
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Robotique

Présentée et soutenue par :
M. JOSEPH MIRABEL
le mardi 21 février 2017

Titre :

Unité de recherche :

Ecole doctorale :

Manipulation planning for documented objects

Systèmes (Systèmes)

Laboratoire d'Analyse et d'Architecture des Systèmes (L.A.A.S.)
Directeur(s) de Thèse :
M. FLORENT LAMIRAUX

Rapporteurs :
M. EMMANUEL MAZER, INRIA GRENOBLE - RHONE ALPES

M. FRANK VAN DER STAPPEN, UNIVERSITEIT UTRECHT PAYS-BAS

Membre(s) du jury :
1 M. JEAN-PAUL LAUMOND, LAAS TOULOUSE, Président
2 M. FLORENT LAMIRAUX, LAAS TOULOUSE, Membre
2 M. MICAEL MICHELIN, NEIKER TECNALIA, Membre

Honoré de Balzac
Il y a deux Histoires: l’Histoire officielle,

menteuse qu’on enseigne, l’Histoire “ad

usum delphini” ; puis l’Histoire secrète,

où sont les véritables causes des évène-

ments, une Histoire honteuse.

Remerciements

Les travaux de recherche dont ce manuscrit fait l’objet n’auraient pu voir le jour sans

le concours de maintes personnes. Parce qu’il m’est plus facile de leur exprimer ma

gratitude dans ma langue maternelle, je préfère employer dans cette page la langue

de Molière à celle de Shakespeare.

La première personne que je tiens à remercier est Florent Lamiraux, mon di-

recteur de thèse. Sa disponibilité associée à la confiance qu’il m’a accordé ont sans

nul doute contribué à rendre notre travail commun intéressant et fructueux.

Je remercie Emmanuel Mazer et Frank Van Der Stappen de m’avoir fait

l’honneur d’être les rapporteurs et membres de Jury de soutenance de cette

thèse. Leurs nombreuses remarques et commentaires m’ont permis d’améliorer ce

manuscrit d’une part et de prendre du recul quant à ses potentielles applications

d’autre part.

Merci à Jean-Paul Laumond et Micael Michelin d’avoir accepté de faire partie

du Jury de soutenance.

Je souhaite remercier chaleureusement les anciens et actuels membres de l’équipe

GEPETTO. De par les discussions que j’ai pu avoir avec chacun-e, l’équipe a été

à tour de rôle un soutien, une source d’inspiration et de motivation ainsi qu’un

environnement de travail amical et enrichissant.

Pour finir, un grand merci à toutes les personnes avec qui j’ai vécu durant ces

années pour leur soutien, sous quelque forme qu’il fut exprimé. Je pense notamment

à ma famille, mes colocataires et Isabelle.

Contents

v

ix

xi

xiii

Contents

List of Figures List

of Tables List of

Algorithms

Introduction 1
Problem statement . 1

Contributions . 2

Chapter organization . 3

Publications . 4

1 State of the art 5
1.1 Motion planning . 5

1.1.1 Other problem formulations 8

1.1.2 Constrained motion planning 9

1.1.3 Motion planning for humanoid robot 12

1.2 Task planning . 13

1.3 Manipulation planning . 14

1.3.1 Multi-layer manipulation planners 15

1.3.2 Single layer planners . 16

2 Constrained motion planning 19
2.1 Notations and definitions 20

2.1.1 Configuration space . 20

2.1.2 Constraints . 22

2.1.3 Path . 24

2.2 Continuous path on manifolds . 25

2.2.1 Newton-Raphson algorithm 25

2.2.2 Continuity of the Newton-Raphson iteration function 26

2.2.3 Two path projection algorithms 27

2.2.4 Continuous planning algorithm 30

2.3 Static stability . 35

2.3.1 Static stability constraint . 35

2.3.2 Integration to a motion planner 37

vi Contents

3 Manipulation planner 41
3.1 Constraint Graph . 42

3.1.1 States and transitions . 42

3.1.2 Problem statement . 46

3.1.3 Manipulation RRT . 47

3.2 Crossed foliation issue . 50

3.2.1 Example . 50

3.2.2 Conditions . 51

3.2.3 Crossed foliation transition 56

3.3 Generalized reduction property . 57

3.3.1 Generalized reduction property 57

3.3.2 Grasps and placements . 62

3.3.3 Limitations . 63

3.4 Narrow passages . 63

3.4.1 Low sampling probability . 63

3.4.2 Way-point transition . 65

3.4.3 Experimental results . 66

4 Affordance 69
4.1 Documented objects . 69

4.1.1 Grippers and handles . 70

4.1.2 Contact surfaces . 71

4.2 Constraint graph generation . 73

4.2.1 Building the states . 74

4.2.2 Transition detection . 75

5 Results 79
5.1 Humanoid Path Planner . 79

5.1.1 Library architecture . 80

5.1.2 Results . 81

5.2 Manipulator arm . 84

5.2.1 Rearrangement planning . 84

5.2.2 Tool use inference . 85

5.3 Humanoid robots . 86

5.3.1 Quasi-static walking motion 86

5.3.2 Romeo holding a placard . 90

5.3.3 Grasping behind a door . 91

Conclusion 93
Perspectives . 93

A Bound of the Hessian matrix of a kinematic chain 95
A.1 Notations . 95

A.2 Jacobian . 95

Contents vii

A.3 Hessian . 96

A.3.1 Element of the Hessian matrix 96

A.3.2 Bounds . 97

101

103

111

B Static stability constraints

Bibliography

Glossary

Notations 113

List of Figures

2.1 Path projection example with UR5 robot 20

2.2 Quaternion interpolation . 21

2.3 2D illustration of discontinuous path projection 25

2.4 Progressive path projection algorithm 28

2.5 Global path projection algorithm . 30

2.6 Path projection results with UR5 robot 33

2.7 HRP2 opening a door . 34

2.8 Non-coplanar friction-less multi-contact criterion 35

2.9 Robot HRP-2 quasi-statical stairs climbing 38

3.1 Graph of Constraint for a pick-and-place problem 41

3.2 Illustration of grasp and placement constraints 44

3.3 Example of manipulation path . 45

3.4 Steps of the Manipulation-RRT algorithm 48

3.5 Grasp and placement with unique grasp 50

3.6 The crossed foliation issue . 51

3.7 Biased projection . 53

3.8 Reachability of configurations generated by Manipulation-RRT . . . 54

3.9 Graph of Constraint with crossed foliation transitions 56

3.10 Counter examples to the reduction property 58

3.11 Small Space Manipulability . 59

3.12 Narrow passages with a simple example 64

3.13 Way-point transition with a pre-grasp 64

3.14 Way-point transition in the configuration space 65

3.15 Way-point transition with pre-grasp and pre-placement 66

3.16 Benchmark of way-point transition using UR5 66

4.1 Documentation of gripper, handle and contact surfaces 70

4.2 Distance between polygons . 72

5.1 Robot programming with HPP . 83

5.2 Rearrangement planning with Baxter robot 84

5.3 Constraint graph for Rearrangement Planning benchmark 85

5.4 PR2 robot picks up a box in a drawer 86

5.5 Graph of Constraint to pick up a box in a drawer 87

5.6 Robot HRP-2 quasi-static walk on flat floor 88

5.7 Robot HRP-2 quasi-static stepping motion 88

5.8 Constraint graph for quasi-static walking 89

5.9 Robot Romeo with two continuous grasps. 90

5.10 Robot Romeo puts a box in a fridge. 91

x List of Figures

B.1 Schematic model of a legged robot. 101

List of Tables

2.1 Benchmark of path projection algorithms 32

2.2 Benchmark of path projection algorithms with UR5 34

2.3 Benchmark of friction-less multi-contact equilibrium criterion 38

3.1 Benchmark of way-point transitions with UR5 67

4.1 Constraints of way-point states . 75

4.2 Way-point transition constraints . 76

5.1 Types of joint in the HPP library . 80

5.2 Comparison of HPP and OMPL . 82

5.3 Benchmark of rearrangement planning with Baxter robot 85

5.4 Benchmark of planning for Romeo holding a placard 90

A.1 Upper bound for σ(v, χ, κ). 97

A.2 Upper bound for σ(ω, χ, κ). Omitted combination are null. 98

List of Algorithms

1.1 Constrained-RRT . 11

1.2 Standard RRT Extension . 12

2.1 Progressive continuous projection . 29

2.2 Global continuous projection . 31

2.3 Continuous Constrained RRT extension 32

3.1 Manipulation-RRT . 47

3.2 Continuous constrained RRT extension using the Constraint Graph . 49

3.3 Connect two configuration with the Graph of Constraint 49

4.1 Generate the constraint graph . 74

4.2 Make a state of the constraint graph 75

4.3 Make a transition - Short version . 76

4.4 Make a transition - Full version . 77

Introduction

Robotic systems first reached the industry in 1962 in a General Motors automobile

factory. Since then, their number has not ceased to increase. However, most of

these robots are specifically designed for a small set of similar tasks and cannot

achieve other tasks. Installing, programming and maintaining them is very costly

and they are usually not suited to work with humans for safety reasons. This

three facts make them inaccessible to small-sized factories. These factories need

affordable robots that can be adapted or programmed for a different task when the

production line changes.

Motion and manipulation planning are key areas to reduce these costs. As

fields of research, they have raised interest since the last fifty years. Generally

speaking, progress in both fields have mostly not yet reached robots in factories. A

few recent start-up companies, such as Rethink Robotics, Mujin or Delft Robotics,

work on robots with sufficient capabilities to achieve a wide range of tasks and to

be reprogrammed to accomplish various tasks sequentially. Also, many robots have

been made safer and share the environment with humans. However, their autonomy

and robustness to errors is rather limited. Programming them to react to unlikely

or unexpected events, to complex tasks still requires a lot of engineering skills when

possible.

Problem statement

This thesis addresses the manipulation planning problem with an emphasis on three

aspects.

The first aspect concerns the formulation of the manipulation problem. While

motion and manipulation planning are rather easy tasks for human beings, the

general manipulation planning problem is still out of reach in reasonable time for

computers. This thesis explores the idea that, with guidance information provided

by a human, the problem becomes accessible for computers. To be useful, it must

be an easy task for a human to produce it and to translate it into data a planning

algorithm can understand. For instance, human beings easily analyse geometrical

information and understand how an object can be grasped or where to release it.

To integrate this affordance information in the specification of the manipulation

planning problem, the formulation of the problem must model it. In this context,

it is a key aspect to understand the structure of the manipulation problem and

formulate it as a model comprehensible both by computers and human beings.

The second aspect concerns the resolution of the problem formulated above.

Manipulation planning is known to be hard because it combines the search of the

sequence of tasks and the motions to accomplish each of these tasks. For instance,

to move an object with a robot in a simple scenario, one has to discover a motion

to go and pick up the object, a second motion to move it to its goal position while

2 Introduction

holding it and a third move the robot. However, the way the robot grasps the

object is an internal variable of the problem and is to be decided by the planning

algorithm itself. Even in this simple scenario, each task has an infinite number of

ways of being achieved and potentially influences all other tasks.

The third and last aspect concerns the variety of robots considered. To be

applicable in a wide variety of industrial scenarios, several types of robots ought

to be considered. Manipulator arms are the most common. However, cable robots

are promising for their large working space. Parallel robots can be both accurate

and fast. Mobile manipulators extends the manipulator workspace. Finally, legged

robots, such as humanoid robots, have high capabilities of motion. Each of these

robots have their own constraint. It is necessary to abstract these constraints to

handle these robots in a unified manner.

To summarize, this thesis goals are the following.

• Model the manipulation planning problem which takes into account guidance

information. This information is provided as input by a human.

• Propose an algorithm to solve the above problem.

• Abstract the problem so that it handles in a unified manner robots with

various capabilities.

Contributions

This thesis tackles the problem stated above both from a theoretical and a practical

point of view. It contains four main theoretical contributions and four algorithmic

contributions. Their relation with the problem is explained below. Another impor-

tant outcome is the development of the Humanoid Path Planner (HPP) open-source

library.

First, the constrained motion planning problem is addressed. This is a necessary

step to express the manipulation planning with constraints. Most state-of-the-art

approaches to this problem fail to guarantee the continuity of the solution. Hauser

[2013] proposed an algorithm to check for discontinuities. I show that this solution

is however not suited to constrained motion planning and I propose the Progressive

path projection and Global path projection algorithms as efficient methods to gen-

erate continuous constrained paths. They emerge from a theoretical analyse of the

Newton-Raphson algorithm. They rely on a per iteration continuity condition, easy

to verify in practice. I propose an updated version of the Constrained-RRT [Dal-

ibard et al., 2013] which integrates these algorithms.

Next, the manipulation planning problem is addressed. I consider a problem

with robots and objects. The objects can be free-floating, articulated or static.

An analyse of the manipulation rules naturally leads to the definition of validation

constraint and parametrization constraint. From these definitions, I model the

interaction between robots and objects - static or movable - with the Graph of

Constraint, whose vertices are called states and edges are called transitions. This

3

model extends and formalizes notions presented by [Dalibard et al., 2010, Berenson

et al., 2011, Jentzsch et al., 2015, Hauser and Ng-Thow-Hing, 2011]. I propose

the Manipulation-RRT (M-RRT) planning algorithm. The Graph of Constraint

models the structure of the Cartesian product of the configuration spaces of robots

and objects, which allows the M-RRT to plan manipulation paths.

Then, I extend the analyse of the foliated structure of configuration space

by Siméon et al. [2004]. In their analyse, they introduced the reduction prop-

erty which reduces the complexity of the problem of a robot manipulating one

free-floating object. I generalize it as the generalized reduction property to take into

account articulated objects and objects manipulated by two grippers. The general-

ization relies on the notion of manipulability. An analyse of the configuration space

also leads me to identify the crossed foliation issue. Randomized manipulation

planners that do not handle this issue are unable to solve manipulation problems

when two foliations cross each other. This issue had never been identified before

because the reduction property allows to bypass it in pick and place scenarios with

one object. From a practical perspective, I introduce two new types of transition

in the Graph of Constraint. The first is the crossed foliation transition. It models

the crossed foliation transition and enable the M-RRT to address the above issue.

The second is the way-point transition. It addresses narrow passage issues intrinsic

to manipulation problems.

Finally, a simple documentation for robots, and objects is introduced. This

documentation provides a geometrical description of possible interactions. Thanks

to the documentation, I propose an algorithm to automatically build a Graph of

Constraint. The graph automatically built is filled with crossed foliation transition

and way-point transition where these are required. This means that the simple

documentation allows to easily define a manipulation problem in a way that is

understood by the M-RRT.

Chapter organization

The chapters of this thesis are organized as follows. Chapter 1 presents the state of

the art in motion and manipulation planning. It also briefly presents task planning.

Chapter 2 recalls some mathematical concepts and introduces two algorithms to

validate the continuity of constrained path. It proposes a variant of the Constrained-

RRT and a method to achieve constrained motion planning in the set of quasi-static

configurations.

Chapter 3 describes how the manipulation problem is modelled and defined.

It introduces the Graph of Constraint as a way to represent the structure of the

configuration space. Then it describes the M-RRT planning algorithm and shows

how issues arising from the structure of the configuration space are solved.

Chapter 4 describes a documentation of robots, objects and environments. It

introduces an algorithm to automatically generate a Graph of Constraint from this

documentation.

4 Introduction

Chapter 5 briefly presents the HPP library, as an outcome of this thesis. It also

shows some simulations and benchmarks of the presented approach. It has been

applied to a wide range of robots in various environments.

Finally, the last chapter points out the conclusions of this thesis and some

possible future works.

Publications

Joseph Mirabel and Florent Lamiraux. Manipulation planning: addressing the

crossed foliation issue. In IEEE International Conference on Robotics and Au-

tomation (ICRA), June 2017.

Joseph Mirabel, Steve Tonneau, Pierre Fernbach, Anna-Kaarina Seppälä, Mylène

Campana, Nicolas Mansard, and Florent Lamiraux. HPP: a new software for con-

strained motion planning. In IEEE/RSJ Intelligent Robots and Systems (IROS),

October 2016. 15, 79

Chapter 1

State of the art

Contents
1.1 Motion planning . 5

1.1.1 Other problem formulations 8

1.1.2 Constrained motion planning 9

1.1.3 Motion planning for humanoid robot 12

1.2 Task planning . 13

1.3 Manipulation planning . 14

1.3.1 Multi-layer manipulation planners 15

1.3.2 Single layer planners . 16

This chapter provides an overview of existing solutions to the problems related to

manipulation planning. Section 1.1 focuses on motion planning and emphasizes the

elements which are essential to manipulation planning. Section 1.2 briefly describes

the task planning problem. Section 1.3 describes existing approaches to integrate

task and motion planning.

1.1 Motion planning

Motion planning consists of finding a collision-free path from an initial robot con-

figuration to a desired goal. It is a continuous geometrical problem. Among the

first formulations, the piano’s mover problem [Schwartz and Sharir, 1986], recalled

in Definition 1.1, shows the case where the robot is a single unarticulated body.

The problem has found industrial applications for disassembly problems [Laumond,

2006]. However, motion planning becomes both more interesting and more complex

when considering articulated robots.

Definition 1.1 (Piano’s mover problem). Given a robot, a set of static obstacles

and an initial and a goal configuration of the robot, find a collision-free path for the

robot from the initial to the goal configuration.

The first main contribution to the problem is the definition of the Configuration

Space, denoted by CS, introduced by Lozano-Perez [1983]. It is the Cartesian

product of the interval of definition of each joint parameter. For a robot with n

degrees of freedom (DoFs), CS is a n-dimensional manifold that contains all the

configurations of the robot. It represents the pose of each body of the robot as a

6 Chapter 1. State of the art

single point so a trajectory of the robot is a continuous path in CS. The problem is

thus transformed into finding a trajectory for a point in CS instead of a trajectory

of several bodies in the Euclidean space.

The two following subspaces of CS are commonly used:

• CSobs: the subset of CS for which at least one body of the robot collides with

an obstacle or with another robot body.

• CSfree: the subset of collision-free configurations, i.e. CSfree = CS \ CSobs.

It is an open set1.

The motion planning problem can be stated as finding a continuous path p(t)

from a start configuration p(0) = qinit to a goal configuration p(1) = qgoal such

that ∀t ∈ [0, 1] ,p(t) ∈ CSfree.

Three classes of methods tackling this problem can be found in the literature: de-

terministic approaches, randomized approaches and optimization-based approaches.

The reader may refer to the books of Latombe [1991], Choset [2005], LaValle [2006]

for a broad overview of existing methods.

Deterministic methods Deterministic methods always compute the same valid

solution. Methods such as cellular decomposition, Voronoi diagrams, visibility

graphs and Canny’s algorithm rely on the construction of an explicit and exact

representation of CSobs to build a graph, or roadmap, that represents the connec-

tivity of CSfree [Canny, 1988, O’Rourke and Goodman, 2004, Indyk and Matousek,

2004]. Other approaches approximate CS by discretizing it. Motion planning is

then reduced to a search in a graph. Although complete, these approaches quickly

become intractable as the dimension of CS increases.

Algorithms based on potential field scale well to high-dimensional configuration

space [Khatib, 1986]. However, they are in general not complete because the planner

can be trapped in a local minima. Harmonic functions allow to formulate a potential

with only one local minimum, which is the global minimum. However, in the general

case, such functions are expressed only through a differential equation and the

explicit solution is not known.

Sampling based methods Sampling based methods randomly sample CS and

build a graph of configurations connected by collision-free paths. This graph is

usually called roadmap and approximates the connectivity of CSfree. Sampling

based algorithms are commonly classified in two groups: single query and multiple

query algorithms.

Multiple query algorithms work in two steps. They first build a roadmap that

represents as well as possible the connectivity of CSfree. Then, motion planning

1 This supposes that the configurations in contact are in CSobs. Indeed, let d(q) be the smallest
distance between bodies in configuration q. d(q) > 0 ⇐⇒ q ∈ CSfree. As d is continuous, CSfree

is open.

1.1. Motion planning 7

queries are solved by connecting the initial and final configurations to the previ-

ously computed roadmap. If the connectivity of CSfree is well captured during the

first step, the queries in the second step are not time consuming. Most popular

algorithms are Probabilistic RoadMaps (PRM) [Kavraki et al., 1996] and Visibility

PRM (V-PRM) [Siméon et al., 2000]. Instead of PRM, V-PRM tries to identify

configurations which add connectivity information to the roadmap. The resulting

roadmap is smaller, which makes proximity queries faster.

Single query algorithms do not seek to fully represent the connectivity of CSfree.

Instead they represent part of CSfree around the initial and, in some case, goal con-

figuration(s). A tree of configurations is grown by iteratively extending the nearest

neighbour of a randomly sampled configuration, towards this random configura-

tion. Although it is hard to give a brief summary of the existing algorithms, the

most famous family of algorithms is the variants of Rapidly exploring Random Tree

(RRT) [Lavalle, 1998].

Randomized algorithms are very efficient in solving high-dimensional problems.

However, they suffer the few following drawbacks.

• These algorithms are only probabilistically complete. It means that, if a so-

lution exists, the probability of finding one solution converges to 1 as the

number of iterations increases. However, if no solution exists, they will run

forever without detecting it.

• The solution path contains a lot of erratic motion and is most likely far from

optimal. Optimization is usually considered as a post-processing step. Never-

theless, variations that asymptotically converge towards the global minimum

solution path have been proposed, like PRM* and RRT* by Karaman and

Frazzoli [2011]. These solutions add a step to recompute the shortest path

between pairs of configurations in the roadmap. This “rewiring” step is of

constant time but nevertheless time-consuming.

• The time required to find a solution quickly increases with the presence of

narrow passages. This is due to the fact that it is unlikely to randomly

sample configurations in those passages. Some techniques prove to be efficient

in some cases, such as dimensionality reduction using a Principal Component

Analysis [Dalibard and Laumond, 2011] or the bridge test [Hsu et al., 2003].

• Zero volume sub-manifolds cannot be sampled randomly. Random sampling

is thus unable to solve problems where the set of feasible configurations is a

zero volume sub-manifold of CS. This is for instance the case of closed-loop

systems or humanoid robots. Constrained variant exists for most algorithms,

such as Constrained-RRT detailed in Section 1.1.2.

Optimization-based methods Optimization based methods formulate motion

planning as a trajectory optimization problem. Given a naive initial trajectory, pos-

sibly in collision, they iteratively pull the trajectory out of collision while optimizing

8 Chapter 1. State of the art

a cost. The optimization uses both a user-defined cost - path length, energy... - and

collision detection. Collision avoidance is transformed into a constraint of positive-

ness of the signed distance function. This function is defined as follows. A positive

distance corresponds to the shortest distance between non-colliding objects while a

negative one corresponds to the penetration between colliding objects.

The two main methods in the literature are Covariant Hamiltonian Optimiza-

tion for Motion Planning (CHOMP) [Ratliff et al., 2009] and Stochastic Trajectory

Optimization for Motion Planning (STOMP) [Kalakrishnan et al., 2011]. CHOMP

reduces the overall cost based on covariant gradient information. STOMP gener-

ates noisy trajectories to explore the space around the current trajectory. They are

then combined to produce an updated trajectory of lower cost. However, STOMP

cannot be expected to solve typical motion planning problems like the alpha puzzle

in a reasonable amount of time [Kalakrishnan et al., 2011].

1.1.1 Other problem formulations

The above defined motion planning problem does not cover all the situations where

motion planning for a robotic system is needed. So some variants of the original

motion planning problem have been studied in the literature. Some are briefly

presented here.

Optimal motion planning Generally speaking, motion planning does not seek

optimal solution but rather feasible solution. Optimization-based methods can only

prove local optimality, at the cost of possibly being trapped in infeasible local opti-

mum. However, some algorithms, like PRM* or RRT*, are guaranteed to converge

to the globally optimal solution.

Non-holonomic robots Some robotic systems cannot move in all directions. For

instance, the velocity of a car is always forward or backward. Its sidewise component

is always zero. To handle such cases, one has to design specific local planner, called

steering method. A steering method links two configurations without considering

obstacles. For a car, the optimal steering method was found by Reeds and Shepp

[1990].

Achieving a task It is often convenient to specify the goal as a set of robot

configurations instead of a single configuration. This set is often called a task.

For instance, the following is a useful goal set: robot hand must go to a specific

position with respect to the door handle. This specification is convenient because

many configurations can achieve the desired goal. Beyond convenience, reducing

the whole set of configurations achieving a goal to a subset of it - one or several

configurations - can make a feasible problem infeasible.

Constrained systems For many robotic systems, the set of feasible configura-

tions is a sub-manifold of CS. This is the case for closed-loop system, under-actuated

1.1. Motion planning 9

robots like humanoid robots, cable robots... It is also the case for robots subject to

constraints, like equilibrium constraint. Motion planning for these robots falls into

constrained motion planning. It is the focus of next section.

1.1.2 Constrained motion planning

For closed-loop systems, humanoid robots or under actuated robots, the feasible

configuration space is of the form {q ∈ CS | f(q) = 0}, where f represents the con-

straint, such as a loop closure constraint, an equilibrium constraint, etc. The set of

admissible configurations is defined only implicitly and it has measure zero in CS
when f is non trivial.

Formally, for a constraint f from CS to R
n such that a configuration q is feasible

if and only if f(q) = 0, the motion planning problem becomes finding a continuous

path p such that ∀t ∈ [0, 1] ,p(t) ∈ CSfree and f(p(t)) = 0.

Most approaches found in the literature tackle only a simpler version of this

problem. Berenson et al. [2009], Dalibard et al. [2013] have introduced constrained

versions of randomized planners but their algorithms do not guarantee continuity

of the solution path.

The following section explains how most methods, not considering continuity,

generate admissible configurations and paths. Then, I describe a method proposed

by Hauser [2013] to generate continuous constrained paths. The last section de-

scribes the Constrained-RRT.

1.1.2.1 Point-wise constraint satisfaction

All constrained motion planning algorithms need a method to generate configu-

rations that satisfy the constraint. In some rare case, the constraint satisfaction

problem is explicit. However in most cases, this problem only has an implicit for-

mulation, which is given below.

Definition 1.2 (Constraint satisfaction problem). Given a constraint error func-

tion f : CS 7→ R
n and q0 ∈ CS, find q ∈ CS such that f(q) = 0.

For practical reasons, the above problem is often relaxed by using a constraint

violation tolerance ε > 0. A configuration q satisfies the constraints if and only if

||f(q)|| ≤ ε.
Stilman [2010] proposes a comparison of several algorithms addressing this prob-

lem: Randomized Gradient Descent (RGD), Tangent Space Sampling (TS) and

Newton-Raphson (NR) (called First Order Retraction in the paper).

