section 3.3 studies an MCMC method that can be used to sample the joint pos-
terior distribution [3.7] and build Bayesian estimators of the unknown model
parameters using the generated samples.

3.3 GIBBS SAMPLER

This section considers a Gibbs sampler [69] which generates samples itera-
tively from the conditional distributions of [3.7], i.e., from f (σ2

n |Y ,X), f (λ|X),
f (ω|X) and f (xi j |Y ,X−i j ,ω,λ,σ2

n) where M−i j denotes the matrix M whose
i j th element has been replaced by zero. The next sections explain how to sam-
ple from the conditional distributions of the unknown parameters and hyper-
parameters associated with the posterior of interest [3.7]. The resulting algo-
rithm is also summarized in Algorithm 3.1.

Algorithm 3.1 Gibbs sampler.

Initialize X with the sLoreta solution
repeat

Sample σ2
n according to f (σ2

n |X ,Y ).
Sample λ according to f (λ|X).
Sample ω according to f (ω|X).
for j = 1 to T do

for i = 1 to M do
Sample xi j according to f (xi j |Y ,X−i j ,ω,λ,σ2

n).
end for

end for
until convergence
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3.3.1 CONDITIONAL DISTRIBUTIONS

3.3.1.1 CONDITIONAL DISTRIBUTION OF σ2
n

Using [3.7], it is straightforward to derive the conditional posterior distribution
of σ2

n which is the following inverse gamma distribution

σ2
n |X ,Y ∼IG

(
σ2

n

∣∣∣M

2
,
||Y −HX ||2

2

)
[3.8]

where ||.|| represents the euclidean norm.

3.3.1.2 CONDITIONAL DISTRIBUTION OF λ

By using f (X |ω,λ) and the prior distribution of λ, it is easy to derive the con-
ditional distribution of λ which is also an inverse gamma distribution

λ|X ∼IG
(
λ | ||X ||0, ||X ||1

)
[3.9]

where ||.||1 is the `1 norm and ||.||0 the `0 norm.

3.3.1.3 CONDITIONAL DISTRIBUTION OF ω

Using f (X |ω,λ) and the prior of ω it can be shown that the conditional distri-
bution of ω is a truncated Beta distribution defined on the interval [0,ωmax]

ω|X ∼Be[0,ωmax](1+||X ||0,1+M −||X ||0). [3.10]

3.3.1.4 CONDITIONAL DISTRIBUTION OF xi j

Using the likelihood and the prior distribution of X , the conditional distribu-
tion of each signal element xi j can be expressed as follows

f (xi j |Y ,X−i j ,ω,λ,σ2
n , zi j ) =


δ(xi j ) if zi j = 0
N+(µi j ,+,σ2

i ) if zi j = 1
N−(µi j ,−,σ2

i ) if zi j =−1
[3.11]

where N+ and N− denote the truncated Gaussian distributions on R+ and R−,
respectively. The variable zi j is a discrete random variable that takes value 0
with probability ω1,i j , value 1 with probability ω2,i j and -1 with probability
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ω3,i j . More precisely, defining vi j = y j −Hx
j
−i , the weights (ωl ,i j )1≤l≤3 are

defined as

ωl ,i j =
ul ,i j

3∑
l=1

ul ,i j

[3.12]

where

u1,i j =1−ω

u2,i j = ω

2λ
exp

(
(µ+

i j )2

2σ2
i

)√
2πσ2

i C (µ+
i j ,σ2

i )

u3,i j = ω

2λ
exp

(
(µ−

i j )2

2σ2
i

)√
2πσ2

i C (−µ−
i j ,σ2

i ) [3.13]

and

σ2
i =

σ2
n

||hi ||2

µ+
i j =σ2

i

(
hT

i vi j

σ2
n

− 1

λ

)
µ−

i j =σ2
i

(
hT

i vi j

σ2
n

+ 1

λ

)
C (µ,σ2) =1

2

[
1+erf

(
µp
2σ2

)]
. [3.14]

The truncated Gaussian distributions are sampled according to the algo-
rithm specified in [70].

3.3.2 PARAMETER ESTIMATORS

Using all the generated samples, the potential scale reduction factors (PSRFs)
of all the model parameters and hyperparameters were calculated for each it-
eration. The samples corresponding to iterations where the PSRFs were above
1.2 were discarded since they were considered to be part of the burn-in period
of the sampler, as recommended by [71]. The rest were kept for calculating the
estimators of the model parameters and hyperparameters following



35

Ẑ , argmax
Z̄∈{0,1,−1}N

(
#M (Z̄)

)
[3.15]

p̂ ,
1

#M (Ẑ)

∑
m∈M (Ẑ)

p(m) [3.16]

where #S denotes the cardinal of set S , M (Z̄) is the set of iteration numbers
m for which Z(m) = Z̄ after the burn-in period of the Gibbs sampler and p(m)

is the m-th sample of p ∈ {X , λ, σ2
n , ω}. Thus the estimator Ẑ in [3.15] is the

maximum a posteriori estimator of Ẑ whereas the estimator used for all the
other sampled variables in [3.16] is the minimum mean square error (MMSE)
estimator conditionally to Ẑ.

3.4 EXPERIMENTAL RESULTS

This section reports different experiments conducted to evaluate the perfor-
mance of the proposed M/EEG source localization algorithm for synthetic and
real data. In these experiments, our algorithm was initialized with the sLoreta
solution obtained after estimating the regularization parameter by minimizing
the cross-validation error as recommended in [36]. The upper bound of the
sparsity level was set to ωmax = 0.5, which is much larger than the expected
value of ω. The results obtained with synthetic and real data are reported in
two separate sections.

3.4.1 SYNTHETIC DATA

3.4.1.1 SIMULATION SCENARIO

Synthetic data with few pointwise source activations were generated using a
realistic BEM head model with 19 electrodes placed according to the 10−20 in-
ternational system of electrode placement. Three different kinds of activations
were investigated: (i) single dipole activations, (ii) multiple distant dipole acti-
vations and (iii) multiple close dipole activations. The default subject anatomy
of the Brainstorm software [72] was considered. This model corresponds to
MRI measurements of a 27 year old male using the boundary element model
implemented by the OpenMEEG package [73]. The default brain cortex of this
subject was downsampled to generate a 1003-dipole head model. These dipoles
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are distributed along the cortex surface and have an orientation normal to it,
as discussed in the previous sections. The resulting head model is such that
H ∈R19×1003.
For each of the activations X ∈R1003×1 that are described in what follows, three
independent white Gaussian noise realizations were added to the observed sig-
nal HX , resulting in three sets of measurements Y with an SNR of 20dB. For
each of these three noisy signals Y , four MCMC independent chains were run,
resulting in 12 total simulations for each of the considered activations X . The
`1 and sLoreta methods were applied to the same three different sets of mea-
surements Y resulting in 3 simulations for each activation.

3.4.1.2 PERFORMANCE EVALUATION

To assess the quality of the localization results, the following indicators were
used

• Localization error [25]: The euclidean distance between the maximum
of the estimated activity and the real source location is used to determine
whether the algorithm is able to find the point of highest activity correctly
or not.

• Center-mass localization error [74]: The euclidean distance between the
barycenter of the estimated activity and the real source location allows us
to appreciate if the activity estimated by the algorithm is centered around
the correct point or if it is biased.

• Excitation extension: The spatial extension of the spatial area of the brain
cortex that is estimated to be active was considered in [74]. Since the syn-
thetic data only contains pointwise sources, this criterion should ideally
be equal to zero.

• Transportation cost: This indicator evaluates the performance in a mul-
tiple dipole situation where the activity estimates from different dipoles
may overlap. It is computed as the solution of an optimal mass transport
optimization problem [75] considering the known ground truth to be the
initial mass distribution and the activity estimated by the algorithm to be
the target mass distribution. The activities associated with the ground
truth and the estimated data are first normalized. The total cost of mov-
ing the activity from the non zero elements of the ground truth to the non
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zero elements of the estimated activity is then computed. It is obtained
by finding the weights w j→k that minimize [3.17]∑

j

∑
k

w j→k |rxnz
j
−rx̂nz

k
| [3.17]

where xnz
j denotes a non-zero element of the ground truth, x̂nz

k is a non-
zero element of the estimated activity and rd represents the spatial posi-
tion of dipole d in euclidean coordinates, with the following constraints
for the weights (in order to avoid the trivial zero solution)∑

j
w j→k = x̂nz

k ,
∑
k

w j→k = xnz
j . [3.18]

Note that [3.17] defines a similarity measure between the amount of ac-
tivity in the non-zero elements of the ground truth and the estimated so-
lution. The minimum cost of [3.17] can be obtained using the simplex
method of linear programming. The transportation cost of an estimated
solution is finally defined as the minimum transportation cost calculated
between the estimated solution and the ground truth. Since the activ-
ity has been normalized in the first step, this parameter is measured in
millimeters.

The proposed method is compared to the more traditional weighted `1 norm
[76] and sLoreta. The regularization parameter of sLoreta was computed by
cross-validation using the method recommended in [36]. The weighted`1 norm
was implemented using the alternating direction method of multipliers (ADMM)
with the technique used in [77]. The regularization parameter was chosen so
that ||Y −HX̂ || ≈ ||Y −HX || according to the discrepancy principle [78].

3.4.1.3 SINGLE DIPOLE

The first kind of experiment consisted of a set of ten simulations that have a sin-
gle dipole active referred in the following as single dipole activations #1 through
#10. With these activations, the localization error was found to be 0.00mm for
all the dipoles with the three methods. The other performance parameters are
displayed in Fig. 3.2 showing the good performance of the proposed method
(indicated by PM).

The brain activities detected by the proposed method and the weighted `1

norm solution are illustrated in Fig. 3.3 for a representative simulation. Our al-
gorithm managed to perfectly recover the activity for 9 out of the 10 activations
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Figure 3.2: Simulation results for single dipole experiments. The horizontal axis
indicates the activation number. The error bars show the standard deviation
over 12 Monte Carlo runs.
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(a) Ground truth

(b) Proposed method

(c) Weighted `1 norm regularization

Figure 3.3: Brain activity for one single dipole experiment (activation #5).
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Figure 3.4: Histogram of samples generated by the MCMC method for one of
the single dipole simulations. The estimated mean values and ground truth are
indicated in the figures.
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(with center-mass localization error, extension and transportation cost equal
to 0.00mm) for all simulations. The dipole corresponding to activation #7 was
located precisely for some simulations and with very reduced error in the oth-
ers. The mean transportation cost of the proposed method for activation #7
is 0.7mm. In comparison, sLoreta has an excitation extension that is signifi-
cantly larger (between 41mm and 51mm for the different dipole positions) (as
expected for an `2 norm regularization) and a larger transportation cost (bigger
than 55mm in all cases). The weighted `1 norm regularization provides better
estimations than sLoreta with a mean extension of up to 10mm and transporta-
tion cost of up to 13mm but is still outperformed by the proposed method.

In addition, Fig. 3.4 shows the histograms of the samples ofσ2
n ,ω, λ and the

amplitude of the active dipole xi j for one of the simulations corresponding to
simulation #3 as a representative case. It is shown that the ground truth values
of ω (the proportion of non-zeros 1/1003), σ2

n and xi j are inside the support of
their histograms and are close to their estimated mean values, i.e., close to their
minimum mean square error estimates.

3.4.1.4 MULTIPLE DISTANT DIPOLES

The second kind of experiments evaluates the performance of the proposed
algorithm when several dipoles are activated at the same time in distant space
positions. More precisely, we chose randomly the following sets of dipoles from
the 1003 dipoles present in the head model

• (i) Two pairs of N = 2 simultaneous dipoles spaced more than 100mm
(activations #1 and #2).

• (ii) Two sets of N = 3 simultaneous dipoles spaced more than 100mm
(activations #3 and #4).

The brain activities associated with two representative simulations corre-
sponding to two and three dipoles are illustrated in Figs. 3.5 and 3.6. The ac-
tivation #2 associated with two distant dipoles displayed in Fig. 3.5 is an inter-
esting case for which the weighted `1 norm regularization fails completely to
recover one of the dipoles. The activation #4 displayed in Fig. 3.6 shows that
the proposed method detects an activity more concentrated in the activated
dipoles while the `1 norm regularization provides less-sparse solutions.

Quantitative results in terms of transportation costs are displayed in Fig.
3.7 for the different experiments. The transportation costs obtained with the
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(a) Ground truth

(b) Proposed method

(c) Weighted `1 norm regularization

Figure 3.5: Brain activity for a multiple distant dipole experiment (activation #
2 that has two active dipoles).
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(a) Ground truth

(b) Proposed method

(c) Weighted `1 norm regularization

Figure 3.6: Brain activity for a multiple distant dipole experiment (activation #
3 that has three active dipoles).
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Figure 3.7: Transportation cost for multiple distant dipoles experiments, the
horizontal axis indicates the activation number (1 and 2: two active dipoles, 3
and 4: three active dipoles). The error bars show the standard deviation over 12
Monte Carlo runs.

proposed method are below 3.6mm in all cases and are clearly smaller than
those obtained with the other methods. Indeed, the sLoreta transportation
costs are between 50 and 62mm, and the transportation costs associated with
the weighted `1 norm regularization are between 3.9mm and 13mm, except for
the activation #2 where it fails to recover one of the dipoles as previously stated.

3.4.1.5 MULTIPLE CLOSE DIPOLES

The third kind of experiments evaluates the performance of the proposed al-
gorithm for active dipoles that have close spatial positions. More precisely, we
randomly chose the following sets of dipoles

• (i) Two pairs of dipoles spaced approximately 50 (activations #1 and #2).

• (ii) Two pairs of dipoles spaced approximately 30mm (activations #3 and
#4).

• (iii) Two pairs of dipoles spaced approximately 10mm (activations #5 and
#6).