RGD and NR iteratively update the input configuration in order to decrease the

constraint violation ||f(q)||2. At each step, RGD randomly samples configurations

in the neighbourhood of the current configuration until it has found a configuration

with a lower constraint violation. NR uses the Jacobian of the constraint to improve

the configuration. TS projects the input configuration onto the tangent space of

the constraint at another configuration and then applies RGD.

10 Chapter 1. State of the art

NR and TS require differentiable constraints. Fortunately, for robotic appli-

cation, geometric constraints are differentiable and the Jacobian is explicit, as de-

tailed in Appendix A. NR tends to be preferred because it has better a success ratio

without being significantly slower [Stilman, 2010]. Moreover, it is a deterministic

algorithm so the result is repeatable. It can be written as a projector, as defined

below.

Definition 1.3 (Projector). A projector on constraint f(q) = 0 is a mapping P

from a subset DP of CS to CS such that

∀q ∈ DP , f(P (q)) = 0

This repeatability property of NR is essential. Indeed, non-deterministic algo-

rithms cannot be written as a projector so they cannot be continuous with respect

to the input configuration.

The continuity of a projector is a sufficient condition to ensure the continuity

of a constrained path. However, a projector is often only defined on a subset of CS
and is continuous on a subset of its interval of definition.

1.1.2.2 Constrained paths

Definition 1.4 (Continuous constrained path). A continuous constrained path p,

under constraint f , is a continuous mapping from [0, T] to CS such that

∀s ∈ [0, T] , f(p(s)) = 0

Let (q0,q1) ∈ CS2 and straight(q0,q1) : [0, 1] → CS be the linear interpo-

lation from q0 to q1. Most motion planning approaches build paths with basic

interpolation method between configurations, e.g. straight(q0,q1). However, in

the constrained case, this is not sufficient. The basic interpolation will most likely

not satisfy the constraint, even if the endpoints satisfy it.

A first naive solution to continuous constrained path is to discretize the path,

project each sample and use a linear interpolation between the projected samples.

The resulting path will be continuous but the point wise projection has two draw-

backs. First, the resulting path does not satisfy the constraint between samples.

Second, in some cases, it jumps between two solution sets that cannot be connected

by continuous path satisfying the constraint. In these cases, it gives a wrong so-

lution to a problem which may be infeasible. This last point is explained in full

details in Section 2.2.

The Recursive Hermite Projection (RHP) proposed by Hauser [2013] addresses

the problem of generating C1 paths that satisfy a set of non-linear constraints. The

basic interpolation between samples is cubic Hermite curve so the velocity can be

made continuous. RHP addresses constraints f(q) = 0 for which there exists a

Lipschitz constant M such that ∀(p, q) ∈ CS2, ||f(q0)− f(q1)|| ≤M ||q0−q1||. Note

that the norm and the minus operator on CS will be defined rigorously later. For

1.1. Motion planning 11

a constraint violation threshold ε > 0, the algorithm recursively splits consecutive

interpolation points (IPs) in two until the distance between them is less than 2ε
M

.

There are three drawbacks with this approach.

First, for an initial path of length L, it generates at least M
2ε
L points. For the

simulations which will be presented in this paper, ε is about 10−3 and typically2

1 ≤ M ≤ 10. Thus the number of points would be greater than 103L for a single

path. Motion planning extensively uses the steering method. An increase in the

time to build a path can be dramatic to the overall performance.

Second, the algorithm assumes the IPs exactly satisfy the constraint, which is

of course impossible in practice. One could work around this issue by using two

thresholds: a small one to compute accurate IPs and a large one to check for path

continuity. This would make the algorithm harder to implement. Because the

continuity interval would decrease as the small threshold increases, one would have

to make a trade-off between the time to compute accurate IPs and the distance

between them.

Third, I consider random exploration of the configuration space. As such, I only

consider continuity and not differentiability. I prefer to explore the configuration

space of the system and to address differentiability in a post-processing step. When

applicable, this approach is known to be more efficient than kinodynamic motion

planning that explores the state space of the system and returns differentiable so-

lutions. As such, a slight modification of RHP is required to make it suited for

motion planning in CS.

In Section 2.2, I propose a different approach and give a more detailed compar-

ison between my method and the RHP.

1.1.2.3 Constrained-RRT

The Constrained-RRT is very similar to the original RRT so I present directly the

constrained version. The unconstrained version can be obtained by considering the

trivial constraint f : q 7→ 0.

Algorithm 1.1 Constrained-RRT

1: function exploreTree(q0)
⊲ Constrained-RRT from q0, s.t. constraint f .

2: T .init(q0)
3: for i = 1→ K do
4: qrand ← Rand(CS)
5: qnear ← Nearest(qrand,T)
6: qproj ← Project(qrand, f)
7: Extend(qnear,qproj ,T)

The idea is to extend a tree of configurations toward randomly sampled points.

2M can be computed using the Appendix A.

12 Chapter 1. State of the art

Pseudo-code is proposed in Algorithm 1.1. The algorithm initializes a tree of con-

figurations T with the input configuration. It randomly samples CS and finds the

nearest neighbour in T . Such a neighbour always exists since T is not empty. At

Line 6-7, the random configuration is projected as explained in Section 1.1.2.1 and

one of the standard RRT extension methods is called. Algorithm 1.2 gives one

extension method. It adds to the tree the part of the straight interpolation which

is collision-free.

Algorithm 1.2 Standard RRT extension

1: function Extend(qnear,qrand,T)
2: p1 ← interpolate(qnear,qrand)
3: p2 ← testCollision(p1)
4: qnew ← finalConfiguration(p2)
5: T .insertConfAndPath(qnew, p2)

1.1.3 Motion planning for humanoid robot

Full body motion planning for humanoid robot is known to be hard and is almost

never addressed directly. The approaches presented below reduce the complexity of

the problem, each of them with a different approach.

Decoupled planning Dalibard et al. [2013] addresses the class of problem where

the floor is always flat. They show that a collision-free path for a humanoid robot

sliding on the ground can always be converted in a dynamically stable walking

trajectory. The path of the sliding robot must satisfy the following constraints:

• position and orientation of the feet so that they are always in contact with

the floor,

• horizontal position of the Center of Mass (CoM) with respect to the feet,

• constant vertical position of the CoM.

Thanks to this property, planning is divided in two steps. First plan a collision-free

path for the humanoid robot subject to the above mentioned constraints. Then

generate an admissible walking trajectory following this path.

Multi-contact planning Tonneau et al. [2015] addresses the problem of gener-

ating contact plans for multiped robot, such as standing up, climbing stairs using

a handrail. . . They define a reachability condition which verifies that the root con-

figuration of a robot is close enough to allow contact creation, but not too close to

avoid collision. The reachability condition turns the high-dimensional computation

of finding configuration in contact into a collision checking problem. With this

approximation of the space of admissible root configurations, the contact planning

1.2. Task planning 13

problem is decomposed into two simpler sub-problems. First plan a guide path for

the root without considering the whole-body configuration. Then generate a dis-

crete sequence of whole-body configurations in static equilibrium along this path.

Although not complete, the approach is extremely efficient to generate contact plan

for a wide range of robots. The efficiency comes at the cost of exhaustiveness.

1.2 Task planning

The task planning problem is to find a sequence of elementary actions that accom-

plish a given task. This section recalls the problem statement and some general

notions of task planning domain. Although task planning is not the focus of this

thesis, these notions will be useful later. It is also worth while to make some analo-

gies between the two fields, namely motion planning and task planning. Further

details can be found in [Fikes and Nilsson, 1971, Hoffmann and Nebel, 2001].

Definition 1.5 (State). A state S is a finite set of logical atoms.

Definition 1.6 (STRIPS actions). A STRIPS action o is a triple o =

(pre(o), add(o), del(o)) where pre(o) are the preconditions of o, add(o) is the add

list of o and del(o) is the delete list of the action, each being a set of atoms. For an

atom f ∈ add(o), we say that o achieves f . The result of applying a single STRIPS

action to a state is defined as follows:

Result(S, 〈o〉) =

{

(S ∪ add(o)) \ del(o) if pre(o) ∈ S
undefined otherwise

In the first case, where pre(o) ∈ S, the action is said to be applicable in S.

The result of applying a sequence of more than one action to a state is recursively

defined as

Result(S, 〈o1, . . . , on〉) = Result(Result(S, 〈o1, . . . , on−1〉), 〈on〉).

From a set of actions, the goal is to find a sequence of actions that transform,

by their addition and deletion lists, an initial set of atoms in a final set of atoms.

A rigorous definition is recalled below.

Definition 1.7 (Planning Task). A planning task P = (O, I,G) is a triple where

O is the set of actions, and I (the initial state) and G (the goals) are sets of atoms.

Definition 1.8 (Plan). Given a planning task P = (O, I,G). A plan is a se-

quence P = 〈o1, . . . , on〉 of actions in O that solves the task, i.e., for which

G ⊆ Result(I, P) holds.

Many approaches use relaxed task planning to guide the search. The relaxation

of a task planning problem is the same problem with the exception that the delete

list of actions is empty.

14 Chapter 1. State of the art

Hoffmann and Nebel [2001] introduced the Fast Forward (FF) heuristic. It uses

the relaxed problem to guide their search algorithm called enforced hill-climbing.

It is a forward search engine, which means it never backtracks and always tries to

append actions to the current task plan. Decisions are never revised. The only

way to recover from the selection of a poor action is to invert the effects of this

action. Thus, although it has been successful in many scenarios, the output can

contain an arbitrarily large number of action and its inverse action, being very

suboptimal. The approach is complete if the input problem contains no reachable

dead-end states [Hoffmann and Nebel, 2001]. A state is a dead-end if and only

if no sequence of actions achieves the goal from it. Some realistic criteria, like

invertible planning task [Koehler and Hoffmann, 2000, Hoffmann and Nebel, 2001],

make many problems dead-end free.

Limitations As a purely symbolic problem, task planning is of rather limited

use in robotics. Actions are assumed to be always feasible while the underlying

geometrical problem may be conditionally feasible or even infeasible. Indeed, an

action such as Take object on the table is feasible only if the object is at a reachable

position on the table. In the case of continuous grasps and/or placements, it is not

possible to represent symbolically each grasp and each placement separately so the

case is even harder.

To overcome this limitation, task planning has to be combined with a geomet-

rical motion planner, as described in next section.

1.3 Manipulation planning

Manipulation planning is a combination of task and motion planning.

Definition 1.9 (Manipulation planning problem). Given a set of robots, objects,

static obstacles, an initial configuration I for all robots and objects and a set of goal

configurations G, find a path, for all robots and all objects, from I to a final con-

figuration in G . The path must be collision-free and must satisfy the manipulation

rules.

As a computational geometry problem, it has raised a lot of interest for the

past forty years. Pioneering works by Wilfong [1988] and Alami et al. [1989] first

considered low dimensional problems where robots and objects move in translation.

Dacre-Wright et al. [1992], Alami et al. [1994] are the first works that apply random

motion planning methods developed a few years earlier [Kavraki et al., 1996] to the

manipulation planning problem. Recently, the domain has regained interest with

various variants where papers propose approaches that tackle the inherent com-

plexity of manipulation planning. The domain is traditionally divided into several

categories. Navigation Among Movable Obstacles (NAMO) consists of planning a

path for a robot that needs to move obstacles in order to reach the goal configura-

tion [Stilman and Kuffner, 2008, Nieuwenhuisen et al., 2008, Dalibard et al., 2010].

1.3. Manipulation planning 15

Rearrangement planning consists of automatically finding a sequence of manipu-

lation paths that move several objects from initial configurations to specified goal

configurations [Krontiris and Bekris, 2015, Ota, 2004, Lertkultanon and Pham,

2015]. Multi-arm motion planning has also given rise to a lot of papers [Gharbi

et al., 2009, Harada et al., 2014, Dobson and Bekris, 2015]. From a geometric point

of view, manipulation planning is a hybrid problem where discrete states (gripper

A holds object B) are defined by continuous constraints on the positions of objects

and robots. States are connected by manipulation trajectories that give rise to

the underlying structure of a graph whose nodes are the discrete states [Mirabel

et al., 2016]. This structure, although not expressed as such, is present in various

papers [Dalibard et al., 2010, Berenson et al., 2011, Jentzsch et al., 2015, Hauser

and Ng-Thow-Hing, 2011]. The partially discrete nature of the problem has also

given rise to integration of task and motion planning techniques [Cambon et al.,

2009, Barry et al., 2013, Garrett et al., 2015, Srivastava et al., 2014, Havur et al.,

2014].

Considering a set of robots and objects, the problem is to find both a sequence

of elementary actions, as well as robots and objects paths for each action, in order

to accomplish a set of goals. Compared to task planning, this intends to solve

the limitations presented above, i.e. the output is guaranteed feasible. The added

complexity resides in the fact that solving motion planning problems are time-

consuming and most algorithms are only probabilistically complete. They cannot

state a problem infeasibility and it is very difficult, if possible at all, to have an

estimation of search progress in the general case.

The following sections propose a classifications of manipulation planner in two

categories: multi-layer planners and single layer planners. The latter use a unique

data structure to organize the data gathered during the search, while the former

use a hierarchy of data structure to represent them.

1.3.1 Multi-layer manipulation planners

These planners tackle the problem with two or three planning layers. A high level

symbolic planner generates task plans. A low level geometric planner generates

paths for elementary actions.

Unfortunately, symbolic and geometric planners do not share the same language.

The former reasons on discrete variables while the latter reasons on continuous

variables. For instance, a symbolic action, such as Take object on the table or Put

object on the table, does not specify how the object must be grasped or where it

must be released. However, the geometric planner needs to know it. Reducing

these possibilities to one is not, in the general case, sufficient because the choice is

case-dependant. Thus, the challenging issue is the communication between the two

levels.

Srivastava et al. [2014] proposes an intermediate layer which refines task plans

into motion plan. For each action of the task plan, this layer calls the motion planner

for each possible values of the effects of the action, until it has found one which

16 Chapter 1. State of the art

succeeds. When no motion planning request succeeds, the algorithm backtracks to

the previous action. If the refinement fails, a partial plan, up to failure, is found

and the algorithm seeks for a possible reason and update the task planner before

starting again. For instance, action Put object on the table would lead to generate

a subset of object pose on the table and try to plan only considering this subset of

object pose. If the problem cannot be solved, then a new subset is generated.

Cambon et al. [2009] proposes an multi-layer approach using similar tools as

single layer planners. They make use of the reduction property, recalled below,

which makes their approach suitable for continuous grasps and placements.

Stilman and Kuffner [2005] addresses Navigation Among Movable Obstacles.

The robot is permitted to reconfigure the environment by moving obstacles and

clearing free space for a path. A heuristic finds a path without considering collisions

with movable obstacles. This paths is used to determine what objects should be

moved. Object are moved when they allow two distinct connected components of

CS to merge. Their approach however would not move obstacles which do not block

the robot, even if they prevent other movable objects from being moved.

A major issue of multi-layered approaches is that motion planning algorithm

cannot prove infeasibility. Most assumes a problem infeasible when some threshold

is reached, in terms of number of iterations or elapsed time. Although this is

sufficient for many problem, it is a very weak strategy in general and it requires

parameter tuning.

Another issue comes from the task planning techniques most approaches use:

the FF heuristic or one variant of it. As stated above, the task plan returned by

FF can contain an arbitrarily large number of actions and its inverse. In a pick and

place scenario,it means the robot can pick up and put down the object several times

in an awkward way3. From a theoretical point of view, this aspect is not important.

However, in practice, this generates awkward and useless motions which makes it

not directly usable in practical situations.

1.3.2 Single layer planners

Instead of using layered planners, the problem is represented using the Cartesian

product of the configuration space of robots and objects. As this is the framework

which will be used in the following, I know recall important notions from the work

of Siméon et al. [2004].

The reduction property Consider a problem with a robot and an object. The

configuration space of the system is CS = CSrobot × CSobject. The domain in CS
corresponding to valid placements of the object, i.e. stable placements where the

object can rest when released by the robot, is denoted by CP. The domain in CS
corresponding to valid grasps of the object by the robot, is denoted by CG. Both

CG and CP are sub-manifolds of CS.

3As, for instance, in the video experiment of Srivastava et al. [2014]: https://youtu.be/

7DUw5L5bx7s.

https://youtu.be/7DUw5L5bx7s
https://youtu.be/7DUw5L5bx7s

1.3. Manipulation planning 17

A solution to a manipulation planning problem corresponds to a constrained

path in CSfree. Such a solution path is an alternate sequence of two types of sub-

paths verifying the specific constraints of the manipulation problem, and separated

by grasp/ungrasp operations.

• Transit paths where the robot moves alone while the object stays stationary

in a valid placement. They lie in CP. However a path in CP is not generally a

transit path since such path has to belong to the sub-manifold corresponding

to a fixed placement of the object. They induce a foliation of CP.

• Transfer paths where the robot moves while holding the object with the same

grasp. The position of the object with respect to the robot end-effector is

constant. They lie in CG and induce a foliation of CG.

For completeness, I recall the notion of foliation [Haefliger, 1970].

Definition 1.10 (Foliation). A foliation of a n-dimensional manifold M is an

indexed family Lα of arc-wise connected m-dimensional sub-manifolds m < n, called

leaves of M , such that:

− Lα ∪ Lα′ = ∅ if α 6= α′

− ∪αLα = M

− every point in M has a local coordinate system such that n −m coordinates

are constant.

An example of discrete manipulation problem is navigation inside a building,

made of floors and staircases. To move from one floor to another, you must navigate

in a staircase. To move from one staircase to another, you must navigate in a floor.

Allowed motions induce a foliation of the set of floors, in which each floor is a leaf,

and a foliation of the set of staircases. Navigating in this space requires to find an

alternate sequence of floors and staircases.

Two foliation structures are defined in CG ∩ CP, which implies the following

property, shown by Dacre-Wright et al. [1992].

Theorem 1.1 (Reduction property). Any path lying in CG ∩ CP where the robot

is not in collision with static obstacles can be transformed into a finite sequence of

transit and transfer paths.

This property reduces the manipulation problem to a problem of discovering the

connectivity of the various components of CG ∩ CP by transit and transfer paths.

They provide two multiple-query algorithms based on PRM.

This result is the main theoretical result in manipulation planning. To my

best knowledge, there has been no significant theoretical breakthrough about the

geometrical problem since.

18 Chapter 1. State of the art

Other approaches Another successful algorithm is FFrob, introduced by Garrett

et al. [2015]. It is an extension of the Fast Forward heuristic that accounts for

geometrical information. A set of useful object poses and robot configurations is

sampled offline and stored in a conditional reachability graph. When the planner

failed to solve a problem, new object poses and robot configurations are sampled and

the graph is updated. Thanks to this offline computations, FFrob is able to solve

challenging problems in a reasonable amount of time. However, many parameters

are to be tuned. Most of them are very case specific such as the number of sampled

object poses, the number of grasp configurations, the number of iterations of the

RRT to solve a motion planning problem. . .

The Diverse Action RRT (DA-RRT) algorithm, proposed by Barry et al. [2013],

tackles the Diverse Action Manipulation problem. The inputs to the problem are a

mobile robot, a set of movable objects, and a set of diverse, possibly non-prehensile

manipulation actions. This algorithm finds a high-level sequence of transfer ma-

nipulations by planning a path only for objects in the domain. It then attempts

to achieve each transfer manipulation individually. A similar approach to this one

is Sampling-based Motion and Symbolic Action Planner, introduced by Plaku and

Hager [2010]. They grow a tree of configurations by sequentially applying actions.

The action applied is selected using a measure of the utility of actions.

Chapter 2

Constrained motion planning

Contents
2.1 Notations and definitions . 20

2.1.1 Configuration space . 20

2.1.2 Constraints . 22

2.1.3 Path . 24

2.2 Continuous path on manifolds 25

2.2.1 Newton-Raphson algorithm 25

2.2.2 Continuity of the Newton-Raphson iteration function 26

2.2.3 Two path projection algorithms 27

2.2.4 Continuous planning algorithm 30

2.3 Static stability . 35

2.3.1 Static stability constraint . 35

2.3.2 Integration to a motion planner 37

This chapter addresses important issues raised by constrained planning and ma-

nipulation planning. Manipulation planning relies on constrained motion planning,

with the additional difficulty that the constraints are not the same in the whole

configuration space. Manipulation paths alternates between different constraints.

The first section presents the formalism necessary to address problems addressed

in this thesis. It includes basic operations on the configuration space and the

velocity space, two types of constraints, naturally emerging from the analysis of

manipulation rules, and continuous paths.

The second section presents two algorithms with continuity certificate and a

proof of this certificate. As explained in the previous chapter, most approaches

addressing constrained motion planning do not guarantee the continuity of the

solution. I also propose continuous constrained motion planning algorithm. This

two algorithms constitute a major contribution of this thesis.

In the last section, I formulate the problem of generating quasi-static motion for

a humanoid robot as a manipulation problem. I express a friction-less multi-contact

equilibrium criterion as a constraint, which enables to plan full-body motion in the

sub-manifold of quasi-static configurations.

20 Chapter 2. Constrained motion planning

(a) Initial configuration (b) Goal configuration

Figure 2.1: Path projection example with UR5 robot. UR5 end-effector must follow
the red line with constant orientation. Planning in configuration space with point-
wise path projection can generate discontinuous path.

2.1 Notations and definitions

I consider a set of robots R, a set of movable objects M and a set of static ob-

stacles. The configuration space CS always denotes the Cartesian product of the

configurations space of each robot and object. This means I always consider that

robots and objects are one single kinematic tree.

2.1.1 Configuration space

In general, CS is a manifold and not a vector space. The velocity is defined as the

derivative of the joint parameters with respect to time or any other abscissa.

For one dimensional bounded rotations and for translations, the configuration

space is a vector space and the velocity space is identical to the configuration space.

In this context, unbounded rotations are represented by the circle group SO(2), i.e.

q = (cos θ, sin θ), to overcome issues due to the multiplicity of angles representing

the same rotation. The velocity space is R
1 and velocities are defined by

∂q
∂s

=
∂θ

∂s

Three dimensional rotations are represented by with unit quaternions, described

by the unit sphere in R
4. This representation is non-singular, which is not the case

of Euler angles, and more compact than matrices. In the following, I give some

brief elements about the special orthogonal group SO(3) derived from formal Lie

group theory which is not described here. The user may refer to Kirillov [2008].

The velocity space is R
3 and the velocity ω is defined by

[ω]× =
dR
dt

RT

where R is the rotation matrix.

Both unbounded rotations and three dimensional rotations have a velocity space

whose dimension is lower than their configuration space.

2.1. Notations and definitions 21

2.1.1.1 Operations

In order to treat each joint configuration space uniformly, two operations are defined

in SO(2) and SO(3): an addition between a joint configuration and a joint speed

and a difference between two joint configurations. These operators extend the

addition and difference on joint configuration spaces which are vector spaces.

Operations in SO(2) Let (p1,p2) ∈ SO(2)2 and θi such that pi = (cos θi, sin θi).

The difference (θ) = p2 − p1 ∈] − π, π] is such that θ ≡ θ2 − θ1 + 2kπ, k ∈ Z.

The addition of velocity (θ) to joint configuration p1 is the rotation obtained by

integrating velocity (θ) during unit time, i.e. p1 + (θ) ≡ (cos (θ1 + θ) , sin (θ1 + θ)).

Operations in SO(3) Let (q1, q2) be two quaternions representing two elements

of SO(3). Because of the double covering of quaternions, qi and −qi represents

the same element of SO(3). As the joint configuration space is SO(3), there is no

reason to abandon this duplicity. The two operations defined below consider this

duplicity when necessary.

Figure 2.2: Schematic represen-
tation of the quaternion inter-
polation. It represents the unit
sphere of R

3. q1 and q2 are
two elements of the sphere. −q2

represents the same rotation as
q2. When cos(θ) ≥ 0, path
q1 → q2 is shorter than path
q1 → −q2. When cos(θ) < 0,
path q1 → −q2 is shorter.

The difference ω = q2 − q1 ∈ R
3 is defined as the speed to go in unit time from

q1 to q2. It corresponds to a rotation of ||ω|| around ω/||ω||. A path from q1 to q2

and from q1 to −q2 is of different length in general. This is depicted on Figure 2.2.

For instance, if q1 = q2, the former is of angle 0 while the latter is of angle 2π. The

difference operation chooses the one with smallest angle. Let ⊗ be the quaternion

product and q1 be the conjugate of quaternion q1. Finally, let q = q2 ⊗ q̄1 = (w,v),

where w ∈ R is the scalar part of q and v ∈ R
3 is the vector part of q. It can be

defined as:

ω ≡ 2
v
||v|| ×

{

arccos (w) , if w ≥ 0

− arccos (−w) , otherwise

The addition of velocity ω to configuration q is the rotation obtained by inte-

22 Chapter 2. Constrained motion planning

grating velocity ω during unit time, i.e.

q + ω =

(

cos
||ω||

2
, sin
||ω||

2

ω

||ω||

)

⊗ q

These operations are continuous on SO(3), although they are not on the unit sphere

of R4. Moreover, the difference operation gives geodesics in SO(3). However, one

has to be careful with the arithmetic. Indeed, q2−q1 = q2−(−q1) so q1−(−q1) = 0R3 .

The quaternion q1 + (q2 − q1) is either q2 or −q2 depending whether their scalar

product in R
4, 〈q1, q2〉, is positive or negative.

Operations in CS The above operations are extended to the robot configura-

tion space. The difference in each joint configuration space defines a difference in

the robot configuration space. Similarly, the addition operation between a robot

configuration and a robot velocity is defined.

I define the two following operations.

• distance distD (q0,q1) = ||q1−q0||D = (q1−q0)TD(q1−q0) is the weighted

norm of the difference. The weight D is a square matrix of dimension n× n,

where n the size of the velocity space.

• straight interpolation from q0 to q1,

straight(q0,q1) :
[0, 1] → CS
s 7→ q0 + s (q1 − q0)

(2.1)

The difference operation in SO(3) means the straight interpolation is the path

of shortest length.

2.1.1.2 Jacobian

The Jacobian of the robot with n degrees of freedom (DoFs) is a 6×n matrix. The

matrix maps the velocity in configuration space to velocities in Euclidean space. The

three top rows correspond to the linear part and the three bottom ones correspond

to the angular part. The columns correspond to DoFs. For instance, unbounded

rotations are represented by one column while three dimensional rotations span

three columns. Appendix A gives the analytical expressions.

2.1.2 Constraints

This section defines two types of constraints useful in manipulation planning. To

picture these types, consider an end-effector manipulating an object. There are

two possible states for a configuration. Either the end-effector grasps the object

in a stable way or the object is in a stable placement. They constitute one type

of constraint, called validation constraint. They are immutable, i.e. they depends

only on inputs of the planning problem.

2.1. Notations and definitions 23

There are two possible states for a path. Either the robot moves the object

or the object does not move. In the first case, each configuration of the path is

a valid grasp configuration and the object pose relatively to the end-effector is

constant. The grasp is said constant. In the second case, the object remains still,

in a valid placement. The placement is said constant. The two constraints grasp is

constant and placement is constant constitute the other type of constraint, called

parametrization constraint. The are mutable, i.e. they depend on problem inputs

and on internal parameters. For instance, the internal parameter for placement is

constant is the pose of the object.

The notion of constraint generalizes the notion of grasp and placement. They

are related to atoms in Task Planning, at the exception that I define two different

types of constraints.

Consider a continuous grasp, i.e. when the set of valid grasps is not countable.

Let us assume the end-effector and the object involved in this grasp are such that

two functions from CS can be defined. The first function fvalid defines what is a

grasp. The output set is R
n. It evaluates to zero if and only if the configuration is

a valid grasp, i.e.

fvalid(q) = 0Rn ⇔ q ∈ CG.
The second function fparam uniquely defines each grasp. For any two grasping

configurations q0 and q1, the relation fparam(q0) = fparam(q1) means q0 and q1

defines the same grasp. Thus, a path p ∈ C ([0, 1] , CS) is a valid transfer path if

and only if for all t in [0, 1], p(t) ∈ CG and fparam(p(t)) = fparam(p(0)).

Functions with the similar meaning can be defined for continuous placements.

Thus these two functions are an abstract representation of grasp and placement.

This defines the framework of this thesis regarding what type of grasps, placements

(and actions in general) are considered. There must exist two functions to define

it: a validation function and a parametrization function.

From the above remark, it becomes natural to define the following constraints,

where C1 (CS,Rn) denotes the space of continuously differentiable function from

CS to R
n.

Definition 2.1 (Parametrization constraint). A parametrization constraint is a

constraint of the form f(q) = b where f ∈ C1 (CS,Rn), q ∈ CS and b ∈ R
n. b is

the parameter and n is the dimension.

Configuration q ∈ CS satisfies the parametrization constraints with parameter

b if and only if f(q) = b.

As a stack of parametrization constraints is also a parametrization constraint,

I always consider only one parametrization constraint. For instance, a stack of two

parametrization constraints with parameters b0 and b1, f0(q) = b0 and f1(q) = b1,

is the following parametrization constraint.

(

f0

f1

)

(q) =

(

b0

b1

)

24 Chapter 2. Constrained motion planning

Definition 2.2 (Validation constraint). A validation constraint is a parametriza-

tion constraint whose parameter b is zero, i.e. of the form f(q) = 0 where

f ∈ C1 (CS,Rn) and q ∈ CS.

Similarly to parametrization constraint, a stack of validation constraints is a val-

idation constraint. I always consider only one validation constraint. CV denotes the

space of all validation constraints, CP the space of all parametrization constraints

and C the union of both.

As mentioned in Section 1.1.2.1, the preferred method for constraint resolution

is a Newton-Raphson (NR) algorithm. This choice implies that the constraint must

be differentiable. The Jacobian of a constraint is the Jacobian of f . It is denoted

by Jf .

2.1.3 Path

A path p ∈ C ([0, 1] , CS) is a continuous mapping from [0, 1] to CS.

When solving a path planning problem where the robot is subject to a con-

straint, an operator called steering method is used. This operator takes as input

two configurations satisfying the constraint. It returns (in case of success) a path

satisfying the constraint and linking the end configurations.

SM :
CS × CS × C → C ([0, 1] , CS)

(q0,qe, c) 7→ p

such that ∀t ∈ [0, 1], SM(q0,qe, c)(t) satisfies constraint c.

From an implementation point of view, it is possible to discretize the linear

interpolation between q0 and qe into N steps, project each sample configuration on

the constraint and make the steering method return linear interpolations between

projected sample configurations. However, the point wise projection has several

drawbacks.

First, a discretization step needs to be chosen for each application. This adds a

parameter to be set.

Second, the resulting path may not satisfy the constraint between samples.

Some algorithms that assume that constraints are satisfied everywhere may fail

because the assumption is not satisfied. And third, the projector is, in general, not

continuous and the path obtained after projection may not be continuous.

The second issue is addressed by applying the constraints at evaluation.

SM(q0,qe, c)(t) = proj(interpolate(q0,qe)(t), c)

where proj(., c) is a projector on c and interpolate is the interpolation used inter-

nally by the steering method. The naive interpolation function is the straight line

interpolation straight defined in (2.1).

The third issue is addressed by constructing a suitable function interpolate for

each (q0,qe). This is detailed in next section.

2.2. Continuous path on manifolds 25

2.2 Continuous path on manifolds

In this section, I address the problem of guaranteeing the continuity of constrained

path. As explained in Section 1.1.2.1, the NR algorithm is best suited to constraint

resolution. However, the algorithm is not continuous with respect to the input

configuration. Figure 2.3 gives an elementary example where a continuous input

path yields a discontinuous projected path. Figure 2.1 gives a realistic example

where point-wise projection fails. This example is detailed in the end of this section.

Figure 2.3: This 2D example, where (x, y) are the configuration parameters, shows
the graph of f ((x, y)) = y2 − 1. The 2 dotted horizontal line are the solutions of
f ((x, y)) = 0. The 2 red circles are two configurations satisfying f(q) = 0. On
the left, the blue line is straight [q0,qe] and on the right, the black solid line is its
pointwise projection. The discontinuity is highlighted by the black circles and the
red dashed line.

In this section, I derive a sufficient condition of continuity of one iteration of

the NR algorithm. This condition is easy to check in practice. Then, I introduce

two algorithms to check for path continuity.

2.2.1 Newton-Raphson algorithm

The NR algorithm iteratively updates the robot configuration so as to decrease the

norm of the constraint value f(q). Let α > 0 and Pα ∈ F (CS, CS) be the NR

iteration function:

Pα(q) = q − αJ(q)† f(q) (2.2)

where A† is the Moore-Penrose pseudo-inverse of A and J(q) is the Jacobian ma-

trix of f in q. Pα(q) is the configuration obtained after one iteration of the NR

algorithm, starting at q.

For a given sequence (αn) ∈]0, 1]N and a given numerical tolerance ε > 0, let

26 Chapter 2. Constrained motion planning

PN (q) = PαN
(· · · (Pα0(q))). The projection of a configuration q is PN (q) where

N is such that:

• ∀i ∈ J0, N − 1K, Pαi
(· · · (Pα0(q))) ≥ ε,

• PN (q) < ε.

Note that the projection is not always defined as N might not exist.

2.2.2 Continuity of the Newton-Raphson iteration function

Let B (q, r) = {q̃ ∈ CS, ||q̃ − q||2 < r} be the open ball of center q and of radius r.

The continuity of Pα is expressed as follows.

Lemma 2.1 (Continuity of the NR iteration function). Let f ∈ C1 (CS,Rm). Let

J(q) be its Jacobian and σ(q) be the smallest non-zero singular value of J(q).

Finally, let r = max
q∈CS

(rank(J(q))).

If J is a Lipschitz function, of constant K, then, ∀q ∈ CS

rank(J(q)) = r ⇒ Pα is continuous on B
(

q, σ(q)
K

)

Proof. Let f be continuously differentiable function, K be a Lipschitz constant of

its Jacobian, and r = max
q

(rank(J(q))) be known.

As f is continuously differentiable, Pα is continuous where the pseudo-inverse

application is continuous. The first part of the proof reminds some continuity

condition of the pseudo-inverse. The second part proves that the latter condition

is satisfied on the interval of Lemma 2.1.

Condition of continuity of the pseudo-inverse Let q be a regular point, i.e.

rank(J(q)) = r. As the set of regular points is open [Lewis, 2009] and J is contin-

uous, there exists a neighbourhood U of q where the rank of J is constant. The

continuity of the Moore-Penrose pseudo inverse can be expressed as follows [Rakoče-

vić, 1997].

Theorem 2.1 (Continuity of the pseudo inverse). If (An) ∈ (Rm×d)N, A ∈ R
m×d

and An 7→ A, then

A†
n 7→ A† ⇔ ∃n0,∀n ≥ n0, rank(An) = rank(A)

Theorem 2.1 proves that J† is a continuous function of q on U . In the following

section, I prove that U = B (q, σ
K

)

is a suitable neighborhood.

Interval of continuity of the pseudo-inverse The norm on R
m×n I consider

is the Frobenius norm (L2-norm), denoted |||.|||F . Mirsky’s theorem [Mirsky, 1960,

Theorem 5], restricted to the Frobenius norm, is:

2.2. Continuous path on manifolds 27

Theorem 2.2 (Mirsky). If σ1 ≥ σ2 ≥ · · · ≥ σn and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n are the

singular values of two matrices of the same size, B and B̃, then

|||diag(σ̃i − σi)|||F ≤ |||B̃−B|||F

Lemma 2.2. Let (J,dJ) ∈ (Rm×d)2 and σ be the smallest non-zero singular value

of J. Then,

|||dJ|||F < σ ⇒ rank(J) ≤ rank(J + dJ)

Proof. Let p, resp. q, be rank(J), resp. rank(J + dJ). Let σ1 ≥ σ2 ≥ · · · ≥ σp > 0,

resp. σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃q > 0, be the non-zero singular values of J, resp. J + dJ. I

apply Theorem 2.2 with B = J and B̃ = J + dJ.

|||dJ|||F < σp ⇒ |||diag(σ̃i − σi)|||F < σp

⇒ ∀i ≤ p, σ̃i > σi − σp

⇒ ∀i ≤ p, σ̃i > 0

⇒ p ≤ q

Note that the ball has to be open. At this point, I have an interval for the

Jacobian in which the rank does not decrease. I use the Lipschitz constant K to

have an interval in the configuration space.

∀(q, q̃) ∈ CS2, |||J(q̃)− J(q)|||F ≤ K||q̃ − q||2

Let q ∈ CS and σ be the smallest non-zero singular value of J(q). Then,

q̃ ∈ B (q, σ
K

)⇒ |||J(q̃)− J(q)|||F ≤ K||q̃ − q||2 < σp

⇒ rank(J(q̃)) ≥ rank(J(q))

If q is a regular point, rank(J(q)) has rank r = maxq (rank (J(q))). Thus J(q̃)

has a constant rank r on B (q, σ
K

)

. By Theorem 2.1, J(q)† is continuous. Pα is the

composition of continuous functions so it is continuous on B (q, σ
K

)

.

This proves Lemma 2.1.

2.2.3 Two path projection algorithms

This section presents two path projection algorithms with continuity certificate.

From an initial constrained path SM(q0,qe, f), the algorithms generate a set of

interpolation points (IPs) (q0, · · · ,qn) where f(qi) = 0 and n is decided by the

algorithm. The sequence is such that the continuity interval of consecutive IPs

overlay so the NR iteration function is continuous on the straight line joining con-

secutive IPs. The resulting path is the concatenation of SM(qi,qi+1, f),∀i ∈ [0, n[.

When the algorithms succeed, qn = qe. When they fail to project a path, they

return the longest part along the path, starting at q0, that has been validated.

28 Chapter 2. Constrained motion planning

To benefit from the continuity interval of Pα, a Lipschitz constant must be com-

puted for the Jacobian of the constraint. Appendix A proposes a method to bound

from above the norm of the Hessian for constraints involving joint placements. This

upper bound is a Lipschitz constant of the Jacobian. This method also extends to

constraint involving the Center of Mass (CoM) of the robot as the CoM is a weighed

sum of joint positions.

The maximum number of IPs on unit length paths Nmax is set to 20 and the

minimum interpolation distance λm is set to 0.001. These parameters ensure the

algorithms terminate. When a limit is reached, the algorithms return the left part

of a path that has been successfully projected, as stated above.

(a) Input path (b) Step 1: Success (c) Step 2: Success

(d) Step 3: q too far (e) Step 3: Success

Figure 2.4: Progressive projection method. The green surface is f(q) = 0. (a)
shows the input path. (b) and (c) shows two successful iterations. The two first
IPs are added without refinement because they are close enough from the previous
IP. (d) shows a rejected IP. As it is too far from the previous IP, it is refined by
dividing λ by two. It results in (e) and the new IP is finally added.

Progressive projection is presented in Alg 2.1 and depicted in Figure 2.4. The

sequence of IPs is generated recursively, starting from q0. Each IP is computed

from the previous IP and the final configuration qe.

From q0, it builds a configuration satisfying the constraint, within the continuity

interval of q0. The configuration is chosen towards qe (Line 7). When qe is within

2.2. Continuous path on manifolds 29

Algorithm 2.1 Progressive continuous projection

1: function project(q0,qe, depth)
⊲ Continuously project the direct path (q0,qe) onto the submanifold f(q) = 0

2: if K × ||q0 − qe||2 < σr(q0) then return (q0,qe)

3: if depth > Nmax × ||q0 − qe||2 then return (q0)

4: λ← σr(q0)/K
5: repeat
6: if λ < λm then return (q0)

7: q← SM(q0,qe, f)(λ
||q0−qe||2

)

8: λ← λ
2

9: until K||q − q0||2 < σr(q0)
10: return {q0}∪ project(q,qe, depth+ 1)

the continuity interval of q0 (Line 2), the algorithm succeeds.

From 2.4(a) to 2.4(b), the path is cut in two at parameter λ from the start

configuration. λ is gradually reduced so that the projected configuration is within

the continuity ball of q0 (Lines 4-9). When λ < λm (Line 6), the projection locally

increases the distances more than σr(qk)/(λmK). The path is considered discontin-

uous and the algorithm fails. If q is found in B
(

q0,
σ(q0)

K

)

, the left part satisfies the

condition of Lemma 2.1. The right part is then projected using the same procedure.

Global projection method is presented in Alg 2.2 and depicted in Figure 2.5.

The algorithm starts by computing IPs along the straight path such that the con-

tinuity interval of consecutive IPs overlay. However, they do not satisfy the con-

straints. The constraint violation of each IPs is then iteratively decreased while

keeping overlaying continuity intervals.

The algorithm works in two steps. First, the IPs are improved in order to de-

crease the constraint violation, by applying the NR iteration function (Line 8). Sec-

ond, it checks whether the distance between each pair of consecutive IPs (qk,qk+1)

is within the union of the two continuity balls (Line 14). If this check fails, a new

IP q is added at the border of the continuity ball of qk. Next iteration will consider

the two consecutive points (q,qk+1).

For clarity of the pseudo-code, a limit on the number of iterations of constraint

violation reduction loops has been omitted (Line 6). Such a limit avoids infinite

loops due to local minima. This limit is set to 40 in my implementation and the

counter is reset whenever an IP is added.

Figure 2.5 shows the path after some iterations. From 2.5(b) and 2.5(c), the

projection loop (Line 6) reduces the constraint violation point-wise. Between 2.5(c)

and 2.5(d), an IP is added (Line 18).

30 Chapter 2. Constrained motion planning

(a) Input path (b) Re-interpolation step (c) NR iteration step

(d) Re-interpolation step (e) NR iteration step

Figure 2.5: Global projection method. The green surface is f(q) = 0. (a) shows the
input path. (b) and (d) shows two re-interpolation steps. New IPs are added when
the distance between consecutive IPs is too big. (c) and (e) shows the constraint
violation reduction step. Each IP is updated in order to decrease the constraint
violation.

2.2.4 Continuous planning algorithm

The above algorithms can be integrated into motion planning to achieve continuous

constrained motion planning. I propose here an algorithm based on Constrained-

Rapidly exploring Random Tree (RRT) [Dalibard et al., 2013] but similar changes

could be made to other algorithms. The projection algorithm are then tested on

various problems.

2.2.4.1 Continuous Constrained-RRT

Algorithm 2.3 provides function constrainedExtend. This function builds a

straight interpolation p1 between qnear and a configuration qproj , which satisfies

constraint. Continuous path projection is applied to p1 and generates a path p2

satisfying p2(0) = qnear. In case of failure, the left part that has successfully been

projected is returned. In case of success, we have p2(1) = qproj . Then p2 is tested

for collision. Again, in case of failure, a left collision-free part of the path is returned.

p3 is then a continuous collision-free path satisfying the constraint. Many variants

2.2. Continuous path on manifolds 31

Algorithm 2.2 Global continuous projection

1: function project(q0,qe, f)
⊲ Continuously project the direct path (q0,qe) onto the submanifold f(q) = 0

2: Q← (q0,qe)
3: repeat← True
4: while repeat do
5: repeat← False
6: for all qk ∈ Q do
7: if ||f(qk)||2 > ε then
8: qk ← Pα(qk)
9: repeat← True

10: for all Consecutive qk,qk+1 ∈ Q do
11: if σr(qk) < Kλm then
12: Q← (q0, · · · ,qk) and break

13: d← σr(qk) + σr(qk+1)
14: if d < K × ||qk − qk+1||2 then
15: q← interpolate(qk,qk+1,

σr(qk)
K

)
16: Q← (q0, · · · ,qk,q,qk+1, · · ·)
17: repeat← True
18: if Length(Q) > Nmax × ||q0 − qe||2 then
19: Q.RemoveLastElement

20: return Q

of the RRT could be used here, such as using fixed progression step or using only a

ratio of the valid path.

This function replaces function Extend, Line 7 of Algorithm 1.1.

2.2.4.2 Simulations

I compared both continuous path projection algorithms and the Recursive Hermite

Projection (RHP) Hauser [2013] to each other in two settings, each described in the

two following paragraphs. The benchmarks are run using the Humanoid Path Plan-

ner (HPP) software framework, in which the 3 algorithms have been implemented.

Quadratic problems I first compare the Progressive and Global path projection

algorithms and the RHP for various parameters in the following problems.

• Circle: the configuration space is [−1, 1]2, subject to constraint f(x, y) =

x2 + y2 − 1 = 0. A Lipschitz constant of f is M = 2
√

2 and a Lipschitz

constant of its Jacobian is K = 2
√

2. I project line segments between (1, 0)

and (cos θ, sin θ) for θ ∈ [π/2, π]. None of the algorithms were able to find a

continuous path for the singular case θ = π. The Global projection method

did not need any IPs to return an answer.

32 Chapter 2. Constrained motion planning

Algorithm 2.3 Continuous Constrained RRT extension

1: function constrainedExtend(qnear,qproj ,T ,constraint)
2: p1 ← interpolate(qnear,qproj)
3: pathProj← projector(constraint)
4: p2 ← pathProj.apply(p1)
5: p3 ← testCollision(p2)
6: qnew ← finalConfiguration(p3)
7: T .insertConfAndPath(qnew, p3)

• Parabola: the configuration space is [−1, 1] × [0, 2], subject to constraint

f(x, y) = y2−1 = 0. This constraint has two disjoint sets of solution: y = −1

and y = 1. Figure 2.3 illustrates this case. A Lipschitz constant of f is M = 2

and a Lipschitz constant of its Jacobian is K = 2. I project line segments

between (0, 1) and (τ,−1) for τ ∈ [0, 2]. No continuous path can both con-

nect any pair of these points and satisfy the constraints at all time. All the

algorithms were able to detect the discontinuity.

Results are presented in Table 2.1. Be aware that the units for the RHP are not

the same as for the two other algorithms. The global projection method outperforms

the progressive method on these quadratic problems.

Global proj. Circle Parabola

tavg/tmax (µs) 16/90 201/231
dmin/davg/dmax (mm) - 0.2/51/316

Nip 0 10

Progressive proj. Circle Parabola

tavg/tmax (µs) 78/134 173/207
dmin/davg/dmax (mm) 284/462/512 1/71/316

Nip 4.75 14

Recursive hermite proj. Circle Parabola

tavg/tmax (ms) 503/900 0.017/0.03
dmin/davg/dmax (µm) 50/75/100 -

Nip 28946 0

Table 2.1: Quadratic problems benchmarks. Each case is run 10 times. The rows
correspond to the average and maximum computation time tavg, tmax, the average,
minimum and maximum distance between consecutive IPs davg, dmin, dmax, and
the average number of interpolation points Nip.

Constrained planning

2.2. Continuous path on manifolds 33

(a) Initial configuration of path 1 (b) Final configuration of path 1

(c) Initial configuration of path 2 (d) Final configuration of path 2

Figure 2.6: Path projection results with UR5 robot for two input paths. UR5 end-
effector must follow an horizontal line, with fixed orientation. The red lines give the
left part of the input paths that was successfully projected. In both cases, the point-
wise projection failed. Hermite refers to the RHP algorithm. The three algorithms
manage to project the input path 1, from (a) to (b). Only the Progressive projection
method managed to project the input path 2, from (c) to (d). In this case, Global
projection and RHP did not succeed at all.

UR5 Consider a welding problem with UR5 robot. The end-effector of the

robot must move along a line with a fixed orientation, as shown in Figure 2.1.

I compare the behaviour of each algorithm on motions that switch between two

inverse kinematic solutions while satisfying the problem constraint.

Using Appendix A, a Lipschitz constant of the constraint is M = 6 and a Lips-

chitz constant of its Jacobian is K = 7.14. Table 2.2 and Figure 2.6 summarize the

results obtained for various line segment. Note that, without motion planning, the

three algorithms are able to project paths between two different inverse kinematic

solutions. For instance, from Figure 2.6(c) to Figure 2.6(d), the robot must find a

configuration in which its arm and forearm are aligned, while still being on the line.

An inverse kinematic solver would have to detect this and handle it as a specific

case by finding the intermediate configuration with aligned arm and forearm.

When the projection method returns a false negative, the longest validated part

of the input path is returned. In the context of randomized motion planning, the

high rate of false negatives of global projection method does not block the search.

The expected effect is an increase of the size of final roadmap.

34 Chapter 2. Constrained motion planning

Projection method Global Progressive RHP

tavg/tmax (ms) 85/746 6.5/9.5 160/175
Nip 123 72 3403

False negative 54% 0% 8%

Table 2.2: Results of UR5 case. The rows have the same meaning as in Table 2.1.
The number of false negative corresponds to the ratio of rejected path over all tests,
while a continuous path exists.

Figure 2.7: HRP2 opening a door. This illustrates a problem where continuous
path projection is needed. Without continuous projection, the algorithm returns
discontinuous solutions.

Integration in a manipulation planner The Continuous Constrained RRT

has been tested to plan a manipulation path where the HRP2 robot opens a door.

As proposed by Dalibard et al. [2013], the planning is split in two phases. A quasi-

static full-body motion for the sliding robot is first computed. Additionally to

the manipulation rules, quasi-static constraints are taken into account. Then, the

motion is post-processed to obtain a dynamically-feasible walking trajectory.

Figure 2.7 shows the result of the first phase. No optimization were run. The

motion without continuous path projection contains several discontinuities. This

demonstrates both the necessity to check for continuity and that these algorithms

perform as expected.

2.2.4.3 Discussion

The two continuous path projection algorithms have the following guarantees. They

provide a path with IPs satisfying the constraints. Moreover, they ensure that the

NR iteration function is continuous along the lines connecting consecutive IPs. The

piecewise straight interpolation is closer to constraint satisfaction than the input

path and one iteration of NR is continuous. This leads to good chances to have the

resulting path continuous. In practice, no discontinuity have been encountered.

Compared to the presented method, the RHP gives continuity, at the cost of

being first, computationally less efficient, second, unable to return the continuously

projected part of the path and third requires to introduce velocities. The efficiency

of the presented method, compared to RHP, comes from the expected distances

between IPs. Indeed, RHP generates a lot more IPs than the two proposed algo-

2.3. Static stability 35

rithms. The reason is the following. The distance between IPs is less than ε/Kf

where ε is the constraint satisfaction tolerance and Kf is a Lipschitz constant of

the constraint. In the presented case, this distance is around σ/KJ, where σ is the

smallest singular value of the Jacobian and KJ is a Lipschitz constant of the Jaco-

bian of the constraint. In part of the configuration space far from singularities, σ is

orders of magnitude bigger than ε, set to 10−4 in the experiments. The comparison

with RHP in previous section emphasizes this theoretical approach.

2.3 Static stability

Motion planning for humanoid robots is challenging for two reasons. First CS is a

high dimensional space. Second equilibrium must be taken into account. As I am

only considering geometrical problems, without taking time into account. It is thus

a static stability criterion.

Ignoring time is of course a questionable choice. Many problems require dy-

namical motions and cannot be solved while keeping static stability at all time.

For instance, static stability cannot plan jumps. However, taking dynamics into

account in a full-body motion planner is still an open problem.

In this section, I propose a formulation of a subclass of static stability problem

as a differentiable constraint.

2.3.1 Static stability constraint

Consider a robot in contact with the environment. I make the simplifying assump-

tion of punctual contacts. For a humanoid robot, the foot can be modelled as four

contact points. I do not consider friction, although the method I present could

easily be extended to consider them.

Figure 2.8: Non-coplanar
friction-less multi-contact crite-
rion. The circle represents the
robot joints. The dashed arrows
represent forces applied to the
robot. Pi is a contact point and
fi ni is the force applied in Pi.

Let (Ci)i∈J1,nK be n contacts. G denotes the center of gravity of the robot

36 Chapter 2. Constrained motion planning

and m its mass. Each contact Ci is defined by a point Pi and a normal ni. It

defines an effort fi ni in Pi. Pi and ni are defined respectively to a robot joint

frame. f = (f1, . . . , fn) denotes the vector of forces. Figure 2.8 summarizes the

notations. The laws of classical mechanics give the following frictionless static

stability criterion:

∃f ∈ [0,+∞[n, φf +mG = 0R6 (2.3)

where G = (0, 0,−9.81, 0, 0, 0)T ∈ R
6 is the gravity vector extended with 3 zeros

and

φ =

(

. . . ni . . .

. . . PiG× ni . . .

)

∈ R
6×n (2.4)

It is easy to see that φ is a continuously differentiable function of the robot

configuration.

Problem formulation I now formulate the problem of finding f in (2.3) as a

quadratic problem. Let H ∈ R
n×n and g ∈ R

n be H = φTφ and g = mφT G. Thus,

1

2
||φf +mG||22 =

1

2
fT Hf + fT g +

1

2
m2GT G (2.5)

Then, the frictionless static stability criterion (2.3) can be written as the fol-

lowing optimisation problem.

min 1
2 fT Hf + fT g

s.t. f ≥ 0
(2.6)

Let C(f) = 1
2 fT Hf + fT g be the cost, f∗ be the optimal solution to the above

problem, y ∈ [0,+∞[n be the dual variable and y∗ be the dual variable at optimum.