Figure 3.8 compares the transportation costs obtained with the different
methods. Since it is much harder to distinguish the activity produced by two
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Figure 3.8: Transportation cost for multiple close dipoles experiments. The hor-
izontal axis indicates the activation number (1 and 2: 50mm separation, 3 and
4: 30mm separation, 5 and 6: 10mm separation). The error bars show the stan-
dard deviation over 12 Monte Carlo runs.

close dipoles, the transportation costs associated with the proposed method
and the weighted `1 norm regularization are considerably higher than those
obtained previously. However, the transportation costs obtained with the pro-
posed algorithm are still below those obtained with the two other estimation
strategies. Some interesting cases can be observed in Figs. 3.9 and 3.10. Figure
3.9 corresponds to one case where both algorithms fail to identify two dipoles
and fuse them into a single dipole located in the middle of the two actual loca-
tions. In this particular activation, our algorithm adds considerably less extra
activity than the weighted `1 norm regularization. In the case illustrated in Fig.
3.10, the proposed method correctly identifies two dipoles (but moves one of
them from its original positions) while the weighted `1 norm regularization es-
timates a single dipole located very far from the two excited dipoles.

3.4.2 REAL DATA

Two different sets of real data were considered. The first one consists of an
auditory evoked response while the second one is the evoked response to facial
stimulus. In addition to the weighted `1 norm regularization, we also compared
our results with the MSP algorithm [51] using the default parameters in the SPM
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(a) Ground truth

(b) Proposed method

(c) Weighted `1 norm regularization

Figure 3.9: Brain activity for multiple close dipoles (activation # 4 that has a
30mm separation between dipoles).
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(a) Ground truth

(b) Proposed method

(c) Weighted `1 norm regularization

Figure 3.10: Brain activity for multiple close dipoles (activation # 6 that has a
10mm separation between dipoles).
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software. 2

3.4.2.1 AUDITORY EVOKED RESPONSES

The used data set was extracted from the MNE software [79, 80]. It corresponds
to an evoked response to left-ear auditory pure-tone stimulus using a realistic
BEM head model. The data was acquired using 60 EEG electrodes sampled at
600 samples/s. The samples were low-pass filtered at 40Hz and downsampled
to 150 samples/s. The noise covariance matrix was estimated from 200ms of
data preceding each stimulus and was used to whiten the data. Fifty one epochs
were averaged to generate the measurements Y .

The sources associated with this example are composed of 1844 dipoles
located on the cortex with orientations that are normal to the brain surface.
One channel that had technical artifacts was ignored resulting in an operator
H ∈ R59×1884. We processed the eight time samples corresponding to 80ms ≤
t ≤ 126ms, i.e., associated with the highest activity period in the M/EEG mea-
surements as displayed in Fig. 3.11.

The sum of the estimated brain activities over the 8 time samples obtained
by the proposed method, the weighted `1 norm regularization and the MSP
algorithm are presented in Fig. 3.12. The proposed method consistently de-
tects most of the activity concentrated in both the ipsilateral and contralateral
auditory cortices. The weighted `1 norm regularization detects the activity in
the right cortex in a similar position, but moves the activity detected in the left
cortex to a lower point of the brain that is further away from the auditory cor-
tex. The MSP algorithm finds the activity correctly in the auditory cortices but
spreads it around a region instead of focusing it on a small number of dipoles.
This is due to the fact that both the proposed method and the weighted `1

norm promote sparsity over the dipoles while MSP promotes sparsity over pre-
selected brain regions that depend on the parcellation scheme used.

3.4.2.2 FACE-EVOKED RESPONSES

The data used in this section is one of the sample data sets available in the SPM
software. It was acquired from a face perception study in which the subject had
to judge the symmetry of a mixed set of faces and scrambled faces. Faces were
presented during 600ms with an interval of 3600ms (for more details on the

2The SPM software is freely avaiable at http://www.fil.ion.ucl.ac.uk/spm.
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Figure 3.11: M/EEG measurements for the real data application.
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(a) Proposed method

(b) Weighted `1 norm regularization

(c) MSP algorithm

Figure 3.12: Brain activity for the auditory evoked responses from 80ms to
126ms.
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(a) Proposed method

(b) Weighted `1 norm regularization

(c) MSP algorithm

Figure 3.13: Brain activity for the faced evoked responses for 160ms.
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paradigm see [81]). The acquisition system was a 128-channel ActiveTwo sys-
tem with a sampling frequency equal to 2048 Hz. The data was downsampled
to 200 Hz and, after artifact rejection, the 299 epochs corresponding to non-
scrambled faces were averaged and lowpass filtered at 40Hz. The head model
is based on a T1 MRI scan of the patient downsampled to have 3004 dipoles,
resulting in an operator H ∈R128×3004.

The brain activities detected by the three algorithms for t = 160ms (time
sample with highest brain activity) are presented in Fig. 3.13. The MSP method
locates the activity spread over several brain regions due to its pre-parcellation
of the brain. In particular, it locates activity in the lateral and posterior regions.
In comparison both the weighted `1 norm and the proposed method focus the
activity closer to the fusiform regions of the temporal lobes, areas of the brain
that are speculated to be specialized in facial recognition [82]. Note that the
proposed method provides the most focal solution of the three. It is interesting
to note that the MSP algorithm divides the brain in symmetric parcels in both
hemispheres which very often causes the solution to have a high degree of sym-
metry while the other two methods only rely on the measurements to estimate
the brain activity.

3.4.3 COMPUTATIONAL COST

This section compares the computational cost of the different algorithms (weighted
`1 norm, sLoreta and the proposed method) that were run on a modern Xeon
CPU E3-1240 @ 3.4GHz processor using a Matlab implementation. In the case
of the weighted `1 norm, we used the stopping criterion recommended in [77].
The proposed method was run with four parallel chains (as stated in Section
3.4.1.1) until the potential scale reduction factor (PSRF) of all the generated
samples was below 1.2 as recommended in [71]. The average running times
of each of the methods are presented in Tab. 3.1. As we can see, the weighted
`1 norm is three orders of magnitude slower than sLoreta (taking seconds in-
stead of milliseconds) while the proposed method is three orders of magnitude
slower than the weighted `1 norm. Note that the first two algorithms seem to
have a running time that does not depend on the kind of simulations while
the proposed method is faster for simpler cases and slower for more complex
dipole distributions. Having a higher computational cost is a typical disad-
vantage of MCMC sampling techniques when compared to optimization ap-
proaches. However, it is important to note that our algorithm is able to estimate
its hyperparameters in one run while the other two require to be run several
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Experiment type sLoreta `1 norm Proposed method

Single dipole 3.65×10−3 1.09 651.9
Multiple distant dipole 3.64×10−3 0.84 886.6
Multiple close dipole 3.61×10−3 0.91 1128.0

Table 3.1: Computation costs of the different algorithms (in seconds).

times in order to set their regularization parameters by cross-validation.

3.5 CONCLUSION

In this chapter we presented a Bayesian model for M/EEG source localization
promoting sparsity for the dipole activities via a Bernoulli-Laplace prior. To
compute the Bayesian estimators of this model, we introduced a Markov chain
Monte Carlo method sampling the posterior distribution of interest and es-
timating the model parameters using the generated samples. The resulting
M/EEG source localization strategy was compared to `2 norm (sLoreta) and
weighted`1 norm regularizations for synthetic data and with the multiple sparse
priors (MSP) algorithm for real data, showing promising results in both cases.
More precisely, several experiments with synthetic data were constructed using
single and multiple dipoles, both for close and distant locations. For the single
dipole scenario, the proposed algorithm showed better performance than the
more traditional `2 and `1 norm regularizations in terms of several evaluation
criteria used in the literature. In multiple dipole scenarios, the estimated activ-
ities from different dipoles can overlap, making the classical evaluation crite-
ria difficult to apply. In order to asses the performance in these scenarios, we
proposed a new evaluation criterion denoted as transportation cost defined as
the solution of an optimal mass transportation problem. This criterion showed
that the proposed localization method performed better than the standard `2

norm and weighted `1 norm regularizations. We also considered two sets of
real data consisting of the evoked responses to a left-ear auditory stimulation
and to facial stimulus respectively. In both cases the algorithm showed better
performance than the weighted `1 norm regularization and the MSP method
to estimate brain activity generated by point-like sources.

The following chapter extends the proposed Bayesian model in order to re-
duce its computational cost significantly and to take advantage of the temporal



54

structure of the M/EEG measurements by promoting structured sparsity.
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4.1 INTRODUCTION

The model introduced in the previous chapter is able to reconstruct the brain
activity with better results than the algorithm based on a re-weighted `1 reg-
ularization. However, it does not take advantage of the temporal structure of
the M/EEG measurements. This can be done by promoting structured sparsity
with mixed-norms regularizations such as the `21 mixed norm [43]. This kind
of regularization promotes sparsity among different dipoles (via the `1 portion
of the norm) but groups all the time samples of the same dipole together, forc-
ing them all to be either jointly active or inactive (with the `2 norm portion).
This chapter studies a new model for M/EEG source localization that uses a
Bayesian approximation of the `20 mixed norm regularization. It is expected
to provide better sparsity than `21 (since `0 promotes sparsity better than `1)
since it exploits the temporal structure of the brain activation unlike the model
presented in the previous chapter.

4.2 PROPOSED BAYESIAN MODEL

This chapter presents a hierarchical Bayesian model that estimates the brain
activity with a structured sparsity constraint by using a multivariate Bernoulli
Laplace prior (approximating the weighted `20 mixed norm regularization) [4].
The posterior distribution of this model is too complex to derive closed form
expressions for the conventional Bayesian estimators of its unknown param-
eters. Consequently, a Markov chain Monte Carlo method is investigated to
generate samples asymptotically distributed according to the posterior distri-
bution of interest. In order to avoid the sampler to get stuck around local max-
ima, specific Metropolis-Hastings moves are introduced, allowing new modes
of the posterior to be explored. These moves are based on multiple dipole shifts
(moving active dipoles to neighboring positions) and inter-chain proposals (ex-
changing samples between parallel MCMC chains) that significantly accelerate
the convergence speed of the proposed sampler. These proposals generate can-
didates that are accepted or rejected using a Metropolis-Hastings criterion. The
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method is applied to both synthetic and real data showing promising results
compared to the more traditional `21 mixed norm and the MSP methods.

The Bayesian model proposed to estimate the unknown parameters is de-
fined in Section 4.2. Section 4.3 studies the partially collapsed Gibbs sampler
that will be used to generate samples asymptotically distributed according to
the posterior of interest. The Metropolis-Hastings moves introduced to accel-
erate the convergence of the sampler are presented in Section 4.4. Simulation
results obtained with synthetic and real M/EEG data are reported in Section 4.5.

4.2.1 LIKELIHOOD

As in the previous chapter, we consider an additive white Gaussian noise with a
constant variance σ2

n over the considered time samples [25] which leads to the
same Gaussian likelihood

f (Y |X ,σ2
n) =

T∏
t=1

N
(
yt

∣∣∣Hxt ,σ2
n IM

)
[4.1]

where Y ∈ RM×T contains the M/EEG measurements, X ∈ RN×T the dipole
amplitudes and H ∈ RM×N represents the head operator (usually called “lead-
field matrix”). mt is the t th column of matrix M and IM is the identity matrix
of size M .

4.2.2 PRIOR DISTRIBUTIONS

4.2.2.1 PRIOR FOR THE BRAIN ACTIVITY X

To promote structured sparsity of the source activity, we first consider the weighted
`20 mixed pseudo-norm

||X ||20 = #{i :
p

vi ||xi || 6= 0} [4.2]

where mi is the i th row of M , ||.|| represents the euclidean norm, vi = ||hi || is
a weight introduced to compensate the depth-weighting effect [25, 38] and #S

denotes the cardinal of the set S . Since this prior leads to intractable compu-
tations, we propose to approximate it by a multivariate Laplace Bernoulli prior
for each row of X

f (xi |zi ,λ) ∝
{
δ(xi ) if zi = 0

exp
(
− 1

λ

p
vi ||xi ||

)
if zi = 1

[4.3]
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where δ(.) is the Dirac delta function, λ is the exponential distribution param-
eter and z ∈ {0,1}N is a vector indicating which rows of X are zero (zi = 0 if
the i th row of X is zero) and different from zero (zi = 1 if the i th row of X is
different from zero) . To make the analysis easier it is convenient to define the

hyperparameter a = σ2
n
λ2 which transforms the prior to

f (xi |zi , a,σ2
n) ∝

{
δ(xi ) if zi = 0

exp
(
−

√
vi a
σ2

n
||xi ||

)
if zi = 1

[4.4]

The elements zi are assigned a Bernoulli prior distribution with parameter ω ∈
[0,1]:

f (zi |ω) =B
(
zi |ω

)
[4.5]

Note that the Dirac delta function δ(.) in the prior of xi promotes sparsity while
the multivariate Laplace distribution regulates the amplitudes of the non-zero
rows. The parameter ω tunes the balance between them. Indeed, ω = 0 yields
X = 0 whereas ω = 1 reduces the prior to the Bayesian formulation of the
group-lasso [83]. Unfortunately the prior [4.4] leads to an intractable poste-
rior. It is possible to fix this problem by introducing a latent variable vector
τ2 ∈ (R+)N as proposed in [84]. More precisely, we use the following gamma
and Bernoulli-Gaussian priors for τ2

i and xi

f (τ2
i |a) =G

(
τ2

i

∣∣∣T +1

2
,

vi a

2

)
[4.6]

f (xi |zi ,τ2
i ,σ2

n) =
{
δ(xi ) if zi = 0

N
(
xi

∣∣∣0,σ2
nτ

2
i IT

)
if zi = 1

[4.7]

which can be shown to lead to the desired marginal distribution of xi [4.4] [84].
In addition assuming the rows of τ2, z, and X are a priori independent

leads to the following
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f (τ2|a) =
N∏
i

f (τ2
i |a)

f (z|ω) =
N∏
i

f (zi |ω)

f (X |z,τ2,σ2
n) =

N∏
i

f (xi |zi ,τ2
i ,σ2

n)

4.2.2.2 PRIOR FOR THE NOISE VARIANCE σ2
n

As in our previous chapter, the noise variance is assigned a Jeffrey’s prior

f (σ2
n) ∝ 1

σ2
n

1R+(σ2
n) [4.8]

where 1R+(x) is the indicator function on R+.

4.2.3 HYPERPARAMETER PRIORS

The proposed method allows one to balance the importance between sparsity
of the solution and fidelity to the measurements using two hyperparameters:
1) ω that adjusts the proportion of non-zero rows, and 2) a that controls the
amplitudes of the non-zeros. The corresponding hierarchy of parameters and
hyperparameters is shown in Fig. 4.1. In contrast to the `21 mixed norm our
algorithm does not require to adjust these hyperparameters but is able to es-
timate their values from the data by assigning hyperpriors to them following
a so-called hierarchical Bayesian analysis. This section defines the priors as-
signed to the model hyperparameters.
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Y

X , σ2
n

zτ2

a ω

Figure 4.1: Directed acyclic graph for the proposed Bayesian model.

4.2.3.1 HYPERPRIOR OF a

A conjugate gamma prior is assigned to a

f (a|α,β) =G
(
a
∣∣∣α,β

)
[4.9]

withα=β= 1. These values ofα and β yield a vague hyperprior for a. The con-
jugacy of this hyperprior will make the analysis easier in the sense that the con-
ditional distribution of a required in the Gibbs sampler will also be a gamma
distribution.

4.2.3.2 HYPERPRIOR OF ω

A uniform prior on [0, 1] is used for ω

f (ω) =U
(
ω

∣∣∣0,1
)

[4.10]

reflecting the absence of knowledge for this hyperparameter.1

1In the model presented in Chapter 3, ω had to be limited to ωmax = 0.5 to improve the
convergence of the sampler. In this chapter, due to the introduction of latent variable τ2 and
the Metropolis-Hastings moves (that will be explained in the following) the use of the limit
ωmax < 1 is not necessary (ie: we set ωmax = 1).
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4.2.4 POSTERIOR DISTRIBUTION

Using the previously described priors and hyperpriors, the posterior distribu-
tion of the proposed Bayesian model is

f (Y ,σ2
n ,X ,z, a,τ2,ω) ∝ f (Y |X ,σ2

n) f (X |τ2,z,σ2
n) f (z|ω) f (τ2|a) f (σ2

n) f (a) f (ω)
[4.11]

The following section investigates a partially collapsed Gibbs sampler that is
used to sample according to the posterior distribution [4.11] and to build es-
timators of the unknown model parameters and hyperparameters using these
generated samples.

4.3 PARTIALLY COLLAPSED GIBBS SAMPLER

The posterior distribution [4.11] is intractable and does not allow us to derive
closed-form expressions for the estimators of its parameters and hyperparam-
eters. Thus we propose to draw samples from [4.11] using an MCMC method
and to use them to estimate the brain activity jointly with the model hyperpa-
rameters. More precisely, we investigate a partially collapsed Gibbs sampler
that samples the variables zi and xi jointly in order to exploit the strong cor-
relation between these two variables. The resulting sampling strategy is sum-
marized in Algorithm 4.1 where M−i denotes the matrix M whose i th row has
been replaced by zeros. The corresponding conditional distributions are shown
hereafter and their exact derivation can be found in Appendix A.

4.3.1 CONDITIONAL DISTRIBUTIONS

4.3.1.1 CONDITIONAL DISTRIBUTION OF τ2
i

The conditional distribution of τ2
i is a gamma distribution or a generalized in-

verse Gaussian distribution depending on the value of zi . More precisely

f (τ2
i |xi ,σ2

n , a, zi ) =
 G

(
τ2

i

∣∣∣T+1
2 , vi a

2

)
if zi = 0

GIG (τ2
i

∣∣∣1
2 , vi a, ||xi ||2

σ2
n

)
if zi = 1.

[4.12]
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Algorithm 4.1 Partially Collapsed Gibbs sampler.

Initialize X = 0 and z = 0
Sample a and τ2 from their prior distributions
repeat

Sample σ2
n from f (σ2

n |Y ,X ,τ2,z)
Sample ω from f (ω|z)
for i = 1 to N do

Sample τ2
i from f (τ2

i |xi ,σ2
n , a, zi )

Sample zi from f (zi |Y ,X−i ,σ2
n ,τ2

i ,ω)
Sample xi from f (xi |zi ,Y ,X−i ,σ2

n ,τ2
i )

end for
Sample a from f (a|τ2)

until convergence

4.3.1.2 CONDITIONAL DISTRIBUTION OF xi

The conditional distribution of the i th row of X is

f (xi |zi ,Y ,X−i ,σ2
n ,τ2

i ) =
{
δ(xi ) if zi = 0

N
(
xi

∣∣∣µi ,σ2
i IN

)
if zi = 1

[4.13]

with

µi =
σ2

i (hi )T (Y −HX−i )

σ2
n

,σ2
i =

σ2
nτ

2
i

1+τ2
i (hi )Thi

. [4.14]

4.3.1.3 CONDITIONAL DISTRIBUTION OF zi

The conditional distribution of zi is a Bernoulli distribution

f (zi |Y ,X−i ,σ2
n ,τ2

i ,ω) =B
(
zi

∣∣∣1,
k1

k0 +k1

)
[4.15]

with

k0 = 1−ω,k1 =ω
(σ2

nτ
2
i

σ2
i

)− T
2

exp
( ||µi ||2

2σ2
i

)
. [4.16]
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4.3.1.4 CONDITIONAL DISTRIBUTION OF a

The conditional distribution of a|τ2 is the following gamma distribution

f (a|τ2) =G
(
a
∣∣∣N (T +1)

2
+α,

∑
i [viτ

2
i ]

2
+β

)
. [4.17]

4.3.1.5 CONDITIONAL DISTRIBUTION OF σ2
n

The distribution of σ2
n |Y ,X ,τ2,z is the following inverse gamma distribution

f (σ2
n |Y ,X ,τ2,z) =IG

(
σ2

n

∣∣∣ (M +||z||0)T

2
,

1

2

[
||HX −Y ||2 + ∑

i∈I1

||xi ||2
τ2

i

])
.

[4.18]
where ||.||0 the `0 norm.

4.3.1.6 CONDITIONAL DISTRIBUTION OF ω

Finally, ω|z has the following beta distribution

f (ω|z) =Be
(
ω

∣∣∣1+||z||0,1+N −||z||0
)
. [4.19]
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Figure 4.2: Example of posterior distribution of z with local maxima

4.4 IMPROVING CONVERGENCE

4.4.1 LOCAL MAXIMA

We have observed that the proposed partially collapsed Gibbs sampler may be
stuck around local maxima of the variable z from which it is very difficult to
escape in a reasonable amount of iterations. Fig. 4.2 illustrates via a simple ex-
ample that if the sampler gets to z = {0,1} it requires to go through intermediary
states with very low probability to move to the correct value z = {1,0}. This kind
of situation can occur if the dipoles corresponding to z1 and z2 produce similar
measurements Y when active so that the probability of having either of them
active is much higher than having them both on (or off) at the same time.

4.4.2 MULTIPLE DIPOLE SHIFT PROPOSALS

In order to solve this problem, we introduce a Metropolis-Hastings move, that
consists in changing several elements of z simultaneously (which would allows
us to go from {0,1} to {1,0} in one step in the previous example) after each sam-
pling iteration. The proposal is accepted or rejected within the Gibbs-Sampler
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(a) Ground truth - Axial, coronal and sagittal views respectively

(b) Estimation without proposals - Axial, coronal and sagittal views respectively

(c) Estimation with proposals - Axial, coronal and sagittal views respectively

Figure 4.3: Illustration of the effectiveness of the multiple dipole shift propos-
als.
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using a Metropolis-Hastings criteria which guarantees that the target distribu-
tion is preserved [69].

We have observed that one of the most common ways for the algorithm to
get stuck in local maxima is by failing to estimate the position of the non-zero
elements of z. In other words, the sampling scheme detects a non-zero in a
position that is not correct but is close (in the sense that it produces similar
measurements) to the correct one, which causes the problem described above.

4.4.2.1 SHIFT BASED PROPOSALS

Before describing the proposed move, it is interesting to mention that it was
inspired by an idea developed in [85] to perform a spectral analysis of astro-
physical data obtained after irregular sampling. The authors of [85] proposed to
move a single non-zero element of a binary sequence to a random neighboring
position after each iteration of the MCMC sampler. In the presence of a single
non-zero element, this move is sufficient to escape from a local maximum of
the posterior associated with our M/EEG source localization model. However,
when there are several non-zero elements located at wrong locations, propos-
ing to move each one of them separately may not be sufficient to escape from a
local maximum. For this reason, we have generalized the scheme presented in
[85] by proposing to move a random subset of D estimated non-zeros simulta-
neously to random neighboring positions. According to our experiments (some
of them described in Section 4.5), the simple choice D = 2 provides good results
in most practical cases. Since there is a high correlation between the variables
τ2 and z, it is convenient to update their values jointly. The resulting multi-
ple dipole shift proposal is detailed in Algorithm 4.2. Note that the algorithm
of [85] works with 1-dimensional data so they define the neighborhood of the
element zk as {zk−1, zk+1}. In contrast, we are working with dipoles located in
a 3-dimensional brain so the neighborhood definition is non-trivial and will be
described in the following.

In Fig. 4.3 we can see the effect of introducing multiple dipole shift pro-
posals (with D = 2) in a practical case. The first row of images is the ground
truth (a single dipole activation) while the second row shows the probability of
finding each dipole active with eight MCMC parallel chains without using pro-
posals after 10.000 iterations. As we can see, the activity is in the correct area
but the algorithm is not able to converge to the correct value of z. After intro-
ducing the multiple dipole shift proposals the sampler converges in less than
1.000 iterations as shown in the third row of the figure.
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Algorithm 4.2 Multiple dipole shift proposal.

z̄ = z
repeat D times

Set indold to be the index of a random non-zero of z
Set p= [indold,neighγ(indold)]
Set indnew to be a random element of p
Set z̄indold = 0 and z̄indnew = 1

end
Sample X̄ from f (X̄ |z̄,Y ,σ2

n ,τ2).
Sample τ̄2 from f (τ̄2|X̄ ,σ2

n , a, z̄).

Set {z,τ2} = {z̄, τ̄2} with probability min
(

f (z̄,τ̄2|.)
f (z,τ2|.) ,1

)
Resample X if the proposal was accepted

4.4.2.2 ACCEPTANCE PROBABILITY

In order to guarantee that the generated samples are asymptotically distributed
according to the posterior [4.11], all moves resulting from the multiple dipole
shift proposal are accepted or rejected with the acceptance probability described
in Algorithm 4.2. This acceptance probability requires to compute the follow-
ing probability distribution

f (zr ,τ2
r |Y , a,σ2

n ,ω) ∝ (1−ω)C0ωC1 (σ2
n)−

TC1
2 |Σ| T

2 [4.20]∏
i∈I1

(τ2
i )−

T
2 exp

(
−

∑T
t=1 D t

2

) N∏
i=1

G
(
τ2

i

∣∣∣T +1

2
,

vi a

2

)
where r = {i : zi 6= z̄i }, Ik = {i : zri = k}, Ck = #Ik for k = {0,1} and

Σ−1 = 1

σ2
n

[
(HI1 )THI1 +diag

( 1

τ2
r

)]
µt =−Σ(HI1 )T (H−rxt−r−yt )

σ2
n

Dt = (H−rxt−r−yt )T (H−rxt−r−yt )

σ2
n

− (µt )TΣ−1µt .
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4.4.2.3 NEIGHBORHOOD DEFINITION

It is obvious that the definition of the neighborhood used to exchange non-
zero elements is crucial. Initially, we used a geometrical neighborhood, defined
in terms of vertex connexity in the triangular tessellation modeling the brain
cortex. However, this definition usually yields very small neighborhoods. This
may cause the proposals not to be flexible enough to help the algorithm escape
from local maxima.

For this reason we propose a neighborhood definition that considers two
dipoles to be neighbors if the correlation between their respective columns is
higher than a certain threshold

neighγ(i ),
{

j 6= i
∣∣∣ |corr(hi ,h j )| ≥ γ

}
[4.21]

where corr(v1,v2) is the correlation between vectors v1 and v2 and where the
neighborhood size can be adjusted by setting γ ∈ [0,1] (γ = 0 corresponds to
a neighborhood containing all the dipoles and γ = 1 corresponds to an empty
neighborhood). Note that an additional advantage of this definition is the fact
that it allows the approach to be extended to other kinds of inverse problems
(different from M/EEG source localization) where no geometrical disposition
of the elements of z may be available.

In order to maximize the moves efficiency, the value of γ has to be selected
carefully. A very large value ofγwill result in proposals not being flexible enough
to help the algorithm in escaping local maxima. A very low value of γwill result
in a very large amount of possible proposals with many of them being useless
leading to a large number of iterations to reach useful moves. Our experiments
based on cross-validation have shown that a good compromise is obtained with
γ= 0.8 (see Section 4.5 for illustrations).

4.4.3 INTER-CHAIN PROPOSALS

The multiple dipole shift proposal scheme previously described allows the al-
gorithm to better sample the value of z present in the posterior distribution
and is able to find the active dipoles correctly provided the number of active
dipoles is small. However, when running multiple MCMC chains in parallel
with a higher amount of non-zeros present in the ground truth, it is possible
for the different chains to get stuck in different values of z. In order to help
them converge to the same (most probable) value, it is possible to exchange
information between parallel chains to avoid local maxima during their runs
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as other approaches do, including Metropolis-coupled MCMC [86], Population
MCMC [87] and simulated tempering [88, 89].

In this report, we introduce inter-chain moves by proposing to exchange the
values of z and τ2 between different chains. These moves are accepted with the
Metropolis-Hastings probability shown in Algorithm 4.3.

Algorithm 4.3 Inter-chain proposals.

Define a vector c= {1,2, ...,L} where L is the number of chains
for i = {1,2, ...,L}

Choose (and remove) a random element from c and denote it by k
Denote as {z̄k , τ̄2

k } the sampled values of {z,τ2} of MCMC chain number
#k

For the chain #i set {zi ,τ2
i } = {z̄k , τ̄2

k } with probability
f (z̄k ,τ̄2

k |.)
f (z,τ2|.)

Resample X if the proposal has been accepted
end

One potential problem introduced by inter-chain proposals is the fact that they
require synchronizing the parallel MCMC chains, which decreases the iteration
speed of the algorithm. In order to minimize this effect, an inter-chain proposal
will be made after each iteration with probability p (adjusted to 1

1000 by cross
validation) according to Algorithm 4.3.

The benefit of introducing inter-chain proposals is illustrated in Fig. 4.4.
The first row of images of this figure displays the five non-zeros present in the
ground truth. Without using inter-chain proposals the different chains can
converge to different modes after 100.000 iterations as illustrated in the second
row (which displays the probability of finding each dipole active with 8 par-
allel MCMC chains). The introduction of inter-chain proposals causes all the
different chains to converge to the same (correct) value of z in less than 5.000
iterations as illustrated in the third row of Fig. 4.4.