C(f∗), which depends on q, is the output of the static stability criterion.

At the optimum, the Karush–Kuhn–Tucker conditions gives

Hf∗ + g− y∗ = 0 (2.7)

y∗T f∗ = 0 (2.8)

Derivative of the optimal cost I denote partial derivatives of a function a with

respect to the robot configuration by ∂a
∂q

. When a is a matrix valued function, ∂a
∂q

is a tensor.

The derivative of the cost function is

∂C(f)

∂q
=

1

2
fT ∂H

∂q
f + fT ∂g

∂q
+
∂f
∂q

T

(Hf + g)

2.3. Static stability 37

At the optimum, using (2.7), it becomes

∂C(f∗)

∂q
=

1

2
f∗T ∂H

∂q
f∗ + f∗T ∂g

∂q
+
∂f
∂q

∗T

y∗

In case the strict complementary slackness (2.8) holds, either of the following is

true:

• y∗
i = 0 and f∗

i > 0, so
∂f∗

i

∂q
y∗

i = 0,

• y∗
i > 0 and f∗

i = 0, so1 ∂f∗

i

∂q
= 0.

Finally the derivative of the optimal cost when strict complementary slackness

holds is:
∂C(f∗)

∂q
=

1

2
f∗T ∂H

∂q
f∗ + f∗T ∂g

∂q
(2.9)

The tensor ∂H
∂q

and the matrix ∂g
∂q

only depends on forward kinematics so they

are easy to compute. It is thus possible to define a piecewise differentiable function

as follows. Given a set of contacts, the static stability function returns a one di-

mensional vector whose value is the optimal cost C(f∗). The derivative in Equation

(2.9) holds when strict complementarity holds. I make the simplifying assumption

that strict complementarity always holds.

2.3.2 Integration to a motion planner

Constraint solver The above function has two drawbacks. First, compared to

geometrical functions, it is time-consuming because one has to solve a quadratic

program and compute the derivative of matrix φ. Second, the function is built

with a set of contacts. Evaluation of the function for robot configurations not

satisfying these contacts does not make sense. The function is only defined on the

sub-manifold of CS where the contacts are satisfied.

Fortunately, there is no compromise between the two. It is possible to evaluate

the constraint only where defined and to reduce the number of optimization problem

solved at the same time. The solution is to use a hierarchical method similar to the

Stack Of Tasks [Mansard and Chaumette, 2007]. This method uses several layers of

constraints (called tasks). The constraints are solved using a layered NR method.

Each layer refines the descent step in the null space of the previous layers. It stops

whenever the null space has dimension zero.

The method I propose uses the same algorithm at one exception. Instead of

only stopping when the null space has dimension zero, the algorithm also stops if

the constraint of the current layer is not satisfied. So a layer is reached only if the

constraints of all the previous layers are satisfied.

The hierarchy of constraint I propose contains two layers although more could

be added. The highest priority layer contains kinematic constraints of the contacts.

1 I assume solutions to the optimization problem are continuous with respect to the inputs so
that yi > 0 holds on a ball. fi = 0 is then true on this ball so the derivative at the center is zero.

38 Chapter 2. Constrained motion planning

The lowest priority layer contains the static stability constraint. So the static

stability constraint is only evaluated for configurations in contact.

Figure 2.9 shows a motion that was generated using this criterion and the ma-

nipulation planner detailed in next chapter. The example set-up is detailed in Sec-

tion 5.3.1. The quadratic program in Equation (2.6) is solved using the qpOASES

library [Ferreau et al., 2014]. Table 2.3 shows benchmarks between two other cri-

teria and this one. It seems prioritizing the constraint slightly decreases the per-

formances. The method is about three times slower and has a lower success ratio.

The deterioration of the success ratio might be due to the assumption that strict

complementary slackness always holds. However, the method is able to move the

position of the feet on the stairs to achieve equilibrium.

(a) Initial config. (b) (c) (d) (e) Goal config.

Figure 2.9: Robot HRP-2 climbs stairs quasi-statically. This path was generated us-
ing the friction-less multi-contact equilibrium criterion described in Section 2.3 and
the manipulation planning algorithm in Chapter 3. It is detailed in Section 5.3.1.

CoM above center CoM above line QP QP with priorities

Teval (µs) 345 362 545 545
Tproj (ms) 3.90 2.93 9.46 10.3

Success ratio 99% 99% 78% 75%

Table 2.3: Benchmark of friction-less multi-contact equilibrium criterion. Several
quasi-static equilibrium criteria are used to project configurations in the scenario
of Figure 2.9. The values are averaged over the same set of 10000 random con-
figurations. Teval is the time to evaluate the function and its Jacobian. Tproj is
the time to project a random configuration. The last row is the ratio of random
configuration successfully projected. “CoM above center” refers to the criterion in
Dalibard et al. [2013], “CoM above line” to the second criterion in Appendix B,
“QP” to this criterion without the priorities detailed in Section 2.3.2 and “QP with
priorities” with the priorities.

Comparison with existing methods This method has mainly two advantages.

First, it does not reduce the space of statically stable configurations to a sub-space

of it, as [Dalibard et al., 2013]. This method can be used for as many contact as

desired and for non coplanar contacts. Second, while most methods require fully

specified contacts, they can be specified only partially with this method. As with

2.3. Static stability 39

grasps and placements, a contact has a validation constraint and a parametrization

function. For instance, one can specify that one foot should be on one step, the

other on another and the hand on the handrail. The position on each step and on

the handrail can be let free. The constraint solver moves the feet and arm while

keeping them in contact with the environment. It uses those DoFs to generate

statically stable configurations.

However, this approach has drawbacks. First, the derivative is only fully known

where the complementary slackness is strict. Second, ignoring both friction and

dynamics is very limiting. A wide range of motions uses at least one of them. The

approach could integrate friction, at the cost of a larger2 optimization problem to be

solved. Third, evaluating the constraint and its derivative is extremely costly com-

pared to other geometrical constraints. As a constrained motion planner evaluates

both very often, motion planning becomes slow. This justifies why most methods

use simpler stability criteria. The efficiency of this method could be improved using

a different formulation of the optimization problem. Prete et al. [2016] proposes a

lot more efficient stability criterion which uses optimization. However, they do not

provide a derivative of the criterion. Brossette et al. [2015] formulates the problems

as a Sequential Quadratic Program and proposes a solution which takes friction

into account.

2The number of variables is multiplied by 3. The number of constraints stays the same.

Chapter 3

Manipulation planner

Contents
3.1 Constraint Graph . 42

3.1.1 States and transitions . 42

3.1.2 Problem statement . 46

3.1.3 Manipulation RRT . 47

3.2 Crossed foliation issue . 50

3.2.1 Example . 50

3.2.2 Conditions . 51

3.2.3 Crossed foliation transition 56

3.3 Generalized reduction property 57

3.3.1 Generalized reduction property 57

3.3.2 Grasps and placements . 62

3.3.3 Limitations . 63

3.4 Narrow passages . 63

3.4.1 Low sampling probability . 63

3.4.2 Way-point transition . 65

3.4.3 Experimental results . 66

This chapter describes a theoretical framework to model admissible motions of

robots and objects. From the manipulation rules, this model provides the structure

of CS. This structure is represented as a graph. It expresses admissible motions

and proposes a generic way of dealing with the foliations they induce.

Place-
ment

GraspTransit

Grasp object

Release object

Transfer

Figure 3.1: Graph of Constraint for a problem with a robot with one gripper ma-
nipulating one object.

42 Chapter 3. Manipulation planner

The first section formally introduces the graph and the Manipulation-RRT (M-

RRT) algorithm. The vertices of the graph represent a combination of facts, like

Robot gripper holds object or Object is on the table. The edges represent transitions,

like Grasp object or Put down object. Thanks to this graph, the M-RRT solves

manipulation problems. It uses the graph to generate admissible motions. A tree

of configurations is grown by choosing randomly edges in the graph at each iteration.

The second section describes the crossed foliation transitions. The necessity of

this type of transition arises from the crossed foliation issue. It is encountered in

cases of continuous grasps and continuous placements. In those cases, randomly

choosing new grasps and new placements has a probability zero to solve a manipu-

lation problem.

The third section addresses the topology induced by the manipulation rules. I

emphasize a limitation of the reduction property. I extend the property to articu-

lated object, under-actuated end-effector and to the case of simultaneous grasps.

The last section describes the way-point transitions. This type of transition

tackles the issue raised by narrow passages of CS. These passages are known to

drastically increase resolution time. Manipulation planning is intrinsically subject

to narrow passages as objects must be close to either supporting objects or grippers.

3.1 Constraint Graph

3.1.1 States and transitions

I represent manipulation rules in the form of a graph called Graph of Constraint.

The vertices of the graph are called states and the edges transitions. A state defines

a subset of CS, defined by a constraint1.

Definition 3.1 (State). A state S contains a validation constraint S.constraint

and a set of outgoing transitions S.transitions.

A robot configuration q is in S, denoted q ∈ S, if and only if q satisfies

S.constraint.

A transition defines the set of admissible motions from a state.

Definition 3.2 (Transition). A transition T contains a parametrization function

T.f , an origin state T.origState, a destination state T.dstState and a state T.state.

In the definition above, a transition T has three states. T.origState and

T.dstState correspond to the states which are connected by the transition. The

last state, T.state, corresponds to the state in which admissible paths lie. This

state can be any state although, most of the time, it is T.origState or T.dstState.

The parametrization function T.f is used to build parametrization constraints.

Consider the foliation of the set T.state. This foliation is parametrized by T.f . Given

a configuration q0, the parametrization constraint T.f(q) = b with b = T.f(q0) is

satisfied for configurations on the same leaf as q0.

1I will often abusively use a state in place of the subset of CS it defines.

3.1. Constraint Graph 43

Definition 3.3 (Admissible motion). A path p ∈ C ([0, 1] , CS) is admissible for

transition T , or T -admissible, if and only if the following conditions are all satisfied:

− p(0) ∈ T.origState,

− ∀t ∈ [0, 1],p(t) ∈ T.state,

− ∀t ∈ [0, 1], T.f(p(t)) = T.f(p(0)).

A path is admissible if there exists a transition such that it is admissible for this

transition.

It is important to understand that the set of admissible motions from T.origState

is larger than the set of admissible motions from T.origState to T.dstState. Another

important point is that when T.origState∩T.state is empty, T admits no admissible

paths and when T.dstState∩T.state is empty, T admits no admissible paths reaching

the destination. Admissible motions do not take collisions into account. By design,

I want the restriction of a path p to an interval of the form [0, t] ⊂ [0, 1] to still be

admissible. This restriction happens in most motion planning algorithms, when a

collision is detected at a time T ∈]t, 1[. Formally, the following property is satisfied2:

Definition 3.4 (Admissibility inheritance property).

∀p ∈ C ([0, 1] , CS) ,p is admissible ⇒ ∀t ∈ [0, 1],p|[0,t] is admissible

From the notion of admissible motions, I define the reachability set as the set of

reachable configurations from configuration q0 with transition T . To be reachable,

a configuration must be on the same leaf as q0 of the foliation of T.state induced

by T.f . In other words, it must satisfy the parametrization constraint T.f(q) =

T.f(q0). Again, collisions are not taken into account. The reachability set is:

R(q, T) = {q′ ∈ T.state | T.f(q′) = T.f(q)} (3.1)

Example of Graph of Constraint Let us consider the problem of manipulation

defined by a cylindrical vertical object like a bottle, a table and a simple 6 degrees

of freedom (DoFs) manipulator arm with a gripper. The configuration space of the

system is CS ≡ [−π, π]6 × SE(3). Figure 3.2 shows this set-up.

Figure 3.1 shows the Graph of Constraint of this simple example. This graph

has two states

• placement: the subspace of configurations of the system where the object is

standing on the table.

• grasp: the subspace of configurations where the object is grasped by the robot.

2p|[0,t] is the restriction of p to [0, t], i.e. p|[0,t] =

{

[0, t] → CS
s 7→ p(s)

44 Chapter 3. Manipulation planner

Placement

Grasp

Figure 3.2: Illustration of grasp and placement constraints. A gripper can grasp a
cylindrical object with a DoF in rotation. The cylindrical object can be placed on
the table. The parameters yp, zp and θp are constrained by the placement parame-
terization constraint. They parameterize the foliation of the placement space. The
parameter θg is constrained by the grasp parameterization constraint. It parame-
terizes the foliation of the grasp space.

Placement constraints Let (xp, yp, zp, θp, φp, ψp) ∈ R
6 be the position

and orientation of the object. A configuration q can be written as q =

(q0, . . . , q5, xp, yp, zp, θp, φp, ψp). The object is standing on the table when its height,

roll and pitch are equal3 to 0. The validation constraint of placement is defined by

P(q) = P(q0, . . . , q5, xp, yp, zp, θp, φp, ψp) = [xp, φp, ψp] = 0. Along transit paths,

the position of the object on the table remains constant. This constraint de-

fines a foliation of placement. Leaves of the foliation are parameterized by the

3 remaining DoFs of the object on placement: horizontal translation and yaw

angle of the object. The parametrization function of placements is defined by

P̄(q) = P̄(q0, . . . , q5, xp, yp, zp, θp, φp, ψp) = [yp, zp, θp].

Grasp constraints In the discrete case, where grasp is defined by a fixed rel-

ative transformation of the gripper with respect to the object, grasp is not foliated

(or composed of only one leaf). The validation constraint is a fixed relative trans-

formation of the gripper with respect to the object. There is no parametrization

function.

3There always exists a coordinate system in which this is true.

3.1. Constraint Graph 45

The case of continuous grasps is a more interesting. The validation constraint

sets the value of the 3 translations and 2 of the 3 rotations of the relative transfor-

mation of the gripper with respect to the cylindrical object. The parametrization

function returns the relative angle around the cylinder axis, θg on Figure 3.2, left

free by the validation constraint.

Graph of Constraint State grasp contains the grasp validation constraint

and placement contains the placement validation constraint. Transitions transit

and grasp object contain the placement parametrization function. Their state is

placement because admissible motions for these transition must lie in placement.

Transitions transfer and release object contain no function in the fixed grasp case

and the grasp parametrization function in the continuous grasp case. Their state is

grasp because admissible motions for these transitions must lie in grasp.

Figure 3.3 shows the configuration space for a pick-and-place problem. The two

foliations of CG and CP are crossing. Moving in CS requires to find motions in Afi

and Bgi
alternatively.

Figure 3.3: Example of manipulation path and reachability sets with two foliations.
Each Afi

is a leaf of CP. Each Bgi
is a leaf of CG. fi and gi are continuous and

only some values are shown. Solid lines are transit paths, along the Afi
and dashed

lines are transfer paths, along the Bgi
.

State of a configuration It is very often useful to obtain a state from a config-

uration q ∈ CS. This is however ill-defined for the two following reasons.

q may satisfy the constraint of several states. For instance, a configuration in

46 Chapter 3. Manipulation planner

the intersection of grasp and placement satisfies both constraint of placement and

grasp. I chose to overcome the issue by prioritizing the states. If q satisfies the

constraint of two states, it belongs to the state of highest priority. If a state is

included in another state, the former must have a higher priority than the latter.

When there is no inclusion relation, the order is ill-defined and the algorithm relies

on user input. For placement and grasp, it is usually better to consider placement

with lower priority than grasp. Articulated object, like a door, is always in a valid

placement so CP = CS and CG ⊂ CP and CG must have higher priority.

q may also violate the constraint of all states. Then, q does not belongs to any

states. Except before projecting random configurations, this does not happen. This

is one of the motivation for the state attribute of transition. Configurations along

a motion generated using the graph lie in state.

Relation with task planning notions In task planning, the manipulation rules

are encoded in the action preconditions and effects. The notion of action does not

exist in this formalism. States encode preconditions and effects. Transitions encode

admissible motions.

3.1.2 Problem statement

A manipulation planning problem can be defined as follows.

Definition 3.5 (Manipulation planning problem). Given a set of robots, objects,

static obstacles and a Graph of Constraint, an initial configuration for all robots

and objects and a set of goal configurations, then a manipulation planning problem

is to find a path, for all robots and all objects, from the initial to a final position in

the set of goal configurations. The path must be collision-free and must satisfy the

manipulation rules.

In the above definition, the goal specification is the most abstract. A set of

configuration can be specified by a validation constraint. Though this work could

be extended in order to handle a set of goal configurations, I only focus on a discrete

countable set of goal configurations. This restriction affects only the proposed

algorithm, which would have to be slightly modified. In the literature, this problem

is known as Rearrangement planning. All that follows focuses on the following

problem:

Definition 3.6 (Rearrangement planning problem). Given a set of robots, objects,

static obstacles and a Graph of Constraint, an initial and one or several goal con-

figuration(s) for all robots and objects then a manipulation planning problem is

to find a path, for all robots and all objects, from the initial to a final position in

the set of goal configurations. The path must be collision-free and must satisfy the

manipulation rules.

3.1. Constraint Graph 47

3.1.3 Manipulation RRT

In this section, I explain how to use the Graph of Constraint to plan manipulation

paths. The RRT-like planning algorithm developed to solve manipulation problems

is called the Manipulation-RRT algorithm.

For each state of the Graph of Constraint, I define a probability distribution

over all transitions starting from this state. By default the uniform distribution is

a reasonable option.

Algorithm 3.1 Manipulation-RRT

⊲ Rapidly exploring Random Tree (RRT) from qI to one goal qG
i using the

constraint graph

1: function findPath(qI ,
{

qG
1 , . . . ,q

G
n

}

)

2: T .insert(qI , qG
1 , . . . , qG

n)
3: for i = 1→ K do
4: Q← EmptySet

5: qrand ← Random(CS)
6: for all connected component cc of T do
7: qnear ← Nearest(qrand,cc)
8: T ← chooseTransition(qnear)
9: qnew, path← constrainedExtend(qnear,qrand,T)

10: if last step succeeded then
11: Q.append(qnew)
12: T .insert(qnew, path)

13: for all (q1,q2) ∈ Q2 | q1 6= q2 do
14: Connect(q1,q2)

15: for all qG ∈
{

qG
1 , . . . ,q

G
n

}

do

16: if SameConnectedComponent(qI , qG) then return path found

Algorithm 3.1 shows a pseudo code for the M-RRT algorithm. Figure 3.4 pic-

tures some of the steps, with the example of Figure 3.3. The algorithm consists in

exploring the transitions of the Graph of Constraint as follows.

• Figure 3.4(a), Line 5: shoot a random configuration qrand.

• Figure 3.4(b), Line 7: in each connected component of the current roadmap,

find the closest node qnear.

• Line 8: choose an outgoing transition of the state of node qnear in the Graph

of Constraint. In all the simulations of this work, this choice is random and

follows the uniform probability distribution over all outgoing transitions of

each state.

• Figure 3.4(d), Line 9: extend qnear along the transition up to qnew, further

detailed in Algorithm 3.2.

48 Chapter 3. Manipulation planner

• Line 14: try to connect the new nodes together, using Algorithm 3.3.

• Figure 3.4(f), Line 16: the algorithm succeeds when qI and one qG
i are in the

same connected component.

(a) Shoot qrand (b) Find qnear (c) Project qrand

(d) Extend toward qproj (e) Update the roadmap (f) Solution found

Figure 3.4: Steps of the M-RRT algorithm. (a)-(e) shows the steps of one iteration
of the algorithm. qrand is a random configuration. qnear is its nearest neighbour.
qproj is the projection of qrand onto the reachability set. qnew is the configuration
obtained after extension. (f) shows the roadmap when a solution was found, after
more iterations.

Constrained extension Algorithm 3.2 describes the constrained extension step

above (Line 9 of Algorithm 3.1). It extends the functionalities of Algorithm 2.3.

Ct denotes the parametrization constraint that defines R(qnear, T), the reachability

set from qnear with transition T (Line 3). Cs denotes the concatenation of the

validation constraint of target state T.dstState and transition state T.state (Line 2).

qproj is obtained by projecting qrand onto Ct ∩ Cs. This corresponds to Line 5

and Figure 3.4(c). One of the path projection method of Section 2.2 is used to

3.1. Constraint Graph 49

Algorithm 3.2 Continuous constrained RRT extension using the Constraint Graph

1: function constrainedExtend(qnear,qrand,T)
2: Cs ← T.dstState.constraint ∩ T.state.constraint
3: Ct ← ParametrizationConstraint(f = T.f , b = T.f(qnear))
4: proj← projector(Cs, Ct)
5: qproj ← proj.apply(qrand)
6: p1 ← interpolate(qnear,qproj)
7: pathProj← projector(T.state.constraint, Ct)
8: p2 ← pathProj.apply(p1)
9: p3 ← testCollision(p2)

10: qnew ← finalConfiguration(p3)
11: return qnew, p3

project the path onto the transition constraint (Line 8). Then, a collision checking

procedure validates the path and the algorithm returns.

In case of collision or projection failure, p3 is the left part of the path that is

successfully projected and collision-free. In this case, configuration qnew is likely

not to be in T.dstState. Thanks to the admissibility inheritance property 3.4, p3 is

still an admissible path.

Algorithm 3.3 Connect two configurations with the Graph of Constraint

1: function Connect(q1, q2)
2: S1 ←State(q1)
3: S2 ←State(q2)
4: T ←Transition(S1, S2)
5: if T is None then return failure
6: if T.f(q2) 6= T.f(q1) then return failure

7: Ct ← ParametrizationConstraint(f = T.f , b = T.f(q1))
8: proj← projector(Ct)
9: p1 ← interpolate(qnear,qproj)

10: p2 ← projectPath(p1, proj)
11: p3 ← testCollision(p2)
12: if no collision and projection success then return p3

13: else return failure

Termination condition Algorithm 3.3 tries to connects the new nodes of the

roadmap created by Algorithm 3.2 to other connected components of the roadmap,

as in any classical implementation of RRTConnect algorithm. First the function

looks for a transition between the configurations. If a transition exists, the function

checks that q1 and q2 are on the same leaf of the transition foliation. If not, the

function returns failure.

50 Chapter 3. Manipulation planner

In Figure 3.4(f), the leaf Bg1 and Bg2 were selected randomly at Line 5 of

Algorithm 3.2. This leads to the crossed foliation issue, explained in the following

section.

3.2 Crossed foliation issue

This section introduces the crossed foliation issue first by an example, then by a

formal approach. Finally, I explain the solution I used to handle it.

3.2.1 Example

Consider the example given in Section 3.1.3: a cylindrical vertical object, a table and

a simple 6 DoFs manipulator arm. Consider continuous placements of the object

on the table. In the fixed grasp case, grasp is not foliated (or composed of only

one leaf). Extending a RRT-tree from the initial configuration and from the goal

configuration will solve the problem of moving the object at another configuration.

The trees will connect in grasp space. Figure 3.5 illustrates this case.

placement
robot

objec
tob

je
ct

grasp

qinit

qgoal

possible connection

Figure 3.5: Grasp and placement with unique grasp: If the grasp is unique, any
pair of grasp configurations are connectible by a transfer path.

In the general case, objects can be grasped in a continuous way. In the above

example, the relative orientation of the object with respect to the gripper is free

around the vertical axis of the object. In this case, grasp is also foliated. The

foliation is parametrized by the relative angle of the object with respect to the

gripper along the object axis. In this case, RRT-trees rooted in placement will

never meet, since the probability that both trees start exploring grasp with the

same grasp is equal to zero. I call this issue the crossed foliation issue. Figure 3.6

illustrates this case.

3.2. Crossed foliation issue 51

placement
robot

objec
tob

je
ct

grasp

qinit

qgoal

Figure 3.6: The crossed foliation issue: if grasp and placement are foliated, trees
rooted at initial and goal configurations will never meet.

To my best knowledge, this issue has never been stated and solved in a general

way. Note that Siméon et al. [2004], Harada et al. [2014], Lertkultanon and Pham

[2015] overcome the issue by using the reduction property. However, the issue also

arises manipulating two objects with discrete grasps and continuous placement. In

the case, the reduction property does not apply.

3.2.2 Conditions

The crossed foliation issue, pictured in the above section, arises when two transitions

connecting two nodes back and forth are both foliated. It happens at Line 6 of

Algorithm 3.3, if states S1 and S2 are foliated. As explained in Figure 3.6, it

will always return failure and will never succeed in connecting configurations from

different trees. The main result of this section, Corollary 3.1, gives the conditions

raising the issue.

To formalize the issue, I first define the leaf parameter set and one useful prop-

erty for projectors.

Definition 3.7 (Leaf parameter set). For a transition T and a graph T , the set of

leaf parameters, of foliation induced by T , reached by T is defined by

L(T, T) = {T.f(q)|q ∈ T ∩ T.state}

For instance, Figure 3.4 shows two foliations parametrized by function f for the

Afi
and g for the Bgi

. On Figure 3.4(a), the two leaf parameter sets are L(Tf , T) =

{f1, f3} and L(Tg, T) = ∅, while on Figure 3.4(f), they are L(Tf , T) = {f1, f2, f3}
and L(Tg, T) = {g1, g2}.

52 Chapter 3. Manipulation planner

Property 3.1 (Unbiased projector). Let M be a sub-manifold of CS of pos-

itive dimension and C be a constraint satisfied only on M , i.e. M =

{q ∈ CS | q satisfies C}. Finally, let proj be a projector onto constraint C.

Then, proj is an unbiased projector if the pre-image of any subset of M of

measure zero by proj is a subset of CS of a measure zero.

Property 3.1 can be interpreted as follows. An unbiased projector does not

prefer any subset of the output manifold M of measure zero. Let qR be a uniformly

distributed random configuration of CS and qR
proj be its projection. Indeed, qR

proj

has a probability zero of reaching any subset of M of measure zero:

∀S ⊂M | |S| = 0, p(qR
proj ∈ S) = 0

Note that an unbiased projector may - and will in the general case - prefer some

subset of M of strictly positive measure. Two subsets of M of same non-zero

measure have not, in general, the same probability of being reached by qR
proj .

In the context of constrained motion planning, this is a desirable property.

It is a necessary - but not sufficient - condition to have a uniform distribution

for variable qproj in M from a uniform distribution for variable qrand in CS. In

this framework, most constraints are infinitely differentiable. As projection uses a

Newton-Raphson (NR) method, it is reasonable that the property is true4. The pre-

image of a configuration is the set of configurations obtained by following forward

and backward the gradient of the constraint. The property can be violated by

the placement constraint that I introduce later. This constraint is only piecewise

infinitely differentiable. Figure 3.7 gives an example of biased projector because of

a placement constraint.

The following theorem formalizes this issue.

Theorem 3.1 (Probability to generate reachable configuration). Let S1 and S2 be

two states. For 1 ≤ i, j ≤ 2, i 6= j, Ti,j be transitions from Si to Sj such that Ti,j

induces a foliation of Ti,j .state = Si parametrized by Ti,j .f .

Let (q1,q2) ∈ S1
2. For k ∈ N , let T 1

k and T 2
k be two sequences of trees such that

T i
0 = {qi} and T i

k+1 is the tree obtained from T i
k after one iteration of Algorithm 3.1,

using only transition T1,2. Let qi
k+1 be the configuration added to T i

k to obtain T i
k+1.

Finally, let Ek and Fk be the events “L(T2,2, T 1
k) ∩ L(T2,2, T 2

k) = ∅” and

“q1
k /∈ L(T2,2, T 2

k) and q2
k /∈ L(T2,2, T 1

k)” respectively. Then, the probability of

Ek, k ≥ 1 is:

p(Ek) = p(E0)
k−1
∏

i=0

p(Fi+1 | Ei)

Before providing, I explain what are each term in the above theorem. The

two trees T i
k are the tree normally grown by the M-RRT. Event Ek means that,

at the begining of iteration k + 1, no configuration from T 1
k are reachable from

4Smooth enough functions have the 0-property, which corresponds to Property 3.1. See Pono-
marev [1987] for more details.

3.2. Crossed foliation issue 53

Figure 3.7: This simple example shows a biased projector. The space represents
the position of an object in a two dimensional plane. The square at the center
represents the set of stable placement (like a table). Assume the projection returns
the stable placement closest to the input, as shown by the two arrows. An object
in the hatched regions is unstable and its projection would be at the closest corner
of the table. Thus, one corner has a non-zero probability of being sampled after
projection. If the table had round corners, the projector would be unbiased.

a configuration in T 2
k and vice-versa. Event Fk+1 means that configuration q1

k+1

generated by the k+1-th iteration is not reachable from configurations in T 2
k+1 and

vice versa.

Assume Figure 3.4 shows the k + 1-th iteration. Then, Figure 3.4(a) shows the

roadmap obtained at the begining of interation k + 1, T i
k . Event Ek happens since

the two trees T i
k are on different Bgi

. q1
k+1, the configuration qnew on Figure 3.4(d),

is not on a Bgi
reached by T 2

k+1. Assuming the same assertion is true for q2
k, not

on this Figure, then event Fk happens. In other words, the two trees could not be

connected before iteration k + 1 (event Ek) and iteration k + 1 did not change it

(event Fk+1).

Thus the probability of Ek is the probability that T1,2 generates configuration

that are reachable from each other using transition T2,2. When p(Fk+1 | Ek) < 1,

then lim
k→∞

p(Ek) = 0, which is desirable otherwise the problem cannot be solved. I

now prove the above theorem.

Proof. After iteration k, event Ek+1 happens if L(T2,2, T 1
k+1)∩L(T2,2, T 2

k+1) = ∅. As

T i
k ⊂ T i

k+1, event Ek+1 implies L(T2,2, T 1
k) ∩ L(T2,2, T 2

k) = ∅, q1
k+1 /∈ L(T2,2, T 2

k+1)

and q2
k+1 /∈ L(T2,2, T 1

k+1), i.e. events Ek and Fk+1. So event Ek+1 happens only if

Ek happened and Fk+1 happens knowing Ek happened. Thus, we get the following

recursive rule.

p(Ek+1) = p(Ek)× p(Fk+1 | Ek)

So P (Ek) = P (E0)
k−1
∏

i=0
p(Fi+1 | Ei)

54 Chapter 3. Manipulation planner

(a) q1

k and q2

k are not reachable. (b) q1

k and q2

k are reachable.

Figure 3.8: Reachability of configurations generated by Manipulation-RRT at iter-
ation k. The two gray sets are states S1 and S2. The coloured lines are leaves of the
foliation of each state. qi

k is the projection of qrand onto the intersection of S1 ∩S2

with the red line passing by qnear
i . (a) shows the general case where q1

k and q2
k are

not in the same foliation of S2, i.e. on the same green line. (b) shows a particular
case where the projection is made orthogonally to the green lines.

I now analyse the value of p(Fk | Ek−1). Figure 3.8 shows how q1
k and q2

k

are generated by M-RRT. Let qrand ∈ CS be a random configuration and qnear
i

its nearest neighbour in T i
k−1. Fk can be rewritten as “q1

k /∈ L(T2,2, T 2
k−1) and

q2
k /∈ L(T2,2, T 1

k−1) and T2,2.f(q1
k) 6= T2,2.f(q2

k)”. Then,

p(Fk | Ek−1) = (1− p(T2,2.f(q1
k) ∈ L(T2,2, T 2

k−1) | Ek−1))

× (1− p(T2,2.f(q2
k) ∈ L(T2,2, T 1

k−1) | Ek−1))

× (1− p(T2,2.f(q1
k) = T2,2.f(q2

k) | Ek−1))

Let C(q) be the intersection of S2 and the leaf of S1 of parameter T1,2.f(q). When

extending T i
k−1 with T1,2, the constraint applied to generate qi

k are C(qnear
i). Let

F−1(q∗, l) = {q ∈ C(q∗) | T2,2.f(q) = l} be the pre-image of l by T2,2.f in C(q∗).

Let P−1(q∗, l) = {q ∈ CS | projector(q, C(q∗)) ∈ F−1(q∗, l)} be the pre-image of

F−1(q∗, l) by projector onto C(q∗)). It is the subset of CS whose projection onto

C(q∗) is in the leaf of parameter l, i.e. T2,2.f(qproj) = l. Let’s consider each term

of the above equation independently.

• The first term is p(T2,2.f(q1
k) ∈ L(T2,2, T 2

k−1) | Ek−1). We have

{qrand ∈ CS | T2,2.f(q1
k) ∈ L(T2,2, T 2

k−1)} ⊂ ⋃(q′

1,q′

2)∈T 1
k−1

×T 2
k−1

P−1(q′
1, T2,2.f(q′

2)).

It is only a subset because of the nearest neighbour search. In the general

case, F−1(q∗, l) is a measure zero subset of C(q∗). This happens for

instance when T2,2.f is continuous and non-redundant with constraint C(q∗).
In this case, P−1(q∗, l) is the pre-image of a set of measure zero by the

projector. If the projector is unbiased, then P−1(q∗, l) has measure zero and

p(T2,2.f(qproj
i) ∈ L(T2,2, T 3−i

k−1) | Ek−1)) = 0.

3.2. Crossed foliation issue 55

• The second term p(T2,2.f(q2
k) ∈ L(T2,2, T 1

k−1) | Ek−1) is symmetrical.

• The third term is p(T2,2.f(q1
k) = T2,2.f(q2

k) | Ek−1). This prob-

ability is the probability of sampling a random configuration whose

projections q1
k and q2

k are such that T2,2.f(q)
k) = T2,2.f(q2

k). This

is p(qrand ∈
⋃

l∈Rn

(

P−1(qnear
1 , l) ∩ P−1(qnear

2 , l)
)

. I consider two cases:

T1,2.f(qnear
1) = T1,2.f(qnear

2) and T1,2.f(qnear
1) 6= T1,2.f(qnear

2).

In the first case, the constraints applied to generate q1
k and q2

k are the same.

The two projected configurations are thus equal. This case is not very inter-

esting because it means the two trees are already reachable by T1,1.

In the second case, the constraints applied to generate q1
k and q2

k are differ-

ent. It is hard in the general case to estimate the probability. Figures 3.8(a)

and 3.8(b) show what can happen. On Figure 3.8(b), the projection is orthog-

onal to the green lines. This means that the projection did not influence T2,2.f .

This can happen is the configuration space is a vector space, T1,2.f and T2,2.f
are linear and the green lines are orthogonal to the red ones. Although I can-

not provide a proof, I believe that with a non-linear configuration space and

non-linear constraints, the measure of
⋃

l∈Rn

(

P−1(qnear
1 , l) ∩ P−1(qnear

2 , l)
)

is

very low, if not zero. And so is the probability. This seemed verified in prac-

tice as random exploration without the crossed foliation transition, detailed

in next section, was never able to solve problems with crossing foliations in

the amount of time I let it run.

Definition 3.8 (Correlated constraint). A projector onto C(q) is correlated with

parametrization function f if and only if ∀(q1,q2) ∈ CS2,

∣

∣

∣

∣

∣

∣

⋃

l∈Rn

(

P−1(q1, l) ∩ P−1(q2, l)
)

∣

∣

∣

∣

∣

∣

= 0

where P−1(q, l) is the subset of CS whose projection onto C(q) is in the pre-image

of l by f .

Corollary 3.1 (Crossed foliation issue). Consider the case of Theorem 3.1. Let

C(q) be the intersection of S2 and the leaf of S1 of parameter T1,2.f(q) and let proj

be the projector onto C(q). When proj is unbiased, proj and T2,2.f are correlated

and when T1,1.f(q1) 6= T1,1.f(q2), the probability of randomly generating reachable

configurations for T2,2 is zero.

Proof. From the comments above, p(Fk+1 | Ek) = 1 so, using Theorem 3.1,

p(Ek) = 1.

When there are no correlation as defined in Definition 3.8, a value very close

to one of p(Fk+1 | Ek) means the likelihood to solve the problem is very low.

When this is true for both transition T2,1 and T1,2, then, the M-RRT algorithm

will run forever. To address this issue, next section introduces the cross foliation

56 Chapter 3. Manipulation planner

transition. This transition ensures that p(T2,2.f(q1
k) ∈ L(T2,2, T 2

k−1) | Ek−1) = 1

and p(T2,2.f(q2
k) ∈ L(T2,2, T 1

k−1) | Ek−1) = 1.

3.2.3 Crossed foliation transition

To overcome the crossed foliation issue, I define a new type of transition called

crossed foliation transition. This transition generates new configurations in leaves

that have already been reached by other connected components. To achieve this,

the roadmap builds and stores the leaf parameter set reached by each connected

component of the roadmap, of each transition of this type. In the Graph of Con-

straint, a transition of this type must be inserted parallel to transitions inducing a

foliation. It must also know the parametrization function of the crossing foliation.

Figure 3.9 shows how the graph of Figure 3.1 must be modified to overcome the

issue. Two crossed foliation transitions have been added, from placement to grasp

and vice versa. Transition Grasp object with specific grasp knows the function of

transition Transfer.

Place-
ment

GraspTransit

Grasp object

Grasp object with specific grasp

Release object

Release object with specific pose

Transfer

Figure 3.9: Graph of Constraint for a problem with a robot with one gripper ma-
nipulating one object. The double line represents crossed foliation transition.

The graph on Figure 3.9 contains two states S1 and S2, four transitions

Ti→j , 1 ≤ i, j ≤ 2 from Si to Sj and two crossed foliation transition T cf
1→2 and T cf

2→1.

When extending a node belonging to state S1, Algorithm 3.1 randomly chooses be-

tween the three outgoing transitions. When it selects T cf
1→2, the extension algorithm

picks randomly an element l of the leaf parameter set of T2→2 reached by any other

connected component of the current roadmap. Constraint T2→2.f(q) = l is then

added to the projector (Line 4 of Algorithm 3.2).

By definition of the leaf parameter set L(T2→2, T), l is associated to one or

several configuration(s) of the roadmap lying in state S2 and satisfying T2→2(q) = l.
As a consequence, qproj is on the same leaf as those configurations for the transition

T2→2. Eventually, Algorithm 3.3 may connect these configurations.

3.3. Generalized reduction property 57

3.3 Generalized reduction property

Siméon et al. [2004], Harada et al. [2014], Lertkultanon and Pham [2015] do not en-

counter the crossed foliation issue. They overcome the issue by using the reduction

property. This property reduces the complexity of the problem with a robot ma-

nipulating one object to a constrained motion planning problem. The intersection

of grasp and placement spaces is not foliated. However, the reduction property, re-

called in Section 1.3.2, only covers cases where a full actuated gripper grasps a free

floating object. It does not cover the cases of two grippers manipulating the same

object, of “non-holonomic” grippers and of articulated objects. In this section, I

propose a generalized reduction property. It extends the reduction property to the

cases mentioned above. This generalization relies on the notion of manipulability

which I propose a definition of.

The reduction property relies on the notion of grasp and of placement. I define

them through the notion of gripper and handle as follows.

A handle is a frame, attached to a static or movable body. It is defined by a

forward kinematic function eh : CS → SE(3). A gripper is a full-actuated handle,

i.e. all the gripper velocities, Im(Jeg), are actionable. This is always the case if all

the joints from the root joint of the kinematic tree and the joint are actuated. It

is sometimes not verified. For instance, a non-holonomic mobile platform, with a

manipulator arm with strictly less that six DoFs mounted on it has non-actionable

velocities in some configurations.

Definition 3.9 (Grasp, Placement). A placement is a fixed relative transformation

constraint between two handles h and h′, i.e. eh(q)−1eh′(q) = M ∈ SE(3).

A grasp is a fixed relative transformation constraint between a gripper g and a

handle h, i.e. eg(q)−1eh(q) = M ′ ∈ SE(3).

The reduction property is given as input a path in CG ∩ CP. Grasps and place-

ments along this path are valid and only these sets of grasp and placement are used

in the following paragraph.

3.3.1 Generalized reduction property

The reduction property, as stated in Dacre-Wright et al. [1992], is not complete.

Figure 3.10 gives two counter examples. It shows two different robots manipulating

an cylindrical object.

On Figures 3.10(a) and 3.10(c), the robot has one rotational DoF and the object

can move in the plane (3 DoFs). In both positions, the object is grasped by the

robot. There is a motion in CG∩CP that solves the problem: the robot stay still and

the object rotates around its axis. However, clearly, the problem has no solution

because the robot cannot execute this motion. The reduction property does not

apply in this case.

On Figures 3.10(b) and 3.10(d), the case is slightly different. The robot has two

rotational DoFs and the object can move in the plane (3 DoFs). As in the previous

58 Chapter 3. Manipulation planner

(a) 1 DoF robot (b) 2 DoFs robot

(c) 1 DoF robot (d) 2 DoFs robot

Figure 3.10: Two counter examples to the reduction property. Circles are rotation
joints: 1 rotation on (a) and (c), 2 rotations on (b) and (d). The circle with a
radius is an object that moves on the plane (3 DoFs). Hatched areas are obstacles.
Start configurations are the top figures and goal configurations are the bottom ones.
From (a) to (c), the problem has no solution independently of the obstacles. From
(b) to (d), the problem has no solution because the obstacles.

case, in both position, the object is grasped by the robot. And again, there is a

motion in CG ∩ CP that solves the problem: the robot stay still and the object

rotates around its axis. In this set-up, given an initial object position (x0, y0, θ0),

reaching (x0, y0, θ1) requires to switch between inverse kinematic solutions. When

using only one inverse kinematic solution, the only reachable object angle in (x0, y0)

is θ0. If not considering collisions, the path in CG ∩ CP can be transformed into a

valid sequence of transit and transfer paths. However, it cannot be approximated.

So, with the obstacles, the problem has no solution because a path going from one

inverse kinematic solution to the other will always collide either with the object or

with one obstacle. The reduction property does not apply in this case too.

In the following, Mi(q, ε) denotes the set of admissible paths from q and in-

cluded in B (q, ε), i.e. {p ∈ Ci([0, 1],B (q, ε)) | p(0) = q}. Paths in Mi(q, ε) are

i times continuously differentiable. B (x, ε) is the open ball of center x and radius

ε.

Definition 3.10 (Small Space Controllability). A robot R is small space control-

lable in q ∈ CS if and only if ∀ε > 0,∃η > 0,∀q′ ∈ B (q, η) ,∃p ∈ M1(q, ε) such

that p(1) = q′.

These two robots are small space controllable. However, in both cases, the

robot end-effector is not small space controllable in the configuration space of the

object. For instance, consider the 2 DoFs robot on Figure 3.10(b). Let (φr, ψr)

be the two angles of the robot and (xe, ye, θe) = f(φr, ψr) be the position and

orientation of the end-effector. The set of angles that can be reached in (xe, ye),

i.e. {θ ∈ [0, 2π[| ∃(φr, ψr), f(φr, ψr) = (xe, ye, θ)}, has only two elements so the end-

3.3. Generalized reduction property 59

Figure 3.11: Small Space Manipulability. For all path po included in B (qo, εo))
starting in qo, there exists a path pr included in B (qr, εr)) starting in qr such that
the relative position of O with respect to R is constant.

effector is not small-space controllable in the configuration space of the object. This

can be formalized by the Small Space Manipulability (SSM) property, which also

applies to articulated objects.

Definition 3.11 (Small Space Manipulability). Let R be a robot and O be an

object. Let er : CSR → SE(3), resp. eo : CSO → SE(3) be the continuous forward

kinematic function that maps the robot, resp. object, configuration to the gripper,

resp. handle, pose.

O is small space manipulable by R from (qr,qo) ∈ CSR × CSO if and only if

∀εr > 0, ∃εo > 0,∀po ∈M1(qo, εo),∃pr ∈M1(qr, εr) such that

er(pr(t))−1eo(po(t)) = er(qr)−1eo(qo)

Figure 3.11 pictures this condition. The “Jacobian” of er can be defined5 by
der◦pr

dt
(t) = Jr(pr(t))dpr

dt
(t). The Jacobian Jo of eo is defined similarly.

Lemma 3.1 (Necessary condition and sufficient condition of SSM). Using the no-

tations of Definition 3.11 the following assertions verifies (i) =⇒ (ii) =⇒ (iii).

(i) qr is a regular point of Jr and ∃εr > 0,∃εo > 0 such that,

∀(q′
r,q

′
o) ∈ B (qr, εr)× B (qo, εo),

Im(Jo(q′
o)) ⊂ {vr × er(qr)−1eo(qo) | vr ∈ Im(Jr(q′

r))}

(ii) ∀εr > 0, ∃εo > 0, ∀po ∈M1(qo, εo), ∃pr ∈M1(qr, εr) such that

er(pr(t))−1eo(po(t)) = er(qr)−1eo(qo)

5 In the following, I use a formalism not described here: der◦pr

dt
(t) ∈ se(3) and dpr

dt
(t) is in the

tangent to the joint space. This formalism is well described in the book of Featherstone [2008].

60 Chapter 3. Manipulation planner

(iii) Im(Jo(qo)) ⊂ {vr × er(qr)−1eo(qo) | vr ∈ Im(Jr(qr))}

Before providing a proof, I explain what (i) and (iii) mean. (iii) means that

all admissible velocities of the object are admissible for the robot end-effector. (i)

means that on a neighbourhood of a regular robot configuration, all the admissible

velocities of the object on a neighbourhood of its original position are admissible

for the robot end-effector, keeping the grasp constant.

In the previous examples, we immediately see that (iii) is false, thus the object

is nowhere small-space manipulable by the robot.

Consider the cases where the Jacobian of the robot end-effector is of rank 6.

By using results of Section 2.2.2, there exists a neighbourhood where the rank is

constant. Thus, on this neighbourhood, Im(Jr) = se(3) and (i) is true. So all

objects are small-space manipulable by the robot in considered configuration. This

is the case which was considered by Dacre-Wright et al. [1992].

Proof. I first prove that (ii) =⇒ (iii). Assume assertion (ii) is true.

Let vo ∈ Im(Jo). There exists q̇o such that vo = Joq̇o. Let po ∈ M1(qo, εo)

such that dpo

dt
(0) = q̇o. There exists a path pr ∈M1(qr, εr) such that

er(pr(t))−1eo(po(t)) = er(qr)−1eo(qo) (3.2)

By rearranging Eq. (3.2) and taking the derivative, we have:

(

Jr(pr(t))
dpr

dt
(t)

)

× er(qr)−1 =

(

Jo(po(t))
dpo

dt
(t)

)

× eo(qo)−1 (3.3)

which implies that vo =
(

Jr(qr)dpr

dt
(0)
)

× er(qr)−1eo(qo). So (iii) is true.

I now prove that (i) =⇒ (ii). Assume assertion (i) is true. Note that if (ii) is

true for some ε̄r, it is obviously true for all εr > ε̄r.

Let po be an object path. Consider the differential equation dp
dt

(t) = f(t,p(t)),

of unknown p, and the initial condition er(pr(0)) = er(qr). We seek a path in

M1(qr, εr), i.e. a continuously differentiable solution. The function f is

f : t,p 7→ Jr(p(t))†
(

Jo(po(t))
dpo

dt
(t)

)

× eo(qo)−1er(qr)

As qr is a regular point and q 7→ Jr(q) is continuous, Theorem 2.1 applies. There

exists ε0
r such that q 7→ Jr(q)† is continuous on B (qr, ε

0
r

)

.

Assertion (i) implies that there exists ε1
r > 0 and εo > 0 such that

∀(q′
r,q

′
o) ∈ B (qr, ε

1
r

)× B (qo, εo),

Im(Jo(q′
o)) ⊂ {vr × er(qr)−1eo(qo) | vr ∈ Im(Jr(q′

r))} (3.4)

Thus, let εr > 0 be fixed such that εr < min(ε0
r , ε

1
r). Assertion (i) is still true for

εr < ε0
r . Let p0 be fixed inM1(qo, εo). Cauchy–Lipschitz theorem states that there

3.3. Generalized reduction property 61

is a unique maximal solution pr ∈M1(qr, εr). Moreover, Equation (3.4) implies

(

Jo(po(t))
dpo

dt
(t)

)

× eo(qo)−1er(qr) ∈ Im(Jr(pr(t)))

Thus,

Jr(p(t))f(t,pr(t)) = Jr(p(t))Jr(p(t))†
(

Jo(po(t))
dpo

dt
(t)

)

× eo(qo)−1er(qr)

Jr(p(t))
dpr

dt
(t) =

(

Jo(po(t))
dpo

dt
(t)

)

× eo(qo)−1er(qr)

The above equation integrates to Eq. 3.2 so assertion (ii) is true.

The following theorem formulates the generalized reduction property.

Theorem 3.2 (Generalized reduction property). Let R be a robot and O be an

object. Any path p lying in CG ∩ CP satisfying the following conditions at all time

can be transformed into a finite sequence of transit and transfer paths:

− the robot is not in collision with static obstacles at p(t),

− R is small space controllable.

− O is small space manipulable by R from p(t).

Proof. Let p : [0, 1]→ CG ∩ CP. Let pr, resp. po, be the projection of p onto CSR,

resp. CSO. Let t0 ∈ [0, 1] be a fixed time.

As, R is not in collision with static obstacle in pr(t0), we can find ε > 0 such

that B (pr(t0), ε) ⊂ CSR,free.

As O is small-space manipulable by R from p(t0), there exists εr > 0

and εo > 0 such that all configurations of B (pr(t0), εr) are reachable by

paths from qr included in B (pr(t0), ε), thus collision free, and such that

∀po ∈ C0([0, 1],B (qo, εo)) | po(0) = qo, ∃pr ∈ C0([0, 1],B (qr, εr)) | pr(0) = qr such

that

er(pr(t))−1eo(po(t)) = er(qr)−1eo(qo)

As p is continuous, there exists δ > 0 such that

∀τ ∈]t0 − δ, t0 + δ[,pr(τ) ∈ B (pr(t0), εr) and po(τ) ∈ B (po(t0), εo)

∀τ ∈]t0 − δo, t0 + δo[,po(τ) ∈ B (po(t0), εo)

As p is continuous, there exists δr, δo > 0 such that

∀τ ∈]t0 − δr, t0 + δr[,pr(τ) ∈ B (pr(t0), εr)

∀τ ∈]t0 − δo, t0 + δo[,po(τ) ∈ B (po(t0), εo)

62 Chapter 3. Manipulation planner

Let δ = min(δr, δo), τ ∈]t0, t0 + δ[and

πo :
[t0, τ] → B (po(t0), εo)

t 7→ po(t)

There exists πr ∈ C0([t0, τ],B (qr, εr)) such that πr(t0) = qr and

er(πr(t))−1eo(πo(t)) = er(qr)−1eo(qo). Note that the time interval [0, 1] as been

rescaled to [t0, τ]. The path (πr,πo) constitutes a valid transfer path. R is small-

space controllable, so as πr(τ) and pr(τ) are in B (qr, εr), there exists an admissible

collision-free path π
′
r from πr(τ) to pr(τ). p : t → (π′

r(t),po(τ)) is a valid transit

path.

The path from (pr(to),po(to)) to (pr(τ),po(τ)) has been transformed into a

valid transfer path followed by a valid transit path.

As pr is a compact set included in an open set of CSR,free, This local transfor-

mation can be applied on a finite covering of [0, 1]. Thus, we get a finite number of

elementary manipulation paths.

3.3.2 Grasps and placements

The definition of grasp and placement given above implies that a grasp is a place-

ment. The reverse is not true. The difference is that a grasp can induce a motion.

Theorem 3.2 generalizes the reduction property to articulated objects. It makes

use of two forward kinematic functions er and eo. The DoFs involved in eo are not

necessarily actuated while the DoFs involved in er are.

Now consider an object O and two grippers G1 and G2. Indexes 1 and 2 in this

paragraph refers to one of these grippers. Both gripper can hold the object at the

same time. Then, three cases can happen.

First case, one gripper is not enough to carry the object. Both are needed at

the same time, for instance for a heavy object. Thus, there is only one grasp, which

happens when both grippers hold the object. Though the generalized reduction

property does not cover this case, I believe it could be extended by considering the

following function as gripper function:

eg :

{

CS → SE(3)× SE(3)

q 7→ (eg1(q), eg2(q))

Second case, each gripper is sufficient to hold the object. The generlized reduc-

tion property applies for paths in CG1 ∩ CP, in CG2 ∩ CP or in CG1 ∩ CG2 Consider

a path p lying in CG1 ∩ CG2. It is not in general a valid manipulation path, for the

same reason as a path in CG ∩ CP is not. Let us temporarily view CG2 as a set of

valid placement. Then, when the hypothesis of Theorem 3.2 holds for er = eG1 and

eo = eG2 , the decomposition given in the proof gives a path which is a alternative

sequence of

− valid transfer by gripper G1, lying in CG1 ∩ CG2,

3.4. Narrow passages 63

− transit for gripper G1, and where G2 is static and holds O, thus also valid.

This path is thus a valid manipulation path. This is expressed by the following

corollary of Theorem 3.2.

Third case, gripper G1 can carry the object alone but G2 cannot. If the problem

has no solution considering grasps with G1 only, then it has no solution at all.

Corollary 3.2 (Corollary to the generalized reduction property). Let R be a robot

with two grippers and O be an object. Any path p lying in CG1 ∩ CG2 satisfying the

following conditions at all time can be transformed into a finite sequence of transit

and transfer paths:

− the robot is not in collision with static obstacles at p(t),

− R is small space controllable.