4.4.4 PARAMETER ESTIMATORS

As in the previous chapter, we will use the point estimators defined as follows

ẑ, argmax
z̄∈{0,1}N

(
#M (z̄)

)
[4.22]

p̂ ,
1

#M (ẑ)

∑
m∈M (ẑ)

p(m) [4.23]



70

(a) Ground truth - Axial, coronal and sagittal views respectively

(b) Estimation without proposals - Axial, coronal and sagittal views respectively

(c) Estimation with proposals - Axial, coronal and sagittal views respectively

Figure 4.4: Efficiency of the inter-chain proposal.
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where M (z̄) is the set of iteration numbers m for which the sampled variable
z(m) = z̄ after the burn-in period and p stands for any of the variables X , a,σ2

n ,
ω and τ2. Thus the estimator ẑ [4.22] corresponds to a maximum a posteriori
estimator whereas the estimator used for all the other sampled variables [4.23]
is a minimum mean square error (MMSE) estimators conditionally upon the
value of ẑ.

It is interesting to note that the proposed method provides the full distri-
bution of the unknown parameters and is not limited to point-estimate as the
methods based on the `21 mixed norm.

It will be shown in the next section that in certain conditions, such as low
SNR, the a-posteriori distribution of z has components with comparable prob-
abilities. These similar values of z are usually minor variations of each other
(changing one of the dipoles to a neighboring position for instance). In this
case, after convergence the algorithm oscillates between several values of z
which allows the proposed method to identify several possible solutions (each
of them corresponding to a different value of z) with their corresponding prob-
abilities. This is an advantage over the mixed `21 mixed norm method that is
only able to provide a point-estimate of the solution.

4.5 EXPERIMENTAL RESULTS

4.5.1 SYNTHETIC DATA

Synthetic data are first considered to compare the `21 mixed norm approach
with the proposed method using a 212-dipole Stok three-sphere head model
[19] with 41 electrodes. Three kinds of activations are performed: (1) three
dipoles with low SNR, (2) five dipoles with high SNR and (3) multiple dipoles
with high SNR.

4.5.1.1 THREE-DIPOLES WITH LOW SNR

Three dipoles were assigned excitations defined as synthetic damped sinusoidal
waves with frequencies between 5 and 20Hz. These excitations were 500ms
long (a period corresponding to a stationary dipole activity) and sampled at
200Hz. Different levels of noise were used to compare the performance of the
proposed method with the weighted `21 mixed norm. The parameters of our
multiple dipole shift proposal were set to D = 2 and γ = 0.8 and eight MCMC
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Figure 4.5: Estimated waveforms for three dipoles with SNR = 30dB.

Active non-zeros Percentage of samples

1, 2, 3 43%
1, 2, 4 22%
1, 2, 5 11%
1, 2, 6 7%
1, 2, 7 6%

Others 11%

Table 4.1: Three dipoles with SNR = -3dB: modes explored after convergence.
Positions 1, 2 and 3 correspond to the non-zero elements of the ground truth.

chains were run in parallel. For the `21 mixed norm approach, the value of the
regularization parameter λ was chosen using cross-validation to get the best
possible result.

The results for SNR = 30dB are shown in Fig. 4.5 and Fig. 4.6. Both algo-
rithms seem to provide the same solution that is equal to the ground truth. The
only minor difference is that the `21-mixed norm regularization presents some
dipoles (around ten) with very low but non-zero values, while our algorithm
only detects the three non-zeros as real activity, as shown in Fig. 4.6.

The estimated dipole locations with SNR =−3dB are shown in Fig. 4.8 whereas
the corresponding estimated waveforms are shown in Fig. 4.7. Note that only
the dipoles with highest activity are displayed for the `21 approach. The ap-
proach based on the `21 norm manages to recover only two of the three non-
zero activities at the correct positions and seems to underestimate considerably
the amplitude of the activity. This is a known problem caused by approximating
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(a) Ground truth - Axial, coronal and sagittal views respectively

(b) `21 - Axial, coronal and sagittal views respectively

(c) Proposed method - Axial, coronal and sagittal views respectively

Figure 4.6: Estimated activity for three dipoles and SNR = 30dB.



74

0 20 40 60 80 100

−0.2

0

0.2

0.4

0.6

(a) Ground truth

0 20 40 60 80 100

0

0.2

(b) `21-mixed norm estima-
tion

0 20 40 60 80 100

−0.2

0

0.2

0.4

0.6

(c) Proposed method

Figure 4.7: Estimated waveforms for three dipoles with SNR = -3dB.

the `0 pseudo-norm by the `1 norm, since the later penalizes high amplitudes
while the former penalizes all non-zero values equally. Our algorithm oscillates
between several values of z (specified in Table 4.1). However, the most proba-
ble value of z found by the algorithm is the correct one whereas the other ones
have one of the active non-zeros moved to a close neighborhood.

The proposed method does not only allow a point-estimation of the activ-
ity but can also be used to estimate uncertainties associated with the activity.
For instance, Fig. 4.9 shows the confidence intervals of the activity estimation
(mean ± 2 · standard deviations). The actual ground truth activation is clearly
located within two standard deviations of the estimated mean value obtained
with the proposed algorithm. The histogram of the generated hyperparameters
ω, a and σ2

n are shown in Fig. 4.10. They are clearly in good agreement with the
actual values of the corresponding parameters. The PSRF’s are displayed in Fig.
4.11. It is possible to see that the PSRF’s tend to 1 as the iterations increase,
showing that the sampler convergence is satisfactory.

4.5.1.2 FIVE DIPOLES

For the second kind of experiments, five dipoles were activated with the same
damped sinusoidal wave of 5Hz. The activations were sampled at 200Hz and
scaled in amplitude so that each of them produced the same energy in the
measurements. Noise was added to the measurements to obtain SNR = 30dB.
For the `21 mixed norm regularization, the regularization parameter was set
according to the uncertainty principle which consists in finding a solution X̂
such that ||HX̂ −Y || ≈ ||HX −Y || [78]. Eight MCMC chains were run in par-



75

(a) Ground truth - Axial, coronal and sagittal views respectively

(b) `21 - Axial, coronal and sagittal views respectively

(c) Proposed method - Axial, coronal and sagittal views respectively

Figure 4.8: Estimated activity for three dipoles and SNR = -3dB.
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Figure 4.9: Estimated boundaries µ± 2σ for the three dipole simulation with
SNR = -3dB.
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Figure 4.10: Three dipoles with SNR = -3dB: histograms of the hyperparameters.
The actual values of ω and σ2

n are marked with a red vertical line.
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Figure 4.11: Three dipoles with SNR = -3dB: PSRFs of sampled variables.

allel for the proposed method. Only the five non-zeros of the estimated activity
with highest energy in the measurements were considered.

The results are displayed in Fig. 4.12 and 4.13. In the first figure we are
able to see that the proposed method is able to recover the five locations per-
fectly while the `21 norm only detects four activations, two of them being not at
the correct locations. In the waveforms displayed in Fig. 4.13 we can see that,
while both methods are able to recover the general activity pattern, the pro-
posed method closely matches the waveform amplitude while the `21 mixed
norm does not. This is partially due to the fact that it detects some of the ac-
tivations at the wrong positions (waveforms 4 and 5) and partially due to the
tendency to underestimate the activation amplitudes inherent to the `0 to `1

convex relaxation.

4.5.1.3 MULTIPLE DIPOLES

In this section, we compare the detection capabilities of the algorithm with
respect to the `21-mixed norm approach by varying the amount of non-zeros
present in the ground truth.

In each simulation of this section, P dipoles were activated with damped
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(a) Ground truth - Axial, coronal and sagittal views respectively

(b) `21 dipole locations - Axial, coronal and sagittal views respectively

(c) Proposed Method - Axial, coronal and sagittal views respectively

Figure 4.12: Estimated activity for five dipoles and SNR = 30dB.
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Figure 4.13: Estimated waveforms for five dipoles with SNR = 30dB. Green rep-
resents the ground truth, blue the `21 mixed norm estimation and red the pro-
posed method.
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Figure 4.14: Performance measures for multiple dipoles.

sinusoidal waves with frequencies varying between 5 and 20Hz. The activations
were sampled at 200Hz and scaled in amplitude so that each of them produced
the same energy in the measurements. Fifty different sets of localizations were
used for the non-zero positions for each value of P = 1, ...,20, resulting in a total
of 1000 experiments. Noise was added to the measurements to obtain SNR =
30dB. For the `21 mixed norm regularization, the regularization parameter was
set according to the uncertainty principle.

For each simulation, the P non-zeros of the estimated activity associated
with the highest energy in the measurements were considered as the estimated
activity whereas the other elements were considered as residuals. We define
the recovery rate as the proportion of non-zeros in the ground truth that are
also present in the estimated activity. The average recovery rates of the pro-
posed method and the `21 mixed norm approach are presented in the first plot
of Fig. 4.14 as a function of P . For P ≤ 10 our algorithm detects the non-zeros
with an accuracy higher than 90% which drops to 60.2% for P = 11 and 49.7%
for P = 12. This drop of the recovery rate when a large number of non-zeros is
present in the ground truth is well known, since the possible amount of non-
zeros to recover correctly is limited by the span of the operator [37]. For com-
parison, the `21 mixed norm regularization recovers up to P = 5 non-zeros with
an accuracy higher than 90% and its recovery rate decreases slowly to reach
64% for P = 10. Note that our method performs better than the `21 approach
for P ≤ 11. However, beyond this point, the performance of both methods is
very poor preventing them from being used in practical applications.
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Figure 4.15: Measurements and estimated waveforms for the auditory evoked
responses.

The recovery rate is calculated from the P main non-zero elements of the
activity. However, it is also interesting to analyze how much activity is present
in the residual non-zero elements. Thus, we define the proportion of residual
energy as the amount of energy contained in the measurements generated by
the residual non-zeros with respect to the total energy in the measurements.
This residual energy serves as a measure of the sparsity of the solution. The
second plot of Fig. 4.14 shows the value of the residual energy obtained for
both algorithms as a function of P . The `21 approach has up to 7.7% of the ac-
tivity detected in residual non-zeros whereas our algorithm never exceeds 1.1%
and always has lower residual activity than `21, confirming its good sparsity
properties.

4.5.2 REAL DATA

The same two real data sets used in Chapter 3 were considered. The first one
corresponds to the auditory evoked responses to left ear pure tone stimulus
while the second one consists of the evoked responses to facial stimulus. The
results of the proposed method are compared with the weighted `21 mixed
norm [43] and the multiple sparse priors (MSP) method [51].

4.5.2.1 AUDITORY EVOKED RESPONSES

The default data set of the MNE software [79, 80] is used in this section. It con-
sists of the evoked response to left-ear auditory pure-tone stimulus using a real-
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(a) Weighted `21 mixed norm - Uncertainty principle of parameter a

(b) Weighted `21 mixed norm - Manual adjustment of parameter a

(c) Proposed method

(d) MSP algorithm

Figure 4.16: Estimated activity for the auditory evoked responses.
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Figure 4.17: Estimated waveforms mean and boundaries µ±2σ for the auditory
evoked responses.
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Figure 4.18: Hyperparameter histograms for the auditory evoked responses.

istic BEM (Boundary element method) head model sampled with 60 EEG elec-
trodes and 306 MEG sensors. The head model contains 1.844 dipoles located
on the cortex with orientations that are normal to the brain surface. Two chan-
nels that had technical artifacts were ignored. The data was sampled at 600Hz.
The samples were low-pass filtered at 40Hz and downsampled to 150Hz. The
noise covariance matrix was estimated from 200ms of the data preceding each
stimulus and was used to whiten the measurements. Fifty-one epochs were av-
eraged to calculate the measurements Y . The activity of the source dipoles was
estimated jointly for the period from 0ms to 500ms after the stimulus. From a
clinical perspective it is expected to find the brain activity primarily focused on
the auditory cortices that are located close to the ears in both hemispheres of
the brain.

Since the measurements were whitened, it is possible to use the uncertainty
principle to adjust the hyperparameter of the `21 mixed norm. However, this
provides an activity distributed all over the brain as shown in the first row of Fig.
4.16. By manually adjusting the hyperparameter to produce a sparser result, the
`21 mixed norm can obtain a solution that has activity in the auditory cortices
as expected, shown in the second row of images. In contrast, our algorithm
estimates its hyperparameters automatically and finds most of the activity in
the auditory cortices without requiring any manual adjustment as displayed in
the third row. On the other hand, the MSP method spreads the activity around
the auditory cortices area since it groups the dipoles together in pre-defined
regions.

The whitened measurements are displayed in Fig. 4.15 along with the activ-
ity estimation for both the `21 approach (after manually adjusting the hyperpa-
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Figure 4.19: PSRFs of sampled variables for the auditory evoked responses .

rameter) and our algorithm.
The five waveforms estimated by the proposed method with their confi-

dence intervals of 2σ are shown in Fig. 4.17. Both results present sharp peaks
in the activations of the auditory cortex dipoles between 80 and 100 millisec-
onds after the application of the stimulus. Note that the amplitudes estimated
by the proposed method are much higher than the ones obtained with the `21

approach due to the aforementioned amplitude underestimation of the latter.
The histograms of the hyperparameters of our algorithm are presented in

Fig. 4.18 while their PSRF’s are shown in Fig. 4.19. In the PSRF’s we can see very
abrupt changes in values for all the variables (most noticiably for X) in the
same iterations. These correspond to the iterations in which proposals were
accepted by different chains and reflect the fact that the PSRF’s can have very
high values while the chains are in different modes. However, at the end of
the simulation all chains converge to the same value of z which causes all the
PSRF’s to tend to 1, showing the correct convergence of all the chains to the
same posterior distribution.
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Figure 4.20: Measurements and estimated waveforms for the facial evoked re-
sponses.

4.5.2.2 FACIAL EVOKED RESPONSES

In a second experiment, we used data acquired from a face perception study
where the subject was required to evaluate the symmetry of a mixed set of faces
and scrambled faces, one of the default datasets of the SPM software2. Faces
were presented during 600ms every 3600ms. The measurements were taken
by the electrodes of a 128-channel ActiveTwo system that sampled at 2048 Hz.
The measurements were downsampled to 200Hz and, after artifact rejection,
299 epochs corresponding to the non-scrambled faces were averaged and low-
pass filtered to 40Hz. A T1 MRI scan was then downsampled to generate a
3004 dipole head model. The estimated activities are shown in Fig. 4.21. As
in the previous case, we can see that the `21 mixed norm response (with the
regularization parameter adjusted according to the uncertainty principle) esti-
mates the activity spread around the brain. In contrast, adjusting its regular-
ization parameter manually results in a focal response concentrated in one of
the fusiform regions in the temporal lobe associated with the facial recognition
process [82] similar to the one obtained by our algorithm. The MSP algorithm
spreads the activity over brain regions located more to the lateral and posterior
parts of the brain, further away from the expected area.

Fig. 4.20 shows the M/EEG measurements and the estimated waveforms by
the `21 approach and the proposed method. As with the auditory evoked re-
sponses data, they differ in the scale due to the underestimation of the activity

2The SPM software is freely avaiable at http://www.fil.ion.ucl.ac.uk/spm.



87

(a) Weighted `21 mixed norm - Uncertainty principle for parameter a

(b) Weighted `21 mixed norm - Manual adjustment of parameter a

(c) Proposed method

(d) MSP algorithm

Figure 4.21: Estimated activity for the facial evoked responses.
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amplitude by the `21 approach.

4.5.3 COMPUTATIONAL COST

The computational cost of the proposed method is much lower than the `0 +
`1 method proposed in Chapter 3, mainly due to the introduction of the τ la-
tent variable that makes the sampling of X significantly faster. However, it is
still higher than the `21 mixed norm approach. The low SNR three-dipole ex-
periment was processed in 6 seconds running in a modern Xeon CPU E3-1240
@ 3.4GHz processor (using a Matlab implementation with MEX files written in
C) against 104ms for the `21 mixed norm approach. However, it is interesting
to mention that the `21 norm approach requires running the algorithm multi-
ple times to adjust the regularization parameter by cross-validation, contrary to
the proposed algorithm that is able to estimate its own hyperparameters from
one Markov chain produced by the partially collapsed Gibbs sampler.

4.6 CONCLUSION

In this chapter we generalized the Bayesian model of Chapter 3 to consider
multiple time samples simultaneously. This generalized model promotes struc-
tured sparsity approximating the `20 mixed norm in a Bayesian framework by
using a multivariate Bernoulli Laplacian prior. A partially collapsed Gibbs sam-
pler was investigated to sample from the target posterior distribution. We intro-
duced multiple dipole shift proposals within each MCMC chain and exchange
moves between different chains to improve the convergence speed of this sam-
pler. Using the generated samples, the source activity was estimated jointly
with the model hyperparameters in a fully unsupervised framework. The pro-
posed method was compared with the `21 mixed norm and the multiple sparse
prior methods for a wide variety of situations including several multiple dipole
synthetic activations and two different sets of real data. Our algorithm pre-
sented several advantages including better recovery of dipole locations and
waveforms in low SNR conditions, the capacity of correctly detecting a higher
amount of non-zeros, providing sparser solutions and avoiding underestima-
tion of the activation amplitude. Finally, the possibility of providing several
solutions with their corresponding probabilities is interesting.

The next chapter extends the proposed Bayesian model to consider the pos-
sibility of having uncertainty in the operator hyperparameters and making it
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able to estimate those parameters jointly with the brain activity.
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5.1 INTRODUCTION

In the previous chapter we investigated a Bayesian model that is able to esti-
mate focal brain activity promoting structured sparsity imitating an `20 mixed
norm regularization. However, in real M/EEG experiments the matrix H is not
always completely known due to its dependency on several physical parame-
ters. Of these, the skull conductivity has been shown to significantly affect the
restoration process and depend significantly on the subject as mentioned in
Chapter 2. In this chapter we generalize the model we proposed in Chapter 4
to estimate the skull conductivity jointly with the brain activity. This is done by
approximating the dependency of the leadfield matrix with respect to the skull
conductivity by a polynomial matrix.

5.2 PROPOSED BAYESIAN MODEL

This chapter studies a new Bayesian model that solves the myope inverse prob-
lem presented in Section 2.3.4 for estimating the skull conductivity ρ jointly
with the brain activity X . The Bayesian model proposed to solve this prob-
lem is introduced in Section 5.2. Section 5.3 presents the partially collapsed
Gibbs sampler that generates samples from the posterior distribution of the
this model. The method used to model the leadfield matrix dependency with
respect to the skull conductivity is presented in Section 5.4. Section 5.5 explains
how to adapt the moves introduced in the previous chapter in order to make
them relevant for the joint estimation of ρ and X . Experimental results are fi-
nally presented in Section 5.6 in order to validate the proposed model and its
estimation algorithm.
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5.2.1 MATRIX NORMALIZATION

The depth biasing effect is a well known problem when solving the M/EEG
source localization by minimizing a certain norm of the solution [25]. This ef-
fect is caused by the fact that each active dipole generates a signal of different
amplitude. It is possible to compensate for this effect by either: (1) adding a
weight vector v with elements vi = |hi |2 (being ||.|| the euclidean norm and hi

the i -th column of matrix H) that penalize the dipoles associated with large
M/EEG measurements (as done in Chapters 3 and 4 or (2) normalizing the
columns of the matrix so that they all have a unitary norm. When using the
second option, the M/EEG source localization problem [2.1] can be written as

Y = H̄(ρ)X̄ +E [5.1]

where Y ∈ RM×T contains the M/EEG measurements, E ∈ RM×T is measure-
ment noise, the columns of the normalized matrix are h̄i = hi

|hi |2 and the rows

of the estimated activity are x̄i = |hi |2xi (being xi the i th row of X). Since our
model has a variable leadfield matrix, using the first approach would cause the
weight vector v to depend on the skull conductivity ρ which introduces unnec-
essary complexities. To avoid these, we use the second compensation model.

5.2.2 LIKELIHOOD

As in our previous models, we assume an independent white Gaussian noise
with a constant variance σ2

n , which leads to the following Gaussian likelihood

f (Y |X̄ ,σ2
n ,ρ) =

T∏
t=1

N
(
yt

∣∣∣H̄(ρ)x̄t ,σ2
n IM

)
[5.2]

where IM is the identity matrix of size M .

5.2.3 PRIOR AND HYPERPRIOR DISTRIBUTIONS

The dependencies between the different model parameters and hyperparame-
ters is shown in Fig. 5.1. The priors used for each of them (apart from the skull
conductivity ρ) are the same that were used in the model presented in the pre-
vious chapter with vi = 1 (due to the leadfield matrix normalization described
in Section 5.2.1) and are summarized in Table 5.1. In this table we can see that
each row xi is either jointly zero or non-zero, which is indicated by the discrete
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variable zi . ω is a variable between 0 and 1 that indicates the probability of hav-
ing zi = 1 whereas a controls the amplitude of the non-zero rows of X . Note
that τ2 is a latent variable that is only introduced to accelerate the convergence
of the algorithm. Finally, the noise variance σ2

n is assigned a Jeffrey’s prior re-
flecting the absence of knowledge about this parameter. The prior used for the
skull conductivity is detailed in the rest of this section.

Y

ρ X̄ , σ2
n

zτ2

a ω

Figure 5.1: Directed acyclic graph for the proposed Bayesian model.

zi B
(
zi |ω

)
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(
τ2

i

∣∣∣T+1
2 , a

2

)
x̄i

δ(x̄i ) if zi = 0

N
(
0,σ2

nτ
2
i IT

)
if zi = 1

σ2
n

1
σ2

n
1R+(σ2

n)

a G
(
a
∣∣∣α,β

)
with α=β= 1

ω U
(
ω

∣∣∣0,1
)

Table 5.1: Prior distributions f (zi |ω), f (τ2
i |a), f (x̄i |zi ,τ2

i ,σ2
n), f (σ2

n), f (a) and
f (ω).

In order to keep the model simple we propose to assign a non-informative
uniform prior for the skull conductivity
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f (ρ) =U
(
ρ
∣∣∣ρmin,ρmax

)
. [5.3]

To select the range of this uniform distribution we consider an interval contain-
ing the scalp-to-skull conductivity ratios reported in the literature [59, 90], i.e,
defined by rmin = 10 and rmax = 100. Considering the scalp conductivity to be
330 mS

m , this leads to ρmin = 3.3 mS
m and ρmax = 33 mS

m .

5.2.4 POSTERIOR DISTRIBUTION

The corresponding posterior distribution is defined as follows

f (Y ,σ2
n ,X̄ ,z, a,τ2,ω,ρ) ∝ f (Y |X̄ ,σ2

n ,ρ) f (X̄ |τ2,z,σ2
n) f (z|ω) [5.4]

f (τ2|a) f (σ2
n) f (a) f (ω) f (ρ)

5.3 PARTIALLY COLLAPSED GIBBS SAMPLER

Unfortunately, the posterior distribution [A.40] is intractable and does not al-
low Bayesian estimators of the different parameters and hyperparameters to be
expressed in closed-form. As a consequence, we propose to draw samples from
[A.40] and use them to estimate the brain activity jointly with the model hyper-
parameters. More precisely, we investigate a partially collapsed Gibbs sampler
that samples the variables zi and xi jointly in order to exploit the strong corre-
lation between these two variables. The proposed method samples the differ-
ent variables according to their conditional distributions as shown in Algorithm
5.1. Note that the only difference between this sampler and the sampler devel-
oped in Section 4.3 is the last line corresponding to the sampling of the skull
conductivity.

The corresponding conditional distributions of all the model parameters
and hyperparameters apart from ρ are the same as in the ones corresponding
to the model presented in Chapter 4, as explained in Appendix A, and can be
found in Table 5.2.



95

Algorithm 5.1 Partially Collapsed Gibbs sampler.

Initialize all the parameters.
repeat

for i = 1 to N do
Sample τ2

i from f (τ2
i |x̄i ,σ2

n , a, zi )
Sample zi from f (zi |Y ,X̄−i ,σ2

n ,τ2
i ,ω,ρ)

Sample x̄i from f (x̄i |zi ,Y ,X̄−i ,σ2
n ,τ2

i ,ρ)
end for
Sample a from f (a|τ2)
Sample σ2

n from f (σ2
n |Y ,X̄ ,τ2,z,ρ)

Sample ω from f (ω|z)
Sample ρ from f (ρ|X̄ ,Y ,σ2

n)
until convergence

5.3.1 CONDITIONAL DISTRIBUTIONS

τ2
i

G
(

T+1
2 , a

2

)
if zi = 0

GIG
(

1
2 , a, ||xi ||2

σ2
n

)
if zi = 1

zi B
(
1, k1

k0+k1

)
xi

δ(xi ) if zi = 0

N
(
µi ,σ2

i

)
if zi = 1

a G
(

N (T+1)
2 +α,

∑
i τ

2
i

2 +β
)

σ2
n IG

(
(M+||z||0)T

2 , 1
2

[
||H̄(ρ)X −Y ||2 +∑

i
||xi ||2
τ2

i

])
ω Be

(
1+||z||0,1+N −||z||0

)
Table 5.2: Conditional distributions f (τ2

i |xi ,σ2
n , a, zi ), f (zi |Y ,X−i ,σ2

n ,τ2
i ,ω,ρ),

f (xi |zi ,Y ,X−i ,σ2
n ,τ2

i ,ρ), f (a|τ2), f (σ2
n |Y ,X ,τ2,z,ρ) and f (ω|z).
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with

µi =
σ2

i h̄(ρ)i T
(Y −H̄(ρ)X−i )

σ2
n

,σ2
i =

σ2
nτ

2
i

1+τ2
i h̄(ρ)i T

h̄(ρ)i

k0 = 1−ω,k1 =ω
(
σ2

nτ
2
i

σ2
i

)− T
2

exp
( ||µi ||2

2σ2
i

)
.

The conditional distribution of the skull conductivity can be written

f (ρ|X̄ ,Y ,σ2
n) ∝ exp

(
− ||H̄(ρ)X̄ −Y ||2

2σ2
n

)
1[ρmin,ρmax](ρ). [5.5]

For arbitrary functions H̄(ρ) , [5.5] does not belong to a common family of dis-
tributions. The following section explains how to efficiently model the depen-
dency of the matrix H̄(ρ) in order to be able to sample from [5.5].

5.4 LEADFIELD MATRIX APPROXIMATION

5.4.1 DEPENDENCY ANALYSIS

Shell models can be used to derive closed form expressions for the leadfield
matrix as a function of the conductivity that will denoted H̄(ρ). However these
models are quite complex [18] and would make the sampling from f (ρ|X̄ ,Y ,σ2

n)
considerably difficult. In contrast, realistic head models can be calculated nu-
merically for particular values of ρ but do not provide a closed-form expression
for H̄(ρ). In order to illustrate how the value of ρ affects the matrix, a four-shell
200-dipole head model with 41 electrodes was calculated for different values
of ρ. Eight elements of the matrix hi , j (ρ) (chosen randomly) are displayed in
Fig. 5.2 as a function of ρ. In order to have a simple expression of this depen-
dency, in Sengül and Baysal [64] proposed to replace H̄(ρk ) by its linearization
around the current value ρk . This method was shown to provide good results
but requires evaluating the exact value of H̄(ρ) at every iteration, which slows
down the algorithm considerably. Since the variation of the matrix elements
with respect to ρ is smooth and monotonic, we propose to approximate H̄(ρ)
using a simple mathematical expression as in [64]. However, the approxima-
tion is computed on the whole range ρmin < ρ < ρmax with a polynomial matrix
of small degree denoted by ĤL(ρ). This allows us to have a simple closed form
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Figure 5.2: Variations of the matrix elements with respect to ρ.

expression of ĤL(ρ) for both shell and realistic head models. In addition, our
method only requires calculating the exact value of H̄(ρ) to construct the poly-
nomial matrix ĤL(ρ) offline. Afterwards, the polynomial matrix is evaluated
for the new value of ρ at every iteration, which accelerates the iteration speed
considerably (since evaluating the matrix is much faster than recalculating the
exact value of H̄(ρ)).