− O is small space manipulable by R from p(t).

3.3.3 Limitations

In general, the reduction property does not cover coupled DoFs. Indeed, the above

demonstrations all assume the er and eo are decoupled. For instance, the DoFs of a

humanoid robot are all coupled by an equilibrium constraint. However, in this case,

the constraint is infinitely differentiable. It seems reasonable, although merely an

assumption, that the generalized reduction applies.

3.4 Narrow passages

Narrow passages are known to be challenging for motion planning algorithms. Un-

fortunately, manipulation planning encounters them very often. To overcome this

issue, I introduce the notion of way-points.

3.4.1 Low sampling probability

A search for a path to grasp an object necessarily goes close to collisions because the

object has to be in the gripper. Figure 3.12 shows a simple case where a gripper with

two fingers manipulates a ball. From Figure 3.12(a) to Figure 3.12(b), the gripper

goes to a grasp pose, close to the object. Without a hint on how to approach the

ball, randomized motion planning will spend a lot of time searching for a solution

through this narrow passage. In this case, a basic hint would be the direction of

approach of the gripper. A straight line approach along this direction is likely to

be collision-free.

Figure 3.13 shows a Graph of Constraint which integrates an intermediate state

corresponding to poses like the one showed on Figure 3.12(c). Transitions Grasp

ball and Move gripper up compute motion from Figure 3.12(c) to 3.12(b) and vice

versa. While poses where the ball is grasped are very cluttered, pre-grasp poses,

like on Figure 3.12(c), are much less cluttered.

64 Chapter 3. Manipulation planner

(a) Placement (b) Grasp (c) Pre-grasp

(d) Placement in box (e) Grasp in box (f) Pre-placement

Figure 3.12: This simple example illustrates narrow passages. (a) and (b) show a
gripper and a ball. (c) gives a possible approaching pose. (d) and (e) show the
same environment but the ball is in a box. The passage is now even narrower and
lifting the ball up is a second narrow passage. (f) gives a possible lifting pose.

Place-
ment

Gripper
above
ball

Grasp

Move gripper upMove gripper away

Grasp ballApproach ball

Transit Transfer

Figure 3.13: A Graph of Constraint for the problem on Figures 3.12(a) and 3.12(b)
with a intermediate state similar to Figure 3.12(c). Dashed line represents way-point
transition.

The most natural method to compute this path is to constrain the gripper to

move on the line passing through the two ends. A straight line in Euclidean space

means the path in CS is not straight. However, if the distance between the two

configurations is small, the straight line in CS is very close to a straight line for the

gripper, in Euclidean space. So a straight line in CS does not decrease much the

likelihood of a collision-free path. Moreover, the projection algorithm requires to

solve a system of linear equations and makes use of singular values for the continuity

criterion. Those operations are of cubic complexity so the marginal increase of time

for projection for each additional constraint increases. Straight lines in CS are -

potentially a lot - less time-consuming. I experimented both strategies and preferred

the second one as it speeds up projections.

Figure 3.15 shows a Graph of Constraint which integrates three intermediate

3.4. Narrow passages 65

Figure 3.14: Effect of a way-point transition in the configuration space. Cgrasp and
Cplacement are represented. A path from qinit ∈ Cgrasp to qend ∈ Cplacement built with
graph on Figure 3.15 will contains three way-points: w1 in “Ball above ground”, w2

in “Grasp - Placement” and w3 in “Gripper above ball”. The two red lines shows
the sub-paths which are expected to be short.

states. Gripper above ball corresponds to poses like on Figure 3.12(c), already

explained. Ball above ground corresponds to poses like on Figure 3.12(f). The

robot holds the ball and the ball is at a pre-placement position. The intermediate

state encodes the hypothesis that, going from pre-placement to pre-grasp, from

Figure 3.12(f) to 3.12(c), requires to find a pose like on Figure 3.12(e). This restricts

the set of solutions. This is illustrated in Figure 3.14.

3.4.2 Way-point transition

In the examples above, I use states to specify approaching poses. This fastens the

search by giving hints on how to execute an action. The hints are given as a pose

constraint for the end-effector or the object.

However, hints should not be states as it would slow down the search for the

two following reasons. First, two or more iterations would be required to compute

a path between grasp and placement. The fact that transition Grasp ball should

directly follow Approach ball is ignored. Second, the approaching configuration is

close to the grasping configuration so generating the grasping configuration from

the approaching configuration is likely to succeed. The path between the two con-

figurations is very short so, if the approaching configuration is collision-free, the

path is also likely to be collision-free. Two steps mean two different random config-

urations. More likely, it will result in a projection failure or in a longer path, more

66 Chapter 3. Manipulation planner

Place-
ment

Gripper
above
ball

Grasp
- Place-

ment

Ball
above

ground
Grasp

Approach
ball

Grasp ball

Move
gripper
away

Move
gripper up

Take
ball up

Take ball
away

Put ball
down

Approach
ground

Transit Transfer

Figure 3.15: A Graph of Constraint for the problem on Figures 3.12(d) and 3.12(e)
with intermediate states similar to Figures 3.12(c) and 3.12(f). Dashed line repre-
sents way-point transition.

likely not collision-free.

To overcome these issues, I introduce the way-point transition. This type of

transition tells the planner to chain the transition. For instance, on Figure 3.13,

whenever Approach ball is selected and generates qproj from a random qrand and a

neighbour qnear, Grasp ball is called and generates a configuration from qrand and

qproj . These transitions are also useful to specify transitions representing motions

lying in several states. For instance on Figure 3.13, the way-point transition from

placement to grasp represents motion that lies first in placement (Approach ball and

Grasp ball) and then in grasp (Take ball up and Take ball away).

3.4.3 Experimental results

(a) Initial configuration (b) Goal configuration

Figure 3.16: Benchmark of way-point transition using UR5.

Three different Graphs of Constraint have been tested in the following set-up.

The UR5 manipulator arm must move a ball from inside a box to a pose where

the ball is in its gripper. This two configurations are shown in Figure 3.16. The

results are summarized in Table 3.1. The columns correspond to the following cases,

respectively.

3.4. Narrow passages 67

The first graph corresponds to the one of Figure 3.1. It contains only two states

and no guidance information.

The second graph corresponds to the one of Figure 3.9, where transitions are not

way-point transitions but standard transitions. This means the algorithm does not

chain them. For instance, Grasp ball will not necessarily be applied to configuration

obtained by Approach ball.

The third graph corresponds to the one of Figure 3.9, with way-point transitions.

This means the algorithm will apply systematically Approach ball, Grasp ball, Take

ball up and Take ball away in sequence.

The results show that properly using guidance information has a huge effect on

the computation time. With way-point transitions, the problem was solved more

than 300 times faster than without guidance information.

Guidance No With transitions With way-point transitions

tavg/tmax (s) 74.8 / 296 1.52 / 8.92 0.234 / 0.245
Navg/Nmax 3553 / 13840 53 / 291 5 / 5

Table 3.1: Results of the benchmark of way-point transitions with UR5. Each
case is run 100 times. t is the computation time. and N is the number of nodes
generated. No guidance means that no intermediate poses were given. Guidance
with transitions and way-point transitions means that intermediate poses were pro-
vided. In the former case, this information was provided using standard states and
transitions while the latter case uses way-point transitions.

Chapter 4

Affordance

Contents
4.1 Documented objects . 69

4.1.1 Grippers and handles . 70

4.1.2 Contact surfaces . 71

4.2 Constraint graph generation 73

4.2.1 Building the states . 74

4.2.2 Transition detection . 75

This chapter presents a method to generate a Graph of Constraint. The method

relies on affordance. Each robot and object comes with a documentation containing

intrinsic information about its capabilities.

The first section presents the documentation developed in the framework of this

thesis. The second introduces an algorithm that generates a Graph of Constraint

from the documentation.

The importance of this algorithm resides in the fact that it makes manipulation

planning accessible to non-expert users. Indeed, the problem can be defined simply

through two set of rules. The first set of rules specify pairs of end-effector and

objects that can generate a grasp. The second set of rules concerns object stability.

It contains a set of support surfaces on environment and contact surfaces on objects

and robots.

4.1 Documented objects

Models of robots, objects and environments are augmented with guidance informa-

tion, referred to as object documentation. It contains geometrical information. Two

types of interactions are proposed. The robot can interact with its surroundings by

grasping with its end-effectors. It can also interact by creating contacts. Each type

of interaction is presented in the two following sections.

I do not consider low-level grasping for complex grippers, such as human-like

grippers. Such grippers could be documented through contact surfaces. However,

full-body motion planning for a robot, considering 15 degrees of freedom (DoFs)

per hand, becomes rather complex.

70 Chapter 4. Affordance

4.1.1 Grippers and handles

When a robot grasps an object o with an end-effector e, the relative transformation

of the object with respect to the end-effector, Te o, is constant. However, there may

be several or even infinite admissible values for Te o. Those admissible values depend

on intrinsic parameters of e, intrinsic parameters of o and coupling parameters which

depends on their association. In the following, I ignore coupling parameters.

(a) Robot gripper (b) Object handle and surfaces (c) Environment surfaces

Figure 4.1: Documentation of gripper, handle and contact surfaces. On (a) and (b),
the frames represent the grasping positions. The X axis, in red, is the approaching
axis. The Z axis, in blue, is the possible rotation axis. The green surfaces on (b)
and (c) are contact surfaces. Object surfaces can go on environment surfaces.

The documentation of a gripper and a handle shares the following properties,

some of which are shown on Figure 4.1(a) and 4.1(b).

• A reference frame R defines the center of the element, with respect to a

specified body frame B(q). The X axis defines an approaching direction. The

Z axis defines an axis for a potential rotation freedom.

• A positive real value, called clearance and denoted by δ, gives an idea of how

big the element is. It should be more that the shortest distance along X axis,

the approaching axis, at which a plane orthogonal to X axis would not be in

collision with the element.

The documentation of a handle also contains information about the parametrization

of grasps. Object can be long, axial or long axial. long means the translation along

Z parametrizes grasps. axial means the rotation around Z parametrizes grasps.

long axial means the two previous simultaneously. This could be extended to more

types of parametrization.

In order to write the grasp constraints, let me denote the rel-

ative transformation of the handle with respect to the gripper by

Tg h(q) = R−1
g × Bg(q)−1 × Bh(q)×Rh ∈ SE(3). As an element of SE(3), it

can be mapped to an element of se(3) using the inverse of the exponential map

exp : se(3)→ SE(3) that gives the smallest angle. I denote this element by

log
(

Tg h(q)
)

= ([ω]× ,v) (4.1)

4.1. Documented objects 71

where v = (vx, vy, vz) ∈ R
3 and ω = (ωx, ωy, ωz) ∈ R

3 such that ||ω||2 ≤ π.

The validation and parametrization constraints can now be built. Consider the

handle h is of type axial. Other types can be easily guessed from this example. Two

validation constraints corresponding to pre-grasp poses and to grasp poses:

fgrasp(q) = [vx, vy, vz, ωx, ωy] = 0 (4.2)

fpregrasp(q) = [vx + δh + δg, vy, vz, ωx, ωy] = 0 (4.3)

The parametrization constraints are the same for pre-grasp and grasp:

f̄grasp(q) = f̄pregrasp(q) = [ωz] = b (4.4)

This model of grasps is not meant to be exhaustive. It limits grippers and

objects that can be considered. The reference frame is not really intrinsic to a

gripper or an object. Indeed, one handle reference frame may not be sufficient for

both a big and a small gripper. The handle reference frame may have to be shifted

along the X axis. These values are not robust to big ranges of gripper and object

size.

4.1.2 Contact surfaces

Possible contact surfaces are defined as convex planar polygons. This representation

is generic enough to represent most objects (object meshes are typically composed

of triangles). I only consider planar contact between polygons though sphere /

plane and cylinder / plane contact models could also be considered. Users define

a polygon by providing an ordered set of vertices and the body it is attached to.

Figure 4.1(b) and 4.1(c) give an example.

Two parts A and B (B can be the environment) are in contact when two contact

polygons, one for each part, are in contact, i.e. the distance between them is less

than a threshold ε. The focus is only contact creation and not equilibrium criterion,

which is assumed to be handled by some other means, like another constraint.

The main difficulty is to define the distance between two surfaces. This dis-

tance must take into account polygon positions and normals relative orientation. A

distance is proposed in the following paragraph.

Distance between polygons For a polygon P , nP denotes its normal, CP the

centroid of its vertices and

• RP is a reference frame center at CP , whose X axis is aligned with nP and

Y axis is aligned with one vertex.

• QP,S the orthogonal projection of CP onto the plane containing another planar

polygon S.

72 Chapter 4. Affordance

Figure 4.2: Distance between polygons. Support polygon S is included in plane Π.
CM is the centroid of the moving polygon M . QM,S is its orthogonal projection
onto Π. d‖(M,S) corresponds to Eq. (4.6) and d⊥(M,S) corresponds to Eq. (4.5)

Three distances1 between a moving polygon M and a support polygon S are

defined in Equation (4.7) and shown on Figure 4.2. Note that if QM,S /∈ S then,

d(M,S) is merely the euclidean distance between the centres. Otherwise, it is the

distance along nS .

d⊥(M,S) = CSCM.nS (4.5)

d‖(M,S) =

{

||CSQM,S||2 if QM,S /∈ S
0 otherwise

(4.6)

d(M,S) =
√

d⊥(M,S)2 + d‖(M,S)2 (4.7)

Constraints The functions are build with two sets of polygons: a set of object

polygons (Mi) and a set of support polygons (Sj).

Let I, J = arg mini,j d(Mi, Sj) be the indexes of the pair of the closest pair

of polygons according to the distance function d. I denote by T
Sj

Mi
the relative

transformation of RMi
with respect to RSj

. The same decomposition as in (4.1)

gives:

log
(

TSJ

MI
(q)
)

= log
(

RMI
(q)−1RSJ

(q)
)

= ([ω]× ,v)

where v = (vx, vy, vz) ∈ R
3 and ω = (ωx, ωy, ωz) ∈ R

3 such that ||ω||2 ≤ π.

Let δ be a user-defined distance for pre-placements. I define the placement

1Formally, they are not distances as they are not symmetric.

4.2. Constraint graph generation 73

validation constraints:

fplace(q) =

{

[vx, 0, 0, ωy, ωz] if QM,S ∈ S
[vx, vy, vz, ωy, ωz] otherwise

= 0 (4.8)

fpreplace(q) =

{

[vx + δ, 0, 0, ωy, ωz] if QM,S ∈ S
[vx + δ, vy, vz, ωy, ωz] otherwise

= 0 (4.9)

and the placement parametrization functions:

f̄place(q) =

{

[vy, vz, ωx] if QM,S ∈ S
[0, 0, ωx] otherwise

(4.10)

f̄preplace(q) =

{

[vy, vz, ωx] if QM,S ∈ S
[0, 0, ωx] otherwise

(4.11)

If fplace(q) = 0, the distance function is minimal, so polygons are in contact.

The two constraints fplace(q) = 0 and f̄place(q) = b together fully constrain the

relative motion between the closest polygons. Indeed, the two constraints together

are equivalent to a constant T
Sj

Mi
(q).

The presented method is compatible with other primitives such as cylinder,

resp. sphere, which would define linear, resp. punctual contacts. With additional

calculations, one can similarly define distances for those primitives.

These functions are only piecewise continuously differentiable. As state in Sec-

tion 3.2, the projector may not satisfy Property 3.1, i.e. it may be biased. The

projection of a uniformly distributed configuration in CS has higher probability to

be on the edges of the table than in the middle.

Though the discontinuity points may cause instability in the projection algo-

rithm, none were encountered in all the cases and the efficiency of the projector did

not seem altered. Escande et al. [2014] proposed a more complex approach with

continuous gradient.

Eventually, the pair of surfaces used in the parametrization function is not

identified in the output. In other words, specifying b in constraint f̄place(q) = b does

not specify the pair. So the parametrization function does not correctly parametrize

the placement space when there are more than one polygon in (Mi) and (Sj).

The example shown in Section 5.2.2 shows a case where the support surface is

moving. When it is moving, the object put on it should follow its motion. This is

automatically handled by the above constraints.

4.2 Constraint graph generation

In this section, I explain how a Graph of Constraint is automatically built from a set

of objects and robot grippers. The objects, grippers, robots and the environment

comes with the documentation defined above.

The number of nodes of the constraint graph may quickly grow when the number

of objects and grippers increases. The user may provide as input only a subset of

74 Chapter 4. Affordance

relevant grasps to algorithm 4.1 so that the result remains tractable. This subset can

be provided as a grasp-placement table as in Tournassoud et al. [1987], Lertkultanon

and Pham [2015].

I denote by GRASP (g, h) the validation constraint defined by the grasp of

handle h by gripper g. I denote by CONTACT (L1, L2) the validation constraint

that enforces contact between either polygons of two sets L1 and L2. I denote by

FIXED(obj, g) the validation constraint that enforces a constant relative transfor-

mation between object obj and g, either a robot gripper or the environment.

Algorithm 4.1 Build the constraint graph

1: G← set of grippers,
2: H ← set of handles,
3: function buildConstraintGraph

4: states ← ∅
5: for all subset G′ of G by increasing cardinal do
6: for all injective mapping f1 from G′ to H do
7: S1 ← MakeState(f1, G′)
8: states ← states ∪{S1}
9: for all g1 ∈ G′ do

10: G′′ ← G′ \ {g1}
11: f0 ← f1 restricted to G′′

12: S0 ← states.getState(f0)
13: MakeTransitions(S0, S1)

14: MakeLoopTransition(S1, S1)

4.2.1 Building the states

Algorithm 4.1 describes the construction of the Graph of Constraint relative to a

manipulation problem. One or several handles are attached to each object. The

algorithm loops over all possible combinations of “some grippers hold some handles”

f1 (Lines 5, 6), by increasing number of gripper involved in a grasp.

States are created by increasing order because state priority is then the same as

creation order. When there are no placement for an object, S1 will be a subset of

S0 and it must have higher priority.

To reduce the combinatorial, I also introduced rules, which are not shown in

Algorithm 4.1. A rule gives to the user the ability to forbid or authorize association

of grippers with handles. This is done by checking where function f1 in the loop

Line 6 fulfils user-defined rules. If not, then, this f1 is skip and directly go the

next value for f1. This is useful to reduce the exponential combinatorial. Also note

that, when G′ has greater cardinal than H, there is no injective mapping from G′
to H.

The algorithm creates a state for each combination. Then, transitions are cre-

ated to the new state S1 from each state S0 defined by the same set of grasps minus

4.2. Constraint graph generation 75

the one involving g1 (lines 9-13). Method getState returns the state built with

the combination of grasps f1 given as input (Line 12).

Algorithm 4.2 Build a state

f1 ← set of contact polygons of the environment
G′ ← set of grippers,

1: O ← set of objects (with contact polygons),
2: P ← set of contact polygons of the environment
3: function MakeState(f1, G′)
4: S ← EmptyState

5: for all obj ∈ O | f1(G′) ∩ obj.handles = ∅ do
6: Ccontact ←Contact(obj.polygons, P)
7: S.constraints.add(Ccontact)
8: S.transConstr.add(FIXED(obj, env))

9: for all g1 ∈ G′ do
10: Cgrasp ←Grasp(g1, f1(g1))
11: S.constraints.add(Cgrasp)
12: if Cgrasp.dimension < 6 then
13: S.transConstr.add(FIXED(f1(g1).obj, g1))

14: return S

Function MakeState is shown in Algorithm 4.2. The set of handles of object

obj is denoted by obj.handles (line 5). It loops over all ungrasped objects (Line 5)

and creates constraints so that those objects stay in stable contact pose. Then

it loops over each grasp g1 defined by f1 (Line 9) and creates the corresponding

constraint. Each state stores a set of parametrization constraint that will be inserted

in transitions by function MakeTransitions (Lines 8 and 13).

4.2.2 Transition detection

S0 W1 W2 W3 S1

fgrasp(q) = 0 x x x

fpregrasp(q) = 0 x

fplace(q) = 0 x x x

fpreplace(q) = 0 x

Csub x x

Table 4.1: Constraints of way-point states. Csub denotes the constraint of the sub-
manifold in which the overall transition lies. For instance, it is composed of the
grasp constraints of some pairs gripper / handle, and of the placement constraints
of non-grasped objects. It does not contains the placement of the object of the
current handle.

76 Chapter 4. Affordance

T01 T10 T12 T21 T23 T32 T34 T43

state S0 S0 S0 S0 S1 S1 S1 S1

fgrasp x x x x x x

fplace x x x x x x

fsub x x x x x x x x

Table 4.2: Constraints of transition between way-point states. fsub denotes the
parametrization function of the foliation in which the overall transition lies. As
in Table 4.1, it is composed of the grasp parametrization function of some pairs
gripper / handle, and of the placement parametrization function of non-grasped
objects.

Algorithm 4.3 shows function MakeTransition in cases with no pre-grasp

and no pre-placement. Algorithm 4.4 shows the same function with pre-grasp and

pre-placement. Similar algorithm have been designed for the two other cases.

Crossed foliation transitions are added even when there is only one foliated man-

ifold. This increases the chance of solving a problem since the two random trees can

meet both in the non-foliated and in the foliated manifold. Function MakeLoop-

Transition (Line 14 of Algorithm 4.1) behaves similarly to Algorithm 4.3 with

only T0 and T1. T ∗
0 and T ∗

1 are not built.

Algorithm 4.3 Make a transition - No pre-grasp or pre-placement

1: function MakeTransitions(S0, S1)
2: T0 ←EmptyTransitionBetween(S0, S1)
3: T1 ←EmptyTransitionBetween(S1, S0)
4: T0.constraints.add(S0.transConstr)
5: T1.constraints.add(S1.transConstr)
6: if S0.transConstr is not empty then
7: T ∗

1 ←CrossedFoliationTransition(T1)
8: T ∗

1 .crossingParametrizationFunction(S0.transConstr)

9: if S0.transConstr is not empty then
10: T ∗

0 ←CrossedFoliationTransition(T0)
11: T ∗

0 .crossingParametrizationFunction(S1.transConstr)

In Algorithm 4.3, lines 6 and 9, the crossed foliation issue corresponds to the

parametrized constraints S1.transConstr and S2.transConstr to be both non-

empty. Line 7 and 10, function CrossedFoliationTransition builds a crossed

foliation transition that encodes the same motion as the transition passed as pa-

rameter. Line 8 and 11, function crossingParametrizationFunction sets the

parametrization function of the crossing foliation.

Algorithm 4.4 builds a transition with three way-points, as in Figure 3.15. Ta-

ble 4.1 shows the validation constraint of state S0 and S1 and of way-point states

Wi. Table 4.2 shows the parametrization function of way-point transitions Tij . sub

4.2. Constraint graph generation 77

refers to the manifold of S0 without placement constraint of the object involved in

the grasp. Note that if the object is already involved in another gripper/handle

pair, then only grasp and pre-grasp constraint should be used, and placement con-

straint should not be used. In this case, way-point states W2 and W3 of Table 4.1

and transitions T23, T32, T34 and T43 are not necessary. This is because one grasp is

considered sufficient to have a stable position of an object.

Function WaypointTransition builds a way-point transition. The first argu-

ment is the ordered list of states. The second is the list of transition between the

states. The Wi and the Tij are internal to the way-points transitions. Line 8-15

does exactly as explained in the previous paragraph.

Algorithm 4.4 Make a transition - With pre-grasp and pre-placement

1: function MakeTransitions(S0, S1, f0, f1, G′, g1)
2: h← f1(g1)
3: o← h.object

Sub-manifold sub of the transitions: same as S0 without placement for o.
4: sub← S0

5: sub.RemovePlacementOf(o)
Build way-point states as in Table 4.1 and way-point transitions as in Table 4.2.

6: T0 ←WaypointTransition((S0,W1,W2,W3, S1), (T01, T12, T23, T34))
7: T1 ←WaypointTransition((S1,W3,W2,W1, S0), (T43, T32, T21, T10))
8: if Grasp is foliated then
9: T ∗

01 ←CrossedFoliationTransition(T01)
10: T ∗

01.crossingParametrizationFunction(fgrasp)
11: T ∗

0 ←WaypointTransition((S0,W1,W2,W3, S1), (T ∗
01, T12, T23, T34))

12: if Placement is foliated then
13: T ∗

43 ←CrossedFoliationTransition(T43)
14: T ∗

43.crossingParametrizationFunction(fplace)
15: T ∗

1 ←WaypointTransition((S1,W3,W2,W1, S0), (T ∗
43, T32, T21, T10))

Chapter 5

Results

Contents
5.1 Humanoid Path Planner . 79

5.1.1 Library architecture . 80

5.1.2 Results . 81

5.2 Manipulator arm . 84

5.2.1 Rearrangement planning . 84

5.2.2 Tool use inference . 85

5.3 Humanoid robots . 86

5.3.1 Quasi-static walking motion 86

5.3.2 Romeo holding a placard . 90

5.3.3 Grasping behind a door . 91

This chapter shows the results obtained with the algorithm described in Chap-

ter 3. The continuous path projection algorithms and the Manipulation-RRT (M-

RRT) algorithm have been integrated into the Humanoid Path Planner (HPP)

software.

As an important outcome of this thesis, this library is briefly described in the

first section. The two next sections show various results obtained with the im-

plementation of the presented approach in HPP. First, I present results obtained

with manipulator arms with and without mobile platform. Then, I present results

with humanoid robots. Two types of problems, different in appearance, are treated:

locomotion problems and manipulation problems.

5.1 Humanoid Path Planner

The Humanoid Path Planner1 [Mirabel et al., 2016] is an open-source library ad-

dressing generic motion planning problem. It contains tools dedicated to humanoid

robots, hence its name. The development of the software was initially impulsed

by my PhD supervisor Florent Lamiraux. He and myself are the two main devel-

opers. Two well-known alternatives to HPP are Open Motion Planning Library

(OMPL)[Şucan et al., 2012] and Open Robotics Automation Virtual Environment

1 https://humanoid-path-planner.github.io/hpp-doc/

https://humanoid-path-planner.github.io/hpp-doc/

80 Chapter 5. Results

(OpenRAVE)[Diankov, 2010]. However, this two alternatives did not fit all our

needs.

OMPL does not have an abstraction for continuous path. Instead, paths are

always discretized. This is not desirable for the two following reasons. First, the

discretization step has to be tuned for each case. Second, some algorithms need

to evaluate a path at times which are not known beforehand. This is discussed in

more details in Section 2.1.3.