5.4.2 POLYNOMIAL APPROXIMATION

Each element of ĤL(ρ) is constructed as a polynomial function of ρ

ĥi , j (ρ) =
L∑

l=0
ci , j ,lρ

l . [5.6]

We propose to calculate the coefficients ci , j ,l using least-squares fitting. This
method consists in minimizing the following mean square error between H̄(ρ)
and ĤL(ρ) using K values of ρ

MSE(ρ) =
K−1∑
k=0

(
h̄i , j (ρk )−

L∑
l=0

ci , j ,lρ
l
k

)2
[5.7]

Note that the exact value of H̄(ρ) is calculated for ρk = ρmin + k(ρmax−ρmin)
K−1

with 0 ≤ k ≤ K −1 by either using the shell model expression [19] or by eval-
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uating numerically the head model from the patient’s MRI [20]. After this we
calculate the polynomial coefficients ci , j ,l that minimize [5.7] using the classi-
cal least squares estimator

ci , j =
[K−1∑

k=0
ψkψk

T
]−1 K−1∑

k=0
h̄i , j (ρk )ψk [5.8]

withψk = [ρ0
k , ...,ρL

k ]T and ci , j = [ci , j ,0, ...,ci , j ,L]T .
The next section will discuss how to sample the skull conductivity after the

coeficients ci , j ,l have been calculated.

5.4.3 SKULL CONDUCTIVITY SAMPLING

Approximating the relationship between the leadfield matrix and the skull con-
ductivity with a polynomial matrix allows us to have the following simple closed
form expression for the conditional distribution of the skull conductivity f (ρ|X̄ ,Y ,σ2

n)

f (ρ|X̄ ,Y ,σ2
n) ∝ exp

(
− g (ρ)

)
1[ρmin,ρmax](ρ) [5.9]

where g (ρ) = ||ĤL,K (ρ)X̄−Y ||2
2σ2

n
is a polynomial of order 2L.

Since it is not easy to sample from [5.9] directly, we propose to adopt a
random-walk Metropolis-Hastings (MH) move. More precisely, this move con-
sists in proposing at each iteration of the Gibbs sampler a new sample ρprop =
ρold +ε and accepting it with probability

Pa =
{

min
(

exp(−g (ρpr op ))
exp(−g (ρol d )) ,1

)
if ρmin < ρprop < ρmax

0 otherwise.
[5.10]

where ε is a variable defining the random walk whose distribution needs to be
specified.

We propose to use a zero-mean Gaussian distribution for ε, i.e., f (ε) =N (0,σ2
ε).

Moreover, we propose to adjust the variance of the random walk σ2
ε empiri-

cally in order to obtain an appropriate acceptance rate, as recommended in
[69]. Based on the experiments performed in Section 5.6, we have shown that
σε = ρmax−ρmin

100 is a reasonable choice for the random walk variance.
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5.5 IMPROVING THE CONVERGENCE OF THE GIBBS

SAMPLER

5.5.1 MULTIPLE DIPOLE SHIFT PROPOSALS

Algorithm 5.2 Multiple dipole shift proposal.

ẑ = z
repeat D times

Set indold to be the index of a random non-zero of z
Set p= [indold,neighγ,ρ(indold)]
Set indnew to be a random element of p
Set ẑindold = 0 and ẑindnew = 1

end
Sample ρ̂ from f (ρ̂|Y ,σ2

n ,τ2, ẑ).
Sample X̂ from f (X̂ |ẑ,Y ,σ2

n ,τ2, ρ̂).
Sample τ̂2 from f (τ̂2|X̂ ,σ2

n , a, ẑ).

Set {z,τ2,ρ} = {ẑ, τ̂2, ρ̂} with probability min
(

f (ẑ,τ̂2,ρ̂|Y ,a,σ2
n ,ω)

f (z,τ2,ρ|Y ,a,σ2
n ,ω)

,1
)

Else, do not change the values of {z,τ2,ρ}
Resample X if the proposed move has been accepted

As explained in Chapter 4, the Gibbs sampler presented above tends to gets
stuck around local maxima of the posterior distribution [A.40]. In particular,
the MAP estimator of z does not usually indicate the correct positions of the
active dipoles in a reasonable amount of time. To solve this problem we in-
troduced in Chapter 4 multiple dipole shift proposals allowing D random non-
zeros to be moved to neighboring positions. These moves were accepted or
rejected using the classical MH acceptance rate. In order to build more effi-
cient proposals adapted to the case of an unknown skull conductivity, we ex-
pand the multiple dipole shift moves to include the skull conductivity ρ. We do
this by adding a step to sample the skull conductivity ρ marginally to X . The
final algorithm is illustrated in Algorithm 5.2 where we keep the neighborhood
definition of Chapter 4

neighγ,ρ(i ), { j 6= i | |corr(ĥL,K (ρ)
i
,ĥ(ρ)

j
)| ≥ γ} [5.11]

where γ ∈ [0,1] tunes the neighborhood size (γ= 0 corresponds to a neighbor-
hood containing all the dipoles and γ = 1 corresponds to an empty neighbor-
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hood). The values of D and γ were adjusted by cross validation to D = 2 and
γ= 0.8.

To accept or reject the moves, we need to evaluate the conditional distri-
bution f (z,τ2,ρ|Y , a,σ2

n ,ω) up to a multiplicative constant. Considering only
the values of the subset of z that change between the current value and the
proposal (denoted by zr), the following result can be obtained

f (zr ,τ2
r ,ρ|Y , a,σ2

n ,ω) ∝ (1−ω)C0ωC1 (σ2
n)−

TC1
2 |Σ| T

2 [5.12]∏
i∈I1

(τ2
i )−

T
2 exp

(
−

∑T
t=1 Q t

2

) N∏
i=1

G
(
τ2

i

∣∣∣T +1

2
,

a

2

)
where I j = {i |zri = j }, C j is the cardinal of the set I j (for j = {0,1}) and

Σ−1 = 1

σ2
n

[
HI1 (ρ)THI1 (ρ)+diag

( 1

τ2
r

)]
µt =−ΣH

I1 (ρ)T [H−r(ρ)xt−r−yt ]

σ2
n

Qbt = [H−r(ρ)xt−r−yt ]T [H−r(ρ)xt−r−yt ]

σ2
n

−µt T
Σ−1µt

5.5.2 INTER-CHAIN PROPOSALS

As explained in Chapter 4 when running multiple MCMC chains in parallel it
is possible for the different chains to get stuck around different values of z.
As a consequence, inter-chain proposals were considered to improve the sam-
pler convergence. These proposals were exchanging active dipoles of different
chains, with a probability defined according to the MH acceptance rate.

We now expand the inter-chain proposals to include the conductivity ρ to
improve the sampling efficiency. More precisely, at each iteration, an exchange
between the active dipoles of random pairs of chains is proposed with proba-
bility π (the value of π was fixed to 10−3 by cross validation) and this exchange
is accepted with the MH probability as shown in Algorithm 5.3.
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Algorithm 5.3 Inter-chain proposals.

Define a vector c= {1, ...,L} where L is the number of chains
for i = {1,2, ...,L}

Choose (and remove) a random element from c and denote it by k
Denote as {ẑk , τ̂2

k , ρ̂k } the sampled values of {z,τ2,ρ} for the MCMC chain
#k

For the chain #i set {zi ,τ2
i ,ρi } = {ẑk , τ̂2

k , ρ̂k } with probability
f (ẑk ,τ̂2

k ,ρ̂k |.)
f (z,τ2,ρ|.)

Resample X if the proposal has been accepted
end

5.6 EXPERIMENTAL RESULTS

5.6.1 SYNTHETIC DATA

Synthetic data is first considered using a 200-dipole Stok four-sphere head model
[19] with 41 electrodes. The dipoles were uniformly distributed in the brain
cortex oriented orthogonally to the brain surface. Two different kinds of activa-
tions were investigated: (1) single dipole activations with low SNR and (2) mul-
tiple dipole activations with high SNR. Before applying our method to the data
we needed to construct the polynomial matrix ĤL,K (ρ), which is the objective
of the next section.

5.6.1.1 POLYNOMIAL MATRIX CONSTRUCTION

In order to construct ĤL,K (ρ) we have to select appropriate values of L and K
(as defined in Section 5.4.2). Increasing the values of L and K clearly improves
the quality of the approximation of ĤL,K at the price of a higher computational
complexity. To choose appropriate values of these parameters, it is interesting
to analyze their effect on the estimation of ρ when all the other parameters (X
and σ2

n) are known. To do this we used several ground truth values of X and
σ2

n and assumed that the algorithm would ideally converge to the value ρ̂ that

minimizes the polynomial of order 2L defined as g (ρ) = ||ĤL,K (ρ)X̄−Y ||2
2σ2

n
.

Using the head model described in the previous subsection, we used K =
100 and generated values of L in the range 2 ≤ L ≤ 7. We also considered ten
different ground truth values of ρg t , 200 different values of X̄ ∈ R200×100 (each
of them having one of the 200 dipoles with a constant activity during the 100
time samples) and 9 values of SNR (from 0dB to 40dB in steps of 5dB) resulting
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Figure 5.3: RMSE of ρ VS L (K = 100).

in a total of 108.000 experiments. Since the ground truth X̄ is used for the
estimation of ρ̂, the only factors that explain the difference between ρ̂ and ρg t

are the presence of noise and the approximation of H̄(ρ) by ĤL,K (ρ), which
allows us to illustrate the effect of L for different values of SNR. We define the
root mean square error of the estimation of ρ for a particular value of L and
SNR as

RMSE(L,SN R) =
√√√√ 1

200×10

200×10∑
i=1

(ρ̂i −ρi )2 [5.13]

ρi being the ground truth of ρ for the i th realization obtained for the specified
values of L and SN R and ρ̂i the corresponding estimated value of ρ.

Fig. 5.3 illustrates the RMSE of the estimation of ρ as a function of SNR
for each value of L and for noiseless simulations. We can see that in noise-
less situations, the error seems to tend asymptotically to 0 as the value of L
increases, as expected. However, when the measurements are noisy the min-
imum value of RMSE is limited by the amount of noise. For instance, if the
measurements correspond to SNR = 10dB , the estimation error only decreases
until L = 3. This shows that for high SNR it makes sense to choose a high
value of L. However, for common values of SNR (lower than 20dB) choos-
ing high values of L does not improve the quality of the estimation of ρ. Be-
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Figure 5.4: RMSE of ρ VS K (L = 7).

cause of this, for a given SNR, we choose the smallest value of L such that
|RMSE(SN R,L+1)−RMSE(SN R,L)| < ε.

To analyze the effect of K , the same experiment was performed by varying
K ∈ {5,10,20,30,40} and fixing L = 5 for K = 5 and L = 7 for the higher values
of K . Fig. 5.4 shows the RMSE of ρ for noisy and noiseless simulations. Both
figures show that there is a significant improved approximation when K is in-
creased from 5 to 10 if the SNR is high enough. However, choosing values of
K higher than 10 does not improve the estimation of the skull conductivity ρ.
Since we will be working with values of SNR between 10 and 30dB we have de-
cided to use L = 4 and K = 10 in the remainder of the chapter.

5.6.1.2 SINGLE DIPOLE ACTIVATIONS

In the first kind of simulations, a random single dipole was assigned a damped
sine activation of 5Hz. The activation was sampled at 200Hz and multiplied
with the leadfield matrix with a chosen ground truth value of ρ denoted as ρgt.
Gaussian white noise was added to the measurements to have a signal to noise
ratio SNR = 10dB. The proposed estimation method is compared with two other
methods: (1) a variation of the proposed method that uses a fixed value of the
conductivity, more precisely ρfix = ρmax+ρmin

2 = 18.15 mS
m in order to illustrate the

advantages of estimating ρ (called default-ρ model) and (2) the optimization
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Method Pos. error
|X̂−Xgt|2F
|Xgt|2F

σ̂n
2−σ2

n

σ2
n

ρ̂−ρgt
|H(ρgt)−H(ρ̂)|2F

|H(ρgt)|2F
Default-ρ 0 2.53×10−3 26.99×10−3 4.46×10−3 2.51×10−3

PM 0 2.47×10−3 6.21×10−3 −43.89×10−6 1.21×10−6

Vallaghé 0 128×10−6 N/A −52.83×10−6 1.15×10−6

Table 5.3: Estimation errors for the different parameters (Simulation #1)

method studied in [65] that is able to estimate ρ and the brain activity jointly if
there is only one active dipole. Finally, 8 parallel MCMC chains were used for
both the proposed model and the default-ρ model. We illustrate two different
cases. The first case corresponds to a conductivity ρgt close to ρfix (simulation
#1) and the second case is characterized by a higher difference between ρgt and
ρfix (simulation #2). More precisely, ρgt = 13.68 mS

m for simulation #1 and ρgt =
3.59 mS

m for simulation #2.
For simulation #1, all methods manage to find the active dipole in its ex-

act location. The histograms of the simulated parameters for the two Bayesian
models corresponding to a fixed value and an unknown value of ρ are shown
in Figs. 5.5 and 5.6. First we comment the results obtained with the proposed
model and its default-ρ variation. In order to understand why the model with
a fixed value of ρ is able to correctly recover the activation despite the use of
a wrong value of ρ, it is important to note on the different histograms that the
proposed model is able to estimate all variables correctly. Note also that the
default-ρ model seems to overestimate the noise variance σ2

n . Thus, when the
error in ρ (and thus, in the matrix) is small, the default-ρ model is able to mit-
igate the effect of using a wrong leadfield matrix by considering that there is
additional noise in the system.

Vallaghé’s optimization method also estimates the dipole location correctly
for simulation #1. After running simulation #1 for 20 Monte Carlo runs with
different noise realizations, the averaged MMSE estimate of the skull conduc-
tivity was ρ̂ = 13.63 mS

m (which is very close to the actual ground truth value
13.69 mS

m ). An interesting property of the proposed estimation method is that it
is able to estimate the posterior distribution of the skull conductivity (as shown
in Fig. 5.5). This distribution can be used to determine the MMSE estimator of
ρ (the mean of the posterior distribution, that is 13.64 mS

m ) as well as uncertain-
ties regarding this estimator. For instance the standard deviation of the MMSE
estimator is 0.46 mS

m . Since the proposed method is not restricted to a point-
estimate as Vallaghé”s optimization method, it is not necessary to run different
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Figure 5.5: Estimated marginal posterior distributions of the different model
parameters for the proposed model (ρ estimated) for simulation #1 (single
dipole)
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Figure 5.7: Recovered waveforms for the single dipole simulation #1.
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Monte Carlo runs for different noise realizations in order to obtain measures of
uncertainties for the different estimates.

Finally, Fig. 5.7 compares the estimated waveforms obtained with the pro-
posed method (PM) and Vallaghé’s one, where we can observe that both esti-
mated waveforms are close to the ground truth. Quantitative results associated
with simulation #1 are summarized in Table 5.3 and confirm that both methods
perform similarly for this scenario.

The estimated locations for simulation #2 are shown in Fig. 5.8. In this case
the default-ρ model fails to recover the correct dipole location and spreads the
activity over a significant area of the brain, due to the fact that the difference be-
tween the leadfield matrices is significantly higher. The optimization method is
still able to recover the dipole position correctly and gives an averaged MMSE
estimate of the skull conductivity ρ̂ = 3.85 mS

m over 20 Monte Carlo runs while

the proposed method estimates a mean value of 3.49 mS
m (closer to the ground

truth value of 3.59 mS
m ) with a standard deviation of 0.12 mS

m . Fig. 5.9 shows that
in this case the proposed method estimates a waveform that is considerably
closer to the ground truth. Table 5.4 summarizes quantitative results associ-
ated with simulation #2, which confirm the remarks resulting from Fig. 5.9.

In order to asses the convergence of the experiment, the potential scale re-
duction factors (PSRFs) [71] for simulation #1 are shown in Fig. 5.10, showing
they tend to 1 displaying good numerical convergence.

In summary, both the proposed and Vallaghé’s method are able to find the
correct dipole position for the two first simulations scenarios. However, the
proposed method is able to better estimate the skull conductivity and the acti-
vation waveforms for simulation #2 while not being restricted to single dipole
activations as Vallaghé’s method.

5.6.1.3 DEEP DIPOLE ACTIVATIONS

In order to investigate how the algorithm performs for active dipoles at different
depths, the following set of experiments was performed:

The original 200-dipole brain model was expanded to have 600 dipoles.
The first 200 were localized in the same positions as in the original experiment
(henceforth called “superficial dipoles"), the second set of 200 dipoles were lo-
calized 10% closer to the center of the sphere model compared to the first 200
dipoles (henceforth called “medium dipoles"). The final 200 dipoles were lo-
cated 20% closer to the center of the sphere model than the superficial dipoles,
and will be referred to as “deep dipoles".
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(a) Ground truth - Axial, coronal and sagittal views respectively

(b) Default-ρ model - Axial, coronal and sagittal views respectively

(c) Proposed method - Axial, coronal and sagittal views respectively

(d) Vallaghé’s method - Axial, coronal and sagittal views respectively

Figure 5.8: Estimated activity for single dipole simulation #2.
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Figure 5.9: Estimated waveforms for simulation #2 (single dipole)
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Figure 5.10: PSRFs for the proposed method versus the number of iterations for
simulation #1 (single dipole).
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Method Pos. error
|X̂−Xgt|2F
|Xgt|2F

σ̂n
2−σ2

n

σ2
n

ρ̂−ρgt
|H(ρgt)−H(ρ̂)|2F

|H(ρgt)|2F
Default-ρ 224×10−3 1.36 108.4×10−3 14.56×10−3 75.85×10−3

PM 0 2.47×10−3 5.89×10−3 10.33×10−6 77.14×10−9

Vallaghé 0 6.17×10−3 N/A 265×10−6 92.3×10−6

Table 5.4: Estimation errors for the different parameters (Simulation #2)

With this new brain model, a random superficial dipole was chosen. This
superficial dipole was assigned a damped sinusoidal brain activity wave. In
two separate scenarios, this activation wave was moved to the closest medium
dipole and the closest deep dipole respectively, resulting in three values of X.
For each of these three activations 10 linearly spaced values of ground truth ρ

were chosen to calculate the leadfield matrix H, resulting in 30 noiseless mea-
surements HX. Finally, noise was added to each of these noiseless measure-
ments in order to obtain different values of the SNR, i.e., SNR = 10, 15, 20 and
30dB, resulting in a total of 120 noisy measurements Y. The proposed method
was applied to each of the values of Y to recover the original value of X jointly
with ρ.

In all 120 experiments, the proposed method was able to correctly estimate
that there was a single active dipole and which one it was (without any con-
fusion with ones that were slightly deeper or slightly more superficial than the
active one). Figs. 5.11 and 5.12 show the estimation errors of ρ for SNR values
of 30 and 20dB respectively. As we can see, the estimated values of ρ are all very
close to the expected ideal diagonal for all dipole depths. This can also be seen
in Figs.5.11d and 5.12d where the normalized error (expressed in percentage)
is always below 2%. In comparison, Figs. 5.13 and 5.14 show the results when
the SNR is 15 and 10dB respectively. As expected, increasing the noise in the
system makes the estimation worse, causing the normalized error to be upto
6% for 15dB and upto 10% for 10dB of SNR.

These results indicate that the method is capable of estimating the depth
of the active dipole and the skull conductivity jointly as long as the amount of
noise present in the system is in a reasonable range.

5.6.1.4 MULTIPLE DIPOLE ACTIVATIONS

The second kind of simulations considered a variable amount of active dipoles
to analyze the detection capabilities of the proposed algorithm. In each simu-
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Figure 5.11: Estimated conductivity for the multiple dipole depths experiments
(SNR = 30dB).
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Figure 5.12: Estimated conductivity for the multiple dipole depths experiments
(SNR = 20dB).
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Figure 5.13: Estimated conductivity for the multiple dipole depths experiments
(SNR = 15dB).
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Figure 5.14: Estimated conductivity for the multiple dipole depths experiments
(SNR = 10dB).
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Figure 5.15: Performance measures for the estimation of multiple dipoles as a
function of C .
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lation, C dipoles were activated with damped sinusoidal waves with frequen-
cies varying between 5 and 20Hz. The activations were sampled at 200Hz and
scaled in amplitude in order to produce the same energy in the different mea-
surements. Twenty different simulations were conducted for each value of C =
1, ...,16, each one having a different set of active dipoles and a different uniform
random value of conductivity in the range ρmin < ρgt < ρmax, resulting in a to-
tal of 320 experiments. Noise was added to the measurements to obtain SNR =
30dB.

Since Vallaghé’s method cannot be applied to activations that have more
than a single active dipole the performance of the proposed model was com-
pared with two other recovery methods: (1) the correct-ρ model with ρfix = ρgt

(to evaluate the loss of performance when ρ is estimated) and (2) a default-
ρ model with a ρfix = ρmin+ρmax

2 = 18.15 mS
m (to illustrate the improvement due

to the estimation of ρ). All models were run using 8 MCMC parallel chains.
For each simulation result, the C estimated active dipoles that generated the
strongest measurements in Y were considered to be the main dipoles recov-
ered by the algorithm, while the other dipoles were used to compute the resid-
ual activity.

We define the recovery rate as the proportion of active dipoles that were re-
covered by a given method. Fig. 5.15a displays the average recovery rate as a
function of C for the three models. The correct-ρ model is able to correctly re-
cover the dipoles perfectly up to 10 dipoles, whereas its performance declines
significantly when C > 10. The fact that the recovery performance decreases
with more active non-zeros is well known since the leadfield matrix span lim-
its the maximum possible amount of non-zeros that can be recovered correctly
[37]. In comparison, the proposed model is able to estimate ρ jointly with the
brain activity up to C = 10 practically without any recovery loss. For C > 10 its
performance decreases faster than the other method because of the increas-
ing error in the estimation of ρ (as shown in Fig. 5.15c). The recovery rate
of the default-ρ model is significantly worse than the proposed method even
for low values of C for the same reasons mentioned for single dipoles. Since
the recovery rate only considers the main detected dipoles, it is also interesting
to analyze the energy contained in the residual dipoles. Thus, we define the
proportion of residual energy as the amount of energy contained in the mea-
surements generated by the residual activity over the total energy in the mea-
surements. This quantity is displayed in Fig. 5.15b where we can see that both
the correct-ρ model and the proposed method have almost-zero energy (lower
than 1%) in the residual dipoles for low values of C contrary to the default-ρ
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model that has a larger proportion of residual energy.
Our algorithm was also compared with Gutierrez’ method [63] which esti-

mates the activity amplitude jointly with the skull conductivity (but requires
knowing which are the active dipoles in advance). Because of this limitation,
it makes no sense to analyze the recovery rate of Gutierrez’ method but we can
use it to compare the estimation of ρ as shown in Fig. 5.15c. We can see that the
estimation performance of both methods is comparable up to C = 10. However,
note again that the proposed algorithm is able to estimate the active dipoles po-
sitions contrary to Gutierrez’ method. Conversely, for C > 10 the performance
of our algorithm drops because it fails to recover the active dipole positions
correctly.

In summary, for C ≤ 10, the quality of the reconstruction of the proposed
method is very close to the method that knows the correct value of ρ in advance
and significantly better than the default-ρ model and the error in the estima-
tion of ρ is very close to the one obtained with Gutierrez’ method (that knows
the active dipole positions in advance). For C > 10 the performance of the pro-
posed method drops faster than the method that knows the ground truth value
of ρ since the error in the estimation of ρ increases considerably.

5.6.2 REAL DATA

5.6.2.1 AUDITORY EVOKED RESPONSES

The left-ear auditory pure-tone stimulus data set from the MNE software [79,
80] that was used in Chapters 3 and 4 is considered in this section. It uses a re-
alistic BEM (Boundary element method) head model containing 1.844 dipoles
located on the cortex with orientations that are normal to the brain surface.
The data was sampled with 306 MEG sensors at 600Hz, low-pass filtered at
40Hz and downsampled to 150Hz. One channel that had technical artifacts was
ignored. The measurements corresponding to 200ms of data preceding each
stimulus were considered to estimate the noise covariance matrix that was used
to whiten the measurements. Fifty-one epochs were averaged to calculate Y .
The activity of the source dipoles was estimated jointly with the skull conduc-
tivity for the period lasting 500ms after the stimulus. From a clinical perspec-
tive it is expected to find the brain activity primarily focused on the auditory
cortices that are located close to the ears in both brain hemispheres.

Our method was compared with (1) a default-ρ model that uses ρ = 6 mS
S ,

corresponding to a ratio of 50 between the scalp and skull conductivities (the
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Figure 5.16: Estimated activity for the auditory evoked responses.
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Figure 5.17: Estimated waveforms for the auditory evoked responses.
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Figure 5.18: Estimated waveforms mean and boundaries µ±2σ for the auditory
evoked responses using the proposed model.
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default value used by the MNE software), and (2) the `21 mixed norm regular-
ization introduced in [43] also using a leadfield matrix with ρ = 6 mS

S .
We can see in Fig. 5.16 that out of the three models, the solution found

by our method is the one that best agrees with the clinically expected solution
of finding the activity focused on the auditory cortices whereas the other two
spread the activity over several dipoles around the area. In addition, the MMSE
estimator of the skull conductivity is ρ̂ = 10.6 mS

S , corresponding to a ratio of 31
between the scalp and skull conductivities. This shows that this ratio is consid-
erably lower than the value of 80 typically used in earlier research [59] and in
agreement with recent studies [60, 90].

The estimated waveforms are presented in Fig. 5.17, where we can see the
similarities of the estimated waveforms. However, the proposed method con-
centrates the activity of several dipoles in the same one. The different wave-
forms detected by our algorithm are presented separately in Fig. 5.18 where
the mean value for each activation and the confidence intervals (mean ± two
standard deviations) are displayed. We can see that the two dipoles located in
the auditory cortices have most of their activity concentrated in strong peaks
located around 90 ms after the stimulus, as it is clinically expected. The his-
tograms of the sampled variables are shown in Fig. 5.19.

The potential scale reduction factors (PSRFs) [71] for the experiments are
shown in Fig. 5.20, showing the good numerical convergence of the proposed
partially collapsed Gibbs sampler.

In summary, the proposed method is able to concentrate the brain activ-
ity more strongly in the auditory cortices (where it is expected to be) than the
other two methods and estimates a value of ρ that is more compatible with the
findings of recent studies than the default value used by the MNE software.

5.6.3 COMPUTATIONAL COST

The price to pay with the good performance of the proposed method is its com-
putational complexity. Using Matlab implementations in a modern Xeon CPU
E3-1240 processor, each simulation for the single dipole synthetic data experi-
ments was processed on average in 96.1 seconds by the proposed model, 51.29
seconds by the default-ρ model and 23.8 seconds by Vallaghé’s method. This is
a common disadvantage of Bayesian methods when compared with optimiza-
tion techniques.
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5.7 CONCLUSION

This chapter investigated a new hierarchical Bayesian model for estimating the
skull conductivity jointly with the brain activity directly from M/EEG measure-
ments. A polynomial approximation of the leadfield matrix was used. The re-
sults of the proposed method were compared with the ones obtained with a
fixed-conductivity model, showing that the proposed model is able to better
estimate the underlying brain activity due its better flexibility. This improved
performance was particularly observed when the value of the skull conductivity
used in the fixed-conductivity model was far away from its ground truth value
or in the presence of multiple dipoles. In addition, the proposed method was
compared to two different optimization techniques introduced in [65] and [63].
Our method was shown to provide results of similar or better quality without
requiring a single active dipole or knowledge of the active dipole positions in
advance. Our algorithm was also applied to an auditory evoked response real
dataset, showing that estimating the skull conductivity improves the quality of
the reconstruction when compared with the fixed-conductivity model and with
the `21 mixed norm regularization.



124

CHAPTER 6

CONCLUSION AND FUTURE WORK

Contents
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 CONCLUSIONS

M/EEG is a powerful non-invasive technique that serves as a crucial tool in the
analysis of several medical conditions including epilepsy. It has a much higher
temporal resolution than other techniques such as fMRI but it has a lower spa-
tial resolution. Due to this, a number of algorithms have arisen aiming to im-
prove the spatial resolution of M/EEG in order to make it a more valuable tool
for doctors. This is done by solving the source localization problem, that aims
to estimate brain activity from the measurements. The main issue is that source
localization is an ill posed inverse problem and, as such, admits an infinite
number of solutions. Thus, in order to alleviate the issue, it is necessary to
apply a regularization that promotes realistic properties of the solution of the
inverse problem. An additional problem in source localization is that the head
operator, although typically assumed to be completely known by most of the
algorithms, can present uncertainties that significantly affect the quality of the
brain activity restoration.