OpenRAVE handles constraint through inverse kinematic solvers. Users can

provide their own solvers via plugins. However, consider the case where a hu-

manoid robot is to manipulate two objects, like in Section 5.3.3. The constraints

to be considered are: equilibrium constraint of the robot and valid placement and

valid grasp of each object. Each state has a different set of constraints. As these

constraints are coupled, they cannot be solved separately. This means one would

have to create a different inverse kinematic solver to handle each case separately.

We preferred to put in the core an abstraction of the constraint.

5.1.1 Library architecture

Package architecture The software is organized in small packages. It relies on

hpp-fcl, a modified version of FCL [Pan et al., 2012], for collision checking, and on

Pinocchio [Mansard et al., 2014] for robot modelling and forward kinematics.

Package hpp-pinocchio wraps the Pinocchio library. It provides models of

joints as described in Section 2.1 and summarized in Table 5.1.

Type Configuration space Velocity space

Prismatic (1D) R (translation) R (linear)
Unbounded revolute (1D) S1 ⊂ R

2 (unit complex) R (angular)
Bounded revolute (1D) R (angle) R (angular)
Ball joints (3D) S3 ⊂ R

4 (unit quaternion) R
3 (angular)

Table 5.1: Main types of joints provided by default. For each joint, the represen-
tation of their configuration space (q vector) and their tangent space (velocity q̇
vector) is specified.

Package hpp-core is the main package. It contains an abstraction of tools

for motion planning, such as random configuration generator, collision checker,

projectors for configuration and paths and planning algorithms. It provides some

implementations for each of these tools. The Progressive and Global path projection

algorithms have been implemented in this package.

Package hpp-manipulation contains the Graph of Constraint and the M-RRT

algorithm. Package hpp-manipulation-urdf contains the documentation parser.

Finally, package hpp-tutorial and hpp-doc contains tutorials and the API

documentation.

https://github.com/flexible-collision-library/fcl

5.1. Humanoid Path Planner 81

Path abstraction The abstraction of a path contains a time interval [t1, t2], a

constraint C and a method interpolate : R → CS. The interpolate method is

handled differently depending on the type of path. For instance, straight path uses

straight lines while car-like path uses Reeds-Shepp curves. Evaluation of the path

at a time t is then done as follows.

p :

{

[t1, t2] → CS
t 7→ projector(interpolate(t), C)

It corresponds to the abstraction described in Section 2.1.3.

Constraint Package hpp-constraints provides an abstraction of differentiable

functions. This abstraction contains two methods. The first, value(q), evaluates

the function at a point passed as argument. The second, jacobian(q), evaluates its

derivative.

Then, package hpp-core contains an abstraction of validation and parametriza-

tion constraint and an implementation of the Newton-Raphson (NR) algorithm. A

constraint C contains a differentiable function f , an operator ∆ among {=, >,<}
and a right hand side b. The constraint is then f(q) ∆ b. The NR algorithm

then uses C.f .value(q) and C.f .jacobian(q) to generate configurations satisfying

the constraints. It corresponds to the abstraction described in Section 2.1.2.

5.1.2 Results

Benchmarks We compared the performance of the implementation of the RRT-

connect algorithm of OMPL and HPP. OMPL proposes other planners, not imple-

mented in HPP. We did not find other benchmarks from other softwares to compare

ourselves to. This benchmark shows that the efficiency of the default planner of

HPP is comparable to OMPL.

To carry out the comparison, we used the benchmark database provided by

OMPL, picking the three problems solved with RRT-Connect2. To provide a com-

parison as fair as possible, we had to take into account implementation details of

OMPL and HPP. Firstly, OMPL uses a range parameter, which determines the

maximum distance between two nodes in the roadmap, automatically computed for

each scenario. Depending on the benchmark, this value can improve or slow down

the computation time. The HPP implementation does not use such parameter.

Secondly, HPP includes a continuous collision checking method. It has a higher

atomic cost than discretized collision checking, but has the advantage that only one

test is required between two configurations, regardless of their distance.

To compare HPP and OMPL on an equivalent implementation of RRT-Connect,

we consider on one hand a “no range” version of OMPL (OMPL-NR), where the

range is set to a high value. On the other hand we consider a HPP implementation

2In the third scenario (Pipedream-Ring), no mesh of the ring-shaped robot was provided by
OMPL, so we replaced it with a ring mesh of 982 triangles.

http://plannerarena.org

82 Chapter 5. Results

scenario min time (s) avg time (s)

HPP-D HPP-C OMPL OMPL-NR HPP-D HPP-C OMPL OMPL-NR

Pipedream-Ring 0.065 0.043 0.458 0.618 1.24 2.05 3.00 4.23
Abstract 0.159 0.408 23.5 14.3 47.6 34.4 107 107
Cubicles 0.049 0.024 0.096 0.118 0.271 0.130 0.277 0.329

scenario max time (s) success rate (%)

HPP-D HPP-C OMPL OMPL-NR HPP-D HPP-C OMPL OMPL-NR

Pipedream-Ring 6.52 7.35 10.4 14.1 100 100 100 100
Abstract 258 178 297 270 94 94 96 98
Cubicles 0.902 0.946 0.665 1.06 100 100 100 100

scenario avg number of nodes time-out (s)

HPP-D HPP-C OMPL OMPL-NR

Pipedream-Ring 2283 2452 16100 22681 20
Abstract 11927 10807 177914 181427 300
Cubicles 495 302 261 307 20

Table 5.2: Results for 50 runs of each planner. Green values are used when the
HPP implementation performs better than all OMPL implementations. Red values
are used when HPP performs worse than at least one OMPL implementation. A
planning is considered to have failed after running longer than the specified timeout
value.

with discretized collision checking (HPP-D). The discretization step is the same in

HPP and OMPL3. To be exhaustive we also included benchmarks performed with

the specificities of the softwares: we thus also consider the standard “range” version

of OMPL (OMPL), and the continuous collision checking version of HPP (HPP-C).

Table 5.2 presents the results for all three scenarios and implementations. The

success rate represents the relative number of runs that succeeded before a given

maximum time limit. When computing minimum, average and maximum time

values, only successful runs were considered. The runs, single-threaded, were per-

formed on a 64 bits computer with 8 processors of 1.2Ghz, 64Go or RAM.

In any considered case, HPP implementation presents equivalent or better av-

erage computation times compared to OMPL. The important point is that the

performances remain in the same order of magnitude between HPP and OMPL.

Robot programming To my best knowledge, the earliest industrial application

of motion planning is Kineo [Laumond, 2006]. Since this first successful attempt,

many graphical interfaces have been developed to ease the use of motion planning

algorithms [Coleman et al., 2014]. For instances, [A. Şucan and Chitta, 2013] devel-

oped MoveIt!, [Brunner et al., 2016] developed RAFCON, OpenRAVE comes with

3converted to the standard metric system from OMPL that uses inches.

5.1. Humanoid Path Planner 83

its graphical interface. For the DARPA Robotic Challenge, [Marion et al., 2016]

developed Director and [Rodehutskors et al., 2015] developed their own interface

using virtual reality headset. The goal for these interfaces is to make robotic tools

more accessible and user-friendly. A prototype graphical interface has also been

developed with HPP. It provides to non-expert user an easy way of generating a

Graph of Constraint and of solving manipulation problems. For instance, the se-

quence in Figure 5.1 was programmed within ten minutes only using the graphical

interface and with the same tools as the one used to generate the examples in next

sections.

(a) Initial configuration (b)

(c) (d)

(e) (f) Goal configuration

Figure 5.1: Robot programming with HPP. The robot UR5 is programmed with a
graphical interface to move shaver parts. It must move them from the left carousel
to the center one, where they are to be processed, and then move them to the right
carousel. This is a use case of the European project Factory-In-A-Day.

84 Chapter 5. Results

5.2 Manipulator arm

5.2.1 Rearrangement planning

(a) Initial configuration (b) (c)

(d) (e) (f)

(g) (h) Goal configuration

Figure 5.2: Rearrangement planning: Baxter robot permutes the position of 3
boxes.

In these simulations, Baxter robot must move some boxes on a table in four

different settings, numbered 1, 2, 3 and 4. In the first two cases, only the right

arm of the robot is used. In the last two cases, both arms are used. The three first

cases have only two boxes. Case 4 has three boxes. The constraint graph of case

1 is given in Figure 5.3. In the first case, the box positions are only shifted and

the problem is monotone, i.e. there exists a solution which manipulates each box

only once, one after the other. In the other 3 cases, the boxes are to be permuted.

There are no monotone solution to these 3 problems. At least one intermediate box

position must be found or simultaneous manipulation must occur.

Table 5.3 and Figure 5.2 summarizes the results. The solver is able to find

solutions in all the four cases. For cases 1 and 2, the problem is not difficult

and the solution comes quickly. Cases 3 and 4 corresponds to artificially-hard toy

problems, yet the planner is able to discover a solution in a reasonable amount of

5.2. Manipulator arm 85

time.

From case 3 to case 4, the time to solve the problem explodes. This shows a

limitation of the approach. It does not scale to a high number of objects because

there is no task planner.

Solving time (s) Number of nodes

Case Nb Arm Min Med Max Min Med Max

1
2

Right
0.15 1.4 3.5 11 55 141

2 1.1 4.6 10.6 42 199 482
3

Both
3.7 18 60 103 273 832

4 3 76 397 1028 664 3659 8830

Table 5.3: Benchmark of rearrangement planning with Baxter robot: Minimum,
median and maximum solving time and number of nodes, over 20 runs, for the
cases described in Section 5.2.1.

pregrasp

freeintersec

pregrasp

intersec

preplace

r_gripper grasps box1

preplace

r_gripper grasps box2

Figure 5.3: Constraint graph for Case 1 with Baxter robot: 2 boxes and consid-
ering only the right arm. The constraint graph is produced by an extension of
Algorithm 4.1 that inserts way-point corresponding to approaching positions of the
gripper in front of the object.

Case 1 shows that the presented approach is not as efficient as task planning

based approaches on monotone cases. In contrast, it can solve non-monotone in-

stances, as shown in cases 2, 3, 4. These cases shows the ability to discover new

common valid placement. Case 3 and 4 also show the ability of the planner to

consider simultaneous manipulation.

5.2.2 Tool use inference

In this example, PR2 robot picks up a box. Figure 5.4(a) and 5.4(f) show the initial

and goal configurations. The planner must infer that it must open the drawer to

pick up the box. Figure 5.4 shows the result path. Another interesting point is that

interaction between the drawer and the object is inferred from the manipulation

86 Chapter 5. Results

(a) Initial configuration (b) (c)

(d) (e) (f) Goal configuration

Figure 5.4: PR2 robot picks up a box in a drawer

rules. The placement constraint ensures us the object moves as the drawer moves.

The constraint graph has been designed using the algorithm proposed in Sec-

tion 4.2. The documentation consists of one handle and one contact surface for the

object, one handle and one contact surface for the drawer and two grippers for PR2

robot.

The rules to limit the combinatorial were as follows. The left hand can grasp

the box. The right hand can grasp the drawer. The drawer is always at a valid

placement, An object pose is stable if the box surface and the drawer surface are

in contact.

5.3 Humanoid robots

In this section, I apply the approach to humanoid robots. I demonstrate by some

examples that the locomotion problem can be formulated as a manipulation prob-

lem. This is done by formulating quasi-static stability as a constraints. Then, I give

some two examples of manipulation problems. They both illustrates simultaneous

manipulation. The first also shows an articulated object. The second shows that it

is able to cope with the crossed foliation issue.

5.3.1 Quasi-static walking motion

In this example, I model a locomotion problem as a manipulation planning prob-

lems. This approach is able to compute a quasi-static walking path for HRP-2. I

consider three different scenarios. The environments are respectively a flat floor,

a flat floor with an low obstacle and stairs. Contact constraints are build from

contact surfaces in the documentation of the robot and the environment. The three

following stability criteria are used.

5.3. Humanoid robots 87

PG I PP

Box in left hand
Drawer in right hand

Box in left hand

PPIPG

Box in drawer

Box in drawer
Drawer in right hand

PG

PG

Figure 5.5: Graph of Constraint to pick up a box in a drawer. The diamond
are way-point internal states: PG stands for pre-grasp, I for intersection of grasp
and placement, and PP for pre-placement. The two foliated spaces are drawer
placements and object placements.

88 Chapter 5. Results

(a) Initial configuration (b) (c)

(d) (e) Goal configuration

Figure 5.6: Robot HRP-2 walking quasi-statically on flat floor.

(a) Initial configuration (b) (c)

(d) (e) Goal configuration

Figure 5.7: Robot HRP-2 quasi-statically steps over an obstacle on a flat floor.

The two first criteria are “Center of Mass (CoM) above one foot center”, denoted

by C l
CoM and Cr

CoM for left and for right foot, and “CoM above the line segment

linking the feet center”, denoted by C line
CoM , are described in Appendix B.

The last criterion is the one described in Section 2.3. It is a frictionless non-

coplanar multiple contacts criterion. The three cases could be solved with the last

stability criterion but, as already explained in Section 2.3, this criterion is time-

consuming and has lower success ratio compared to the two others.

Figure 5.8 shows the graph for the two first cases. CoMlr is constraint C line
CoM ,

and CoMl and CoMr are constraint C l
CoM and Cr

CoM . For the last scenario, only

the frictionless non-coplanar multiple contacts constraint is used. There are six

way-point transitions:

• two from double support to single support,

5.3. Humanoid robots 89

• two from single support to double support composed of only standard transi-

tion,

• two from single support to double support composed of one crossed foliation

transition at the beginning and two standard transitions. This crossed foli-

ation transition the algorithm to choose a foot pose on the floor for the free

foot that has been visited by other connected components.

SSl + CoMl

DS + CoMlr

DS+CoMl

SSr + CoMr

PSr+SSl+CoMl

DS+CoMr

PSl+SSr+CoMr

Figure 5.8: Constraint graph to generate quasi-static walking motions. l and r
indexes stand for left and right foot, DS for Double Support, SS for Single Support,
CoMs for CoM on foot r and PS for pre Support, poses where the foot is close to
its future pose on the floor.

Figure 5.6 and 5.7 shows the solution path found on flat floor and for stepping

over. Figure 2.9 shows the path found for climbing stairs. The graph for this

example is similar to the previous graph at the exception that it uses the third

equilibrium criterion. These examples show the ability of finding common valid

foot placement. Foot placement is considered in the same way as object placement.

Indeed, in all these problems, there are two foliations crossing each other. They

90 Chapter 5. Results

also show that this approach is abstract enough to be applicable to a wide range

of problems. This manipulation planner can thus be used to address locomotion

problem.

5.3.2 Romeo holding a placard

(a) Initial config. (b) (c) (d) (e) Goal config.

Figure 5.9: Robot Romeo holding a placard. In final configuration, the placard
is rotated by 180 degrees. The manipulation planning algorithm needs to explore
manifolds defined by right, left and both hand grasps.

In this example, Romeo holds a placard. The manipulation planning problem

consists in rotating the placard around the vertical axis. To do so, the robot needs

to go through a sequence of states where the robot holds the placard by the right

hand, the left hand and both hands. Applying a task planning based approach for

this problem seems difficult since the minimal sequence of tasks highly depends on

the workspace of the robot arms and is very difficult to precompute.

Min Median Max

Number of nodes 42 1370 7002

Solving time (s) 19 880 6500

Table 5.4: Benchmark of planning for Romeo holding a placard

The results obtained after 20 runs of the algorithm are displayed in Table 5.4.

The variance of the computation time is surprisingly high. Path planning was not

interrupted after a threshold time as usually done for difficult problems. Note that

the model of the robot is very accurate (each hand has four fingers with 3 segments)

and a lot of time is spent in collision checking. Moreover, the solution path goes

through several “narrow passages” since grasping the pole requires to avoid a lot

of collisions between the object and the fingers. Half of the time, the problem is

solved in less than 15 minutes.

5.3. Humanoid robots 91

(a) Initial configuration (b) (c)

(d) (e) Goal configuration

Figure 5.10: Robot Romeo puts a box in a fridge.

5.3.3 Grasping behind a door

I now demonstrate the implementation of a more complex manipulation planning

problem. A humanoid robot has to grasp an object and place it inside a fridge while

opening the fridge door. The sequence of high level actions is not given. First, I

generate a path for the sliding robot. Then the path can be post processed to

generate a walking trajectory as proposed by Dalibard et al. [2013] or Carpentier

et al. [2016]. I successfully planned a path where Romeo robot takes an object and

puts it in a fridge. Figure 5.10 shows the solution found.

Conclusion

This thesis addressed the manipulation planning problem. I analysed the structure

of the configuration space to model it. The contributions are organized around

the Graph of Constraint. The overall approach to solve a manipulation planning

problem is simple. First, the user documents the robots and the objects. Then, he

specifies some elementary association rules which are used to automatically generate

a Graph of Constraint. This graph provides useful information to the Manipulation-

RRT to plan a manipulation path.

From a broader point of view, this approach could be used to program robots

for industrial tasks. A prototype graphical interface based on this approach has

had promising results in this direction. With a few interactions with the interface,

it is possible to build a Graph of Constraint. This graph defines what are the

interactions of the robot with the world. Then, manipulation planning problem can

be defined using this graph and some other inputs, like position of a part to be

processed. Then, this problem can be solved to generate a trajectory for each part.

While the task is defined off-line in an abstract manner by the graph, the problem

can be solved online with varying inputs. The big advantage of this approach is

that it is robust to changes the inputs. For instance, the position of each input

parts does not have to be the same. However, this assumes that some technical

challenges are solved. For instance, the position of the parts has to be measured by

some mean and three dimensional models of the environment and the objects must

be available. Next section discusses possible future works.

Perspectives

Optimization of manipulation paths The manipulation paths produced by

randomized algorithms contain erratic and undesirable movements. Although there

exists optimization techniques in motion planning, they do not apply directly on

manipulation paths because of the foliated structure of the configuration space.

They can be split into a sequence of constrained path, to which standard optimiza-

tion techniques applies. This method is implemented in Humanoid Path Planner

(HPP) and gives good but insufficient results. Indeed, although it has the advan-

tage of being easy to implement, the method cannot optimize the configuration

linking the paths together. The method is doomed not to succeed in finding a path

better than the linear interpolation between these configurations. For instance, this

method is not able to change a “bad” grasp or a placement. Research in optimiza-

tion for manipulation paths has already generated interest [Zhang and Shah, 2016,

Hadfield-Menell et al., 2016].

Manipulator arms Many robots, like most manipulator arms, have an interval

for revolute joints of width bigger than 2π. For instance, UR5 and IIWA robots have

94 Conclusion

intervals of width 4π. This means that, for n joints, there are 2n configurations for

the same robot geometry. Random configurations often are at more the 2π along one

revolute joint coordinate from its nearest neighbour. This is not desirable as it leads

to motions where the robot does a full loop around one articulation. Moreover, it

greatly slows down the search because it generates longer paths more often colliding

with the environment. On my experiments, changing the interval from]−2π, 2π] to

]− π, π] has a non-negligible impact on solving time and improves a lot the quality

of the solution path. However it is not a satisfactory solution since it reduces the

capabilities of motion. Another possible solution I did not explore is to apply a

modulus operation on rotation joints after having selected the nearest neighbour.

Variety of tasks This thesis did not consider tasks such as sweeping a surface.

These actions are useful and appears often in factories. The problem of pushing

object has already been addressed[Barry, 2013]. This framework considers actions

which can be represented as constraint. It means they do not depend on time.

Pushing could be written by a time-dependant constraint of the form f : CS ×
[0, 1] → R

n. Sweeping a surface is different because it does not involve an object.

The goal is not defined through the motion of an object.

Metric on the configuration space Randomized algorithm are sensitive to the

chosen metric on the configuration space. Indeed, this metric is used to select the

nearest neighbour and thus what part of the tree is extended. However, the foliated

structure of the configuration space in manipulation planning should impact the

nearest neighbour search. Indeed, configurations close to each other with a standard

euclidean metric may be connected only by a very long path. For instance, two

configurations corresponding to the same robot pose but a different object pose

should account for the fact that the robot must also move.

Integration with task planning The novelty of the Manipulation-RRT (M-

RRT) is not to call a motion planning for each action it takes. In the current

version, it decides of what action to take randomly. This is interesting as it shows

that, although it helps, a task planner is not required for simple tasks. However, the

problem becomes intractable when the number of states in the Graph of Constraint

increases. Integrating a task planner may help to keep this tractable. Moreover,

the task planner could highly benefit from the Graph of Constraint. First, motion

planners used by most integrated task and motion planning approaches return at

most a graph of configuration along with a solution path when found. It does

not provide information on the search. In its current implementation, the Graph of

Constraint returns statistical information about elementary actions that were taken

and the reason when they fail. A task planner may use these to help the M-RRT

to choose actions to take.

Appendix A

Bound of the Hessian matrix of
a kinematic chain

A.1 Notations

Consider a tree of joints with N joints and d degrees of freedom (DoFs). The types

of joint considered are:

• rotation: denoted by R, 1 DoF;

• translation: denoted by T , 1 DoF;

• spherical: denoted by SO(3), 3 DoFs.

Each joint can have one or several DoFs. p(n) denotes the parent joint of joint

n and pk(n) = pk−1(p(n)) is its k-th ancestor. On, resp. nn, is the center, resp.

normal1, of joint n. Let L be the longest possible distance between two centers of

joint.

Let I(n) be the set of joint indexes of the chain between the root joint and joint

n. Let IR(n) (resp. IT (n), ISO(3)(n)) be the subset of indexes of rotation (resp.

translation, SO3) joint in I(n). They are such that I(n) = IR(n)∪IT (n)∪ISO(3)(n)

and IR(n) ∩ IT (n) = IT (n) ∩ ISO(3)(n) = ISO(3)(n) ∩ IR(n) = ∅.
[u]× is the cross matrix, i.e. [u]× v = u × v. [[M3,n]]× is the cross tensor, i.e.

[[M3,n]]× xn = [M3,nxn]×.

A.2 Jacobian

The Jacobian of the placement of joint n is Jn ∈ R
6×d. Jn C

j is the block corre-

sponding to joint j in Jn . Jn v
j denotes the velocity part of Jn C

j . Jn ω
j denotes the

angular velocity part of Jn C
j . Both Jn v

j and Jn ω
j have 3 rows. Their number of

columns is the number of DoF of the joint type. This is summarized in (A.1).

Jn =
(

Jn C
0 . . . Jn C

d

)

=

(

Jn v
0 . . . Jn v

d

Jn ω
0 . . . Jn ω

d

)

(A.1)

The elements of Jn are as follows. The unlisted blocks are matrices of zeros.

1This is an extended notation. SO(3) joints have no normal and nn is never used.

96 Appendix A. Bound of the Hessian matrix of a kinematic chain

• Joint pk(n) is a rotation:

Jn v
pk(n) = OnOpk(n) × npk(n), Jn ω

pk(n) = npk(n)

• Joint pk(n) is a translation:

Jn v
pk(n) = npk(n), Jn ω

pk(n) = 0

• Joint pk(n) is a SO(3):

Jn v
pk(n) =

[

OnOpk(n)

]

×
, Jn ω

pk(n) = I3

Thus, when pk(n) is a rotation, we have || Jn v
pk(n)
|| ≤ L and || Jn v

pk(n)
|| ≤ 1.

Otherwise, we have || Jn v,w

pk(n)
|| ≤ 1.

A.3 Hessian

The Hessian matrix is defined by Hn
i,j,k =

∂ Jn
i,j

∂q̇k
. Similarly to Jn v,ω

j , we denote

Hn v,ω
j,k =

∂ J
n v,ω

j

∂q̇k
.

A.3.1 Element of the Hessian matrix

• Joint pj(n) is a rotation2:

j > k, Hn v
pj(n),pk(n) =

[

npj(n)

]

×
Jn v

pk(n)

Hn ω
pj(n),pk(n) =0

j ≤ k, Hn v
pj(n),pk(n) =

[

npj(n)

]

×

(

Jn v
pk(n) − Jpj(n) v

pk(n)

)

−
[

OnOpj(n)

]

×

(

[

npj(n)

]

×
Jpj(n) ω

pk(n)

)

Hn ω
pj(n),pk(n) =−

[

npj(n)

]

×
Jpj(n) ω

pk(n)

• Joint pj(n) is a translation:

Hn v
pj(n),pk(n) = −

[

npj(n)

]

×
Jpj(n) ω

pk(n)

Hn ω
pj(n),pk(n) = 0

2The case j = k can be covered by both expression. This can be shown by using
[

npj(n)

]

×

[

npk(n)

]

×
= 0 and J

pj (n) v

pk(n)
= 0.

A.3. Hessian 97

• Joint pj(n) is a SO(3):

Hn v
pj(n),pk(n) =

[[

Jn v
pk(n) − Jpj(n) v

pk(n)

]]

×

Hn ω
pj(n),pk(n) = 0

A.3.2 Bounds

By the mean value theorem, an upper bound of |||| Hn (q)||||F on CS is a suitable

Lipschitz constant for Jn . An explicit upper bound is computed in this section.

The Hessian norm can be written as follows.

|||| Hn ||||2F =
∑

j∈I(n),k∈I(n)

|| Hn v
j,k||22 + || Hn ω

j,k||22 (A.2)

I consider in joint trees so the Hessian matrix is sparse. Joints not in I(n) do

not influence the placement of joint n. It gives the following bound.

|||| Hn ||||2F ≤ |I(n)|2(max(9L2, (L+ 2)2) + 1) (A.3)

For convenience, I introduce an intermediate variable σ(m,χ, κ) and rewrite

(A.2).

σ(m,χ, κ) =
∑

j∈Iχ(n),k∈Iκ(n)

|| Hn m
j,k||22

|||| Hn ||||2F =
∑

m∈{v,ω},(χ,κ)∈{R,T,SO(3)}2

σ(m,χ, κ)

Table A.1 and A.2 below summarizes the upper bound of σ.

A.3.2.1 Upper bound for σ(v, χ, κ)

χ\κ R T SO(3)

R |IR|2L2 4|IR||IT | 2|IR||ISO(3)|L2

T 2|IR||IT | 0 2|IT ||ISO(3)|
SO(3) 4|IR||ISO(3)|L2 4|IT ||ISO(3)| 4|ISO(3)|(|ISO(3)| − 1)L2

Table A.1: Upper bound for σ(v, χ, κ).

I know give a proof of the values in Table A.1.