In this PhD, we have investigated several hierarchical Bayesian models that
aim to solve the source localization problem. In Chapter 3 we developed a first
model that promoted sparsity of the brain activity to solve the M/EEG source
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localization problem. More precisely, a Bernoulli-Laplace prior was assigned to
the brain activity corresponding to an `0 + `1 regularization. This model was
shown to provide competitive results when compared to the more traditional
sLoreta and weighted `1 algorithms. In addition, it was also able to estimate
its hyperparameters automatically, which is a very interesting property. How-
ever, this initial model had some drawbacks. From a theoretical point of view,
it failed to exploit the temporal structure of the data and, from an implementa-
tion point of view, the direct sampling of the dipole amplitudes resulted in an
algorithm that was several orders of magnitude slower than optimization algo-
rithms.

In order to improve our first model, we proposed to take advantage of the
fact that the dipoles that are active or inactive in the brain are not likely to
change in a millisecond scale. Based on this observation, we assigned a mul-
tivariate Laplace-Bernoulli prior to the brain activity (corresponding to an `20

mixed norm regularization) that forced all the time samples of the same dipoles
to be either jointly active or inactive. In addition, two other modifications were
implemented to improve the sampling algorithm. The first one was the intro-
duction of a latent variable that made the conditional distributions of the pos-
terior distribution of interest much easier to sample. The second one was the
introduction of Metropolis-Hastings moves allowing active dipoles to be moved
in an appropriate neighborhood. Both modifications accelerated the algorithm
speed in several orders of magnitude. The resulting algorithm was compared
with the weighted `21 mixed norm regularization, showing much better results
in detecting non-zeros with synthetic data. Using real data, its results were
compared with several state-of-the-art algorithms, showing consistency with
expected results.

Finally, uncertainties in the operator were considered. Even though most
state-of-the-art techniques assume the head operator to be perfectly known, in
reality it depends on several physical parameters. Some of these parameters
can be known with a good precision (such as the position of the electrodes or
the conductivity of the scalp) whereas others cannot. In particular, the con-
ductivity of the skull has been shown to vary strongly among subjects and to
affect the estimated brain activity significantly. Therefore, we have investigated
an extended Bayesian model to accounts for uncertainties in the skull conduc-
tivity, aiming to estimate it jointly with the brain activity. This resulted in the
algorithm presented in Chapter 5. The proposed approach models the head
operator as a polynomial matrix depending upon the skull conductivity. Ran-
dom walk Metropolis-Hastings moves were then used to sample the skull con-
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ductivity. The algorithm was compared with other state-of-the-art algorithms
that allow us to estimate the skull conductivity jointly with the brain activity,
showing that it is able to obtain results of similar or better quality while being
applicable to more general situations.

6.2 FUTURE WORK

The work conducted during this PhD could be continued in the frame of several
prospects. On the short term we have two interesting ideas to pursue:

Accelerate the sampling efficiency
The model presented in Chapter 4 provides good results but is still signif-
icantly slower than optimization algorithms (with the noticeable advan-
tage of being able to estimate its hyperparameters directly from the data)
due to the iterative MCMC sampling algorithm. It would be very interest-
ing to consider alternative techniques trying to maximize the posterior
distribution of our Bayesian model. For instance, the authors have tried
replacing algorithm 4.1 by a message passing method. To develop our
message passing algorithm, the Generalized Approximate Message Pass-
ing (GAMP) model presented in [91] was adapted to use a multivariate
Bernoulli-Laplace prior for X . The algorithm was tested with synthetic
data with some interesting results. If the operator used H has columns
that are not very correlated (for instance, if the operator columns have
been generated independently), the algorithm is able to obtain the same
or even better results than the algorithm in Chapter 4 with a significant
reduction of the execution time, finding the correct non-zero positions
in a very small amount of iterations. However, if there is a high corre-
lation between the columns of the operator, the algorithm tends to get
stuck and overestimate several correlated columns to be “active" at the
same time. Unfortunately, due to the fact that spatially close dipoles gen-
erate very similar M/EEG measurements, head operators have columns
that are generally highly correlated. As a consequence, the message pass-
ing method developed does not work for M/EEG source localization. We
think that trying to improve the GAMP algorithm to avoid this problem
would be an interesting research topic.

Application of Bernoulli-Laplace models to other inverse problems
Even though the main focus of the PhD was to solve the M/EEG source
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localization problem, the models and algorithms that have been devel-
oped are not restricted to this application. The model presented in Chap-
ter 4 could be used as an `20 regularization-like technique for any inverse
problem characterized by a sparse solution. For instance, we have started
some work in compressive spectral imaging (CSI). The CSI problem con-
sists in recovering the full spatial and spectral information of a scene
from a significantly undersampled set of random projections acquired
by a compressive spectral imager, such as the Coded Aperture Snapshot
Spectral Imaging (CASSI) [92, 93]. For significant undersampling rates,
the resulting inverse problem is ill-posed and requires a regularization to
have a unique solution. One of the most common regularizations is pro-
moting the hyperspectral image to be sparse in a given basis [94]. The
quality of the reconstruction is further improved if other properties of
natural images are included in the regularization such as their high de-
gree of local structure similarity [95]. In [96] we introduced a hierarchical
Bayesian model for solving the CASSI problem. Our model promoted the
solution to be sparse in a selected wavelet basis and smooth in the image
domain. Experiments showed that the results obtained with our method
were competitive with state-of-the-art algorithms. The priors used in the
model were very similar to the ones used in the model of Chapter 4 of
the present thesis. However, sparsity was promoted using a multivariate
Laplace distribution (instead of the multivariate Bernoulli-Laplace dis-
tribution used in the thesis). This was due to the fact that in the CASSI
problem the high dimensionality of the problem did not allow us to im-
plement the multivariate Bernoulli-Laplace prior distribution as easily
as for the M/EEG source localization problem. It would be interesting
to follow this track to make it possible to use the multivariate Bernoulli-
Laplace prior for high dimensionality problems. In addition, the polyno-
mial interpolation used for the operator in Chapter 5 could be used in any
inverse problem where the operator is not perfectly known and depends
on a scalar variable. To summarize, we think that it should be interest-
ing to try to apply the Bayesian models investigated in this PhD thesis to
different types of inverse problems to see how they perform.

whereas in the long term we would like to

Find ways of representing the operator using more than one scalar variable
In Chapter 5 we used a polynomial matrix to represent the head operator.
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This allowed us to sample the skull conductivity easily and provided in-
teresting results. However, the proposed method is only applicable if the
head operator depends on a single scalar parameter. If we want to model
an operator that depends on two or more scalar parameters, interpolat-
ing it with multidimensional polynomials is a more challenging problem.
It would be interesting to pursue other ways of modeling the operator as
a function of several scalar parameters in a more tractable way. We are
for instance thinking to using splines interpolations that have been used
sucessfully in many applications [97].
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APPENDIX A

CONDITIONAL PROBABILITY

DISTRIBUTIONS DERIVATIONS

A.1 INTRODUCTION

In this appendix we will show the algebraic derivation of the conditional prob-
ability distributions of the associated models presented in Chapter 4 (the struc-
tured sparsity model) and Chapter 5 (the skull conductivity joint estimation
model).

A.2 STRUCTURED SPARSITY MODEL

A.2.1 POSTERIOR DISTRIBUTION

As specified in Chapter 4, the posterior distribution associated with the pro-
posed model is:

f (Y ,σ2
n ,X ,z, a,τ2,ω) = f (Y |X ,σ2

n) f (X |τ2,z,σ2
n) f (z|ω) f (τ2|a) f (σ2

n) f (a) f (ω)
[A.1]

From it we can derive the conditional distributions of all the associated pa-
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rameters and hyperparameters using Bayes’ theorem:

f (zi ,xi |Y ,X−i ,σ2
n ,τ2

i ,ω) ∝ f (Y |X ,σ2
n) f (xi |τ2

i , zi ,σ2
n) f (zi |ω) [A.2]

f (τ2
i |xi ,σ2

n , a, zi ) ∝ f (xi |τ2
i , zi ,σ2

n) f (τ2
i |a) [A.3]

f (a|τ2) ∝ f (τ2|a) f (a) [A.4]

f (σ2
n |Y ,X ,τ2,z) ∝ f (Y |X ,σ2

n) f (X |τ2,z,σ2
n) f (σ2

n) [A.5]

f (ω|z) ∝ f (z|ω) f (ω) [A.6]

A.2.2 CONDITIONAL DISTRIBUTIONS

Conditional distribution of τ2
i

The conditional distribution of τ2
i is

f (τ2
i |xi ,σ2

n , a, zi ) ∝ f (xi |τ2
i , zi ,σ2

n) f (τ2
i |a) [A.7]

that is equal to

f (τ2
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i IT
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[A.8]

Based on the development of [84] it can be seen that the conditional distri-
bution of τ2

i is a generalized inverse gaussian when zi = 1 and a gamma distri-
bution when zi = 0

f (τ2
i |xi ,σ2

n , a, zi ) =
 G

(
τ2

i

∣∣∣T+1
2 , vi a

2

)
if zi = 0

GIG
(
τ2

i

∣∣∣1
2 , vi a, ||xi ||2

σ2
n

)
if zi = 1.

[A.9]

Conditional distribution of zi and xi

In our model zi and xi are jointly sampled from

f (zi ,xi |Y ,X−i ,σ2
n ,τ2

i ,ω) ∝ f (Y |X ,σ2
n) f (xi |τ2

i , zi ,σ2
n) f (zi |ω) [A.10]

that is equal to



131
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The marginal distribution of zi is of the form

f (zi |Y ,X−i ,σ2
n ,τ2

i ,ω) =
∫

f (zi ,xi |Y ,X−i ,σ2
n ,τ2

i ,ω)dxi ∝ k0δ(zi )+k1δ(zi −1)

[A.12]
with
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∫
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This implies that zi has the following Bernoulli distribution

f (zi |Y ,X−i ,σ2
n ,τ2

i ,ω) =B
(
zi

∣∣∣ k1

k0 +k1

)
. [A.15]

To find the value of k1 we calculate the minus logarithm of the integrand

−log
(

exp
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and express it as a sum for the different values of t
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If we denote hi each column of the operator H we can express term number t
of the sum as

1
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By denoting Dt

i =Y t −∑
j 6=i h
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j and expanding this expression we have
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Matching the terms of the previous expression with
(x t
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Summing over all time samples and applying the function exp(−x) (to com-
pensate the steps done in A.16 and A.18) results in
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We can calculate the final value of k1 by combining [A.14] and [A.24]
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Using [A.11] and [A.24] we obtain the conditional distribution of xi

f (xi |zi ,Y ,X−i ,σ2
n ,τ2

i ) =
{
δ(xi ) if zi = 0

N
(
xi

∣∣∣µi ,σ2
i IT

)
if zi = 1.

[A.26]

Conditional distribution of a
The conditional distribution of a is

f (a|τ2) ∝ f (a)
N∏

i=1
f (τ2

i |xi ,σ2
n , a) [A.27]
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which corresponds to the following gamma distribution

f (a|τ2) =G
(
a
∣∣∣N (T +1)

2
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∑
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2
i ]

2
+β

)
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Conditional distribution of σ2
n

The conditional distribution of σ2
n is

f (σ2
n |Y ,X ,τ2,z) ∝ f (Y |X ,σ2

n) f (X |τ2,z,σ2
n) f (σ2

n) [A.30]
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f (σ2
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Denoting Ik = {i : zi = k} for k = {0,1} and using the identity

N∏
i=1

[
(zi −1) f (x)+ zi g (x)

]
= ∏

i∈I0

f (x)
∏
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g (x) [A.32]

we can express this by

f (σ2
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The previous expression leads to
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which corresponds to the following inverse gamma distribution
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Conditional distribution of ω

The conditional distribution for ω is

f (ω|z) ∝ f (z|ω) f (ω) [A.36]

f (ω|z) ∝ 10,1

N∏
i=1

[
δ(zi )(1−ω)+δ(zi −1)ω

]
[A.37]
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where 1[0,1] represents a function that is 1 for 0 < ω < 1 and 0 elsewhere.
Using the identity [A.32] this can be shown to be equal to

f (ω|z) ∝ 10,1(1−ω)N−||z||0ω||z||0 ∏
i∈I0

δ(zi )
∏
i∈I1

δ(zi −1) [A.38]

which corresponds to the following Beta distribution

f (ω|z) =Be
(
ω

∣∣∣1+||z||0,1+N −||z||0
)
. [A.39]

A.3 SKULL CONDUCTIVITY JOINT ESTIMATION MODEL

A.3.1 POSTERIOR DISTRIBUTION

The associated posterior distribution for the model introduced in Chapter 5 is:

f (Y ,σ2
n ,X̄ ,z, a,τ2,ω,ρ) ∝ f (Y |X̄ ,σ2

n ,ρ) f (X̄ |τ2,z,σ2
n) f (z|ω) [A.40]

f (τ2|a) f (σ2
n) f (a) f (ω) f (ρ)

It is possible to derive the conditional distributions of the parameters and
hyperparameters using Bayes’ theorem:

f (zi ,x̄i |Y ,X̄−i ,σ2
n ,τ2
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n ,ρ) f (x̄i |τ2
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n) f (τ2
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f (a|τ2) ∝ f (τ2|a) f (a) [A.43]

f (σ2
n |Y ,X̄ ,τ2,z,ρ) ∝ f (Y |X̄ ,σ2

n ,ρ) f (X̄ |τ2,z,σ2
n) f (σ2

n) [A.44]

f (ω|z) ∝ f (z|ω) f (ω) [A.45]

f (ρ|Y ,X̄ ,σ2
n) ∝ f (Y |X̄ ,σ2

n ,ρ) f (ρ) [A.46]

A.3.2 CONDITIONAL DISTRIBUTIONS

Due to the fact that the likelihood and the priors of this model are the same that
were used in the previous model setting vi = 1 and changing H for H̄(ρ) and
X for X̄ , the derivations of all the conditional distributions of the model pa-
rameters and hyperparameters are identical to the ones of the previous model.
The only exception to this being the newly introduced parameter ρ.
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Conditional distribution of ρ
The conditional distribution of ρ is

f (ρ|Y ,X̄ ,σ2
n) ∝ f (Y |X̄ ,σ2

n ,ρ) f (ρ) ∝ exp
(
− ||H̄(ρ)X̄ −Y ||2

2σ2
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1[ρmi n ,ρmax ]
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