98 Appendix A. Bound of the Hessian matrix of a kinematic chain

Proof. From the element of the Hessian matrix given in Section A.3.1, we get:

σ(v, T, T) = 0

σ(v,R, T) ≤ 4|IR(n)||IT (n)|
σ(v, T,R) ≤ 2|IT (n)||IR(n)|

σ(v, T, SO(3)) ≤ 2|IT (n)||ISO(3)(n)|

and ∀j ∈ ISO(3):

∀j ∈ ISO(3), || Hn v
j,k||22 = 2(|| Jn v

k − Jj v
k||2) ≤

2L2 if k ∈ IR(n)

2 if k ∈ IT (n)

2L2 if k ∈ ISO(3)(n)

So we get:

σ(v, SO(3), κ) ≤ 2|ISO(3)(n)| ×

2L2|IR(n)| if κ = R

2|IT (n)| if κ = T

2L2(|ISO(3)(n)| − 1) if κ = SO(3)

The Jacobi identity of cross product on Hn v
j,k where j ∈ IR(n) gives:

σ(v,R,R) ≤ |IR(n)|2L2

σ(v,R, SO(3)) ≤ 2|IR(n)||ISO(3)(n)|L2

A.3.2.2 Upper bound for σ(ω, χ, κ)

χ\κ R SO(3)

R |IR| (|IR| − 1) /2 |IR||ISO(3)|

Table A.2: Upper bound for σ(ω, χ, κ). Omitted combination are null.

I know give a proof of the values in Table A.2.

Proof. From the element of the Hessian matrix given in Section A.3.1, we get:

∀κ ∈ {R, T, SO(3)} , σ(ω, T, κ) = 0

∀κ ∈ {R, T, SO(3)} , σ(ω, SO(3), κ) = 0

σ(ω,R, T) = 0

σ(ω,R, SO(3)) ≤ |IR(n)||ISO(3)(n)|

Moreover, as ∀(j, k) ∈ IR(n)× I(n) | j ≥ k, Hn ω
j,k = 0,

σ(ω,R,R) ≤
∑

j,k∈IR(n)2,j<k

1 =
|IR(n)|(|IR(n)| − 1)

2

A.3. Hessian 99

A.3.2.3 Upper bound for the Hessian

The above inequalities put together gives the following bound.

|||| Hn ||||2F ≤
(

|IR|2 + 6|IR||ISO(3)|+ 4|ISO(3)|(|ISO(3)| − 1)
)

× L2

+6|IT ||IR|+ 6|IT ||ISO(3)|+
|IR|(|IR| − 1)

2
+ |IR||ISO(3)|

(A.4)

Appendix B

Static stability constraints

The following paragraphs detail static stability criterion for a humanoid robot with

one or two co-planar horizontal contacts.

Center of Mass (CoM) above the foot Using notation of Figure B.1, the

constraint is simply:

(rcom(q)− rfoot(q))× zworld = 0

CoM above the line segment linking the feet center The motivation is

to define a criterion which make it possible to switch from left single support to

right single support. Figure B.1 schematically represents a humanoid robot. rr(q)

denotes the right foot position and rl(q) the left one. rcom(q) denotes the position

of the CoM.

Figure B.1: Schematic model of a legged robot.

u = rr(q)− rl(q) denotes the vector from left to right foot and e = rcom(q)−
rl+rr

2 denotes the vector from the middle point between the feet and the CoM. The

constraint is defined as follows.

〈e× u, zworld〉 = 0 (B.1)

〈rcom(q)− rl(q),u〉 ≥ 0 (B.2)

〈rr(q)− rcom(q),u〉 ≥ 0 (B.3)

Equation (B.1) imposes rcom to be on the vertical plane passing by points rr

and rl. Equations (B.2) and (B.3) reduces the plane to a slice “between” the feet.

Overall, the constraint is of dimension 3.

102 Appendix B. Static stability constraints

Note the u is not normalized for numerical reasons. First, the Jacobian of

u is much cheaper to evaluate than of u
||u||2

. Second, it avoids numerical issues

around ||u||2 = 0. This favours to configuration with smaller ||u||2 as they have

smaller error. For the extreme case u = 0, the criterion does not ensure stability.

Fortunately, such configuration are in collisions.

Height of the CoM To the previous constraints, I also add a constraint on the

height of the center of mass, of the form 〈(rcom(q)− rfoot(q)) , zworld〉 = href

Bibliography

Ioan A. Şucan and Sachin Chitta. "moveit!", 2013. URL http://moveit.ros.org.

82

Rachid Alami, Thierry Siméon, and Jean-Paul Laumond. A geometrical approach

to planning manipulation tasks. the case of discrete placements and grasps. In

5th International Symposium on Robotics Research, Tokyo, Japan, 1989. 14

Rachid Alami, Jean-Paul Laumond, and Thierry Siméon. Two manipulation plan-

ning algorithms. In Algorithmic Foundations of Robotics (WAFR), pages 109–125.

AK Peters, Ltd. Natick, MA, USA, 1994. 14

Jennifer Barry, Leslie Kaelbling, and Tomás Lozano-Pérez. A hierarchical ap-

proach to manipulation with diverse actions. In IEEE International Conference

on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013. 15, 18

Jennifer Lynn Barry. Manipulation with diverse actions. PhD thesis, Massachusetts

Institute of Technology, 2013. 94

Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J Kuffner.

Manipulation planning on constraint manifolds. In IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 625–632. IEEE, 2009. 9

Dmitry Berenson, Siddhartha S Srinivasa, and James Kuffner. Task space regions:

A framework for pose-constrained manipulation planning. The International

Journal of Robotics Research, page 0278364910396389, 2011. 3, 15

Stanislas Brossette, Adrien Escande, Grégoire Duchemin, Benjamin Chrétien, and

Abderrahmane Kheddar. Humanoid posture generation on non-euclidean man-

ifolds. In IEEE International Conference on Humanoid Robots (Humanoids)

, 2015. URL https://sites.google.com/site/adrienescandehomepage/

publications/2015_Humanoids_Brossette.pdf. 39

Sebastian Brunner, Rico Steinmetz, Franz; Belder, and Andreas Dömel. Rafcon: A

graphical tool for engineering complex, robotic tasks. In IEEE/RSJ Intelligent

Robots and Systems (IROS). IEEE, 2016. 82

Stéphane Cambon, Rachid Alami, and Fabien Gravot. A hybrid approach to in-

tricate motion, manipulation and task planning. The International Journal of

Robotics Research, 28(1):104–126, 2009. doi: 10.1177/0278364908097884. URL

http://ijr.sagepub.com/content/28/1/104.abstract. 15, 16

John Canny. The complexity of robot motion planning. MIT press, 1988. 6

http://moveit.ros.org
https://sites.google.com/site/adrienescandehomepage/publications/2015_Humanoids_Brossette.pdf
https://sites.google.com/site/adrienescandehomepage/publications/2015_Humanoids_Brossette.pdf
http://ijr.sagepub.com/content/28/1/104.abstract

104 Appendix B. Static stability constraints

Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier Stasse, and Nico-

las Mansard. A Versatile and Efficient Pattern Generator for Generalized

Legged Locomotion. In IEEE International Conference on Robotics and

Automation (ICRA), Stockholm, Sweden, May 2016. URL https://hal.

archives-ouvertes.fr/hal-01203507. 91

Howie M Choset. Principles of robot motion: theory, algorithms, and implementa-

tion, 2005. 6

David Coleman, Ioan A. Şucan, Sachin Chitta, and Nikolaus Correll. Reducing the

barrier to entry of complex robotic software: a MoveIt! case study. Journal of

Sofware Engineering for Robotics, 5(1):3–16, May 2014. http://moveit.ros.

org. 82

Benoit Dacre-Wright, Jean-Paul Laumond, and Rachid Alami. Motion planning for

a robot and a movable object amidst polygonal obstacles. In IEEE International

Conference on Robotics and Automation (ICRA), pages 2474–2480. IEEE, 1992.

14, 17, 57, 60

Sébastien Dalibard and Jean-Paul Laumond. Linear dimensionality reduction in

random motion planning. The International Journal of Robotics Research, 30

(12):pp. 1461–1476, 2011. 7

Sébastien Dalibard, Alireza Nakhaei, Florent Lamiraux, and Jean-Paul Laumond.

Manipulation of documented objects by a walking humanoid robot. In IEEE

International Conference on Humanoid Robots (Humanoids) , pages 518–523.

IEEE, 2010. 3, 14, 15

Sébastien Dalibard, Antonio El Khoury, Florent Lamiraux, Alireza Nakhaei,

Michel Taïx, and Jean-Paul Laumond. Dynamic walking and whole-body mo-

tion planning for humanoid robots: an integrated approach. The Interna-

tional Journal of Robotics Research, 32(9-10):1089–1103, 2013. URL http:

//hal.archives-ouvertes.fr/hal-00654175. 2, 9, 12, 30, 34, 38, 91

Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD

thesis, Carnegie Mellon University, Robotics Institute, August 2010. URL http:

//www.programmingvision.com/rosen_diankov_thesis.pdf. 80

Andrew Dobson and Kostas Bekris. Planning representations and algorithms for

prehensile multi-arm manipulation. In IEEE/RSJ Intelligent Robots and Systems

(IROS), 2015. 15

Adrien Escande, Sylvain Miossec, Mehdi Benallegue, and Abderrahmane Kheddar.

A Strictly Convex Hull for Computing Proximity Distances With Continuous

Gradients. IEEE Transactions on Robotics, 30(3):666–678, 2014. doi: 10.1109/

TRO.2013.2296332. 73

Roy Featherstone. Rigid body dynamics algorithms. Springer, 2008. 59

https://hal.archives-ouvertes.fr/hal-01203507
https://hal.archives-ouvertes.fr/hal-01203507
http://moveit.ros.org
http://moveit.ros.org
http://hal.archives-ouvertes.fr/hal-00654175
http://hal.archives-ouvertes.fr/hal-00654175
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf

Bibliography 105

Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock,

and Moritz Diehl. qpOASES: A parametric active-set algorithm for quadratic

programming. Mathematical Programming Computation, 6(4):327–363, 2014. 38

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

13

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Ffrob: An

efficient heuristic for task and motion planning. In Algorithmic Foundations of

Robotics (WAFR), pages 179–195. Springer, 2015. 15, 18

Mamoun Gharbi, Juan Cortés, and Thierry Siméon. Roadmap composition for

multi-arm systems path planning. In IEEE/RSJ Intelligent Robots and Systems

(IROS), Saint-Louis, USA, 2009. 15

Dylan Hadfield-Menell, Christopher Lin, Rohan Chitnis, Stuart Russell, and Pieter

Abbeel. Sequential quadratic programming for task plan optimization. In

IEEE/RSJ Intelligent Robots and Systems (IROS), pages 5040–5047. IEEE, 2016.

93

André Haefliger. Feuilletages sur les variétés ouvertes. Topology, 9:183–194, 1970.

ISSN 0040-9383. 17

Kensuke Harada, Tokuo Tsuji, and Jean-Paul Laumond. A manipulation motion

planner for dual-arm industrial manipulators. in proceedings of. In IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 928––934,

Hongkong, China, 2014. 15, 51, 57

Kris Hauser. Fast interpolation and time-optimization on implicit contact subman-

ifolds. In Proceedings of Robotics: Science and Systems, Berlin, Germany, June

2013. doi: 10.15607/RSS.2013.IX.022. 2, 9, 10, 31

Kris Hauser and Victor Ng-Thow-Hing. Randomized multi-modal motion planning

for a humanoid robot manipulation task. The International Journal of Robotics

Research, 30(6):678–698, 2011. 3, 15

Giray Havur, Guchan Ozbilgin, Esra Erdem, and Volkan Patoglu. Hybrid reasoning

for geometric rearrangement of multiple movable objects on cluttered surfaces.

In IEEE International Conference on Robotics and Automation (ICRA), Hong

Kong, China, 2014. 15

Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,

2001. 13, 14

David Hsu, Tingting Jiang, John Reif, and Zheng Sun. The bridge test for sampling

narrow passages with probabilistic roadmap planners. In IEEE International

106 Appendix B. Static stability constraints

Conference on Robotics and Automation (ICRA), volume 3, pages 4420–4426.

IEEE, 2003. 7

Piotr Indyk and Jiri Matousek. Low-distortion embeddings of finite metric spaces,

2004. 6

Sören Jentzsch, Andre Gaschler, Oussama Khatib, and Alois Knoll. MOPL:

A multi-modal path planner for generic manipulation tasks. In IEEE/RSJ

Intelligent Robots and Systems (IROS), September 2015. http://youtu.be/

1QRvjBw58bU. 3, 15

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Ste-

fan Schaal. Stomp: Stochastic trajectory optimization for motion planning.

In IEEE International Conference on Robotics and Automation (ICRA), pages

4569–4574. IEEE, 2011. 8

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

7

Lydia E Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H Overmars.

Probabilistic roadmaps for path planning in high-dimensional configuration

spaces. IEEE transactions on Robotics and Automation, 12(4):566–580, 1996.

7, 14

Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

The international journal of robotics research, 5(1):90–98, 1986. 6

Alexander A Kirillov. An introduction to Lie groups and Lie algebras, volume 113.

Cambridge University Press Cambridge, 2008. 20

Jana Koehler and Jörg Hoffmann. On reasonable and forced goal orderings and their

use in an agenda-driven planning algorithm. Journal of Artificial Intelligence

Research, 12:338–386, 2000. 14

Athanasios Krontiris and Kostas Bekris. Dealing with difficult instances of object

rearrangement. In Robotics Science and Systems, Roma, Italy, 2015. 15

Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

6

Jean-Paul Laumond. Kineo cam: a success story of motion planning algorithms.

IEEE Robotics Automation Magazine, 13(2):90–93, June 2006. ISSN 1070-9932.

doi: 10.1109/MRA.2006.1638020. 5, 82

Steven M Lavalle. Rapidly-exploring random trees: A new tool for path planning.

Technical report, 1998. 7

http://youtu.be/1QRvjBw58bU
http://youtu.be/1QRvjBw58bU

Bibliography 107

Steven M LaValle. Planning algorithms. Methods, 2006:842, 2006. doi:

10.1017/CBO9780511546877. URL http://ebooks.cambridge.org/ref/id/

CBO9780511546877. 6

Puttichai Lertkultanon and Quang-Cuong Pham. A single-query manipulation plan-

ner. IEEE Robotics and Automation Letters, 1(1):198–205, 2015. 15, 51, 57, 74

Andrew D Lewis. Semicontinuity of rank and nullity and some consequences, 2009.

26

Tomas Lozano-Perez. Spatial planning: A configuration space approach. IEEE

transactions on computers, 100(2):108–120, 1983. 5

Nicolas Mansard and François Chaumette. Task sequencing for high-level sensor-

based control. IEEE Transactions on Robotics, 23(1):60–72, 2007. 37

Nicolas Mansard, Florian Valenza, and Justin Carpentier. Pinocchio: Fast forward

inverse dynamic for multibody systems , 2014. URL http://stack-of-tasks.

github.io/pinocchio/index.html. 80

Pat Marion, Maurice Fallon, Robin Deits, Andrés Valenzuela, Claudia Perez-

D’Arpino, Greg Izatt, Lucas Manuelli, Matthew Antone, Hongkai Dai, Twan

Koolen, John Carter, Scott Kuindersma, and Russ Tedrake. Director: A user

interface designed for robot operation with shared autonomy. To Appear in the

Journal of Field Robotics, 2016. 83

Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quar-

terly journal of mathematics, 11(1):50–59, 1960. 26

Dennis Nieuwenhuisen, A Frank van der Stappen, and Mark H Overmars. An

effective framework for path planning amidst movable obstacles. In Algorithmic

Foundations of Robotics (WAFR), pages 87–102. Springer, 2008. 14

Joseph O’Rourke and Jacob E Goodman. Handbook of discrete and computational

geometry. CRC Press, 2004. 6

Jun Ota. Rearrangement of multiple movable objects-integration of global and

local planning methodology. In IEEE International Conference on Robotics and

Automation (ICRA), volume 2, pages 1962–1967. IEEE, 2004. 15

Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for

collision and proximity queries. In IEEE International Conference on Robotics

and Automation (ICRA), pages 3859–3866. IEEE, 2012. 80

Erion Plaku and Gregory D Hager. Sampling-based motion and symbolic action

planning with geometric and differential constraints. In IEEE International Con-

ference on Robotics and Automation (ICRA), pages 5002–5008. IEEE, 2010. 18

http://ebooks.cambridge.org/ref/id/CBO9780511546877
http://ebooks.cambridge.org/ref/id/CBO9780511546877
http://stack-of-tasks.github.io/pinocchio/index.html
http://stack-of-tasks.github.io/pinocchio/index.html

108 Appendix B. Static stability constraints

Stanislav P Ponomarev. Submersions and preimages of sets of measure zero.

Siberian Mathematical Journal, 28(1):153–163, 1987. ISSN 1573-9260. doi:

10.1007/BF00970225. URL http://dx.doi.org/10.1007/BF00970225. 52

Andrea Del Prete, Steve Tonneau, and Nicolas Mansard. Fast Algorithms to Test

Robust Static Equilibrium for Legged Robots. In IEEE International Conference

on Robotics and Automation (ICRA), 2016. 39

Vladimir Rakočević. On continuity of the moore-penrose and drazin inverses.

Matematički Vesnik, 49(209):163–172, 1997. 26

Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp:

Gradient optimization techniques for efficient motion planning. In IEEE Inter-

national Conference on Robotics and Automation (ICRA), pages 489–494. IEEE,

2009. 8

James Reeds and Lawrence Shepp. Optimal paths for a car that goes both forwards

and backwards. Pacific journal of mathematics, 145(2):367–393, 1990. 8

Tobias Rodehutskors, Max Schwarz, and Sven Behnke. Intuitive bimanual telema-

nipulation under communication restrictions by immersive 3d visualization and

motion tracking. In IEEE International Conference on Humanoid Robots (Hu-

manoids) , pages 276–283. IEEE, 2015. 83

JT Schwartz and M Sharir. Motion planning and related geometric algorithms in

robotics. In Proc. Int. Congress of Mathematicians, pages 1594–1611, 1986. 5

Thierry Siméon, Jean-Paul Laumond, and Carole Nissoux. Visibility-based proba-

bilistic roadmaps for motion planning. Advanced Robotics, 14(6):477–493, 2000.

7

Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. Manipulation

planning with probabilistic roadmaps. The International Journal of Robotics

Research, 23(7-8), July 2004. URL http://ijr.sagepub.com/content/23/7-8/

729.short. 3, 16, 51, 57

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell,

and Pieter Abbeel. Combined task and motion planning through an extensi-

ble planner-independent interface layer. In IEEE International Conference on

Robotics and Automation (ICRA), pages 639–646. IEEE, 2014. 15, 16

Mike Stilman. Global manipulation planning in robot joint space with task con-

straints. IEEE Transactions on Robotics, 26(3):576–584, 2010. 9, 10

Mike Stilman and James Kuffner. Planning among movable obstacles with artificial

constraints. The International Journal of Robotics Research, 27(11-12):1295–

1307, 2008. 14

http://dx.doi.org/10.1007/BF00970225
http://ijr.sagepub.com/content/23/7-8/729.short
http://ijr.sagepub.com/content/23/7-8/729.short

Bibliography 109

Mike Stilman and James J Kuffner. Navigation among movable obstacles: Real-

time reasoning in complex environments. IEEE International Conference on Hu-

manoid Robots (Humanoids) , 2(04):479–503, 2005. 16

Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning

Library. IEEE Robotics and Automation Magazine, 19(4):72–82, December 2012.

doi: 10.1109/MRA.2012.2205651. http://ompl.kavrakilab.org. 79

Steve Tonneau, Nicolas Mansard, Chonhyon Park, Dinesh Manocha, Franck Mul-

ton, and Julien Pettré. A reachability-based planner for sequences of acyclic

contacts in cluttered environments. In Int. Symp. Robotics Research (ISRR),

(Sestri Levante, Italy), September 2015, 2015. 12

Pierre Tournassoud, Tomas Lozano-Perez, and Emmanuel Mazer. Regrasping. In

IEEE International Conference on Robotics and Automation (ICRA), volume 4,

pages 1924–1928, 1987. 74

Gordon Wilfong. Motion planning in the presence of movable obstacles. In Proceed-

ings of the fourth annual symposium on Computational geometry, pages 279–288.

ACM, 1988. 14

Chongjie Zhang and Julie A Shah. Co-optimizing task and motion planning. In

IEEE/RSJ Intelligent Robots and Systems (IROS), pages 4750–4756. IEEE, 2016.

93

http://ompl.kavrakilab.org

Glossary

CHOMP Covariant Hamiltonian Optimization for Motion Planning. 8

CoM Center of Mass. 12, 28, 38, 88, 89, 101, 102

DA-RRT Diverse Action RRT. 18

DoF degree of freedom. 5, 22, 39, 43, 44, 50, 57, 58, 62, 63, 69, 95

FF Fast Forward. 14, 16

Graph of Constraint Graph of states and transitions encoding manipulation

rules. ix, xiii, 2, 3, 41–43, 45–47, 49, 56, 63, 64, 66, 69, 73, 74, 80, 83,

87, 93, 94

HPP Humanoid Path Planner. xi, 2, 4, 31, 79, 81–83, 93

IP interpolation point. 11, 27–32, 34, 35

M-RRT Manipulation-RRT. ix, 3, 42, 47, 48, 52, 54, 55, 79, 80, 93, 94

NAMO Navigation Among Movable Obstacles. 14

NR Newton-Raphson. 9, 10, 24–27, 29, 30, 34, 37, 52, 81

OMPL Open Motion Planning Library. 79–82

OpenRAVE Open Robotics Automation Virtual Environment. 79, 80, 82

PRM Probabilistic RoadMaps. 7, 8, 17

RGD Randomized Gradient Descent. 9

RHP Recursive Hermite Projection. 10, 11, 31–35

RRT Rapidly exploring Random Tree. 2, 3, 7–9, 11, 12, 18, 30, 31, 34, 47, 49, 50

SSC Small Space Controllability. 58

SSM Small Space Manipulability. ix, 59

STOMP Stochastic Trajectory Optimization for Motion Planning. 8

TS Tangent Space Sampling. 9, 10

V-PRM Visibility PRM. 7

Notations

CS Configuration space of the robot. 5–12, 16, 20, 22–27, 35, 37, 41–43, 45–47, 52,

54, 55, 57–59, 61, 62, 64, 73, 81, 94, 97

CSfree Free configuration space. 6, 7, 9, 17

CSobs Obstacle configuration space. 6

CG Subset of valid grasp of CS. 16, 17, 23, 45, 46, 57, 58, 61–63

CP Subset of valid placement of CS. 16, 17, 45, 46, 57, 58, 61, 62

se(3) Lie algebra of SE(3). 59, 60, 70

SE(3) Special Euclidian group. 43, 57, 59, 70

SO(2) Special orthogonal group. 20, 21

SO(3) Special orthogonal group. 20, 21, 95–99

Résumé en français:
Cette thèse traite du problème de planification de mouvement pour objets docu-

mentés. La difficulté du problème réside dans le couplage d’un problème symbolique

et d’un problème géométrique. Les approches habituelles combinent la planification

de tâche et la planification de mouvement. Elles sont complexes à implémenter et

coûteuse en temps de calcul. Notre approche se différencie sur trois aspects.

Le premier aspect est un cadre théorique modélisant les mouvements admissi-

bles du robot et des objets. Ce modèle théorique utilise des contraintes pour lier

tâche symbolique et chemins géométriques accomplissant cette tâche. Un graphe

de contrainte permet de modéliser les règles de manipulation. Un algorithme de

planification utilisant ce graphe est proposé.

Le deuxième aspect est la gestion de chemin contraint. Dans le cadre de la

manipulation, un définition abstraite sous forme de contrainte numérique est néces-

saire. Un critère de continuité pour les méthodes de type Newton-Raphson est

proposé pour assurer la continuité de trajectoire dans des sous-variétés.

Le dernier aspect est la documentation des objets. Certaines informations, facile

à définir pour l’être humain, accélère grandement la recherche d’une solution. Cette

documentation, spécifique à chaque objet et préhenseur, est utilisée pour générer un

graphe de contrainte, facilitant ainsi la spécification et la résolution du problème.

Mots clés: Planification de manipulation, Planification sous contraintes,

Génération de trajectoire continue, Affordance, Objets documentés

Abstract:
This thesis tackles the manipulation planning for documented objects. The dif-

ficulty of the problem is the coupling of a symbolic and a geometrical problem.

Classical approaches combine task and motion planning. They are hard to imple-

ment and time consuming. This approach is different on three aspects.

The first aspect is a theoretical framework to model admissible motions of the

robot and objects. This model uses constraints to link symbolic task and motions

achieving such task. A graph of constraint models the manipulation rules. A

planning algorithm using this graph is proposed.

The second aspect is the handling of constrained motion. In manipulation

planning, an abstract definition of numerical constraint is necessary. A continu-

ity criterion for Newton-Raphson methods is proposed to ensure the continuity of

trajectories in sub-manifolds.

The last aspect is object documentation. Some information, easy to define for

human beings, greatly speeds up the search. This documentation, specific to each

object and end-effector, is used to generate a graph of constraint, easing the problem

specification and resolution.

Key words: Manipulation planning, Constrained planning, Continuous tra-

jectory generation, Affordance, Documented objects

	Remerciements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem statement
	Contributions
	Chapter organization
	Publications

	State of the art
	Motion planning
	Other problem formulations
	Constrained motion planning
	Motion planning for humanoid robot

	Task planning
	Manipulation planning
	Multi-layer manipulation planners
	Single layer planners

	Constrained motion planning
	Notations and definitions
	Configuration space
	Constraints
	Path

	Continuous path on manifolds
	Newton-Raphson algorithm
	Continuity of the Newton-Raphson iteration function
	Two path projection algorithms
	Continuous planning algorithm

	Static stability
	Static stability constraint
	Integration to a motion planner

	Manipulation planner
	Constraint Graph
	States and transitions
	Problem statement
	Manipulation RRT

	Crossed foliation issue
	Example
	Conditions
	Crossed foliation transition

	Generalized reduction property
	Generalized reduction property
	Grasps and placements
	Limitations

	Narrow passages
	Low sampling probability
	Way-point transition
	Experimental results

	Affordance
	Documented objects
	Grippers and handles
	Contact surfaces

	Constraint graph generation
	Building the states
	Transition detection

	Results
	Humanoid Path Planner
	Library architecture
	Results

	Manipulator arm
	Rearrangement planning
	Tool use inference

	Humanoid robots
	Quasi-static walking motion
	Romeo holding a placard
	Grasping behind a door

	Conclusion
	Perspectives

	Bound of the Hessian matrix of a kinematic chain
	Notations
	Jacobian
	Hessian
	Element of the Hessian matrix
	Bounds

	Static stability constraints
	Bibliography
	Glossary
	Notations

